JP4078175B2 - Telescopic cover device - Google Patents

Telescopic cover device Download PDF

Info

Publication number
JP4078175B2
JP4078175B2 JP2002297391A JP2002297391A JP4078175B2 JP 4078175 B2 JP4078175 B2 JP 4078175B2 JP 2002297391 A JP2002297391 A JP 2002297391A JP 2002297391 A JP2002297391 A JP 2002297391A JP 4078175 B2 JP4078175 B2 JP 4078175B2
Authority
JP
Japan
Prior art keywords
movable
moving
driving
male screw
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002297391A
Other languages
Japanese (ja)
Other versions
JP2004130437A (en
Inventor
治彦 小池
勇夫 兼松
郁夫 玉腰
秀義 篭橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamazaki Mazak Corp
Original Assignee
Yamazaki Mazak Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamazaki Mazak Corp filed Critical Yamazaki Mazak Corp
Priority to JP2002297391A priority Critical patent/JP4078175B2/en
Publication of JP2004130437A publication Critical patent/JP2004130437A/en
Application granted granted Critical
Publication of JP4078175B2 publication Critical patent/JP4078175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Transmission Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば工作機械の切削エリアと機械構成エリアとの境界のように、空間的に分離遮断が要請される境界に、その境界に沿って伸縮自在に設けられるテレスコピックカバー装置に関するものである。
【0002】
【従来の技術】
一般に、工作機械では移動部材たる主軸頭が工具を装備して該主軸頭の軸方向(Z軸方向)と交差する方向(X軸方向、Y軸方向)へ駆動機構により移動させられ、その移動位置で前記軸方向(Z軸方向)へ進退移動してワーク表面の切削加工等を行うようになっている。前記駆動機構は、通常、前記主軸頭の後面側に作動連結されており、その機械構成には主軸頭の移動時にその移動方向をガイドするためのガイド部材や噛み合いギヤ等の動力伝達機構を含んでいる。そして、これらの駆動機構は前記主軸頭のワーク加工時の位置決めを精度良く行うためのものであるため、前記ワーク表面の切削加工等により発生した切削屑が当該駆動機構の機械構成部分に入り込まないようにする必要がある。
【0003】
従って、かかる要請に対応すべく、従来から、主軸頭が移動する切削エリアと駆動機構の機械構成エリアとの境界には、両エリアを分離遮断するように、複数枚の可動カバー(以下、「カバー」ともいう)がテレスコピック構造をなすように組み合わされた伸縮式のテレスコピックカバー装置が設けられている。そして、このようなテレスコピックカバー装置としては、カバー全体の伸縮時に互いに隣接するカバー同士が順次に掛止又は当接して連れ動きする形式のものが従来から知られているが、この連れ動き形式のものは、前記伸縮時における掛止又は当接により機械的な衝撃・騒音が発生して問題となっていた。
【0004】
そこで、かかる問題を解決すべく、近時においては、例えば特許文献1に記載されるようなテレスコピックカバー装置が提案されている。即ち、この公報に記載の装置では、循環式に走行移動する歯付き駆動ベルト等を駆動源とし、その駆動力により各可動カバーが各別に設定された移動ストローク範囲を隣接する他の可動カバーとは移動速度が異なる態様で移動するようにしている。そして、そのための構成として、前記公報に記載の装置では、可動カバー毎に入力ピニオンと出力ピニオンとを有する二重軸構造の減速装置を付設し、隣接する可動カバー同士では減速装置の減速比が異なることで、移動速度に差ができるようにしていた。また、前記公報には、可動カバー毎に、リニアモータを各駆動源として個別設置し、所定の速度差をもって自走させることにより、各可動カバーを伸展/重合させるテレスコピックカバー装置についても開示がされている。
【0005】
【特許文献1】
特開平8−192332号公報(請求項1,請求項6、図1〜図8)
【0006】
【発明が解決しようとする課題】
ところが、前記減速装置やリニアモータは、複雑な構成の装置であるため、その分、テレスコピックカバー装置のコストをアップさせてしまうという問題があった。また、前記減速装置やリニアモータは、数多くの精密部品からなる構成の装置であり、それを高速・高加減速で移動させるため、装置の耐久性が劣るという問題が生じていた。
【0007】
本発明は、前述した事情に鑑みなされたものであって、その目的は、テレスコピック構造を形成する各可動カバーの移動を高速・高加減速化するという要請を機械的な衝撃・騒音の発生を防止しつつ安価なコストで確実に実現でき、かつ耐久性を向上させたテレスコピックカバー装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、第1のエリアと当該第1のエリアに隣接する第2のエリアとを区画する境界線に沿って移動部材が前記両エリアのうち一方のエリアに一部を臨ませて移動する際に、前記両エリアのうち他方のエリアに収容された駆動機構の駆動力に基づき前記境界線に沿ってそれぞれ移動するテレスコピック構造をなす複数の可動カバーを備えたテレスコピックカバー装置において、前記駆動機構には所定方向に駆動される駆動体を設けると共に、当該駆動体には前記各可動カバーと個別対応するように複数の移動案内部を設け、各移動案内部と各可動カバーとの間には個別対応する移動案内部と可動カバーとを連結係合する連係手段を設けたことを要旨とした。
【0009】
また、請求項に記載の発明は、前記駆動体は前記境界線方向に沿う軸線を中心として回転駆動される回転部材であって、当該回転部材の周面には前記各移動案内部がそれぞれ所定のピッチ幅でもって螺旋状をなすように形成されていることを要旨とした。
【0010】
また、請求項に記載の発明は、前記各移動案内部の螺旋状のピッチ幅は、前記各可動カバーがテレスコピック構造の伸展状態にある場合において、前記移動部材に近い側の可動カバーに対応した移動案内部のピッチ幅の方が前記移動部材から遠い側の可動カバーに対応した移動案内部のピッチ幅よりも大きい構成とされていることを要旨とした。
【0011】
請求項に記載の発明は、請求項1に記載の発明において、前記各移動案内部における前記駆動体の一回転当たりの移動案内量は、前記各移動案内部が個別対応する各可動カバーの移動ストローク幅と比例関係にあることを要旨とした。
【0012】
請求項に記載の発明は、請求項1又は2に記載の発明において、前記駆動機構は、移動部材を移動させるための駆動源と前記駆動体を駆動させるための駆動源とを別々に設けてなり、該両駆動源が同期運転されることを要旨とした。
【0013】
【発明の実施の形態】
以下、本発明をワークの切削加工等を行う工作機械のテレスコピックカバー装置に具体化した一実施形態を図1及び図2に従って説明する。
【0014】
図1及び図2に示すように、本実施形態に係る工作機械1は、移動部材としての主軸頭2を上下動可能に支持して水平方向(図1では左右方向、以下、同じ。)へ往復動するコラム3を備えている。コラム3の下部には、図1に示すように、雌ネジ体4が取り付けられ、該雌ネジ体4は水平方向に沿う軸線を中心として回転自在な雄ネジ棒5上の雄ネジ部5aと螺合している。そして、この雄ネジ棒5の一端に作動連結された駆動源としての主軸頭用サーボモータ6が回転することにより、前記主軸頭2はコラム3と共に水平方向へ移動する構成とされている。
【0015】
前記主軸頭2が支持されたコラム3の前面には主軸頭2を挟んで左右対称となる位置に一対の張り出しカバー7が取り付けられている。この左右両張り出しカバー7は、図2に示すように、前記主軸頭2がそのほぼ全体を臨ませて移動する切削エリア(第1のエリア)E1と、前記雄ネジ棒5及び主軸頭用サーボモータ6等が収容された機械構成エリア(第2のエリア)E2とを区画する境界線L上に位置している。なお、前記雄ネジ棒5及び主軸頭用サーボモータ6等の機械構成は図2において図示が省略されている。
【0016】
また、図1及び図2に示すように、前記主軸頭2の水平方向への各移動端位置からさらに所定距離だけ外側へ離間した各位置には、一対の固定カバー8が工作機械1における図示しないベース上に立設されている。この左右両固定カバー8は図1及び図2からも理解されるように平面視L字形状をなしており、その後端部は前記機械構成エリアE2に位置する一方、その前端部は前記切削エリアE1に位置する配置構成とされている。そして、この固定カバー8と前記張り出しカバー7との間に複数(本実施形態では主軸頭2を挟んで左右2つずつ)の平板状をなす可動カバー9,10が前記境界線Lに沿って移動自在に設けられている。
【0017】
即ち、前記各可動カバー9,10は、前記張り出しカバー7と固定カバー8との間において、入れ子式に相対移動可能な構成とされている。そして、前記主軸頭2の移動に伴い、テレスコピック構造の伸展状態(図2における主軸頭2の右側での各カバー7〜10の相対的位置状態)と重合状態(図2における主軸頭2の左側での各カバー7〜10の相対的位置状態)との間で往復移動する構成とされている。
【0018】
次に、前記各可動カバー9,10の駆動機構について説明する。図1及び図2に示すように、前記機械構成エリアE2の上部には、前記境界線Lに沿う方向へ一本の駆動体及び回転部材としての雄ネジ棒11が回転自在に架設されている。この雄ネジ棒11は、その長さ方向の中央部分が大径の筒状部12とされ、その長さ方向の両端部分が小径の筒状部13とされている。各筒状部12,13の周面には螺旋状をなす移動案内部としての雄ネジ部12a,13aが形成されている。そして、両雄ネジ部12a,13aにおける移動案内量としてのピッチ幅は、雄ネジ部12aのピッチ幅の方が雄ネジ部13aのピッチ幅よりも大きなピッチ幅に形成されている。
【0019】
ちなみに、本実施形態では、前記雄ネジ棒11の雄ネジ部12aのピッチ幅は35mmに設定され、雄ネジ部13aのピッチ幅は15mmに設定されている。また、前記雄ネジ棒5の雄ネジ部5aのピッチ幅は60mmに設定されている。なお、前記主軸頭2が一方の移動端位置から他方の移動端位置まで移動するとした場合の移動ストローク幅は、主軸頭2の場合が600mmに、可動カバー9の場合が350mmに、可動カバー10の場合が150mmに設定されている。
【0020】
前記各筒状部12,13には、前記各雄ネジ部12a,13aと個別対応するようにボールネジ構造を備えた雌ネジ体14,15がそれぞれ螺合されている。また、雌ネジ体14と前記可動カバー9との間が連結部材16により連結され、雌ネジ体15と前記可動カバー10との間が連結部材17により連結されている。そして、本実施形態では、前記各雌ネジ体14,15と連結部材16,17により連係手段が構成されている。なお、前記機械構成エリアE2の下部には、前記境界線Lに沿う方向へ前記雄ネジ棒11と同一構成の雄ネジ棒11Aが架設されている。そして、当該雄ネジ棒11Aの各筒状部12,13にも雌ネジ体14,15がそれぞれ螺合され、各雌ネジ体14,15と各可動カバー9,10との間が連結部材16,17により連結されている。
【0021】
また、前記両雄ネジ棒11,11Aのうち上方側に位置する雄ネジ棒11の一端部(図1,図2では右端部)には駆動源としてのカバー用サーボモータ18が作動連結されている。そして、前記両雄ネジ棒11,11Aの各一端部寄りにそれぞれ設けられた各タイミングプーリ19間にはタイミングベルト20が掛装され、前記カバー用サーボモータ18が回転したときには、前記両雄ネジ棒11,11Aが同期して回転駆動される構成となっている。
【0022】
また、前記カバー用サーボモータ18はサーボモータ調節部21を介して数値制御(NC)演算装置22に接続されている。また、この数値制御(NC)演算装置22にはサーボモータ調節部23を介して前記主軸頭用サーボモータ6が接続されている。そして、前記数値制御(NC)演算装置22からの各サーボモータ調節部21,23を介して各々入力される制御信号に基づき、前記各サーボモータ6,18は同期運転される構成となっている。
【0023】
なお、図1においては各可動カバー9,10の駆動機構(雄ネジ棒11,11A等)が、工作機械1の正面から見て、各カバー7〜10の上端縁及び下端縁よりも上下にそれぞれ露出した図示内容になっている。しかし、これは各可動カバー9,10と移動案内部たる各雄ネジ部12a,13aとの個別対応した関係をわかりやすく示すために敢えて各カバー7〜10の上端縁及び下端縁の上下へ引き出して図示したものであり、前記雄ネジ棒11等の駆動機構は実際には各カバー7〜10の裏側に隠れている。
【0024】
次に、上記のように構成された本実施形態に係る工作機械1におけるテレスコピックカバー装置の作用について説明する。
図2は、同図において主軸頭2の左側にある各可動カバー9、10が一方の移動端位置で重合状態にあり、主軸頭2の右側にある各可動カバー9、10が伸展状態にあることを示している。そこで、この状態から主軸頭2が他方の移動端位置に向けて右側へ移動する場合につき、以下説明する。
【0025】
まず、数値制御(NC)演算装置22からサーボモータ調節部23を介し、主軸頭用サーボモータ6へ回転駆動信号が出力される。また、このとき数値制御(NC)演算装置22からは、サーボモータ調節部21を介した回転駆動信号が、カバー用サーボモータ18へも同時に出力される。なお、前記各回転駆動信号は、主軸頭用サーボモータ6及びカバー用サーボモータ18を、各々同一回転数(例えば、3000回転/分)で回転駆動させる指令信号であるものとする。
【0026】
