JP4077767B2 - Agricultural products non-destructive quality judgment device - Google Patents

Agricultural products non-destructive quality judgment device Download PDF

Info

Publication number
JP4077767B2
JP4077767B2 JP2003162675A JP2003162675A JP4077767B2 JP 4077767 B2 JP4077767 B2 JP 4077767B2 JP 2003162675 A JP2003162675 A JP 2003162675A JP 2003162675 A JP2003162675 A JP 2003162675A JP 4077767 B2 JP4077767 B2 JP 4077767B2
Authority
JP
Japan
Prior art keywords
light
light receiving
light projecting
measurement
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003162675A
Other languages
Japanese (ja)
Other versions
JP2004361347A (en
Inventor
咲子 高田
久也 山田
伸明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2003162675A priority Critical patent/JP4077767B2/en
Publication of JP2004361347A publication Critical patent/JP2004361347A/en
Application granted granted Critical
Publication of JP4077767B2 publication Critical patent/JP4077767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sorting Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イチゴ、トマト、ミカン等の農産物中に含まれる糖度等の内部品質を非破壊で判定する装置に関する。
【0002】
【従来の技術】
農産物を破壊することなく、農産物の糖度や酸度等の内部品質を判定する非破壊品質判定装置として従来から知られているものに、搬送手段により搬送される農産物に赤外光やレーザー光等の光を照射して、この農産物を透過した光を分析することによって農産物の糖度(甘味)や酸度(酸味)等の内部品質を判定するように構成したものがある(例えば、特許文献1参照。)。このような農産物非破壊品質判定装置においては、例えば、光を農産物に照射するための投光手段を、搬送手段の一側方に配置するとともに農産物を透過した光を受光するための受光手段を該搬送手段の他側方に配置していた。そして、この投光手段と受光手段とはそれぞれ別の支持部材によって支持されていた。また、被測定物である農産物がミカンやリンゴ等の比較的大きな果実の場合、目視によって光軸合わせをする程度で実用上は問題なく判定作業が行われていた。
【0003】
【特許文献1】
特開2001−228087号公報
【0004】
【発明が解決しようとする課題】
しかし、前記ような従来の農産物非破壊判定装置においては、投光手段と受光手段とがそれぞれ別部材によって支持されているため、光軸合わせが困難であり、メンテナンス性が良くなかった。また、被測定物がイチゴ等の比較的小さい果実の場合、光源の電圧を下げた状態で判定を行うので、感度の良い品質の判定をするためには厳密な光軸合わせが必要となる。そこで、本発明は、簡単な構造で精度のよい光軸合わせを可能とし、メンテナンス性にすぐれた農産物非破壊品質判定装置を提供する。
【0005】
【課題を解決するための手段】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
【0006】
請求項1においては、農産物(15)を搬送するための搬送手段である搬送装置(2)と、投光手段(17)及び受光手段(18)が対向して配置される測定部(3)とを有し、該搬送装置(2)に載置される載置台(50)に農産物(15)を載せ、該搬送装置(2)によって農産物(15)を測定部(3)へと搬送し、該測定部(3)にて農産物(15)を透過した光に基づいて、該農産物(15)の品質判定を行う農産物非破壊品質判定装置(1)において、前記投光手段(17)と受光手段(18)とを一体の支持部材である投光・受光ステー(10)にて支持し、該投光・受光ステー(10)を、搬送装置(2)の搬送方向に対してコ字状とし、左右一側に開口部を設け、前記測定部(3)の下方に投光手段(17)を配置し、上方に該投光手段(17)から照射された光を受光する受光手段(18)を配置し、前記農産物(15)に対して下方向から光を照射し、上方で受光手段(18)により受光し、前記測定部(3)において、光軸調整用治具(80)を設け、該光軸調整用治具(80)は、同一軸心上に投光手段(17)及び受光手段(18)を嵌合する、投光側筒部(81)と受光側筒部(82)、及び、該投光側筒部(81)と受光側筒部(82)とを連結する連結筒(83)により構成し、該連結筒83は径の異なる筒部(83a・83b)を隙間のない状態で重ね合わせることにより伸縮可能な構造とし、該光軸調整用治具(80)の投光側筒部(81)に投光手段(17)を、受光側筒部(82)に受光手段(18)を嵌め込むことによって自動的に光軸合わせを行うものである。
【0007】
【請求項2】
請求項1記載の農産物非破壊品質判定装置において、前記載置台(50)に光学系補正用の標準物を取り付け、前記測定部(3)にて定期的に測定し、この測定値に基づき、該測定値の補正を行うものである。
【0008】
