JP4078406B2 - Method for manufacturing syringe cylinder - Google Patents

Method for manufacturing syringe cylinder Download PDF

Info

Publication number
JP4078406B2
JP4078406B2 JP02436197A JP2436197A JP4078406B2 JP 4078406 B2 JP4078406 B2 JP 4078406B2 JP 02436197 A JP02436197 A JP 02436197A JP 2436197 A JP2436197 A JP 2436197A JP 4078406 B2 JP4078406 B2 JP 4078406B2
Authority
JP
Japan
Prior art keywords
cylinder
mold
resin
peripheral surface
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02436197A
Other languages
Japanese (ja)
Other versions
JPH10201844A (en
Inventor
晃 四つ辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COKI ENGINEERING INC.
Original Assignee
COKI ENGINEERING INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COKI ENGINEERING INC. filed Critical COKI ENGINEERING INC.
Priority to JP02436197A priority Critical patent/JP4078406B2/en
Publication of JPH10201844A publication Critical patent/JPH10201844A/en
Application granted granted Critical
Publication of JP4078406B2 publication Critical patent/JP4078406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Materials For Medical Uses (AREA)

Description

【0001】
【産業上の利用分野】
本発明はシリコンオイル由来の潤滑薄層がシリンダの円筒内周面に一体的に形成されている注射器のシリンダとその製造方法に関する。
【0002】
【従来の技術】
最近、衛生・安全面や人手の問題から医療現場では使い捨て医療用具が非常な勢いで普及しており、特にエイズ問題や感染症問題が社会問題化してからはディスポーザブル注射器はその最たるものになっている。従来、注射器のシリンダはガラス製のものを使用していたものが、薬剤注射用のディスポーザブル注射器の採用が急務になるや樹脂製、特にポリプロピレン製やポリカーボネート製シリンダの使用が検討されるようになってきた。ガラス製シリンダの場合でもゴム摺動体を使用する時は勿論であるが、樹脂製の場合には、シリンダの円筒内周面にシリコンオイルを塗布してピストンの先端に装着したゴム摺動体が円滑に摺動するようにしなければならない。
【0003】
処が、シリコンオイルは、人体に入ると障害を起こす可能性が米国で指摘され始めたため、その塗布量は厚生省告示第442号によれば、ディスポーザブルタイプの5mリットル容量以下の小型注射器では8mg/本以下、大型注射器でも15mg/本以下と厳格に定められており、これ以上の塗布量を示したものは不良品として処分される。処が、シリコンオイルの塗布は、作業者が綿棒やスポンジにシリコンオイル(2)を含浸させて1本づつ手作業で行うため、塗りむらが生じやすいだけでなく、図13のようにシリンダ(1)の底面(1b)に塗布したシリコンオイル(2)が溜まり、この溜まったシリコンオイル(2)や前記塗りむらによって生じた厚塗りで流動性を持っている部分が注射液に混じって注射されるという問題もあった。
【0004】
更に、医療用具の製造で最も重要なことは、最終製品に細菌は勿論のこと、感染症の原因となる細胞毒性、例えばグラム陰性菌の死骸から生じるエンドトキシンもほとんど付着していないことが要求されている。
そこで、成形されたシリンダ(1)は各工程毎に滅菌と超純水による洗浄とが頻繁に行われ、細菌の付着を極力少なくするために大変な手間を必要とする。
処が従来方法では、たとえ滅菌シリコンオイルとほぼ完全に消毒されたシリンダ(1)とを使用し、細菌のほとんど存在しないクリーンルームで作業者の着衣その他に気を配り、そしてその塗布作業にいかに注意を払ったとしても、その塗布作業が人手による限り細菌の付着は免れない。いったん付着した細菌はその付着場所で増殖する。この増殖によって細菌数は増加する(特に、シリコンオイル塗布面において)ので、たとえ塗布作業後に滅菌したとしてもこの滅菌作業によって死ぬ細菌の数も増え、その大量の死骸から発生するエンドトキシン付着の確率も当然多くなる事になる。
また、増殖によって増えた細菌はたとえ滅菌作業を後に施したとしてもこれを免れる細菌も増える可能性がある。
その他、人手による作業であるから製品にムラがあるばかりか作業能率も格段に悪いという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、第1にシリンダの内周面に一体的に形成された極めて薄肉のシリコンオイル由来の潤滑薄層を有し、シリコンオイルの薬液中への混入が従来例に比べて極端に少なくなるというこれまでにない画期的な注射器のシリンダの開発にあり、第2に前記前記潤滑薄層を有するシリンダ又は前記潤滑薄層を能率よく且つ細菌の増殖を抑制しつつ或いは無菌状態を保って製造する事ができる注射器のシリンダ又は潤滑薄層の製造方法の開発にある。
【0006】
【課題を解決するための手段】
『請求項1』は「シリンダ形成用の雄金型(3)の凸部(3a)表面にポリジメチルシロキサン(2)を塗布し、次に型締め後、ポリプロピレン樹脂(13)、ポリカーボネート樹脂(13)あるいは芳香族ポリオレフィン樹脂(13)を金型キャビティ(4)に注入し、樹脂(13)にて形成されたシリンダ(1)の内周面に、射出成形時の加熱・加圧によって生じた上記ポリジメチルシロキサン由来の潤滑薄層(2a)を一体的に形成する」事を特徴とする注射器のシリンダの製造方法である
【0007】