すると、前記各回転駆動信号に基づき主軸頭用サーボモータ6及びカバー用サーボモータ18がそれぞれ回転駆動を開始する。そして、主軸頭用サーボモータ6の駆動力に基づき、雄ネジ棒5が主軸頭用サーボモータ6側から見て時計回りに回転する。また、カバー用サーボモータ18の駆動力に基づき、上方側に位置する雄ネジ棒11が前記雄ネジ棒5の回転に同期してカバー用サーボモータ18側から見て反時計回りに回転する。そして、この上方側に位置する雄ネジ棒11の回転駆動力は、下方側に位置する雄ネジ棒11Aへ両雄ネジ棒11,11Aに設けられたタイミングプーリ19及びタイミングベルト20を介し伝達される。そのため、上方及び下方側に位置する両雄ネジ棒11,11Aは、前記雄ネジ棒5の時計回り方向への回転に同期して共に反時計回り方向へ回転することになる。
【0027】
次に、前記雄ネジ棒5が回転駆動されると、当該雄ネジ棒5の周面に形成された螺旋状の雄ネジ部5aに螺合している雌ネジ体4が図1又は図2において右側へ移動を開始する。従って、この雌ネジ体4の移動に伴いコラム3と主軸頭2及び張り出しカバー7も右側に移動する。このとき、雄ネジ棒5が3000回転/分で回転駆動されるとすれば、ピッチ幅が60mmに設定された前記雄ネジ部5aによる移動量は180m/分となり、主軸頭2は当該主軸頭2の移動ストローク幅である600mmを0.2秒で移動完了することになる。
【0028】
一方、前記雄ネジ棒5の回転駆動に同期して前記両雄ネジ棒11が回転駆動されると、当該雄ネジ棒11,11Aの各筒状部12,13に形成された螺旋状の雄ネジ部12a,13aに螺合している各雌ネジ体14,15が同時に図2において右側へ移動を開始する。従って、これら各雌ネジ体14,15の移動に伴い当該各雌ネジ体14,15に連結部材16,17を介して連結された各可動カバー9,10も右側に移動する。そして、その際、前記雄ネジ棒5の場合と同様に、両雄ネジ棒11,11Aも3000回転/分で回転駆動される。
【0029】
従って、この場合において、ピッチ幅が35mmに設定された前記雄ネジ部12aによる移動量は105m/分となり、可動カバー9は当該可動カバー9の移動ストローク幅である350mmを0.2秒で移動完了することになる。また、ピッチ幅が15mmに設定された前記雄ネジ部13aによる移動量は45m/分となり、可動カバー10は当該可動カバー10の移動ストローク幅である150mmを0.2秒で移動完了することになる。そして、この移動完了に伴い、各可動カバー9,10は、主軸頭2の左側にある各可動カバー9,10が伸展状態となり、主軸頭2の右側にある各可動カバー9,10が他方の移動端位置で重合した状態となる。
【0030】
このように、数値制御(NC)演算装置22からの回転駆動信号に基づき、主軸頭用サーボモータ6とカバー用サーボモータ18が同一回転数(例えば、3000回転/分)で回転駆動されると、主軸頭2と各可動カバー9,10は、同時に移動を開始し、同時に移動停止する。即ち、各可動カバー9,10は、それぞれ可動カバー9,10毎に設定された移動ストローク幅を互いに異なる移動速度(移動態様)でもって一斉に移動する。なお、主軸頭2等に対する実際の移動ストローク幅は、数値制御(NC)演算装置22により必要に応じて演算され、その回転駆動信号において回転駆動時間が調整される。
【0031】
また、前記した説明とは逆に、主軸頭2が図2において右側から左側へ平行移動する場合は、数値制御(NC)演算装置22からの回転駆動信号に基づき、主軸頭用サーボモータ6及びカバー用サーボモータ18が前記説明の場合とは反対方向へ回転駆動される。そして、前記と同様の駆動原理により、主軸頭2及び各可動カバー9,10が右側から左側へ同時に移動開始し、同時に移動停止する。
【0032】
従って、上記実施形態の工作機械1におけるテレスコピックカバー装置によれば、以下のような特徴を得ることができる。
(1)上記実施形態では、各可動カバー9,10を移動させる駆動体を雄ネジ棒11により構成し、当該雄ネジ棒11には複数の雄ネジ部(移動案内部)12a,13aを移動案内量となるピッチ幅に差を持たせた状態で各可動カバー9,10と個別対応するように設けた。そして、個別対応する可動カバー9,10と雄ネジ部12a,13aとを連係手段たる雌ネジ体14,15及び連結部材16,17を介して連結し、雄ネジ棒11が回転駆動されると、雌ネジ体14,15等と共に各可動カバー9,10が互いの移動態様に差を有した状態で所定方向へ移動する構成とした。従って、従来とは異なり、可動カバー9,10毎に複雑かつ数多くの精密部品からなる構成の減速装置又はリニアモータ等を付設しないため、各可動カバー9,10の移動を高速・高加減速化するという要請を機械的な衝撃・騒音の発生を防止しつつ安価なコストで確実に実現でき、かつ耐久性の向上を図ることができる。
【0033】
(2)上記実施形態では、駆動体が前記境界線L方向に沿う軸線を中心として回転駆動される回転部材である雄ネジ棒11により構成され、当該雄ネジ棒11の各雄ネジ部12a,13aにより前記移動案内部を構成するようにした。従って、各可動カバー9,10を移動させるために駆動機構に設けられる駆動体が回転部材たる雄ネジ棒11という簡単な構成となるため、より一層、装置コストの低減、及び耐久性の向上を図ることができる。
【0034】
(3)上記実施形態では、前記各可動カバー9,10が伸展状態にあるときに主軸頭(移動部材)2に近い側の可動カバー9と個別対応する雄ネジ部12aのピッチ幅の方を主軸頭2から遠い側の可動カバー10と個別対応する雄ネジ部13aのピッチ幅よりも大きくした。即ち、各雄ネジ部12a,13aの螺旋状のピッチ幅は、それぞれ35mm,15mmのピッチ幅で構成した。従って、各可動カバー9,10が伸展状態と重合状態との間で移動する際には、移動ストローク幅が大きく設定された主軸頭2から遠い側の可動カバー10を、移動ストロークが小さく設定された主軸頭2に近い側の可動カバー9との対比において遅れず移動させることができる。
【0035】
(4)上記実施形態では、各雄ネジ部12a,13aにおける雄ネジ棒11の単位駆動時間当たりの移動案内量(ピッチ幅)は、各可動カバー9,10の移動ストローク幅350mm、150mmと比例関係にある構成とした。従って、各可動カバー9,10の移動開始から移動完了に至るまでの所要時間は同一であり、各可動カバー9,10を同期運転させることができる。なお、各可動カバー9,10の移動速度を調節したい場合には、雄ネジ棒11の回転数を調節することにより容易に達成することができる。
【0036】
(5)上記実施形態では、主軸頭2の駆動源である主軸頭用サーボモータ6とは別に、可動カバー9,10を移動させるためのカバー用サーボモータ18を設け、該両サーボモータ6,18は同期運転するようにした。従って、例えば切削屑の噛み込み等に起因して可動カバー9,10に移動抵抗が発生したとしても、当該移動抵抗が主軸頭2の移動抵抗となることはなく、工作機械1における加工精度に悪影響を及ぼさない。
【0037】
なお、上記実施形態は以下のように変更してもよい。
・上記実施形態では、一つのカバー用サーボモータ18により駆動体たる雄ネジ棒11を回転駆動し、その回転力をもう一つの駆動体たる雄ネジ棒11Aへタイミングベルト20等を介して伝達するようにしていた。しかし、前記カバー用サーボモータ18を2つ設け、一方のサーボモータ18で雄ネジ棒11を回転駆動し、他方のサーボモータ18で雄ネジ棒11Aをそれぞれ回転駆動するようにしてもよい。
【0038】
・また、上記実施形態では、移動部材たる主軸頭2を移動させるための駆動源(主軸頭用サーボモータ6)と駆動体たる雄ネジ棒11を駆動させるための駆動源(カバー用サーボモータ18)とを別々に設けていた。しかし、一つの駆動源(例えばサーボモータ等)により前記主軸頭2の移動用駆動源と前記雄ネジ棒11の回転駆動用駆動源とを兼用する構成としてもよい。
【0039】
・また、上記実施形態では、雄ネジ棒11における各雄ネジ部12a,13aのピッチ幅をそれぞれ35mm,15mmに設定した。しかし、前記各雄ネジ部12a,13aのピッチ幅は、個別対応する可動カバー9,10の移動ストローク幅(350mm,150mm)と比例関係にあるならば、例えば70mm,30mmに設定するなどしてよく、上記実施形態におけるピッチ幅(35mm,15mm)に限定されるものではない。
【0040】
・また、上記実施形態では、各雄ネジ部12a,13aのピッチ幅(35mm,15mm)を個別対応する可動カバー9,10の移動ストローク幅(350mm,150mm)と比例関係になるように構成した。しかし、各可動カバー9,10が伸展状態にある場合において、主軸頭2に近い側の可動カバー9と対応した雄ネジ部12aのピッチ幅の方が主軸頭2から遠い側の可動カバー10に対応した雄ネジ部13aのピッチ幅よりも大きい構成とされていればよく、必ずしも前記比例関係にある必要はない。
【0041】
・また、上記実施形態では、駆動体を一本の雄ネジ棒11により構成し、その一本の雄ネジ棒11において各雄ネジ部12a,13aのピッチ幅をそれぞれ35mm,15mmとなるように設定していた。しかし、駆動体を複数(例えば2つ)の雄ネジ棒11,11Aにより構成し、一方の雄ネジ棒11に形成された雄ネジ部(移動案内部)を一方の可動カバー9に個別対応させ、他方の雄ネジ棒11Aに形成された雄ネジ部(移動案内部)を他方の可動カバー10に個別対応させてもよい。この場合、各雄ネジ部(移動案内部)のピッチ幅(移動案内量)が同一であっても、両雄ネジ棒11,11Aの回転数を両可動カバー9,10の移動ストローク幅の違いに応じて変えることにより、各可動カバー9,10の移動態様に差を持たせることができる。
【0042】
・また、上記実施形態では、2枚の可動カバー9,10を用いた例で説明したが、テレスコピック構造をなす可動カバーの枚数は、複数枚であればよく、2枚より多くてもよい。
【0043】
・また、上記実施形態では、工作機械1におけるテレスコピックカバー装置を例にして説明した。しかし、駆動機構エリア(第1のエリア)と該駆動機構エリアと隣接するエリア(第2のエリア)とを区画する境界線に沿って移動する移動部材と共に複数の可動カバーが移動するものであれば、例えば、溶接機、洗車機等におけるテレスコピックカバー装置に具体化してもよい。
【0044】
次に、上記実施形態から把握できる技術的思想について、それらの効果と共に以下に記載する。
(イ)テレスコピックカバー装置において、前記駆動体を一つ設け、当該一つの駆動体に前記各可動カバーに個別対応するように複数の移動案内部を移動案内部毎に前記駆動体の一回転当たりの移動案内量に差を持たせた状態で設けたテレスコピックカバー装置。このような構成にすれば、複数の駆動体を設ける必要がなく、より一層、装置コストの低減を図ることができる。
【0045】
【発明の効果】
以上、詳述したように、本発明によれば、テレスコピック構造を形成する各可動カバーの移動を高速・高加減速化するという要請を機械的な衝撃・騒音の発生を防止しつつ安価なコストで確実に実現することができ、かつ耐久性の向上を図ることができる。
【図面の簡単な説明】
【図1】工作機械におけるテレスコピックカバー装置の概略正面図。
【図2】テレスコピックカバー装置の要部平面図。
【符号の説明】
2 移動部材としての主軸頭
6 駆動源としての主軸頭用サーボモータ
9,10 可動カバー
11,11A 回転部材としての雄ネジ棒
12a,13a 移動案内部としての雄ネジ部
14,15 連係手段を構成する雌ネジ体
16,17 連係手段を構成する連結部材
18 駆動源としてのカバー用サーボモータ
L 境界線
E1 第1のエリアとしての切削エリア
E2 第2のエリアとしての機械構成エリア
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a telescopic cover device that is provided on a boundary that requires spatial separation and blocking, such as a boundary between a cutting area and a machine component area of a machine tool, and that can extend and contract along the boundary. .
[0002]
[Prior art]
Generally, in a machine tool, a spindle head as a moving member is equipped with a tool and is moved by a drive mechanism in a direction (X-axis direction, Y-axis direction) intersecting the axial direction (Z-axis direction) of the spindle head. The workpiece surface is moved back and forth in the axial direction (Z-axis direction) at a position for cutting the workpiece surface. The drive mechanism is normally operatively connected to the rear surface side of the spindle head, and its mechanical configuration includes a power transmission mechanism such as a guide member and a meshing gear for guiding the moving direction when the spindle head moves. It is out. And since these drive mechanisms are for performing the positioning of the spindle head at the time of workpiece machining with high precision, the cutting waste generated by the machining of the workpiece surface does not enter the mechanical components of the drive mechanism. It is necessary to do so.
[0003]
Therefore, in order to meet such demands, conventionally, a plurality of movable covers (hereinafter referred to as “the cover”) are separated at the boundary between the cutting area in which the spindle head moves and the machine configuration area of the drive mechanism. A telescopic cover device is provided which is combined so as to form a telescopic structure. As such a telescopic cover device, there is conventionally known a type in which the covers adjacent to each other are sequentially hooked or brought into contact with each other when the entire cover is expanded or contracted. However, the problem is that mechanical impacts and noises are generated by the hooking or abutting at the time of expansion and contraction.
