JP4078701B2 - Rotary kiln - Google Patents

Rotary kiln Download PDF

Info

Publication number
JP4078701B2
JP4078701B2 JP36905197A JP36905197A JP4078701B2 JP 4078701 B2 JP4078701 B2 JP 4078701B2 JP 36905197 A JP36905197 A JP 36905197A JP 36905197 A JP36905197 A JP 36905197A JP 4078701 B2 JP4078701 B2 JP 4078701B2
Authority
JP
Japan
Prior art keywords
cylinder
inner cylinder
heating
outer cylinder
rotary kiln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36905197A
Other languages
Japanese (ja)
Other versions
JPH11193987A (en
Inventor
祐一 田子
幹夫 茂木
宗高 萩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP36905197A priority Critical patent/JP4078701B2/en
Publication of JPH11193987A publication Critical patent/JPH11193987A/en
Application granted granted Critical
Publication of JP4078701B2 publication Critical patent/JP4078701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は廃棄物(たとえば、都市ごみなど)を熱分解ガス化処理するようにした間接加熱式のロータリーキルンに関するものである。
【0002】
【従来の技術】
近年、次世代の廃棄物処理方式として、廃棄物を不活性雰囲気下で加熱して熱分解し、発生した熱分解ガスと熱分解残留物(炭素分および灰分)を燃焼・溶融炉で少ない空気量で高温にして燃焼させ、ごみ中の灰分を溶融スラグとして取り出すようにしたガス化・溶融方式が開発され、一部で実証運転が行われている。かかる方式では、廃棄物を熱分解ガス化するために、ロータリーキルンを採用し、外部からの熱で廃棄物を間接的に加熱、乾燥させて熱分解させるようにしている。
【0003】
廃棄物を熱分解ガス化するために用いられている間接加熱式のロータリーキルンは、図3にその一例の概要を示す如く、約3度ほど下傾させて回転駆動可能に横向き配置した二重管構造とした外筒1の長手方向一端の入口2に、給じん機4を介して投入ホッパ5を設けると共に、上記外筒1の長手方向他端の出口3に、熱分解ガス6aと熱分解残渣6bとを分離する分離室7を設け、外筒1を低速で回転させた状態において、投入ホッパ5内に投入された廃棄物6を給じん機4によって外筒1内に徐々に供給しつつ、外筒1の二重管部に形成された加熱流路8内に、出口3側から入口2側へ向けて加熱用ガス9を流通させることにより、外筒1内の廃棄物6を加熱、乾燥させて熱分解し、発生した熱分解ガス6aを、分離室7の上部から取り出して下流の燃焼・溶融炉に直接送るようにし、一方、金属類を含む熱分解残留物6bを、分離室7の下部から一旦取り出して金属類の分別工程を経てから燃焼・溶融工程へ送るようにしてある。
【0004】
10は回転継手、11はシールプレートを示す。
【0005】
しかし、上記ロータリーキルンの場合、間接加熱方式であって伝熱効率が悪いので、廃棄物6との接触面積を充分に確保する必要があり、そのため、外筒1が長大化してしまう問題がある。更に、外筒1が長大化することから、据付面積も広く必要となり、土地利用に大きく影響を与える問題もある。
【0006】
一方、外筒1を比較的長大化させることなく処理量を増やすことができるものとしては、ダイオキシン含有廃棄物の処理などに用いられている多筒型のロータリーキルンが知られている。すなわち、該多筒型のロータリーキルンは、図4に概略を示す如く、回転駆動可能に横向き配置した単管構造の外筒12内に、複数本の内筒13を収納させて固定し、これら内筒13と外筒12との間に形成される空間部を加熱流路8として、加熱用ガスを流通させるようにしてある。
【0007】
【発明が解決しようとする課題】
ところが、図4に示す如き間接加熱式で多筒型のロータリーキルンの場合、外筒12の外周寸法が大きいため放熱量が多く、又、加熱流路8の面積は必然的に決まり、その面積は大きいので、邪魔板を入れる等の構造にしないと流量に応じた最適流速の調整が難しいと共に、加熱用ガスに偏流や温度のむらができるため、各内筒13を加熱用ガスで均等に加熱することも難しいという問題がある。
【0008】
そこで、本発明は、間接加熱式で多筒型のロータリーキルンにおいて、加熱用ガスの流量に応じて最適流速を調整できるようにすると共に、各内筒に同一条件の加熱用ガスを流すことができるようにし、更に、放熱量を少なくすることができるようにしようとするものである。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するために、長手方向の一端を入口とし他端を出口として回転駆動可能に横向き配置した外筒内に、内管と外管とにより二重管構造としてなる複数本の内筒を収納させて固定し、且つ該内筒の内管と外管との間の隙間を、加熱用ガスを流通させる加熱流路とすると共に、上記各内筒の内管内を廃棄物が通過させられるようにして、該廃棄物が各内筒の内管内を通過させられる間に熱分解されるようにし、更に、上記外筒と内筒との間の空間部を、空気封入による断熱層とした構成とする。
【0010】
内筒を構成する内、外管の隙間を加熱流路としたことから、外管の大きさを調整すれば加熱用ガスの流量に応じた最適な流速調整が可能であり、又、各内筒に同一条件の加熱用ガスを流すことができ、しかも内、外筒間が断熱層としてあることから放熱量を少なくすることができるようになる。
【0011】
又、外筒と内筒との間の空間部に空気を封入させるようにすることに代えて、断熱材を充填した構成とすることにより、断熱性が高められ、放熱量をより少なくすることができるようになる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0013】
図1(イ)(ロ)は本発明の実施の一形態を示すもので、長手方向の一端を入口2とし他端を出口3として耐火材14を内張りした単管構造の外筒12を、約3度ほど下傾させて回転駆動可能に横向き配置し、該外筒12内に、所要の隙間をあけて同心状に配置した内管13aと外管13bとにより二重管構造として該内管13aと外管13bの間を加熱用ガス9の加熱流路18としてなる複数本(図では3本)の内筒13を収納させて、該内筒13の長手方向の両端部を外筒12との間及び各内筒13同士の間を隔板15にて仕切るようにすると共に、該各内筒13の内管13aを、各端部位置で集合させて集合管部16,17とし、一方の集合管部16を入口2内に、又、他方の集合管部17を出口3内にそれぞれ位置させ、外筒12の出口3側から加熱用ガス9を流入させることにより、上記隔板15で規制されて上記内筒13の内管13aと外管13bとの間の加熱流路18を流されるようにし、更に、上記外筒12の内面と内筒13の外管13bの外面との間及び内筒12同士の間に形成される空間部19に空気の封入による断熱層を形成させるようにする。
【0014】
なお、図1において図3と同一部分には同一符号が付してある。
【0015】
外筒12と内筒13とを低速で一体に回転させた状態として、給じん機4により入口2の集合管部16を通して廃棄物6を供給しつつ、各内筒13の内管13aと外管13bとの間に形成された加熱流路18に加熱用ガス9を流通させるようにすると、廃棄物6は、各内筒13の内管13a内を通過させられる間に加熱、乾燥させられて熱分解され、発生した熱分解ガス6aは、出口3の集合管部17を通り分離室7の上部から取り出され、一方、熱分解残渣6bは分離室7の下部から取り出される。
【0016】
上記において、廃棄物6を間接加熱するための加熱用ガス9は、内筒13を構成する内管13aと外管13bとの間に形成した加熱流路18を流通させるようにしてあることから、図4に示す如き内筒13の外側の必然的に面積が決まり、その面積が大きい加熱流路8内を流す場合に比して流量に応じた流速調整が容易であり、したがって、各内筒13には同一条件(温度、流量、流速)の加熱用ガス9を流すことができて、各内筒13を均一に加熱することができる。又、内筒13の外側の空間部19には空気封入による断熱層を形成させるようにしてあることから、外筒12外への放熱量を少なくすることができ、効率的な運転を行うことができる。
【0017】
次に、図2は本発明の他の実施の形態を示すもので、図1(イ)(ロ)に示したものと同様な構成において、外筒12と内筒13との間及び内筒13同士の間の空間部19に空気を封入させるようにすることに代えて、断熱材20を充填したものである。
【0018】
図2に示すようにすると、断熱性を更に高めることができて外部への放熱量をより少なくすることができる。
【0019】
なお、上記実施の形態では、外筒12内に二重管構造とした内筒13を3本収納させるようにした場合を示したが、2本であっても、4本以上であってもよいこと、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0020】