本発明の製造方法で製造されたシリンダによれば、従来のようにシリコンオイル(2)が塗布されただけでシリンダ(1)の円筒内周面(1a)と一体化しておらず、ピストン(1c)の先端に装着されているゴム摺動体(1d)を移動させるとその一部がそれに付着すると共に厚く塗られていて流動性を保っている部分がこすり取られて注射液に混入するようなものと違い、潤滑層を形成するポリジメチルシロキサン由来の潤滑薄層(2a)がシリンダ(1)の円筒内周面(1a)は勿論、その底面(1b)及び注射針装着用突起(1e)の内周面(1f)まで含む内周面全体に一体的に形成されている。したがって、たとえシリンダ(1)内ピストンの先端に装着されているゴム摺動体(1d)を移動させても円筒内周面(1a)の潤滑薄層(2a)は勿論、前記底面(1b)及び注射針装着用突起(1e)の内周面(1f)の潤滑薄層(2a)がほとんど剥離せず、注射液に混入するような事が殆どなくて極めて衛生的である。
【0008】
なお、この場合シリンダ(1)の材質はポリプロピレン樹脂、ポリカーボネート樹脂あるいは芳香族ポリオレフィン樹脂である。また、シリコンオイル(2)は、現在の薬事法では後述する1種類、ポリジメチルシロキサンのみが認可されている。
潤滑薄層(2a)は、加熱・加圧を併用して形成される。加熱、加圧方法は後述するような射出成形によっておこなわれる。
【0011】
また、シリンダ形成用の雄金型 (3) の凸部 (3a) の表面『この場合、円周外面のみに限られず、その先端面 (3c) やピン部 (3b) の外周面も含む。』にポリジメチルシロキサン (2) を塗布する工程を付加するだけでポリジメチルシロキサン由来の潤滑薄層 (2a) がその内周面全体に強固に一体的に形成されたシリンダ (1) を形成する事ができる。また、この潤滑薄層 (2a) は加圧・加熱(例えば、充填時の溶融樹脂温度は200〜350℃、充填圧力は300〜2000kgf / cm 2 )して形成されるため、従来の塗布方式より著しく薄くすることが出来、ポリジメチルシロキサン (2) の塗布量を必要最小限にする事が出来る。このような作用効果を生むメカニズムについては後述する。
【0012】
さらに、ポリジメチルシロキサン (2) を塗布した後に射出成形するのであるから、たとえポリジメチルシロキサン (2) の塗布時に細菌が付着していたとしてもポリジメチルシロキサン (2) の塗布直後に高温高圧で射出成形するため、付着細菌は増殖する間もなく悉く死滅してしまい従来例に比べて安全性を高める事ができるし、ポリジメチルシロキサン (2) が付着した状態で射出成形するためにシリンダ (1) の内径は潤滑薄層 (2a) を含んだ寸法となり、成形後にポリジメチルシロキサン (2) を塗布する場合と異なり、シリンダ (1) 内径の寸法精度が非常に高くなる。
【0015】
『請求項2』は前記注射器のシリンダ (1) の製造方法の他の例で「シリンダ形成用の雄金型 (3) の凸部 (3a) の表面にポリジメチルシロキサン (2) を塗布し、次に型締め後、ポリプロピレン樹脂 (13) 、ポリカーボネート樹脂 (13) あるいは芳香族ポリオレフィン樹脂 (13) を金型キャビティ (4) に注入し、樹脂 (13) にて形成されたシリンダ (1) の内周面に、射出成形時の加熱・加圧によって生じたポリジメチルシロキサン由来の潤滑薄層 (2a) を一体的に形成し、型開後、雄金型 (3) に付着しているシリンダ (1) の表面に印刷する」事を特徴とする。
【0016】
これによれば、前述の場合に加えて雄金型 (3) に付着している温度の高いシリンダ (1) の表面に印刷するので、(i)印刷インクの乾きが早く印刷工程の短縮を達成できるのと、(ii)たとえ印刷時にシリンダ (1) の外面に細菌の付着が有ったとしても熱によって瞬時に死滅してしまうのでこの工程でも細菌の増殖の抑制或いは無菌状態を保つことができて非常に衛生的である。
【0020】
【実施例】
以下、本発明を図示実施例に従って説明する。図1は本発明のシリンダ(1)を製造するための一般的な射出成形機(A)で、雌金型(5)に射出筒部(6)のノズル(7)が接続されている。射出筒部(6)内にはスクリュ(8)が回転・前後スライド自在に配設されている。前記スクリュ(8)には射出シリンダ(9)と駆動部(10)とが接続していて、射出シリンダ(9)にてスクリュ(8)を前後にスライドさせ、ギア機構(11)を介して駆動部(10)にてスクリュ(8)を回転させるようになっている。射出筒部(6)の後端にはホッパ(12)が設置されており、原料樹脂(13)を連続的に供給するようになっている。射出筒部(6)の周囲にはヒータ(14)が巻設されており、通過中の原料樹脂(13)を加熱溶融するようになっている。
【0021】
図の実施例の金型(K)の主要構成部材は雄金型(3)と雌金型(5)、突き出し筒(15)で、雄金型(3)からシリンダ(1)の内面形状を形成するための凸部(3a)が突設されており、これに対応して雌金型(5)にはシリンダ(1)の外面を形成するための凹部(5a)が形成されている。
【0022】
(R)はロボット装置で、射出成形機(A)に併設されており、例えば、オイル塗布装置(16)、印刷装置(17)と取出装置(20)とを所定位置に移動できるようにしてる。ロボット装置(R)の代わりに人手を利用してもよいが、最低でも取出装置(20)はロボット装置(R)を使用する事が好ましい。
装置全体は一般的には細菌数の数が厳密に管理されているクリーンルームに設置される。
【0023】
シリンダ(1)に使用される樹脂原料(13)は、その用途によって透水率、透明性、耐熱性など薬事法で規定されている諸条件をクリアする必要があるため、例えばポリプロピレン、ポリカーボネート、芳香族ポリオレフィンなどが使用される。
【0024】
次に、本発明の作用について説明する。まず、ロボット装置(R)を作動させ、オイル塗布装置(16)にて型開されている金型(K)の雄金型(3)の凸部(3a)の外周面にシリコンオイル(2)を適量塗布する。塗布領域は円柱外周面(3d)、先端面(3c)及びピン部(3b)を含む凸部(3a)の外面全面であってもよいし、ピン部(3b)或いは先端面(3c)を除く部分であってもよいが、少なくとも円柱外周面(3d)は塗布される事になる。
【0025】
シリコンオイル(2)の塗布方法は特に限定されるものではなく、本実施例ではオイル塗布装置(16)のようなロボット装置(R)を使用してシリコンオイル(2)を含浸させた筒状の布又は紙、スポンジ(16a)その他で凸部(3a)を囲繞して押圧し、凸部(3a)の少なくとも円柱外周面(3d)を含む外周面にシリコンオイル(2)を塗布する。シリコンオイル(2)の塗布が終わると型閉し、金型(K)内に金型キャビティ(4)を形成する。
【0026】