【請求項3】
請求項1記載の農産物非破壊品質判定装置において、前記測定部(3)の前工程に重量測定部を設け、該重量測定部にて搬送される農産物の重量を測定し、該重量測定値に対応する重量データを用いて、前記測定部にて得られた測定結果の補正を行うものである。
【0009】
【発明の実施の形態】
次に、発明の実施の形態を説明する。
【0010】
図1は本発明の農産物非破壊品質判定装置の全体構成を示す背面図、図2同じく平面図、図3は上流側から見た測定部を示す図、図4は治具使用状態を示す図、図5は搬送装置を示す側面図である。
【0011】
図6は防塵方法の一実施例を示す図、図7は筐体一部開口状態を示す斜視図、図8は載置台を示す側面断面図、図9は検出カメラを用いた場合の一実施例を示す平面図、図10は同じく別実施例を示す図である。
【0012】
図11は投光される光の波長と透過光強度との関係を示すグラフ、図12は測定部に減光部材を用いた場合を示す図、図13は載置台の孔部をスリットの代用とした場合の説明図、図14は標準物を具備した光学系補正専用載置台を示す図である。
【0013】
まず、農産物非破壊品質判定装置(以下、「品質判定装置」)1の構成について図1及び図2を用いて説明する。なお、以下では、便宜上、農産物の搬送方向を前後方向(下流側が前方)とし、水平面内で搬送方向と直交する方向を左右(横)方向としている。品質判定装置1は、搬送手段である搬送装置2、測定部3、制御装置4、供給部及び選別部などから構成される。そして、品質判定の対象となるイチゴやトマト等の農産物(以下、サンプル15)は、供給部において搬送装置2の搬送面にセット(載置)されるパンやバケット等の載置台50上に載置され、搬送装置2によって搬送経路を上流側(供給部側)から下流側(選別部側)へ向かって搬送され搬送経路の途中に設けられた測定部3にて測定された後、測定結果に基づいて選別部にて選別される。
【0014】
前記測定部3は投光手段17や受光手段18等から構成されており、外部からの光を遮断するために筐体60内に設けられている。該筐体60は、略直方体の箱状となっており、その六面が壁などで覆われ内部に光が入らないようになっており、底面の四隅に設けられた脚部60fにて支持されている。また、該筐体60は、その内部を仕切り板61によって上下に二分割されており、この二分割されたうち上部空間はさらに支持壁62によって左右方向略中央から二分割されている。この支持壁62によって仕切られた上部空間の右側には制御装置4が収納され、同じく左側には測定部3が設けられている。そして、筐体60において、サンプル15搬送方向に対して上流側の面及び下流側の面のそれぞれ左側(測定部3側)には、上流側開口部60a及び下流側開口部60bが設けられ、これら開口部を前記搬送装置2が貫通する構造となっている。前記上流側開口部60a及び下流側開口部60bには、外部の光が筐体60内部へ進入するのを防ぐための遮光手段63及び64が垂設されている。遮光手段63・64は布やゴムシート等で構成され、複数のスリットが縦方向に設けられており、サンプル15の搬送を妨げることなく外部から筐体60内への光の差し込みを遮断している。
【0015】
さらに、図3に示すように、測定部3への入口である筐体60の上流側開口部60aは、その搬送面からの高さを、前記受光手段18の鏡筒18bの下端よりも低く形成されている。つまり、上流側開口部60aの高さと、測定部空間内にその一端を有する機器などの最下端位置の高さとの間に、差dを設けている。要するに、上流側開口部60aを測定部3の測定部空間の高さよりも低くしているのである。このように上流側開口部60aの高さを設定することによって、そのまま搬送されれば受光手段18の下端部に接触するような異常に大きなサンプルが搬送された場合でも、この筐体60に形成された上流側開口部60aによって筐体60内に入る前に引っかかり、この大きなサンプルが測定部3へ搬送されて行くのを防止できる。よって、測定部3での受光手段18等の破損や汚れ、また光軸のズレ等を防ぐことが可能となる。
【0016】
また、仕切り板61によって仕切られた下部空間内には、前記光源ユニット8、該光源ユニット8等に電力を供給するための電源5などが収納されている。そしてこの光源ユニット8と光ファイバー等の通信ケーブル19を介して接続された前記測定部3の投光手段17から光が照射されるのである。このように、本実施例では、投光手段17の光源を前記制御装置4のボックス内に組み込むことなく、別置きの光源ユニット8としているので、測定部3の構成機器であるセンサ類などから離れた位置に設置することができ、光源作動時にこの光源から発生する熱による影響を抑えることが可能となる。よって、測定部3に関する機器の寿命延長や、熱の影響による誤作動を防止することができる。さらに、この光源ユニット8を構成する光源ランプ等は消耗品であり、光源ユニット8を別置きにすることで、消耗品の交換などのメンテナンスが容易となっている。
【0017】
このような品質判定装置1の搬送経路の途中にて、筐体60内に配置された測定部3において、投光手段17及び受光手段18等によって個々のサンプル15に対する透過光が検出される。そして受光手段18にて受光された透過光に基づくデータが通信ケーブル20を介して制御装置4へ送信され、このデータが制御装置4にて解析され、サンプル15毎の吸光度などから糖度や酸度が算出されて内部品質が判定される。
【0018】
なお、本実施例では、近赤外分光法を用いて農産物の糖度や酸度などの内部品質を判定する場合について説明しているが、他の判定法を適用してもよい。ここで「近赤外分光法」とは、農産物等の対象物に近赤外光(以下、単に「光」ともいう。)を照射し、透過光や反射光を測定することにより、農産物の糖度や酸度などの内部成分を判定する方法である。
【0019】
続いて、測定部3の詳細について図3を用いて説明する。測定部3では、下方に近赤外領域の波長の光を発するランプまたはLED等の投光手段17が備えられ、上方に該投光手段17から照射された光を受光するためのフォトダイオードやフォトトランジスタやCCD等の光センサーである受光手段18が備えられている。そしてこれら投光手段17及び受光手段18は、一体の支持部材である投光・受光ステー10によって支持されている。