[0004]
Therefore, in order to solve such a problem, a telescopic cover device as described in, for example, Patent Document 1 has recently been proposed. That is, in the apparatus described in this publication, a toothed drive belt that travels and moves in a circulating manner is used as a drive source, and each movable cover is set separately from the other movable cover adjacent to each other by a driving force set by each movable cover. Are moving in different manners. And as a configuration for that, in the device described in the above publication, a double-shaft structure reduction device having an input pinion and an output pinion is attached to each movable cover, and the reduction ratio of the reduction device is between adjacent movable covers. The difference made it possible to make a difference in moving speed. In addition, the above publication also discloses a telescopic cover device that extends and superimposes each movable cover by individually installing a linear motor as each drive source for each movable cover and allowing it to self-run with a predetermined speed difference. ing.
[0005]
[Patent Document 1]
JP-A-8-192332 (Claim 1, Claim 6, FIGS. 1 to 8)
[0006]
[Problems to be solved by the invention]
However, since the speed reducer and the linear motor are devices having a complicated configuration, there is a problem that the cost of the telescopic cover device is increased accordingly. Further, the speed reducer and the linear motor are devices composed of a large number of precision parts, and since they are moved at high speed and high acceleration / deceleration, there is a problem that the durability of the device is inferior.
[0007]
The present invention has been made in view of the above-described circumstances, and its purpose is to meet the demand for high-speed, high-acceleration / deceleration movement of each movable cover forming a telescopic structure by generating mechanical shock and noise. An object of the present invention is to provide a telescopic cover device which can be reliably realized at a low cost while being prevented and which has improved durability.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that the moving member is located between the two areas along a boundary line that divides the first area and the second area adjacent to the first area. A plurality of telescopic structures each moving along the boundary line based on the driving force of the driving mechanism housed in the other area of the two areas when moving with a portion facing one of the areas. In the telescopic cover device provided with the movable cover, the drive mechanism is provided with a drive body that is driven in a predetermined direction, and the drive body is provided with a plurality of movement guide portions so as to individually correspond to the movable covers, The gist of the invention is that link means for connecting and engaging the individually corresponding movement guide portions and the movable cover is provided between each movement guide portion and each movable cover.
[0009]
The invention according to claim 1, the pre-SL driver a rotating member that is rotationally driven about an axis along the boundary direction, each movement guiding section on the peripheral surface of the rotating member The gist is that they are formed in a spiral shape with a predetermined pitch width.
[0010]
The invention of claim 1, prior Symbol helical pitch width of each mobile guide portion, when each movable cover is in the extended state of the telescopic structure, the side movable cover close to the moving member The gist is that the pitch width of the corresponding movement guide portion is larger than the pitch width of the movement guide portion corresponding to the movable cover far from the moving member.
[0011]
According to a second aspect of the present invention, in the first aspect of the present invention, the amount of movement guidance per one rotation of the driving body in each movement guide portion is the value of each movable cover corresponding to each movement guide portion individually. The gist is that it is proportional to the moving stroke width.
[0012]
The invention according to claim 3 is the invention according to claim 1 or 2 , wherein the drive mechanism separately provides a drive source for moving the moving member and a drive source for driving the drive body. Thus, the gist is that the two driving sources are operated synchronously.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a telescopic cover device for a machine tool that performs workpiece cutting and the like will be described below with reference to FIGS.
[0014]
As shown in FIGS. 1 and 2, the machine tool 1 according to the present embodiment supports a spindle head 2 as a moving member so as to be movable up and down in the horizontal direction (in FIG. 1, the left and right direction, the same applies hereinafter). A column 3 that reciprocates is provided. As shown in FIG. 1, a female screw body 4 is attached to the lower part of the column 3. The female screw body 4 includes a male screw portion 5 a on a male screw rod 5 that is rotatable about an axis along the horizontal direction. It is screwed. Then, the spindle head 2 moves in the horizontal direction together with the column 3 by rotating the spindle head servomotor 6 as a drive source operatively connected to one end of the male screw rod 5.
[0015]
A pair of overhanging covers 7 are attached to the front surface of the column 3 on which the spindle head 2 is supported at positions that are symmetrical with respect to the spindle head 2. As shown in FIG. 2, the left and right projecting covers 7 include a cutting area (first area) E1 in which the spindle head 2 moves substantially facing the entire surface, the male screw rod 5 and the spindle head servo. It is located on a boundary line L that partitions a machine configuration area (second area) E2 in which the motor 6 and the like are accommodated. The mechanical configuration of the male screw rod 5 and the spindle head servomotor 6 is not shown in FIG.
[0016]