一方、原料樹脂(13)をホッパ(12)に投入し、駆動部(10)を作動させてスクリュ(8)を回転させる。スクリュ(8)の回転と共に原料樹脂(13)がヒータ(14)にて例えば200〜350℃に加熱され、溶融・混練されて射出筒部(6)の先端部分に貯溜されていく。これと共にスクリュ(8)は次第に後退し、射出筒部(6)の先端に貯溜された溶融混練樹脂の計量が完了した処で射出シリンダ(9)を作動させてスクリュ(8)を前方に突出させ、射出筒部(6)の先端の計量樹脂を金型(K)に300〜2000kgf/cm2で射出する。
【0027】
射出された溶融混練樹脂(13)は、金型(K)のランナ(18)、ゲート(19)を通過して金型キャビティ(4)内に高速高圧で圧入される。金型キャビティ(4)内に圧入された溶融混練樹脂(13)は、雄金型(3)の凸部(3a)の外面に塗布されたシリコンオイル(2)を強く押圧しながら瞬間的に金型キャビティ(4)を充填する。シリコンオイル(2)はこの時瞬時に溶融混練樹脂(13)の温度に昇温すると同時に凸部(3a)の表面に均一に延ばされ且つ溶融混練樹脂(13)の内周面に張り付く。然る後、この溶融混練樹脂(13)が固化してシリンダ(1)となり、この少なくとも円筒内周面(1a)にシリコンオイル由来の潤滑薄層(2a)が一体的に形成される。
潤滑薄層(2a)の成形範囲はシリコンオイル(2)の塗布領域に対応する。
【0028】
この工程では金型(K)も溶融混練樹脂(13)も一般的には滅菌温度以上に保たれているため、この射出成形の間に細菌が凸部(3a)やシリンダ(1)に付着して増殖するするような事は全くないし、万が一塗布時に付着したとしても瞬時に高温のため死滅してしまうためシリンダ(1)の製造工程全体を通じて細菌の付着や増殖は勿論、感染症の原因となるエンドトキシンなどの発生を最小限に抑制或いはそのものを分解する事ができ従来の製造方法に比べて飛躍的に安全性を高められる。
【0029】
此処で、シリコンオイル由来の潤滑薄層(2a)の形成過程の、推定されるメカニズムを説明する。金型キャビティ(4)を形成するキャビティ面にはいかに精密に研磨その他の加工を施したとしても現在の技術ではサブミクロン台(例えば0.5〜0.02μm)の極く微細な凹凸が残る。いま、凸部(3a)にシリコンオイル(2)を塗布すると、粘度の高いシリコンオイル(2)はその表面張力によって凸部(3a)の表面に残っているサブミクロン台の前記凹所に入って行かない。(図2(b)参照)
そこで、前述のように高温・高圧で射出成形すると高温の射出樹脂の圧力によって凸部(3a)の表面にシリコンオイル(2)が圧し広げられると同時にその一部が凹所内に押し込まれ、凹凸を有する潤滑薄層(2a)が凸部(3a)の少なくとも円柱外周面(3d)を含む外周面全面に均一に形成され、これがシリンダ(1)の少なくとも円筒内周面(1a)を含む内周面に一体的に付着する。(図5(b)参照)
その結果、図12に示すように潤滑薄層(2a)の内周面には、サブミクロン台(例えば0.5〜0.02μm)の厚い部分(2b)が島状に全体的に均一に広がっており、このサブミクロン厚の島状部分(2b)がゴム摺動体(1d)のスムーズな摺動の大部分をを助ける。その結果、シリコンオイル(2)の塗布量は従来例に比べて極めて少なくて足る事になる。
【0030】
このシリコンオイル由来の潤滑薄層(2a)は、その一部或いは全部を布などで簡単にぬぐい取る事ができるような単なる塗布状態のものでなく、加熱又は加圧或いは加熱・加圧によって極く薄層にてシリンダ(1)の円筒内周面(1a)に強固且つ一体的に形成された状態のものである。
【0031】
このように潤滑薄層(2a)付きのシリンダ(1)の成形が完了すると、型開して雄金型(3)に付着しているシリンダ(1)を外部に露出させ、続いてロボット装置(R)を作動させて印刷装置(17)をシリンダ(1)の直上に移動させ、印刷装置(17)の印刷パッド(17a)を降下させて、印刷パッド(17a)の上に塗着している印刷パターンをシリンダ(1)の表面に転写印刷する。
この時点でもシリンダ(1)の表面は十分に滅菌温度を保っているため、細菌の増殖は防がれるし、印刷されたインクも急速に乾き、短時間での取り出しが可能となる。印刷が終了すると印刷パッド(17a)が引き上げられてシリンダ(1)から離間し、続いて突出装置(15a)が作動して突き出し筒(15)を突き出し、凸部(3a)に嵌着しているシリンダ(1)を離脱させる。然る後、ロボット装置(R)を作動させて取出装置(20)を射出成形品のランナ部分(21)の直上に移動させ、続いて取出装置(20)を降下させて前記ランナ部分(21)を掴み、金型(K)から離脱させる。
以上のような操作を繰り返して注射器のシリンダ(1)の無菌状態下における大量生産を実施する。
【0032】
図9、10は成形されたシリンダ(1)を利用して潤滑薄層(2a)を形成する場合である。まず、少なくとも注射器用のシリンダ(1)の内周形状と略同形の潤滑薄層(2a)形成用の型(30)を用意する。潤滑薄層(2a)を必要とするのはシリンダ(1)の円筒内周面(1a)であるから、形成用型(30)はシリンダ(1)の円筒内周面(1a)だけに合致する形状を有していれば足る。図の実施例ではピン部(30b)迄有する例が記載されている。
【0033】
まず、前記凸部(30a)の表面『少なくとも円柱外周面(30d)』にシリコンオイル(2)を塗布し、続いて該凸部(30a)を注射器用のシリンダ(1)に挿入して加熱又は加圧或いは加熱・加熱し、これにより生じたシリコンオイル由来の潤滑薄層(2a)をシリンダ(1)の内周面に一体的に形成する。
加圧方法としては図示しない雌型をシリンダ(1)の外側に嵌め込んで加圧するようにしてもよいし、その方法は限定されない。
加熱方法は、凸部(30a)の内部に図示しないヒータを装着したり、例えば型(30)から伝熱で凸部(30a)を加熱するようにしてもよい。
【0034】
この場合も既形シリンダ(1)の少なくとも円筒内周面(1a)、場合よってはその底面(1b)及び注射針装着用突起(1e)の内周面(1f)まで含む内周面全体にシリコンオイル由来の潤滑薄層(2a)一体的に形成する事ができる。
【0035】
(実施例1)
次に、シリコンオイル(ポリジメチルシロキサン)の塗布量と、摺動性及び外観についての実験結果を示す。凸部にシリンダオイルを塗布し、原料樹脂をポリカーボネートとして前述のように射出成形した。シリンダの円筒内周面に潤滑薄層を形成するとシリンジのピストンの先端に装着されているブチルゴム摺動体の滑り性は著しく改善されるが、凸部への塗布量が多すぎるとシリンダに曇りが生じて外観不良となり、逆に塗布量が少なすぎると外観は良好であるものの滑り性が損なわれる。そこで、シリコンオイルの塗布量と摺動性及び外観との関係を調べてみると、以下の通りであった。