【0020】
該投光・受光ステー10は、平面視略長方径の下支持部10a、該下支持部10aと対向して設けられる平面視略三角形の上支持部10b及び垂直部10cが板状の部材を折り曲げることによって形成され、搬送方向左右一側(本実施例では左側)に開口部を有するコ字状の部材となっている。そして、下支持部10aの前記開口部側(左側)には投光手段17がフランジ21を介して支持され、上支持部10bの同じく開口部側には受光手段18がフランジ22を介して支持され、これら投光手段17及び受光手段18は互いに上下方向に位置を合わせて配置され、その光軸を鉛直方向としている。また、これら投光手段17及び受光手段18は光軸合わせを可能とするため、投光・受光ステー10において位置調節可能に支持されている。なお、上方に投光手段17、下方に受光手段18を配置する構造としてもよい。
【0021】
こうして投光手段17及び受光手段18が支持固定された投光・受光ステー10を、筐体60の支持壁62に、ブラケット71・71を介するなどしてボルト締結され所定位置に固設されている。そして、この投光・受光ステー10によって囲まれる空間、即ち上下に配置された投光手段17及び受光手段18の間に、搬送装置2の搬送経路が位置している。つまり、従来においては投光手段17及び受光手段18はそれぞれ別部材によって支持されていたが、本発明に係る測定部3においては、この投光・受光ステー10によって投光手段17及び受光手段18を一体的に支持しているのである。
【0022】
このように、一体の支持部材である投光・受光ステー10によって投光手段17と受光手段18とを一体的に支持する構造にすることによって、投光・受光ステー10において投光手段17と受光手段18との光軸合わせを予めある程度行った状態で、該投光・受光ステー10を筐体60内の支持壁62に取り付けることができる。よって、投光手段17及び受光手段18を取り外し、再び取り付ける際の光軸合わせが容易となるのである。
【0023】
また、この投光・受光ステー10を用いて光軸を鉛直方向に設定するように投光手段17及び受光手段18を支持し、該投光・受光ステー10によって囲まれた空間を、地面に対して水平方向に搬送装置2の搬送経路が通過して行くので、上述したようにコ字状の投光・受光ステー10では搬送方向左右一側(本実施例では左側)に開口部を有することとなる。つまり、搬送方向の左右一側に開口部を有する投光・受光ステー10を用い、光軸を鉛直方向に設定することによって、該開口部側が光軸方向及びサンプル搬送方向のどちらとも干渉しない位置となり、横方向、即ち搬送面に対して平行かつ搬送方向に対して垂直に光軸を設定した場合と比較して、光軸合わせや清掃などの光学系のメンテナンスが容易となる。さらに、投光・受光ステー10の搬送方向左右一側が開口されているため、後述する搬送装置2が、品質判定装置1本体に対して独立した構造となっているため、該搬送装置2を取り付けたり取り外したりする作業が容易となり、搬送装置2についてのメンテナンス性の向上も図れる。
【0024】
また、同じく図3に示すように、投光手段17の鏡筒17bの上端には、品質判定に必要な光を透過するガラスフィルタ等のフィルタ72を取り付けることもできる。このフィルタ72は、投光レンズ17aの有効径よりも大きい径のものとなっている。このように、投光手段17の鏡筒17bの上方にフィルタ72を取り付けることによって投光レンズ17aをゴミやホコリ等から保護することができる。つまり、投光レンズ17aを直接布などで掃除する場合の、該投光レンズ17aに傷がついたり、レンズの端に残った汚れによって透過率の低下や乱反射などが生じたり等の不具合を防ぐことができるのである。また、このフィルタ72の径を投光レンズ17aの有効径よりも大きくすることによって、フィルタ72を拭いた時などに該フィルタ72の端に拭き残しがあったとしても、投光レンズ17aから照射される光量が低減することを防げるのである。
【0025】
さらに、フィルタ72についた汚れやホコリ等によって生じる不具合は、該フィルタ72を取り外して掃除するか、または定期的にフィルタ72を交換することによって解消でき、投光レンズ17aを取り外したり、交換したりする必要がなくなるので、メンテナンス性の向上や省コスト化が図れる。なお、受光手段18側の受光部18aがレンズ等の場合、受光手段18側にこのようなフィルタを用いることによっても同様の効果を得ることができる。
【0026】
次に、前記投光手段17の投光レンズ17aや、受光手段18の受光部18aにおける防塵対策について説明する。図3に示すように、前記投光手段17の投光レンズ17aの近傍には、該投光レンズ17aに付着したホコリ等を吹き飛ばすためのファン73が設けられている。本実施例においてファン73は、該ファン73に内蔵されたモータによって駆動し、筐体60の左側壁60cと支持壁62にボルト等によって架設されたステー65に取り付けられ、投光レンズ17aの搬送方向上流側に配設されている。そして、搬送方向下流側に向けて送風することによって、投光レンズ17aに付着した塵やホコリ等を吹き飛ばすようにしている。
【0027】
また、別実施例として、前記光源ユニット8本体に温度上昇を抑制するための冷却ファンを取り付け、この冷却ファンによって取り込まれた外気が排出される排風口を、仕切り板61を貫通させることにより、筐体60の測定部3が設けられている空間に連通させ、パイプ等を用いてこの風を投光レンズ17aや受光部18aに導くようにすることによっても同様の効果を得ることができる。さらに別実施例として、図6に示すように、除塵用のエアガン74及び75を、前記投光・受光ステー10または支持壁62などの測定部3近傍に固設されたステー74a及び75a等を介して設け、一方のエアガン74は投光レンズ17aに向けて、他方のエアガン75は受光部18aに向けてそれぞれエアを定期的に吹き付け、レンズに付着したホコリ等を吹き飛ばすような構造とすることもできる。
【0028】