【発明の効果】
以上述べた如く、本発明のロータリーキルンによれば、次の如き優れた効果を発揮する。
(1) 長手方向の一端を入口とし他端を出口として回転駆動可能に横向き配置した外筒内に、内管と外管とにより二重管構造としてなる複数本の内筒を収納させて固定し、且つ該内筒の内管と外管との間の隙間を、加熱用ガスを流通させる加熱流路とすると共に、上記各内筒の内管内を廃棄物が通過させられるようにして、該廃棄物が各内筒の内管内を通過させられる間に熱分解されるようにし、更に、上記外筒と内筒との間の空間部を、空気封入による断熱層とした構成としてあるので、内筒を構成する内、外管間の隙間に加熱用ガスを流すことができることにより、流量に応じて最適な流速を調整することができると共に、各内筒に同一条件の加熱用ガスを流すことができ、したがって、各内筒を均等に加熱することができ、更に、内、外筒間空間部の空気封入による断熱層で外部への放熱を抑えることができることから、運転効率を高めることができる。
(2) 外筒と内筒との間の空間部に空気を封入させるようにすることに代えて、断熱材を充填した構成とすることにより、断熱効果を更に高めることができるので、外部への放熱量をより少なくすることができて有利となる。
【図面の簡単な説明】
【図1】本発明のロータリーキルンの実施の一形態を示すもので、(イ)は概略切断側面図、(ロ)は(イ)のA−A方向矢視図である。
【図2】本発明の他の実施の形態を示すもので、図1(ロ)に対応する断面図である。
【図3】ロータリーキルンの一例を示す概要図である。
【図4】多筒式のロータリーキルンの一例を示す概略縦断面図である。
【符号の説明】
2 入口
3 出口
9 加熱用ガス
12 外筒
13 内筒
13a 内管
13b 外管
18 加熱流路
19 空間部
20 断熱材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an indirect heating type rotary kiln in which waste (for example, municipal waste) is pyrolyzed and gasified.
[0002]
[Prior art]
In recent years, as a next-generation waste treatment system, waste is heated and pyrolyzed in an inert atmosphere, and the generated pyrolysis gas and pyrolysis residue (carbon and ash) are reduced in the combustion / melting furnace. A gasification and melting method has been developed in which the amount of ash in the waste is combusted and the ash content in the garbage is taken out as molten slag, and some demonstration operations have been carried out. In such a system, a rotary kiln is employed in order to thermally decompose and gasify the waste, and the waste is indirectly heated and dried by heat from the outside to be thermally decomposed.
[0003]
The indirect heating type rotary kiln used for pyrolyzing waste gas is a double pipe that is disposed sideways so that it can be rotated and tilted about 3 degrees as shown in FIG. An inlet hopper 5 is provided at the inlet 2 at one end in the longitudinal direction of the outer cylinder 1 having a structure via a dust feeder 4, and the pyrolysis gas 6a and pyrolysis are provided at the outlet 3 at the other end in the longitudinal direction of the outer cylinder 1. In the state where the separation chamber 7 for separating the residue 6b is provided and the outer cylinder 1 is rotated at a low speed, the waste 6 thrown into the charging hopper 5 is gradually supplied into the outer cylinder 1 by the dust feeder 4. On the other hand, the heating gas 9 is circulated from the outlet 3 side toward the inlet 2 side in the heating flow path 8 formed in the double tube portion of the outer cylinder 1, thereby the waste 6 in the outer cylinder 1 is discharged. Pyrolysis gas 6a generated by heating and drying is removed from the upper part of the separation chamber 7. The pyrolysis residue 6b containing the metals is taken out from the lower part of the separation chamber 7 and sent to the combustion / melting process after the metal separation process. It is like that.
[0004]
Reference numeral 10 denotes a rotary joint, and 11 denotes a seal plate.
[0005]
However, in the case of the rotary kiln, since it is an indirect heating method and the heat transfer efficiency is poor, it is necessary to secure a sufficient contact area with the waste 6, and there is a problem that the outer cylinder 1 becomes long. Furthermore, since the outer cylinder 1 becomes long, a large installation area is required, and there is a problem that greatly affects land use.
[0006]
On the other hand, a multi-cylinder rotary kiln used for the treatment of dioxin-containing waste and the like is known as one that can increase the amount of treatment without making the outer cylinder 1 relatively long. That is, as schematically shown in FIG. 4, the multi-cylinder rotary kiln has a plurality of inner cylinders 13 housed and fixed in an outer cylinder 12 having a single-pipe structure that is horizontally disposed so as to be rotationally driven. A space formed between the cylinder 13 and the outer cylinder 12 is used as a heating flow path 8 so that heating gas is circulated.
[0007]
[Problems to be solved by the invention]