Figure 0004078406
(実施例2)
次に、シリコンオイル(ポリジメチルシロキサン)の粘度と、摺動性及び外観についての実験結果を示す。
Figure 0004078406
以上から、摺動性と外観とを共にクリアする領域として、シリコンオイルがポリジメチルシロキサンの場合、その粘度が500〜30,000センチストークスであり、塗布量が0.001〜0.05g/100cm2であることが分かる。
【0036】
【発明の効果】
本発明によれば、ピストンの先端に装着されているゴム摺動体が摺接するシリンダの少なくとも円筒内周面にシリコンオイル由来の潤滑薄層が一体的に形成されているので、ゴム摺動体を移動させたとしても潤滑薄層の剥離がほとんどなく、注射液への混入がない。
また、シリコンオイルの塗布領域を凸部の円柱外周面に限定すれば、シリコンオイルの塗布面積を最小限にする事が出来るだけでなく、従来のようなシリコンオイルの溜まりが発生せず、安全性を高める事ができる。
また、本発明方法によれば、凸部の表面へのシリコンオイルの塗布だけで潤滑薄層の形成が可能になり、細菌付着やエンドトキシンなどの非常に少ない安全なシリンダを自動化によって大量生産する事が可能になる。
また、型開後、雄金型に付着しているシリンダの表面に印刷するようにすれば、(i)印刷インクの速乾による印刷工程の短縮と、(ii)細菌の付着・増殖を抑制する事が同時に行えるという利点がある。
【図面の簡単な説明】
【図1】本発明にかかる射出成形機の概略断面図
【図2】丸で囲んだ部分を更に拡大した図を有する図面で、本発明において、型開状態で凸部にシリコンオイルを塗布した状態の要部拡大正断面図
【図3】型締状態の要部拡大断面図
【図4】型締状態で混練溶融樹脂が金型キャビティに射出されている途中段階の要部拡大断面図
【図5】丸で囲んだ部分を更に拡大した図を有する図面で、型締状態で混練溶融樹脂が金型キャビティに充填された状態の要部拡大断面図
【図6】片開き状態の要部拡大断面図
【図7】片開き後、シリンダの外面に印刷を施している状態の要部拡大断面図
【図8】印刷完了シリンダを離型している状態の要部拡大断面図
【図9】他の本発明方法で、凸部に既製シリンダを装着しようとしている場合の要部断面図
【図10】凸部に既製シリンダを装着した場合の要部断面図
【図11】本発明にかかるシリンダの円筒内周面の部分拡大断面斜視図
【図12】(a)…本発明方法で形成された潤滑薄層が内周面全面に形成されているシリンダの断面図
(b)…本発明方法で形成された潤滑薄層が円筒内周面だけに形成されているシリンダの断面図
【図13】丸で囲んだ部分を更に拡大した図を有する図面で、従来例の注射器のシリンダの断面図
【符号の説明】
(A)…射出成形機
(1)…シリンダ
(1a)…円筒内周面 (1b)…底面 (1c)…ピストン (1d)…ゴム摺動体
(2)…シリコンオイル
(2a)…シリコンオイル由来の潤滑薄層
(2b)…サブミクロン厚の島状部分[0001]
[Industrial application fields]
The present invention relates to a cylinder of a syringe in which a thin lubricating layer derived from silicon oil is integrally formed on a cylinder inner peripheral surface of the cylinder, and a method for manufacturing the same.
[0002]
[Prior art]
Recently, disposable medical devices have become extremely popular in the medical field due to health and safety issues and manpower issues. Disposable syringes have become the best, especially after the AIDS and infectious disease issues have become social issues. Yes. Conventionally, syringe cylinders were made of glass, but when it became urgent to adopt disposable syringes for drug injection, the use of plastic cylinders, especially polypropylene cylinders and polycarbonate cylinders, was considered. I came. Even in the case of a glass cylinder, when using a rubber sliding body, of course, in the case of resin, the rubber sliding body attached to the tip of the piston by applying silicone oil to the cylinder inner peripheral surface is smooth. Must slide to.
[0003]
However, since it has begun to be pointed out in the United States that silicone oil may cause damage when entering the human body, according to Ministry of Health and Welfare Notification No. 442, the application amount is 8 mg / min for a disposable syringe of 5 ml capacity or less. Below this, even large-sized syringes are strictly determined to be 15 mg / tube or less, and those that show a coating amount higher than this are discarded as defective products. However, since the silicon oil is applied manually by the operator by impregnating the cotton swab or sponge with silicon oil (2) one by one, not only uneven coating is likely to occur, but also the cylinder ( The silicone oil (2) applied to the bottom surface (1b) of 1) accumulates, and the accumulated silicone oil (2) and the thick and fluid part produced by the coating unevenness are mixed with the injection solution for injection. There was also a problem of being.
[0004]
Furthermore, the most important thing in the manufacture of medical devices is that the final product is required to have not only bacteria, but also endotoxins resulting from infectious diseases, such as endotoxins resulting from the bodies of Gram-negative bacteria. ing.
Therefore, the molded cylinder (1) is frequently sterilized and washed with ultrapure water for each step, and requires a great deal of effort to minimize the adhesion of bacteria.
However, the conventional method uses sterile silicone oil and a cylinder (1) that is almost completely disinfected, paying attention to the clothes and other items of the worker in a clean room that is almost free of bacteria, and how to apply it. Even if it pays, adhesion of bacteria is inevitable as long as the application work is manual. Once attached, the bacteria grow at the place of attachment. This growth increases the number of bacteria (especially on the surface where silicone oil is applied), so even if sterilized after application, the number of bacteria that die by this sterilization increases, and the probability of endotoxin adherence generated from the large number of dead bodies also increases. Naturally it will increase.
In addition, there is a possibility that the number of bacteria that have increased due to growth can be avoided even if sterilization is performed later.
In addition, since the work is performed manually, there is a problem that not only the product is uneven, but the work efficiency is remarkably bad.
[0005]
[Problems to be solved by the invention]
The present invention has a lubricating thin layer derived from silicon oil that is extremely thin and formed integrally on the inner peripheral surface of a cylinder. The mixing of silicon oil into a chemical solution is extremely less than in the conventional example. In the development of an innovative syringe cylinder that has never been achieved, secondly, the cylinder having the lubricating thin layer or the lubricating thin layer is efficiently maintained while suppressing the growth of bacteria or maintaining sterility. The development of a method for manufacturing a cylinder or a lubrication thin layer of a syringe that can be manufactured by
[0006]
[Means for Solving the Problems]
Claim 1” states that “polydimethylsiloxane (2) is applied to the surface of the convex part (3a) of the male mold (3) for forming the cylinder, and then the mold is clamped, and then the polypropylene resin (13), polycarbonate resin ( 13) or aromatic polyolefin resin (13) is injected into the mold cavity (4), and is generated on the inner peripheral surface of the cylinder (1) formed of the resin (13) by heating and pressing during injection molding. and a method of manufacturing a syringe cylinder according to claim integrally formed "that the polydimethylsiloxane derived lubricating thin layer of (2a).
[0007]
According to the cylinder manufactured by the manufacturing method of the present invention , the silicon oil (2) is simply applied as in the prior art and is not integrated with the cylindrical inner peripheral surface (1a) of the cylinder (1), and the piston ( When the rubber sliding body (1d) attached to the tip of 1c) is moved, a part of the rubber sliding body (1d) adheres to it, and the part that is thickly coated and maintains fluidity is scraped off and mixed into the injection solution. Unlike such, the cylindrical inner peripheral surface of the lubricating thin layer from polydimethylsiloxanes to form the Jun slipping layer (2a) is a cylinder (1) (1a), of course, its bottom surface (1b) and needle attachment projections ( 1e) is formed integrally with the entire inner peripheral surface including the inner peripheral surface (1f) . Therefore , even if the rubber sliding body (1d) attached to the tip of the piston is moved in the cylinder (1), the bottom surface (1b) as well as the thin lubricating layer (2a) of the cylindrical inner peripheral surface (1a) In addition, the lubricating thin layer (2a) on the inner peripheral surface (1f) of the injection needle mounting projection (1e) hardly peels off and hardly mixes with the injection solution, which is extremely hygienic.
[0008]
In this case, the material of the cylinder (1) is polypropylene resin, polycarbonate resin or aromatic polyolefin resin. Further, silicone oil (2), one which will be described later in the current Pharmaceutical Affairs Law, only polydimethylsiloxane that has been approved.
The lubricating thin layer (2a) is formed by using both heating and pressing. The heating and pressurizing method is performed by injection molding as described later.
[0011]
Further, the surface of the convex portion (3a) of the male mold (3) for forming a cylinder “in this case, not only the outer circumferential surface but also the outer circumferential surface of the tip surface (3c) and the pin portion (3b) are included. The cylinder (1) in which the thin lubricating layer (2a) derived from polydimethylsiloxane is firmly and integrally formed on the entire inner peripheral surface is obtained simply by adding a process of applying polydimethylsiloxane (2) to I can do things. Further, since this thin lubricating layer (2a) is formed by pressurization and heating (for example, the molten resin temperature during filling is 200 to 350 ° C. and the filling pressure is 300 to 2000 kgf / cm 2 ), the conventional coating method is used. It can be made much thinner and the amount of polydimethylsiloxane (2) applied can be minimized. A mechanism for producing such an effect will be described later.