このように、投光レンズ17a及び受光部18aに風を送ることにより、レンズに付着したゴミやホコリを除去することによって、光強度が安定し、測定誤差を少なくすることができる。さらに、光源電圧が高電圧になった時、投光レンズ17a上でホコリ等が発火することも防げ、安全面から見ても優れたものとなる。
【0029】
このような構造の測定部3において、電源5から電力が供給される光源ユニット8の信号が通信ケーブル19を介して投光手段17へと送られ、該投光手段17から載置台50に載置されたサンプル15に対して光が照射され、この光のうち所定波長の光がサンプル15に含まれる内部成分により吸収され、それ以外の光はサンプル15を透過する。そしてこのサンプル15を透過した光は受光手段18により検出される。この受光手段18によって検出された透過光に基づくデータが通信ケーブル20を介して制御装置4に出力され、該制御装置4でサンプル15の吸光度を算出することにより、サンプル15の糖度や酸度等の内部品質を判定する構造としている。なお、測定部3における「測定」とは、測定部3において、投光手段17によりサンプル15に光を照射し、受光手段18によりサンプル15を透過した光を検出することを意味するものとする。
【0030】
続いて、前記投光・受光ステー10に支持固定される投光手段17と受光手段18の光軸合わせの際に用いる専用の治具80について説明する。図4に示すように、治具80は、投光手段17の鏡筒17bを挿入する投光側筒部81、受光手段18の鏡筒18bを挿入する受光側筒部82、及びこれらを連結する連結筒83とからなり、投光側筒部81、受光側筒部82及び連結筒83が同心配置されかつ一体的に形成され、内部を光が通過できる構造となっている。
【0031】
前記治具80の投光側筒部81は、その内径を投光手段17の鏡筒17bの外径と略同一としており、また、受光側筒部82は、その内径を受光手段18の鏡筒18bの外径と略同一としている。つまり、投光側筒部81は投光手段17の鏡筒17bに、受光側筒部82は受光手段18の鏡筒18bに、それぞれ隙間なく挿入できるような形状となっている。また、連結筒83は、筒部83a、83bのように、径の異なる複数の筒を隙間のないように重ね合わせること等によって伸縮可能な構造としている。
【0032】
このような構造の治具80を用いて光軸合わせをする際には、前記投光・受光ステー10に予め投光手段17及び受光手段18を固定せずに支持した状態、即ち位置調節可能な状態にしておく。そして、連結筒83を縮めることによって、治具80の全長を、投光手段17の鏡筒17bの上端から、受光手段18の鏡筒18bの下端までの距離より短くなるようにし、投光手段17の鏡筒17bの投光・受光ステー10の下支持部10aから突出した部分に投光側筒部81を嵌め込む。それから、連結筒83を伸ばし、受光側筒部82を同様にして受光手段18の鏡筒18bに嵌めこむ。そして、この治具80によって投光手段17と受光手段18とが一体的となった状態で、投光手段17及び受光手段18を前記投光・受光ステー10の下支持部10a及び上支持部10bにそれぞれフランジ21及び22を介して固定する。このように、この治具80に投光手段17と受光手段18とを嵌め込むことによって自動的に光軸合わせができるようになっている。なお、該治具80の構造及び形状は本実施例に限定されるものではなく、例えば、前記連結筒83を二分割として、投光側筒部81と受光側筒部82とを別体とし、それぞれ投光手段17の鏡筒17b及び受光手段18の鏡筒18bに嵌め込んだ後に、それぞれを、別途連結部材などを用いて同心となるように連結する構造とする等、同様の効果が得られるものであればよい。
【0033】
このように、投光手段17と受光手段18の光軸合わせを行う際に専用の治具80を用いることによって、投光手段17と受光手段18との精度の高い光軸合わせを容易にすることが可能となる。よって、サンプル15が比較的小さいイチゴ等のように、光源電圧を下げた状態で測定するために厳密な光軸合わせが必要な農産物の場合に、特に効果を発揮するのである。
【0034】
続いて、搬送手段である搬送装置2について図3及び図5を用いて説明する。搬送手段である搬送装置2は、搬送ベルト11・11によるベルトコンベア方式としている。この搬送装置2において、コンベア14の始端部または終端部近傍のコンベア14の搬送面と反対面側、即ち搬送ベルト11・11等の支持フレーム16の底面側に駆動ケース24が設けられ、該駆動ケース24内には伝動モータ等の駆動装置25、該駆動装置25から突出した駆動軸に固定された駆動プーリ26及び伝動プーリ27が収納され、この伝動プーリ27の上方であって搬送方向前後にはテンションプーリ28・29が配置されている。そして、コンベア14始端部及び終端部には従動プーリ30・31が支承されており、この従動プーリ30・31及び前記伝動プーリ27に前記搬送ベルト11・11が張設されている。そして、コンベア14の始端部及び終端部において、左右両側に脚部32及び33が設けられ、これら脚部32及び33によってコンベア14が支持されている。
【0035】
このような構成のコンベア14において、駆動装置25の駆動力が、該駆動装置25から突出した駆動軸に固定された駆動プーリ26から駆動ケース24内に支承された伝動プーリ27へと伝動ベルト36を介して伝達され、この伝動プーリ27の回転によって、該伝動プーリ27及び従動プーリ30・31に張設された搬送ベルト11・11が駆動するようになっている。そしてこの搬送ベルト11・11の張力は前記テンションプーリ28・29によって調整するようにしている。なお、コンベア14の搬送速度や移動量などは前記駆動装置25に取り付けられたエンコーダ37に接続された図示せぬコントローラによって制御されている。
【0036】