As shown in FIGS. 1 and 2, a pair of fixed covers 8 are illustrated in the machine tool 1 at positions that are further spaced outward from the respective moving end positions of the spindle head 2 in the horizontal direction by a predetermined distance. Do not stand on the base. The left and right fixed covers 8 have an L-shape in plan view as can be understood from FIGS. 1 and 2, and the rear end portion thereof is located in the machine configuration area E2, while the front end portion thereof is the cutting area. The arrangement is located at E1. A plurality of movable covers 9 and 10 (two on the left and right sides of the spindle head 2 in this embodiment) between the fixed cover 8 and the overhanging cover 7 are formed along the boundary line L. It is provided movably.
[0017]
That is, each of the movable covers 9 and 10 is configured to be relatively movable in a nested manner between the overhanging cover 7 and the fixed cover 8. As the spindle head 2 moves, the telescopic structure extends (the relative position of the covers 7 to 10 on the right side of the spindle head 2 in FIG. 2) and the superposed state (the left side of the spindle head 2 in FIG. 2). Relative positions of the respective covers 7 to 10).
[0018]
Next, the drive mechanism of the movable covers 9 and 10 will be described. As shown in FIGS. 1 and 2, a single drive body and a male screw rod 11 as a rotating member are rotatably installed in the direction along the boundary line L above the machine configuration area E2. . The male threaded rod 11 has a cylindrical portion 12 with a large diameter at the center in the length direction and a cylindrical portion 13 with a small diameter at both ends in the length direction. Male threaded portions 12a and 13a are formed on the peripheral surfaces of the cylindrical portions 12 and 13 as spiral moving guide portions. The pitch width as the movement guide amount in both the male screw portions 12a and 13a is formed such that the pitch width of the male screw portion 12a is larger than the pitch width of the male screw portion 13a.
[0019]
Incidentally, in this embodiment, the pitch width of the male screw portion 12a of the male screw rod 11 is set to 35 mm, and the pitch width of the male screw portion 13a is set to 15 mm. The pitch width of the male screw portion 5a of the male screw rod 5 is set to 60 mm. The movement stroke width when the spindle head 2 moves from one movement end position to the other movement end position is 600 mm for the spindle head 2, 350 mm for the movable cover 9, and the movable cover 10. Is set to 150 mm.
[0020]
Female thread bodies 14 and 15 each having a ball screw structure are screwed into the cylindrical parts 12 and 13 so as to individually correspond to the male thread parts 12a and 13a. The female screw body 14 and the movable cover 9 are connected by a connecting member 16, and the female screw body 15 and the movable cover 10 are connected by a connecting member 17. In this embodiment, the female screw bodies 14 and 15 and the connecting members 16 and 17 constitute a linking means. A male threaded rod 11A having the same configuration as the male threaded rod 11 is installed in the direction along the boundary line L in the lower part of the machine configuration area E2. The female screw bodies 14 and 15 are also screwed into the respective cylindrical portions 12 and 13 of the male screw rod 11A, and the connecting members 16 are connected between the female screw bodies 14 and 15 and the movable covers 9 and 10. , 17.
[0021]
Also, a cover servo motor 18 as a drive source is operatively connected to one end portion (the right end portion in FIGS. 1 and 2) of the male screw rod 11 located on the upper side of the male screw rods 11 and 11A. . A timing belt 20 is hung between the timing pulleys 19 provided near one end of the male screw rods 11 and 11A. When the cover servo motor 18 rotates, the male screw rods 11 , 11A are rotationally driven synchronously.
[0022]
The cover servomotor 18 is connected to a numerical control (NC) arithmetic unit 22 via a servomotor adjustment unit 21. The spindle head servomotor 6 is connected to the numerical control (NC) arithmetic unit 22 via a servomotor adjustment unit 23. The servo motors 6 and 18 are configured to be operated synchronously based on control signals input via the servo motor adjustment units 21 and 23 from the numerical control (NC) arithmetic unit 22, respectively. .
[0023]
In FIG. 1, the drive mechanisms (male screw rods 11, 11 </ b> A, etc.) of the movable covers 9, 10 are located above and below the upper and lower edges of the covers 7 to 10 when viewed from the front of the machine tool 1. Each content is exposed. However, this is intentionally drawn up and down the upper and lower edges of the covers 7 to 10 in order to clearly show the individually corresponding relationship between the movable covers 9 and 10 and the male screw portions 12a and 13a as the movement guide portions. The drive mechanism such as the male screw rod 11 is actually hidden behind the covers 7 to 10.
[0024]
Next, the operation of the telescopic cover device in the machine tool 1 according to the present embodiment configured as described above will be described.
In FIG. 2, the movable covers 9 and 10 on the left side of the spindle head 2 in FIG. 2 are superposed at one moving end position, and the movable covers 9 and 10 on the right side of the spindle head 2 are in an extended state. It is shown that. Therefore, the case where the spindle head 2 moves to the right side from this state toward the other moving end position will be described below.
[0025]
First, a rotation drive signal is output from the numerical control (NC) arithmetic unit 22 to the spindle head servo motor 6 via the servo motor adjustment unit 23. At this time, the numerical control (NC) arithmetic unit 22 simultaneously outputs a rotation drive signal via the servo motor adjustment unit 21 to the cover servo motor 18. Each rotation drive signal is a command signal for rotating the spindle head servo motor 6 and the cover servo motor 18 at the same rotation speed (for example, 3000 rotations / minute).
[0026]
Then, the spindle head servomotor 6 and the cover servomotor 18 start to rotate based on the respective rotation drive signals. Based on the driving force of the spindle head servomotor 6, the male screw rod 5 rotates clockwise as viewed from the spindle head servomotor 6. Further, based on the driving force of the cover servo motor 18, the male screw rod 11 positioned on the upper side rotates counterclockwise as viewed from the cover servo motor 18 side in synchronization with the rotation of the male screw rod 5. The rotational driving force of the male screw rod 11 located on the upper side is transmitted to the male screw rod 11A located on the lower side via the timing pulley 19 and the timing belt 20 provided on the male screw rods 11 and 11A. . Therefore, both the male screw rods 11 and 11A positioned on the upper side and the lower side are both rotated counterclockwise in synchronization with the rotation of the male screw rod 5 in the clockwise direction.