However, in the case of an indirect heating type multi-cylinder rotary kiln as shown in FIG. 4, the outer cylinder 12 has a large outer peripheral dimension, so that the amount of heat radiation is large, and the area of the heating channel 8 is inevitably determined. Because it is large, it is difficult to adjust the optimum flow rate according to the flow rate unless a structure such as a baffle is inserted, and the heating gas can be unevenly distributed and uneven in temperature, so that each inner cylinder 13 is heated evenly with the heating gas. There is also a problem that it is difficult.
[0008]
Therefore, the present invention enables the optimum flow rate to be adjusted according to the flow rate of the heating gas in the indirect heating multi-cylinder rotary kiln and allows the heating gas under the same condition to flow through each inner cylinder. In addition, it is intended to further reduce the heat radiation amount.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a plurality of double pipe structures composed of an inner pipe and an outer pipe in an outer cylinder that is disposed laterally so as to be rotationally driven with one end in the longitudinal direction as an inlet and the other end as an outlet. The inner cylinder of the book is stored and fixed, and the gap between the inner tube and the outer tube of the inner cylinder is used as a heating channel for circulating the heating gas, and the inner tube of each inner cylinder is discarded. So that the waste is thermally decomposed while being passed through the inner pipe of each inner cylinder , and further, the space between the outer cylinder and the inner cylinder It is set as the structure used as the heat insulation layer by enclosure.
[0010]
Since the inner pipe is composed of a gap between the outer pipes as a heating flow path, the optimum flow velocity can be adjusted according to the flow rate of the heating gas by adjusting the size of the outer pipe. The heating gas of the same condition can be made to flow through the cylinder, and the amount of heat radiation can be reduced because the inner and outer cylinders are provided as a heat insulating layer.
[0011]
Moreover, instead of making the space between the outer cylinder and the inner cylinder enclose air, the heat insulation is improved and the heat radiation amount is reduced by adopting a structure filled with a heat insulating material. Will be able to.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
1 (a) and 1 (b) show an embodiment of the present invention. An outer cylinder 12 having a single tube structure in which a refractory material 14 is lined with one end in the longitudinal direction as an inlet 2 and the other end as an outlet 3, The inner tube 13a and the outer tube 13b are arranged in a concentric manner inside the outer cylinder 12 with a required gap between them. A plurality of (three in the figure) inner cylinders 13 serving as heating passages 18 for the heating gas 9 are accommodated between the pipe 13a and the outer pipe 13b, and both ends in the longitudinal direction of the inner cylinder 13 are arranged as outer cylinders. 12 and the inner cylinders 13 are separated by a partition plate 15, and the inner pipes 13 a of the inner cylinders 13 are assembled at respective end positions to form collecting pipe parts 16, 17. , One collecting pipe portion 16 is located in the inlet 2 and the other collecting pipe portion 17 is located in the outlet 3, respectively. By allowing the heating gas 9 to flow in from the mouth 3 side, the heating flow path 18 between the inner tube 13a and the outer tube 13b of the inner cylinder 13 is regulated by the partition plate 15, and further flows. A heat insulation layer is formed by enclosing air in the space 19 formed between the inner surface of the outer cylinder 12 and the outer surface of the outer tube 13b of the inner cylinder 13 and between the inner cylinders 12.
[0014]
In FIG. 1, the same parts as those in FIG. 3 are denoted by the same reference numerals.
[0015]
As the outer cylinder 12 and the inner cylinder 13 are integrally rotated at a low speed, the waste 6 is supplied through the collecting pipe portion 16 of the inlet 2 by the dust feeder 4, and the inner pipe 13a and the outer cylinder 13 of each inner cylinder 13 are supplied. When the heating gas 9 is circulated through the heating flow path 18 formed between the pipes 13b, the waste 6 is heated and dried while being passed through the inner pipes 13a of the respective inner cylinders 13. The pyrolysis gas 6 a generated by pyrolysis is taken out from the upper part of the separation chamber 7 through the collecting pipe portion 17 of the outlet 3, while the pyrolysis residue 6 b is taken out from the lower part of the separation chamber 7.