そして、コンベア14は、該コンベア14の搬送方向に対して左右略中央部に投光手段17及び受光手段18間の光路を確保するための空間を有する構造としている。つまり、コンベア14において張設される搬送ベルトを、搬送方向に対して左右両側に分割して配置した搬送ベルト11・11とし、該搬送ベルト11・11間に隙間を設けている。この隙間は、サンプル15を載せる載置台50が落ちることなく、かつ投光手段17からサンプル15の品質判定に十分な光量が通過できる間隔としている。また、測定部3における、コンベア14の支持フレーム16の底面にも、投光手段17から照射される光の経路を確保するための切欠き16a(図3)が形成されている。
【0037】
このように、コンベア14の搬送ベルト11・11を、左右両側に設け、該搬送ベルト11・11間に空間を設けて張設し、支持フレーム16に切欠き16aを設けることによって、上述したような測定部において、上下方向を光路とする測定部3によってサンプル15の品質判定が可能となる。なお、搬送ベルト11・11間の間隔及び支持フレーム16に設けられた切欠き16aの大きさは、投光手段17の投光レンズ17aから投光され、パン50上の農産物15に照射される光を遮らないようにそれぞれ設定されている。
【0038】
このように、前記搬送装置2は独立駆動可能な構造となっている。すなわち、搬送装置2からなる搬送系と、測定部3等からなるの光学系とが分離独立した構造となっており、どちらか一方を設置した後でも、もう一方を据え付け、組み立てられる構造となっている。つまり、図7に示すように、搬送装置2は独立した駆動部(駆動ケース24)及び支持部(脚部32・33)を有しており、また、測定部3においては、上述したように、投光・受光ステー10が搬送方向の左右一側に開口部を有しているので、この投光・受光ステー10の開口部側、即ち筐体60の一側面(本実施例では左側面)を開口蓋66とし、この開口蓋66を取り外した状態で搬送系及び光学系をそれぞれ設置し、開口蓋66を取り付けることによって筐体60内を暗室としている。
【0039】
このように搬送系と光学系とを分離独立した構造とすることによって、それぞれの装置を調整したりメンテナンスしたりする作業が容易となる。また、光学系が搬送系の振動その他の影響を受けることなく、高精度な光学計測が可能となる。
【0040】
なお、前記筐体60の開口蓋66は、図7に示す形状に限定されず、測定部3を覆う部分を別体のボックスケースとしたり、該開口蓋66の一端を筐体60に支承して開閉可能な構造としたりすることもできる。そして、このように前記開口蓋66を開閉可能な構造にした場合、該開口蓋66を開けることによって光源ユニット8や搬送装置2の電源5が切れるような構造とすることが可能である。つまり、安全スイッチ等を設け、開口蓋66の開閉と電源5の入切を連動させて、開口蓋66を開けた場合に、電源5からの電力の供給が止まる構造としている。こうすることにより、メンテナンス時などに電源を切り忘れた状態で開口蓋66を開口した場合に、投光手段17から投光される光が直接目に入ったり、搬送装置2のコンベア14等の機械的稼動部との接触によってケガをしたりすることが防止でき、安全性の向上を図ることができる。
【0041】
このような搬送装置2の上流側かつ筐体60の外部で載置台50の左右略中央に載置されたサンプル15は、搬送装置2が駆動することにより搬送経路を上流から下流(図3の手前側から奥側)に向けて順次搬送され、上流側開口部60aから筐体60内に入り、筐体60内部の搬送経路途中に配設された測定部3により非破壊で品質判定された後、下流側開口部60bより筐体60外部に搬送され、選別部において測定部3の判定結果に基づいて選別されるのである。
【0042】
続いて、サンプル15の載置台50の構造ついて説明する。図8に示すように、本発明に係る載置台50は、ゴム等の弾性体や合成樹脂などから構成されており、サンプル15を載せるための載置面51bを有する皿部51と、該皿部51の下方において空間を形成する略円筒状の中空部材である筒部52とが一体形成されている。そして該載置台50は、測定に直接関係しない光の透過を防ぐため、遮光性のある材質から構成されている。前記皿部51の載置面51bは、中心部にかけて窪んだ碗型となっており、この載置面51b及び筒部52の底面52bの中心部には、それぞれ孔部51a及び52aが穿設されて、投光手段17から照射される光の経路を確保している。そして、測定する農産物の種類に応じた大きさの孔部51a及び52aを有する載置台50を複数用意している。このように、載置面51bを碗型にすることで、サンプル15の形状が平らな場合、安定した状態で載置することができる。さらに、供給部における載置台50へのサンプル15の載置が、作業者による手載せの場合にも、サンプル15がこぼれ落ちにくく置きやすい形状となっている。
【0043】
このように、載置台50には、前記搬送装置2のコンベア14とともに投光手段17から照射される光の経路を確保しているので、測定部3において投光手段17と受光手段18とがコンベア14を上下方向に貫通する光路をなす測定部3を有する品質判定装置1において好適なものとなる。よって、投光手段17及び受光手段18を、コンベア14を挟んで上下に対向させて配置することが可能となり、従来のように投光手段17及び受光手段18をコンベア14の両側方に配置し、搬送方向に直交する横方向の光を農産物に照射する場合と比較して、省スペース化が図れ、選果場などの複数の搬送レーンがある場合に適するものとなる。さらに、上下方向に光路を設定することで、コンベア14に複数列に亘って農産物を搬送しながら個々の農産物の品質判定を行う場合等にも適用でき、より汎用性が増すのである。また、搬送方向左右のスペースが確保できるため、このスペースから、投光手段17から受光手段18までの光路長を容易に測定することができ、この測定結果を、実際の測定で得られた測定値を補正する際に反映させることができる。
【0044】
また、上下方向に光路を設定することで、前記載置台50の皿部51に載置されたサンプル15が平らな形状を有したり小さかったりして、側面視で皿部51の上端からはみ出ない場合にも測定が可能となる。さらに、上下方向の光路長を短く設定することができるので、少ない出力で測定に十分な光量を得ることができるのである。
【0045】