[0027]
Next, when the male screw rod 5 is driven to rotate, the female screw body 4 screwed into the helical male screw portion 5a formed on the peripheral surface of the male screw rod 5 is shown in FIG. Start moving to the right. Accordingly, the column 3, the spindle head 2 and the overhanging cover 7 also move to the right as the female screw body 4 moves. At this time, if the male threaded rod 5 is rotationally driven at 3000 revolutions / minute, the amount of movement by the male threaded part 5a whose pitch width is set to 60 mm is 180 m / minute, and the spindle head 2 is the spindle head. The movement stroke width of 2 (600 mm) is completed in 0.2 seconds.
[0028]
On the other hand, when the male screw rods 11 are rotationally driven in synchronization with the rotational drive of the male screw rods 5, spiral male screws formed on the cylindrical portions 12 and 13 of the male screw rods 11 and 11A. The female screw bodies 14 and 15 screwed into the portions 12a and 13a simultaneously start moving to the right side in FIG. Therefore, as the female screw bodies 14 and 15 move, the movable covers 9 and 10 connected to the female screw bodies 14 and 15 via the connecting members 16 and 17 also move to the right. At that time, as in the case of the male screw rod 5, both male screw rods 11 and 11A are also driven to rotate at 3000 rpm.
[0029]
Accordingly, in this case, the moving amount by the male screw portion 12a whose pitch width is set to 35 mm is 105 m / min, and the movable cover 9 moves within 350 seconds which is the moving stroke width of the movable cover 9 in 0.2 seconds. Will be completed. Further, the moving amount by the male screw portion 13a having the pitch width set to 15 mm is 45 m / min, and the movable cover 10 completes the movement of 150 mm which is the moving stroke width of the movable cover 10 in 0.2 seconds. Become. As the movement is completed, the movable covers 9 and 10 are in an extended state with the movable covers 9 and 10 on the left side of the spindle head 2 and the movable covers 9 and 10 on the right side of the spindle head 2 are in the other state. It will be in the state which superposed | polymerized in the movement end position.
[0030]
Thus, when the spindle head servomotor 6 and the cover servomotor 18 are rotationally driven at the same rotational speed (for example, 3000 rpm) based on the rotational drive signal from the numerical control (NC) arithmetic unit 22. The spindle head 2 and the movable covers 9 and 10 start moving simultaneously and stop moving simultaneously. That is, the movable covers 9 and 10 move simultaneously at different moving speeds (moving modes) within the moving stroke width set for each of the movable covers 9 and 10. The actual movement stroke width with respect to the spindle head 2 and the like is calculated as necessary by a numerical control (NC) calculation device 22 and the rotation drive time is adjusted in the rotation drive signal.
[0031]
Contrary to the above description, when the spindle head 2 translates from the right side to the left side in FIG. 2, the spindle head servomotor 6 and the spindle head servo motor 6 and The cover servomotor 18 is driven to rotate in the opposite direction to that described above. Then, according to the same driving principle as described above, the spindle head 2 and the movable covers 9 and 10 start moving simultaneously from the right side to the left side and stop moving simultaneously.
[0032]
Therefore, according to the telescopic cover device in the machine tool 1 of the above embodiment, the following features can be obtained.
(1) In the above embodiment, the driving body for moving the movable covers 9 and 10 is constituted by the male screw rod 11, and a plurality of male screw portions (movement guide portions) 12a and 13a are moved to the male screw rod 11. The movable covers 9 and 10 are provided so as to individually correspond with a difference in pitch width as a guide amount. Then, when the individually corresponding movable covers 9 and 10 and the male screw portions 12a and 13a are connected via the female screw bodies 14 and 15 and the connecting members 16 and 17 as the linking means, and the male screw rod 11 is driven to rotate. The movable covers 9 and 10 together with the female screw bodies 14 and 15 and the like are configured to move in a predetermined direction with a difference in their movement modes. Therefore, unlike the conventional case, each movable cover 9, 10 is not provided with a speed reduction device or a linear motor having a complicated and composed of many precision parts. It is possible to reliably realize the request to do so at a low cost while preventing the occurrence of mechanical shock and noise, and to improve the durability.
[0033]
(2) In the above embodiment, the driving body is constituted by the male threaded rod 11 that is a rotating member that is rotationally driven about the axis line along the boundary L direction, and each male threaded portion 12a, The movement guide unit is configured by 13a. Therefore, since the driving body provided in the driving mechanism for moving the movable covers 9 and 10 has a simple configuration of the male screw rod 11 as a rotating member, the apparatus cost can be further reduced and the durability can be further improved. Can be planned.
[0034]
(3) In the above embodiment, when the movable covers 9 and 10 are in the extended state, the pitch width of the male screw portion 12a individually corresponding to the movable cover 9 close to the spindle head (moving member) 2 is set. It was made larger than the pitch width of the male screw portion 13a individually corresponding to the movable cover 10 on the side far from the spindle head 2. In other words, the helical pitch widths of the male screw portions 12a and 13a were configured to be 35 mm and 15 mm, respectively. Accordingly, when the movable covers 9 and 10 move between the extended state and the overlapped state, the movable cover 10 on the side farther from the spindle head 2 having a large moving stroke width is set to have a small moving stroke. Further, it can be moved without delay in comparison with the movable cover 9 on the side close to the spindle head 2.
[0035]