[0016]
In the above, the heating gas 9 for indirectly heating the waste 6 is made to circulate through the heating flow path 18 formed between the inner tube 13a and the outer tube 13b constituting the inner cylinder 13. 4, the area outside the inner cylinder 13 is inevitably determined, and the flow rate can be easily adjusted in accordance with the flow rate as compared with the case where the area flows through the heating channel 8 having a large area. The heating gas 9 under the same conditions (temperature, flow rate, flow rate) can be flowed through the cylinder 13, and each inner cylinder 13 can be heated uniformly. In addition, since a heat insulating layer is formed by air sealing in the outer space 19 of the inner cylinder 13, the amount of heat released to the outside of the outer cylinder 12 can be reduced, and efficient operation can be performed. Can do.
[0017]
Next, FIG. 2 shows another embodiment of the present invention. In the same configuration as that shown in FIGS. 1 (A) and 1 (B), between the outer cylinder 12 and the inner cylinder 13 and the inner cylinder. Instead of enclosing air in the space 19 between the 13 members, the heat insulating material 20 is filled.
[0018]
If it shows as shown in FIG. 2, heat insulation can be improved further and the amount of heat dissipation to the exterior can be decreased more.
[0019]
In the above embodiment, the case where three inner cylinders 13 having a double-pipe structure are accommodated in the outer cylinder 12 is shown. Of course, various modifications can be made without departing from the scope of the present invention.
[0020]
【The invention's effect】
As described above, according to the rotary kiln of the present invention, the following excellent effects are exhibited.
(1) A plurality of inner cylinders having a double-pipe structure are housed and fixed in an outer cylinder arranged laterally so that it can be rotationally driven with one end in the longitudinal direction as the inlet and the other as the outlet. In addition, the gap between the inner tube and the outer tube of the inner cylinder is a heating flow path for circulating the heating gas, and the waste is allowed to pass through the inner tube of each inner cylinder, The waste is thermally decomposed while being passed through the inner pipe of each inner cylinder, and the space between the outer cylinder and the inner cylinder is configured as a heat insulating layer by air sealing. Therefore, the heating gas can flow through the gap between the outer tubes in the inner cylinder, so that the optimum flow rate can be adjusted according to the flow rate, and the heating gas of the same condition is set in each inner cylinder. Therefore, each inner cylinder can be heated evenly, and further, the inner and outer cylinders Since heat radiation to the outside can be suppressed by the heat insulating layer by air sealing in the interspace, the operating efficiency can be improved.
(2) Instead of allowing air to be enclosed in the space between the outer cylinder and the inner cylinder, the heat insulation effect can be further enhanced by adopting a configuration filled with a heat insulating material, so that the outside It is advantageous that the amount of heat released can be reduced.
[Brief description of the drawings]
1A and 1B show an embodiment of a rotary kiln of the present invention, where FIG. 1A is a schematic cut side view, and FIG. 1B is a view taken in the direction of arrows A-A in FIG.
FIG. 2 shows another embodiment of the present invention and is a cross-sectional view corresponding to FIG.
FIG. 3 is a schematic diagram showing an example of a rotary kiln.
FIG. 4 is a schematic longitudinal sectional view showing an example of a multi-cylinder rotary kiln.
[Explanation of symbols]
2 Inlet 3 Outlet 9 Heating gas 12 Outer cylinder 13 Inner cylinder 13a Inner pipe 13b Outer pipe 18 Heating flow path 19 Space 20 Thermal insulation