[0012]
Furthermore, since it is to injection mold after applying polydimethylsiloxane (2), even when the coating of polydimethyl siloxane (2) at elevated temperature and pressure immediately after coating of polydimethylsiloxane even bacteria were adhered (2) Because of injection molding, the attached bacteria will die soon before they grow, increasing the safety compared to the conventional example, and the cylinder (1) for injection molding with the polydimethylsiloxane (2) attached The inner diameter of the cylinder includes a lubricating thin layer (2a). Unlike the case where the polydimethylsiloxane (2) is applied after molding , the dimensional accuracy of the inner diameter of the cylinder (1) becomes very high.
[0015]
Claim 2” is another example of the manufacturing method of the cylinder (1) of the syringe. Polydimethylsiloxane (2) is applied to the surface of the projection (3a) of the male mold (3) for forming the cylinder”. Then, after clamping, a polypropylene resin (13) , a polycarbonate resin (13) or an aromatic polyolefin resin (13) is injected into the mold cavity (4) , and the cylinder (1) formed of the resin (13 ) A thin lubricating layer (2a) derived from polydimethylsiloxane generated by heating and pressurizing during injection molding is integrally formed on the inner peripheral surface of the mold and attached to the male mold (3) after the mold is opened . It prints on the surface of the cylinder (1) ".
[0016]
According to this, in addition to the above case, printing is performed on the surface of the high temperature cylinder (1) adhering to the male mold (3) , so that (i) the printing ink dries quickly and the printing process is shortened. (Ii) Even if there is bacteria attached to the outer surface of the cylinder (1) during printing, it will be instantly killed by heat, so even in this process, the growth of bacteria should be suppressed or kept sterile. Can be very hygienic.
[0020]
【Example】
The present invention will be described below with reference to the illustrated embodiments. FIG. 1 shows a general injection molding machine (A) for producing a cylinder (1) of the present invention, in which a nozzle (7) of an injection tube part (6) is connected to a female mold (5). A screw (8) is disposed in the injection cylinder (6) so as to be rotatable and slidable back and forth. An injection cylinder (9) and a drive unit (10) are connected to the screw (8), and the screw (8) is slid back and forth in the injection cylinder (9), via a gear mechanism (11). The screw (8) is rotated by the drive unit (10). A hopper (12) is installed at the rear end of the injection tube portion (6) so as to continuously supply the raw resin (13). A heater (14) is wound around the injection cylinder portion (6) so as to heat and melt the raw material resin (13) being passed.
[0021]
The main components of the mold (K) in the illustrated embodiment are the male mold (3), the female mold (5), and the protruding cylinder (15), and the inner surface shape of the cylinder (1) from the male mold (3) A protrusion (3a) is formed to form a recess, and a corresponding recess (5a) is formed in the female die (5) to form the outer surface of the cylinder (1). .
[0022]
(R) is a robot apparatus, which is attached to the injection molding machine (A) .For example, the oil application device (16), the printing device (17), and the take-out device (20) can be moved to predetermined positions. . Although a human hand may be used instead of the robot apparatus (R), it is preferable to use the robot apparatus (R) as the take-out apparatus (20) at a minimum.
The entire apparatus is generally installed in a clean room where the number of bacteria is strictly controlled.
[0023]
The resin raw material (13) used for the cylinder (1) must satisfy various conditions stipulated by the Pharmaceutical Affairs Law such as water permeability, transparency, and heat resistance depending on its use. A group polyolefin is used.
[0024]
Next, the operation of the present invention will be described. First, the robot device (R) is operated, and silicon oil (2) is applied to the outer peripheral surface of the convex portion (3a) of the male die (3) of the die (K) that is opened by the oil application device (16). ) Is applied in an appropriate amount. The application region may be the entire outer surface of the convex portion (3a) including the outer peripheral surface of the cylinder (3d), the tip surface (3c) and the pin portion (3b), or the pin portion (3b) or the tip surface (3c). Although it may be an excluded portion, at least the outer peripheral surface of the cylinder (3d) is applied.
[0025]
The method of applying the silicone oil (2) is not particularly limited, and in this embodiment, a cylindrical shape impregnated with the silicone oil (2) using a robotic device (R) such as the oil application device (16). The convex part (3a) is surrounded and pressed with a cloth, paper, sponge (16a) or the like, and silicon oil (2) is applied to the outer peripheral surface including at least the cylindrical outer peripheral surface (3d) of the convex part (3a). When the application of silicon oil (2) is finished, the mold is closed, and a mold cavity (4) is formed in the mold (K).
[0026]
On the other hand, the raw material resin (13) is put into the hopper (12), and the drive unit (10) is operated to rotate the screw (8). As the screw (8) rotates, the raw material resin (13) is heated to, for example, 200 to 350 ° C. by the heater (14), melted and kneaded, and stored in the tip portion of the injection cylinder (6). At the same time, the screw (8) is gradually retracted, and when the measurement of the melt-kneaded resin stored at the tip of the injection cylinder (6) is completed, the injection cylinder (9) is operated to project the screw (8) forward. The metering resin at the tip of the injection cylinder (6) is injected into the mold (K) at 300 to 2000 kgf / cm 2 .
[0027]
The injected melt-kneaded resin (13) passes through the runner (18) and gate (19) of the mold (K) and is pressed into the mold cavity (4) at high speed and high pressure. The melt-kneaded resin (13) press-fitted into the mold cavity (4) is momentarily pressed strongly against the silicone oil (2) applied to the outer surface of the convex part (3a) of the male mold (3). Fill the mold cavity (4). At this time, the temperature of the silicone oil (2) is instantaneously raised to the temperature of the melt-kneaded resin (13), and at the same time, the silicone oil (2) is uniformly extended to the surface of the convex portion (3a) and sticks to the inner peripheral surface of the melt-kneaded resin (13). Thereafter, the melt-kneaded resin (13) is solidified to form a cylinder (1), and a thin lubricating oil layer (2a) derived from silicon oil is integrally formed at least on the inner peripheral surface (1a) of the cylinder.
The forming range of the lubricating thin layer (2a) corresponds to the application region of the silicon oil (2).
[0028]
In this process, the mold (K) and the melt-kneaded resin (13) are generally kept above the sterilization temperature, so that bacteria adhere to the convex part (3a) and the cylinder (1) during this injection molding. In the unlikely event that it adheres at the time of application, it will die instantly due to high temperature, so it will be killed due to the high temperature, so that bacteria will not adhere and multiply throughout the manufacturing process of the cylinder (1). The generation of endotoxin and the like can be minimized or decomposed, and the safety can be dramatically improved as compared with the conventional production method.
[0029]
Here, the presumed mechanism of the formation process of the lubricating oil thin layer (2a) derived from silicon oil will be described. No matter how precisely polishing or other processing is performed on the cavity surface forming the mold cavity (4), the present technology has extremely fine irregularities on the submicron range (for example, 0.5 to 0.02 μm). . Now, when silicon oil (2) is applied to the convex part (3a), the high-viscosity silicone oil (2) enters the recess on the submicron level remaining on the surface of the convex part (3a) due to its surface tension. Don't go. (See Figure 2 (b))
Therefore, when injection molding is performed at a high temperature and a high pressure as described above, the pressure of the high temperature injection resin causes the silicone oil (2) to be pressed and spread on the surface of the convex portion (3a), and at the same time, a part of it is pushed into the concave portion. A thin lubricating layer (2a) having a convexity (3a) is uniformly formed on the entire outer peripheral surface including at least the cylindrical outer peripheral surface (3d), and this includes an inner surface including at least the cylindrical inner peripheral surface (1a) of the cylinder (1). It adheres integrally to the peripheral surface. (See Fig. 5 (b))