(4) In the above embodiment, the movement guide amount (pitch width) per unit driving time of the male screw rod 11 in each male screw portion 12a, 13a is proportional to the movement stroke width 350mm, 150mm of each movable cover 9, 10. The configuration is related. Therefore, the required time from the start of movement of each movable cover 9, 10 to the completion of movement is the same, and each movable cover 9, 10 can be operated synchronously. In addition, when it is desired to adjust the moving speed of each movable cover 9, 10, it can be easily achieved by adjusting the number of rotations of the male screw rod 11.
[0036]
(5) In the above-described embodiment, a cover servo motor 18 for moving the movable covers 9 and 10 is provided separately from the spindle head servo motor 6 which is a drive source of the spindle head 2. 18 was operated synchronously. Therefore, even if movement resistance is generated in the movable covers 9 and 10 due to, for example, biting of cutting waste, the movement resistance does not become the movement resistance of the spindle head 2 and the machining accuracy in the machine tool 1 is improved. No adverse effect.
[0037]
In addition, you may change the said embodiment as follows.
In the above embodiment, the male screw rod 11 as a driving body is rotationally driven by one cover servo motor 18, and the rotational force is transmitted to the male screw rod 11A as another driving body via the timing belt 20 or the like. It was like that. However, two cover servomotors 18 may be provided, and the male screw rod 11 may be rotationally driven by one servomotor 18 and the male screw rod 11A may be rotationally driven by the other servomotor 18.
[0038]
In the above embodiment, the driving source (spindle head servomotor 6) for moving the spindle head 2 as a moving member and the driving source (cover servomotor 18 for driving the male screw rod 11 as a driving body) are used. ) And have been provided separately. However, a configuration may be adopted in which a driving source for moving the spindle head 2 and a driving source for rotational driving of the male screw rod 11 are combined with one driving source (for example, a servo motor).
[0039]
-Moreover, in the said embodiment, the pitch width of each male thread part 12a, 13a in the male threaded rod 11 was set to 35 mm and 15 mm, respectively. However, if the pitch widths of the male screw portions 12a and 13a are proportional to the movement stroke widths (350 mm and 150 mm) of the individually corresponding movable covers 9 and 10, they are set to 70 mm and 30 mm, for example. Well, it is not limited to the pitch width (35 mm, 15 mm) in the above embodiment.
[0040]
-Moreover, in the said embodiment, it comprised so that the pitch width (35 mm, 15 mm) of each male thread part 12a, 13a might be proportional to the movement stroke width (350 mm, 150 mm) of the individually corresponding movable covers 9,10. . However, when each movable cover 9, 10 is in the extended state, the pitch width of the male screw portion 12 a corresponding to the movable cover 9 on the side closer to the spindle head 2 is closer to the movable cover 10 on the side farther from the spindle head 2. It is only necessary that the configuration is larger than the pitch width of the corresponding male screw portion 13a, and the proportional relationship is not necessarily required.
[0041]
In the above embodiment, the driving body is constituted by a single male threaded rod 11, and the pitch width of each male threaded portion 12a, 13a is 35 mm and 15 mm, respectively, in the single male threaded rod 11. It was set. However, the drive body is composed of a plurality of (for example, two) male screw rods 11, 11 A, and the male screw portion (movement guide portion) formed on one male screw rod 11 is individually associated with one movable cover 9. The male screw portion (movement guide portion) formed on the other male screw rod 11A may correspond to the other movable cover 10 individually. In this case, even if the pitch width (movement guide amount) of each male screw portion (movement guide portion) is the same, the rotational speed of both male screw rods 11 and 11A is changed to the difference in the movement stroke width of both movable covers 9 and 10. By changing accordingly, it is possible to make a difference in the movement mode of the movable covers 9 and 10.
[0042]
In the above-described embodiment, the example using the two movable covers 9 and 10 has been described. However, the number of movable covers having a telescopic structure may be plural, and may be more than two.
[0043]
In the above embodiment, the telescopic cover device in the machine tool 1 has been described as an example. However, a plurality of movable covers move together with a moving member that moves along a boundary line that divides the drive mechanism area (first area) and an area adjacent to the drive mechanism area (second area). For example, it may be embodied in a telescopic cover device in a welding machine, a car wash machine or the like.
[0044]
Next, technical ideas that can be grasped from the above embodiment will be described below together with their effects.
(B) In the Te-less Copic cover device, provided one said drive member, one of said drive member a plurality of movement guide portions for each movement guiding section as individually corresponding said to the one drive member to the movable cover A telescopic cover device provided with a difference in the amount of movement guidance per rotation . With such a configuration, it is not necessary to provide a plurality of driving bodies, and the apparatus cost can be further reduced.
[0045]
【The invention's effect】
As described above in detail, according to the present invention, a request for increasing the speed and acceleration / deceleration of each movable cover forming the telescopic structure is requested at a low cost while preventing the occurrence of mechanical shock and noise. Thus, it can be surely realized and durability can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic front view of a telescopic cover device in a machine tool.
FIG. 2 is a plan view of an essential part of a telescopic cover device.
[Explanation of symbols]
2 Main spindle head 6 as moving member 6 Servo motor 9 for main spindle head as drive source Movable cover 11, 11A Male screw rods 12a, 13a as rotating members Male screw parts 14, 15 as moving guide parts Female screw bodies 16, 17, a connecting member 18 constituting a linking means, a cover servo motor L as a drive source, a boundary line E 1, a cutting area E 2 as a first area, and a machine configuration area as a second area