Claims (2)

長手方向の一端を入口とし他端を出口として回転駆動可能に横向き配置した外筒内に、内管と外管とにより二重管構造としてなる複数本の内筒を収納させて固定し、且つ該内筒の内管と外管との間の隙間を、加熱用ガスを流通させる加熱流路とすると共に、上記各内筒の内管内を廃棄物が通過させられるようにして、該廃棄物が各内筒の内管内を通過させられる間に熱分解されるようにし、更に、上記外筒と内筒との間の空間部を、空気封入による断熱層とした構成を有することを特徴とするロータリーキルン。A plurality of inner cylinders having a double-pipe structure are accommodated and fixed in an outer cylinder arranged laterally so as to be rotationally driven with one end in the longitudinal direction as an inlet and the other as an outlet, and The gap between the inner tube and the outer tube of the inner cylinder is used as a heating flow path for circulating a heating gas , and the waste is allowed to pass through the inner tube of each inner cylinder. Are thermally decomposed while being passed through the inner pipe of each inner cylinder , and further, the space between the outer cylinder and the inner cylinder is configured as a heat insulating layer by air sealing. A rotary kiln. 外筒と内筒との間の空間部に空気を封入させるようにすることに代えて、断熱材を充填した請求項1記載のロータリーキルン。  The rotary kiln according to claim 1, wherein a heat insulating material is filled in place of air in the space between the outer cylinder and the inner cylinder.
JP36905197A 1997-12-27 1997-12-27 Rotary kiln Expired - Lifetime JP4078701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36905197A JP4078701B2 (en) 1997-12-27 1997-12-27 Rotary kiln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36905197A JP4078701B2 (en) 1997-12-27 1997-12-27 Rotary kiln