ところで、測定部3においては、投光手段17及び受光手段18からなる光学系は、搬送経路を流れてくる載置台50上に載せられたサンプル15に対して、予め決められた位置に固定されている。しかし、載置台50上におけるサンプル15の置かれた位置やその姿勢が異なると、測定部3での測定条件が異なるものとなり、得られる測定値に誤差が生じることがある。そこで、このような不具合を解消するために、載置台50上のサンプル15の位置及び姿勢を検出するための検出カメラ78を用いた場合の実施例について図9及び図10を用いて説明する。
【0046】
まず一実施例について図9を用いて説明する。本実施例では、サンプル15の搬送経路において測定部3の上流側に、載置台50上のサンプル15の位置及び姿勢を検出するための検出カメラ78を設ける。この検出カメラ78は、センサー機能を有するCCDカメラ等が用いられ、通信ケーブル78aを介して制御装置4に接続されている。そして、前記投光手段17及び受光手段18が一体的に支持された投光・受光ステー10を移動装置85によって上下左右及び前後方向に移動可能としている。このような構造において、この検出カメラ78によって載置台50上のサンプル15の位置や姿勢を検知し、その検出データを通信ケーブル78aを介して制御装置4に送信する。この検出データに基づいた信号を通信ケーブル85aを介して移動装置85によって、投光手段17及び受光手段18が一体的に支持されている投光・受光ステー10を測定に最適な位置(光軸がサンプル15の略中央部を貫通する位置)に移動するように制御駆動するのである。このような構造にすることで、載置台50上のサンプル15の位置や姿勢によって投光手段17からの光が照射される部位が均一化され、より安定した測定が可能となる。
【0047】
次に、別実施例として図10を用いて説明する。本実施例では、前記実施例と同様の検出カメラ78を設けており、投光・受光ステー10はその位置を固定している。そして、該検出カメラ78と測定部3との間に位置調整装置79・79を設けている。この位置調節装置79・79はソレノイドやエアシリンダ等から構成され、伸縮自在な押圧部79bを有しており、通信ケーブル79aを介して制御装置4に接続されている。つまり、検出カメラ78によって得られた載置台50上のサンプル15の位置や姿勢に基づくデータを通信ケーブル78aを介して制御装置4に送信し、このデータに基づいた命令を制御装置4から位置調節装置79に通信ケーブル79aを介して送信し、この信号によって位置調節装置79・79の押圧部79bが駆動して、載置台50上のサンプル15を最適位置(載置面51b中央部)に位置させるように、制御装置4によってこの位置調節装置79が制御駆動されるのである。このような構造おいても、前記実施例と同様の効果が得られるのである。なお、本実施例においては、予め載置台50上の中央部にサンプル15が載置されている場合は、前記位置調節装置79によって載置台50自体の位置を搬送経路中心部に合わせるようにすることもできる。
【0048】
一方、前記測定部3の投光手段17において、従来では、被測定部である農産物の大きさによって、その光量、即ち光源の電圧を変えていた。しかし、光源の電圧を変化させると、出力が安定するまでにある程度の時間を要し、大きさにばらつきのある農産物が混在した状態の測定には適していないものとなる。特に、搬送速度が高速の場合は測定が不可能となる。そこで、このような異なる大きさの農産物を測定する際に適した構造について説明する。
【0049】
測定部3において、異なる大きさのサンプル15を、同一の光学系、つまり同じ投光手段17と受光手段18を用いて測定する場合、投光手段17から投光される光の光量を同じとすると、サンプル15が小さいときやサンプル15が腐敗部を有するときに、光の漏れや光の過剰透過によって、正確な測定ができない傾向がある。このような傾向を示唆するグラフを図11に示す。この図11は、ある品種の農産物における小サイズ(2Sサイズ)と大サイズ(Lサイズ)の二種類の大きさについての、投光手段17から投光される光の波長(nm)に対する、受光手段18において受光される光(光漏れ含む、以下総称して「透過光」)の強度を示したグラフであるが、このグラフにおいて、サンプル15の大きさによる透過光強度の差が顕著に現れている。つまり、サンプル15の大きさがLサイズの場合と比較して、2Sサイズの場合の透過光の方が、明らかに強くなっているのである。さらに、2Sサイズの方のグラフは、投光される光の波長が700nm前半から800nm中盤にかけて水平となっているが、これは、透過光の強度が、受光手段18側において設定された飽和(サチュレーション)値Aを超えている状態を示しており、正確な測定がなされていないことを示している。
【0050】
こういった傾向に対する方法として、まず、投光手段17から投光される光を平均的な大きさのサンプル15に合わせた光量に設定する。そして、サンプル15が小さ過ぎて受光手段18において受光する透過光が強すぎた場合、その光データを制御装置4にて異常値として認識し、その異常値のもととなったサンプル15を選別部側にて排出または再測定を行う構造とする。例えば、制御装置4と接続された排出装置などを搬送経路側部に設け、異常値として認識された測定値に基づいてこの排出装置を作動させ、搬送されるサンプル15を搬送経路から排出する構造としたり、搬送経路を分岐させ、異常値が検出されたサンプル15を再測定するように再度測定部へ搬送する構造としたりする方法がある。
【0051】
このように、受光手段18において受光する透過光が任意に設定した基準値の範囲を超えた場合、この値を異常値として認識する構造とすることによって、サンプル15が規定範囲の大きさより小さい場合や、またはサンプル15が平均的な大きさを有していても内部に腐敗部を有する場合に、これらに該当するサンプル15を排除することが可能となる。よって、その他の正常なサンプル15を精度よく測定することができるのである。
【0052】