As a result, as shown in FIG. 12, a thick portion (2b) of submicron level (for example, 0.5 to 0.02 μm) is uniformly formed in an island shape on the inner peripheral surface of the lubricating thin layer (2a). This submicron thick island (2b) helps the majority of the smooth sliding of the rubber slide (1d). As a result, the amount of silicone oil (2) applied is much smaller than that of the conventional example.
[0030]
This thin lubricating oil layer (2a) derived from silicone oil is not simply applied so that part or all of it can be easily wiped off with a cloth or the like. A thin layer is formed in a strong and integrated manner on the cylindrical inner peripheral surface (1a) of the cylinder (1).
[0031]
When the molding of the cylinder (1) with the lubricating thin layer (2a) is completed in this way, the mold is opened to expose the cylinder (1) attached to the male mold (3) to the outside, and then the robot apparatus. Operate (R) to move the printing device (17) directly above the cylinder (1), lower the printing pad (17a) of the printing device (17), and apply it on the printing pad (17a). The printed pattern is transferred and printed on the surface of the cylinder (1).
Even at this time, the surface of the cylinder (1) is kept at a sufficiently high sterilization temperature, so that the growth of bacteria can be prevented, and the printed ink can be dried quickly and can be taken out in a short time. When printing is finished, the printing pad (17a) is pulled up and separated from the cylinder (1), and then the protruding device (15a) is operated to protrude the protruding cylinder (15) and fit into the convex part (3a). Remove the existing cylinder (1). Thereafter, the robot device (R) is operated to move the take-out device (20) directly above the runner portion (21) of the injection-molded product, and then the take-out device (20) is lowered to move the runner portion (21 ) And remove it from the mold (K).
The mass production under the aseptic condition of the syringe cylinder (1) is carried out by repeating the above operation.
[0032]
9 and 10 show a case where the lubricating thin layer (2a) is formed using the molded cylinder (1). First, at least a mold (30) for forming a thin lubricating layer (2a) that is substantially the same shape as the inner peripheral shape of a cylinder (1) for a syringe is prepared. Since it is the cylindrical inner peripheral surface (1a) of the cylinder (1) that requires a thin lubricating layer (2a), the forming die (30) only matches the cylindrical inner peripheral surface (1a) of the cylinder (1). It is enough if it has the shape to do. In the illustrated embodiment, an example having up to the pin portion (30b) is described.
[0033]
First, silicon oil (2) is applied to the surface of the convex portion (30a) "at least the outer circumferential surface of the cylinder (30d)", and then the convex portion (30a) is inserted into the syringe cylinder (1) and heated. Alternatively, pressurization or heating / heating is performed, and the resulting thin lubricating oil layer (2a) derived from silicon oil is integrally formed on the inner peripheral surface of the cylinder (1).
As a pressurizing method, a female die (not shown) may be fitted to the outside of the cylinder (1) for pressurization, and the method is not limited.
As a heating method, a heater (not shown) may be mounted inside the convex portion (30a), or the convex portion (30a) may be heated by heat transfer from a mold (30), for example.
[0034]
In this case as well, at least the cylindrical inner peripheral surface (1a) of the formed cylinder (1), and possibly the entire inner peripheral surface including the bottom surface (1b) and the inner peripheral surface (1f) of the injection needle mounting projection (1e). A thin lubricating oil layer (2a) derived from silicone oil can be formed integrally.
[0035]
Example 1
Next, the application amount of silicon oil (polydimethylsiloxane), and the experimental results on the slidability and appearance are shown. Cylinder oil was applied to the convex portion, and injection molding was performed as described above using polycarbonate as the raw material resin. If a thin lubricating layer is formed on the cylinder inner peripheral surface of the cylinder, the slipperiness of the butyl rubber sliding body attached to the tip of the syringe piston is remarkably improved, but if the amount of application to the convex part is too large, the cylinder will become cloudy. Appearance is poor and, on the contrary, if the coating amount is too small, the appearance is good but the slipperiness is impaired. Therefore, the relationship between the amount of silicon oil applied, slidability, and appearance was examined as follows.
Figure 0004078406
(Example 2)
Next, experimental results on the viscosity, slidability, and appearance of silicon oil (polydimethylsiloxane) are shown.
Figure 0004078406
From the above, as a region where both slidability and appearance are cleared, when the silicone oil is polydimethylsiloxane, the viscosity is 500 to 30,000 centistokes and the coating amount is 0.001 to 0.05 g / 100 cm. It turns out that it is 2 .
[0036]
【The invention's effect】
According to the present invention, since the lubricating thin layer derived from silicon oil is integrally formed on at least the cylinder inner peripheral surface of the cylinder in sliding contact with the rubber sliding body attached to the tip of the piston, the rubber sliding body is moved. Even if it is made, there is almost no peeling of a lubrication thin layer, and there is no mixing in an injection solution.
In addition, if the silicone oil application area is limited to the cylindrical outer peripheral surface of the convex part, not only the silicone oil application area can be minimized, but there is no accumulation of silicon oil as in the past, and safety is ensured. You can increase the sex.
In addition, according to the method of the present invention, it is possible to form a thin lubricating layer only by applying silicone oil to the surface of the convex portion, and mass production by automation of very safe cylinders with very few bacteria, endotoxins, etc. Is possible.
In addition, if the printing is performed on the surface of the cylinder attached to the male mold after the mold is opened, (i) the printing process is shortened by quick drying of the printing ink, and (ii) the bacteria adherence and proliferation are suppressed. There is an advantage that it can be done at the same time.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an injection molding machine according to the present invention. FIG. 2 is a drawing having a further enlarged view of a circled portion. In the present invention, silicon oil is applied to convex portions in a mold open state. Fig. 3 is an enlarged cross-sectional view of the main part in the mold-clamped state. Fig. 4 is an enlarged cross-sectional view of the main part in the middle of the injection of the kneaded molten resin into the mold cavity. FIG. 5 is a drawing having a further enlarged view of a circled portion, and is an enlarged cross-sectional view of the main part in a state where the mold cavity is filled with the kneaded molten resin in the mold-clamped state. Enlarged cross-sectional view [Fig. 7] Enlarged cross-sectional view of the main part in a state where printing is performed on the outer surface of the cylinder after half-opening. [Fig. ] Cross-sectional view of the main part when an off-the-shelf cylinder is to be mounted on the convex part by another method of the present invention [Fig. FIG. 11 is a partially enlarged cross-sectional perspective view of a cylindrical inner peripheral surface of a cylinder according to the present invention. FIG. 12A is formed by the method of the present invention. FIG. 13B is a cross-sectional view of a cylinder in which a thin lubricating layer is formed on the entire inner peripheral surface. FIG. 13B is a cross-sectional view of a cylinder in which the thin lubricating layer formed by the method of the present invention is formed only on the inner peripheral surface. ] A cross-sectional view of a cylinder of a conventional syringe with an enlarged view of a circled portion .
(A) ... Injection molding machine (1) ... Cylinder (1a) ... Cylindrical inner peripheral surface (1b) ... Bottom face (1c) ... Piston (1d) ... Rubber sliding body (2) ... Silicon oil (2a) ... Derived from silicon oil Lubricant thin layer (2b) ... Submicron thick islands