Publications (2)

Publication Number Publication Date
JPH11193987A JPH11193987A (en) 1999-07-21
JP4078701B2 true JP4078701B2 (en) 2008-04-23

Family

ID=18493439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36905197A Expired - Lifetime JP4078701B2 (en) 1997-12-27 1997-12-27 Rotary kiln

Country Status (1)

Country Link
JP (1) JP4078701B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590741B2 (en) * 2000-10-13 2010-12-01 株式会社Ihi Rotary kiln
WO2004070300A1 (en) * 2003-02-05 2004-08-19 Young-Ill Hwang Duplex rotary kiln and mobile waste treatment system comprising the same
JP5422877B2 (en) * 2007-03-27 2014-02-19 株式会社Ihi Rotary kiln
JP5689649B2 (en) * 2010-11-08 2015-03-25 株式会社アライドマテリアル Rotary furnace
JP5919327B2 (en) * 2014-05-26 2016-05-18 オオノ開發株式会社 Waste incinerator
CN104121771B (en) * 2014-07-30 2016-01-20 梁均全 Rotary kiln prepared by a kind of cement
KR102485296B1 (en) * 2020-12-30 2023-01-06 한국생산기술연구원 Apparatus for manufacturing high quality bio-char continuously, and method thereof
CN114909902A (en) * 2022-06-13 2022-08-16 湖南烁科热工智能装备有限公司 Internal heating type rotary furnace device

Also Published As

Publication number Publication date
JPH11193987A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
JP4078701B2 (en) Rotary kiln
JP4529230B2 (en) Rotary kiln
JP2001108381A (en) Hot air heater
JP4552999B2 (en) Raw material distributor for a split rotary kiln
JP2000097567A (en) Waste drying system
US4684342A (en) Method and apparatus for the thermal treatment of a batch of raw material
JP4374773B2 (en) Waste pyrolysis kiln char removal device
JP2002156105A (en) External heat type kiln
JP3977509B2 (en) Char cooling device recovered by solid-gas separator
JP4020486B2 (en) Externally heated rotary kiln
JP3558358B2 (en) Horizontal rotation activation device
JP4288839B2 (en) Pyrolysis kiln external heat gas seal device
JP2007057113A (en) Vertical refuse incinerator provided with water tube wall
JP2001091160A (en) Multicylinder rotary kiln
JPH10102065A (en) Firing system
JPH0212323B2 (en)
JPS5824721A (en) Energy-conservation type combustion method
JPS6241555B2 (en)
RU2258077C1 (en) Pyrolysis chamber for solid materials
JP3686152B2 (en) Pyrolysis reactor
CN108870741A (en) A kind of small-sized automatic feed biological substance shaped granule hot air furnace device and method
JPH08173935A (en) Device for heat treatment of waste
JP3747537B2 (en) Pyrolysis gas extraction method and apparatus for waste pyrolysis gasifier
JPH1082511A (en) Thermal decomposition reactor with heat transfer tube
JPH09222219A (en) Flying ash supplying device and waste material treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

EXPY Cancellation because of completion of term