また、投光手段17の光量を調節することなく測定可能な測定部3の別実施例として、図12に示すように、サンプル15と受光手段18との間にスリットや減光フィルタ等の減光部材76を設ける方法がある。つまり、この減光部材76によって、サンプル15が小さい場合における透過光を減光させているのである。このような減光部材76を設けることによって、被測定物のサンプル15が小さい場合にも、上述したような受光手段18側のサチュレーションを防ぐことができ、光量を一定に保ったまま、即ち光源の電圧を変えることなく測定が行える。よって、安定した光学条件下での測定が可能となり、精度の高い測定結果を得ることができる。さらに、光源電圧を頻繁に切り換えることによる光源への負担が軽減でき、光源の長寿命化が図れるのである。
【0053】
また、このような減光部材76は、投光手段17の投光レンズ17aとサンプル15との間に設けることによっても同様の効果を得ることができる。さらに、受光手段18側及び投光手段17側の両方に設けることで、光量を広範囲に亘って調整可能にすることで、同一の測定部3にて測定するサンプル15の大きさの範囲が著しく広い場合にも対応することができる。なお、このような測定部3における測定の際には、減光部材76による減光の度合いに対応させて、予め複数の検量線を制御装置4に記憶させておくとよい。ここでいう「検量線」とは、糖度などの内部成分濃度が既知の試料を用いて測定された、この試料濃度と、これに関係する測定強度(透過光強度、吸光度など)との関係をグラフ上に示した場合の曲線(または直線)であり、この検量線をもとに、内部成分が未知の農産物を測定した時に得られた測定強度から内部品質を求めるものである。
【0054】
また、図13に示すように、前記減光部材76を設ける代わりに、上述した前記載置台50の皿部51に設けられる光を通すための孔部51aを減光用のスリット51cとして代用することも可能である。この場合、投光手段17の投光レンズ17aから照射される光は、サンプル15の底面近傍で焦点を結ぶように設定されており、そのため、載置台50は遮光性のある素材で構成されている。そして、前記スリット51cの径をφA、該スリット51cの位置での光のスポット径をφBとすると、載置台50上に載置されたサンプル15が光を透過しにくい品種の場合は、φA>φBの関係を満たすように、また、サンプル15が光を透過しやすい品種や漏れ光を発生しやすい場合は、φA<φBの関係を満たすように、スリット51cの径φA及びサンプル15に照射される光のスポット径φBを、投光手段17を調整して設定することで、サンプル15の品種に応じて好適な測定が可能となる。
【0055】
載置台50及び投光手段17の投光レンズ17aをこのような構造にすることによって、サンプル15の大きさや形状にばらつきがある場合にも、受光手段18の受光部18aが光の漏れを受光しにくくなり、サンプル15を載置台50の皿部51に押さえつける等する必要がなく、余分な手間が省けるのである。さらに、サンプル15に照射される光量が、その大きさによらずほぼ一定に保つことができ、より精度の高い測定が可能となる。
【0056】
ところで、前記測定部3では、その非破壊での測定において再現性を保つため、標準的な大きさや形状を有する擬似農産物などを用い、光学系の補正を行っている。しかし、擬似農産物を用いた場合、この擬似農産物は時間の経過とともに劣化するので、長期間に亘って使用することができず、擬似農産物を変えるたびその都度補正用のデータを採取する必要があった。
【0057】
そこで、本実施例では、図14に示すように、サンプル15の載置台50に前記擬似農産物の代わりとなる測定結果が既知の光学系補正用の標準物77を取り付け、この載置台を補正専用載置台50’としている。この標準物77は、時間の経過によって劣化しにくい物質で構成されており、載置台50の皿部51に設けられた孔部51aから光が漏れないように、該孔部51aを塞げる大きさとしている。つまり、この標準物77を載置台50の皿部51の載置面51bと一体的に設け、この載置台を補正専用載置台50’とし、光学系の補正の際は、通常サンプル15の測定を行う際と同様に、この補正専用載置台50’を搬送して行う。そして、測定部3において投光手段17からの光を、この標準物77に照射して実際に測定を行うことで擬似命令を送り、この透過光によって得られるデータに基づいて、制御装置4の内部品質センサーに予め記憶させてある補正用の既知データとのずれから光学系調整を自動的に行う構造としている。その結果、この標準物77を透過した透過光が異常値を示した場合には、制御装置4から信号を発信し、装置を操作するオペレータに知らせ、装置の診断を行うこととしている。
【0058】
このように補正専用載置台50’を用いると、毎朝または装置の駆動を休止して再び駆動する直前に、容易に、しかも時間の経過による劣化を考慮することなく精度の高い光学系の補正が行えるので、毎測定時において、光学系の同一条件下での測定が可能となり、より信頼性のある測定結果を得ることができるのである。また、上述したような、ソレノイドやエアシリンダ等から構成されるサンプル15の位置調節装置等の特別な装置を用いることなく、測定部3における一定の精度を保った測定が可能となる。
【0059】
また、前記測定部3で得られた測定結果について、その測定結果をより現実の品質に近づけるため、測定値の補正を行っている。この測定値の補正は、被測定物であるサンプル15の大きさ(果径)を測定し、この値を補正に用いていた。つまり、ある標準的な大きさのサンプル15についての測定データに基づいて決められた補正式等を制御装置4に記憶させ、この補正手順に従ってサンプル15の測定値を補正していた。しかし、サンプル15の大きさによって測定値の補正を行うこととすると、サンプル15の内部が空洞(空洞果)の場合や、サンプル15の包含する水分量が異なる場合など、同じ大きさのサンプル15によっても、光の透過率が変わり、正確な補正ができない場合がある。
【0060】
そこで、本実施例においては、測定部3で得られた測定値の補正を、サンプル15の大きさではなく、重さに基づいて行っている。つまり、上述したような測定値の補正を、サンプル15の大きさ(果径)によらず、その重量によって行うのである。すなわち、前記測定部3の前工程に重量測定部(図示せず)を設け、該重量測定部にて搬送されるサンプル15の重量を測定し、この重量値に対応する重量データを用いて、測定部3にて得られた測定結果の補正を行うのである。