Claims (3)

第1のエリアと当該第1のエリアに隣接する第2のエリアとを区画する境界線に沿って移動部材が前記両エリアのうち一方のエリアに一部を臨ませて移動する際に、前記両エリアのうち他方のエリアに収容された駆動機構の駆動力に基づき前記境界線に沿ってそれぞれ移動するテレスコピック構造をなす複数の可動カバーを備えたテレスコピックカバー装置において、
前記駆動機構には所定方向に駆動される駆動体を設けると共に、当該駆動体には前記各可動カバーと個別対応するように複数の移動案内部を設け、各移動案内部と各可動カバーとの間には個別対応する移動案内部と可動カバーとを連結係合する連係手段を設け
前記駆動体は前記境界線方向に沿う軸線を中心として回転駆動される回転部材であって、当該回転部材の周面には前記各移動案内部がそれぞれ所定のピッチ幅でもって螺旋状をなすように形成され、
前記各移動案内部の螺旋状のピッチ幅は、前記各可動カバーがテレスコピック構造の伸展状態にある場合において、前記移動部材に近い側の可動カバーに対応した移動案内部のピッチ幅の方が前記移動部材から遠い側の可動カバーに対応した移動案内部のピッチ幅よりも大きい構成とされているテレスコピックカバー装置。
When the moving member moves partially facing one of the two areas along the boundary line that divides the first area and the second area adjacent to the first area, In a telescopic cover device comprising a plurality of movable covers having a telescopic structure that moves along the boundary line based on the driving force of a drive mechanism housed in the other area of both areas,
The drive mechanism is provided with a drive body that is driven in a predetermined direction, and the drive body is provided with a plurality of movement guide portions so as to individually correspond to the respective movable covers. In the meantime, a link means for connecting and engaging the individually corresponding movement guide portion and the movable cover is provided ,
The driving body is a rotating member that is driven to rotate about an axis along the boundary line direction, and each movement guide portion is formed in a spiral shape with a predetermined pitch width on a peripheral surface of the rotating member. Formed into
The spiral pitch width of each of the moving guides is such that the pitch width of the moving guide corresponding to the movable cover closer to the moving member is greater when each of the movable covers is in a telescopic structure extended state. A telescopic cover device configured to be larger than a pitch width of a movement guide portion corresponding to a movable cover on a side far from a moving member .
前記各移動案内部における前記駆動体の一回転当たりの移動案内量は、前記各移動案内部が個別対応する各可動カバーの移動ストローク幅と比例関係にある請求項1に記載のテレスコピックカバー装置。 2. The telescopic cover device according to claim 1 , wherein a movement guide amount per one rotation of the driving body in each movement guide unit is proportional to a movement stroke width of each movable cover individually corresponding to each movement guide unit . 前記駆動機構は、移動部材を移動させるための駆動源と前記駆動体を駆動させるための駆動源とを別々に設けてなり、該両駆動源が同期運転される請求項1又は2に記載のテレスコピックカバー装置。 The driving mechanism is constituted by providing a driving source for driving the driving source and the driving member for moving the moving member separately, according to claim 1 or 2 both said driving source is synchronous operation Telescopic cover device.
JP2002297391A 2002-10-10 2002-10-10 Telescopic cover device Expired - Lifetime JP4078175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297391A JP4078175B2 (en) 2002-10-10 2002-10-10 Telescopic cover device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297391A JP4078175B2 (en) 2002-10-10 2002-10-10 Telescopic cover device