Claims (2)

シリンダ形成用の雄金型の凸部表面にポリジメチルシロキサンを塗布し、次に型締め後、ポリプロピレン樹脂、ポリカーボネート樹脂あるいは芳香族ポリオレフィン樹脂を金型キャビティに注入し、前記樹脂にて形成されたシリンダの内周面に、射出成形時の加熱・加圧によって生じた前記ポリジメチルシロキサン由来の潤滑薄層を一体的に形成する事を特徴とする注射器のシリンダの製造方法Polydimethylsiloxane was applied to the convex surface of the male mold for cylinder formation, and after mold clamping, polypropylene resin, polycarbonate resin or aromatic polyolefin resin was injected into the mold cavity and formed with the resin. the inner peripheral surface of the cylinder, the manufacturing method of the syringe cylinder, characterized in that integrally formed lubricating thin layer from the polydimethylsiloxane produced by heating and pressurizing during injection molding. シリンダ形成用の雄金型の凸部表面にポリジメチルシロキサンを塗布し、次に型締め後、ポリプロピレン樹脂、ポリカーボネート樹脂あるいは芳香族ポリオレフィン樹脂を金型キャビティに注入し、前記樹脂にて形成されたシリンダの内周面に、射出成形時の加熱・加圧によって生じた前記ポリジメチルシロキサン由来の潤滑薄層を一体的に形成し、型開後、雄金型に付着しているシリンダの表面に印刷することを特徴とする注射器のシリンダの製造方法。Polydimethylsiloxane was applied to the convex surface of the male mold for cylinder formation, and after mold clamping, polypropylene resin, polycarbonate resin or aromatic polyolefin resin was injected into the mold cavity and formed with the resin. On the inner peripheral surface of the cylinder, the lubricating thin layer derived from polydimethylsiloxane generated by heating and pressurizing during injection molding is integrally formed. After opening the mold, the cylinder surface is attached to the male mold. A method of manufacturing a cylinder of a syringe characterized by printing.
JP02436197A 1997-01-22 1997-01-22 Method for manufacturing syringe cylinder Expired - Lifetime JP4078406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02436197A JP4078406B2 (en) 1997-01-22 1997-01-22 Method for manufacturing syringe cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02436197A JP4078406B2 (en) 1997-01-22 1997-01-22 Method for manufacturing syringe cylinder

Publications (2)

Publication Number Publication Date
JPH10201844A JPH10201844A (en) 1998-08-04
JP4078406B2 true JP4078406B2 (en) 2008-04-23

Family

ID=12136068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02436197A Expired - Lifetime JP4078406B2 (en) 1997-01-22 1997-01-22 Method for manufacturing syringe cylinder

Country Status (1)

Country Link
JP (1) JP4078406B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075995B2 (en) 2006-03-30 2011-12-13 Becton, Dickinson And Company Coating system, articles and assembly using the same and methods of reducing sticktion
US7943242B2 (en) 2006-03-30 2011-05-17 Becton, Dickinson And Company Sealing members, articles using the same and methods of reducing sticktion
TW200806315A (en) 2006-04-26 2008-02-01 Wyeth Corp Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
CA2745621A1 (en) * 2008-12-03 2011-06-02 Denki Kagaku Kogyo Kabushiki Kaisha Syringe
SI3170508T1 (en) 2010-06-04 2020-01-31 Wyeth Llc Vaccine formulations
CN103958072B (en) * 2011-11-22 2016-08-31 多友企业株式会社 Fluid sealant cylinder
JOP20200175A1 (en) * 2012-07-03 2017-06-16 Novartis Ag Syringe
DE102015207228A1 (en) * 2015-04-21 2016-10-27 Vetter Pharma-Fertigung GmbH & Co. KG Primary packaging and method of making a primary packaging
IT202200003761A1 (en) * 2022-03-01 2023-09-01 Stevanato Group Spa Method for manufacturing a medical device for injection
WO2023163244A2 (en) * 2022-02-23 2023-08-31 김용현 Medicinal liquid pumping module and preparing method for medicinal liquid injection using same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182778A (en) * 1983-03-31 1984-10-17 Toppan Printing Co Ltd Decorating method of plastic molding
US4718463A (en) * 1985-12-20 1988-01-12 Mallinckrodt, Inc. Method of producing prefilled sterile plastic syringes
JPS6485665A (en) * 1987-06-19 1989-03-30 Terumo Corp Medical instrument and its preparation
JP3476898B2 (en) * 1993-04-02 2003-12-10 第一製薬株式会社 Coating method and device
JPH0796537A (en) * 1993-09-29 1995-04-11 Nippon Zeon Co Ltd Manufacture of resin-sealed electronic part
JPH07214600A (en) * 1994-02-02 1995-08-15 Fuji Electric Co Ltd Die for molding transparent resin sealing-type semiconductor device
CA2152559A1 (en) * 1994-07-01 1996-01-02 Lennox O. Watts Syringe assembly
DE4438360C2 (en) * 1994-10-27 1999-05-20 Schott Glas Pre-fillable, low-particle, sterile disposable syringe for the injection of preparations and methods for their manufacture
JP3417108B2 (en) * 1994-12-19 2003-06-16 澁谷工業株式会社 Syringe manufacturing equipment

Also Published As

Publication number Publication date
JPH10201844A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JP4078406B2 (en) Method for manufacturing syringe cylinder
EP0561651B1 (en) Improved lubricous gloves and method for making lubricous gloves
Liravi et al. Additive manufacturing of silicone structures: A review and prospective
US20060063126A1 (en) Medical treatment apparatus and needle manufacturing method
DE69635309T2 (en) DENTAL IMPRESSION SPOON
US5697918A (en) Systems for storing and dispensing dental compositions
JPH08224303A (en) Plastic syringe in which contrast media is already filled and sterilized,and its manufacture
FR2618329A1 (en) METHOD FOR MANUFACTURING A RING CAPABLE OF ENSURING RELEASE OF A THERAPEUTIC AGENT, AND RING MADE THEREBY
WO2005060905A1 (en) Swab and producing method thereof
TW200302756A (en) Methods of applying a coating to an optical surface
JP2006288652A (en) Cylinder of syringe, manufacturing method for it, manufacturing method of lubricating thin layer derived from fluorine resin
US8845331B2 (en) Method for producing a dental impression tray
WO2014059467A1 (en) Polymeric articles comprising a decoration and method of manufacturing
CN103142329A (en) Preparation method of nose bridge prosthesis for plastic surgery
CN103458854B (en) Manufacture method and the Pacifier of Pacifier
CN104248472B (en) A kind of artificial tooth deposits mould manufacture method and artificial tooth deposits mould and tooth die holder
WO1994013345A1 (en) Pre-filled, sterilized syringe and method of making
US11801618B2 (en) Method for producing an implant from a biocompatible silicone
JP6845308B2 (en) Carrier-based root canal obturator
JPS5949956A (en) Manufacture of rubber roll having nylon film on surface
JPH08243160A (en) Injection implement
CN114712685A (en) Medical treatment is with device is paintd to medicine of face skin surface of a wound nursing
JP3686145B2 (en) Extruder for flowable composition
CN211675869U (en) Ointment smearing device
JP3828207B2 (en) Discharge regenerative cleaning tool and gripping tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term