Publications (2)

Publication Number Publication Date
JP2004130437A JP2004130437A (en) 2004-04-30
JP4078175B2 true JP4078175B2 (en) 2008-04-23

Family

ID=32287103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297391A Expired - Lifetime JP4078175B2 (en) 2002-10-10 2002-10-10 Telescopic cover device

Country Status (1)

Country Link
JP (1) JP4078175B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602168A (en) * 2016-02-01 2018-09-28 星精密株式会社 Lathe

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629392B2 (en) * 2004-09-07 2011-02-09 オークマ株式会社 Protective cover opening / closing device for machine tools
JP4865313B2 (en) * 2005-12-06 2012-02-01 ファナック株式会社 Machine tool with telescopic cover
JP5901476B2 (en) * 2012-09-05 2016-04-13 株式会社椿本チエイン Engagement chain type advance / retreat actuator
JP6405780B2 (en) * 2014-08-08 2018-10-17 スター精密株式会社 Machine Tools
JP7414498B2 (en) * 2019-12-05 2024-01-16 ファナック株式会社 Machine tool telescopic cover

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602168A (en) * 2016-02-01 2018-09-28 星精密株式会社 Lathe
CN108602168B (en) * 2016-02-01 2020-08-28 星精密株式会社 Machine tool

Also Published As

Publication number Publication date
JP2004130437A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
SU1530085A3 (en) Method and apparatus for finishing single-start or multistart wormlike or thread-like article
KR100835951B1 (en) Machine and method for producing bevel gears
US20030041706A1 (en) Complex machining tools
JPH09120310A (en) Method and system for moving axis
JP4078175B2 (en) Telescopic cover device
US9475121B2 (en) Machine and method for turning at least flat shoulders on a crankshaft that surround crankpins
US9886021B2 (en) Control device for coordinating translation and revolution movement in a machine tool
CN111299849A (en) Laser cutting machine with double swinging heads
JP3685879B2 (en) Machine tool with pivotable spindle head
RU63729U1 (en) CNC LONG MILLING MACHINE
JP2015051472A (en) Gear processing machine
JP2747523B2 (en) Portable pipe beveling machine
US20100086374A1 (en) Dynamically optimized machine tool having superimposed drive systems
US6227776B1 (en) Machine tool
JP2015182170A (en) Machine tool
JP6754431B2 (en) Rail running structure and machine tools equipped with the rail running structure
US5967883A (en) Working apparatus provided with rotary table for mass-production of gears
JPH0847817A (en) Improved lathe for forming linear and spiral thread
JP2003260584A (en) Plate machine
JPS5857557A (en) Linear reciprocating motion device
RU70836U1 (en) CNC DRILLING MACHINE
US20020129683A1 (en) Machine tool system
CN110116242B (en) Involute interpolation device
CN110045687B (en) Involute interpolation control forming method
JP2013215788A (en) Two-motor power processing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Ref document number: 4078175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term