【0061】
具体的には、その一例として、サンプル15をその重量により選別を行う品種の場合、測定部3の前工程に重量測定部を設け、本装置の測定部3によって測定を行う前工程においてサンプル15の重量の測定を行い、この重量値を制御装置4へ送信する。そして、この重量測定値に対応する重量データを用いた補正プログラムを制御装置4に記憶させておき、該制御装置4に内蔵される電子計算機などによって補正を行うのである。つまり、前記重量測定部にて測定された重量測定値を、測定部3にて測定される測定値の補正の際に用いるのである。こうすることで、品質判定されるサンプル15の内部状態によらず、受光手段18にて受光される透過光スペクトルの大小を補正することが可能となる。すなわち、従来のようにサンプル15の大きさ(果径)を測定し、この大きさの値を測定部3で得られる測定値の補正に用いる場合に比べ、サンプル15の大きさを測定するために必要なセンサー類などの機器が省略でき、省コスト化が図れるのである。
【0062】
また、別実施例にとして次のようにすることもできる。測定するサンプル15の品種について標準的な重量を基準重量とし、この基準重量を有するサンプル15を複数測定してその平均から得られた透過スペクトルを基準透過光スペクトルとする。この基準透過光スペクトルを基に、前記基準重量に対するサンプル15の重量の増減に対応する透過光スペクトルの変化を予め測定によって作成して用意し、重量データを用いた補正プログラムとして制御装置4に記憶させておく。そして、前記重量測定部から送信されるサンプル15の重量測定値を基に、制御装置4にて、重量の変化に対応して変化する透過光スペクトルと、前記基準透過光スペクトルとの関係から透過光スペクトルの補正を行い、その後測定部3において測定を行い、サンプル15の品質判定を行うのである。このような方法によっても前記実施例と同様の効果を得ることができる。
【0063】
【発明の効果】
本発明は、以上のように構成したので、以下に示すような効果を奏する。
【0064】
請求項1に示す如く、農産物(15)を搬送するための搬送手段である搬送装置(2)と、投光手段(17)及び受光手段(18)が対向して配置される測定部(3)とを有し、該搬送装置(2)に載置される載置台(50)に農産物(15)を載せ、該搬送装置(2)によって農産物(15)を測定部(3)へと搬送し、該測定部(3)にて農産物(15)を透過した光に基づいて、該農産物(15)の品質判定を行う農産物非破壊品質判定装置(1)において、前記投光手段(17)と受光手段(18)とを一体の支持部材である投光・受光ステー(10)にて支持し、該投光・受光ステー(10)を、搬送装置(2)の搬送方向に対してコ字状とし、左右一側に開口部を設け、前記測定部(3)の下方に投光手段(17)を配置し、上方に該投光手段(17)から照射された光を受光する受光手段(18)を配置し、前記農産物(15)に対して下方向から光を照射し、上方で受光手段(18)により受光し、前記測定部(3)において、光軸調整用治具(80)を設け、該光軸調整用治具(80)は、同一軸心上に投光手段(17)及び受光手段(18)を嵌合する、投光側筒部(81)と受光側筒部(82)、及び、該投光側筒部(81)と受光側筒部(82)とを連結する連結筒(83)により構成し、該連結筒83は径の異なる筒部(83a・83b)を隙間のない状態で重ね合わせることにより伸縮可能な構造とし、該光軸調整用治具(80)の投光側筒部(81)に投光手段(17)を、受光側筒部(82)に受光手段(18)を嵌め込むことによって自動的に光軸合わせを行うので、該支持部材にて投光手段と受光手段との光軸合わせを予めある程度行った状態で、この支持部材を測定部に取り付けることができる。よって、投光手段及び受光手段を取り外し、再び取り付ける際の光軸合わせが容易となるのである。
【0065】
また、前記支持部材を、搬送方向に対してコ字状とし、左右一側に開口部を設けたので、該開口部側が光軸方向及びサンプル搬送方向のどちらとも干渉しないように光軸及び搬送方向を設定することが可能となり、光軸合わせや清掃などの光学系のメンテナンスが容易となる。
【0066】
また、前記測定部の投光手段及び受光手段を上下に対向して配置し、農産物に対して上方向または下方向から光を照射するので、省スペース化が図れ、選果場などの複数の搬送レーンがある場合に適するものとなる。さらに、上下方向に光路を設定することで、搬送装置にて複数列に亘って農産物を搬送しながら個々の農産物の品質判定を行う場合等にも適用でき、より汎用性が増すのである。
また、前記コ字状の支持部材にて投光手段及び受光手段を支持した場合、開口部側が光軸方向及びサンプル搬送方向のどちらとも干渉しない位置となり、光軸合わせや清掃などの光学系のメンテナンスが容易となる。
【0067】
また、前記測定部において、同一軸心上に投光手段及び受光手段を嵌合する投光側筒部と受光側筒部、及び、該投光側筒部と受光側筒部とを連結する連結筒を設けた光軸調整用治具で光軸合わせを行うので、投光手段と受光手段との精度の高い光軸合わせを容易にすることが可能となる。よって、サンプルが比較的小さいイチゴ等のように、光源電圧を下げた状態で測定するために厳密な光軸合わせが必要な農産物の場合に、特に効果を発揮するのである。
【0068】
請求項2に示す如く、前記載置台に光学系補正用の標準物を取り付けて前記測定部にて定期的に測定し、この測定値に基づき、該測定値の補正を行うので、毎朝または装置の駆動を休止して再び駆動する直前に、容易に、しかも時間の経過による劣化を考慮することなく精度の高い光学系の補正が行えるので、毎測定時において、光学系の同一条件下での測定が可能となり、より信頼性のある測定結果を得ることができるのである。また、ソレノイドやエアシリンダ等から構成される農産物の位置調節装置等の特別な装置を用いることなく、測定部における一定の精度を保った測定が可能となる。
【0069】
請求項3に示す如く、前記測定部の前工程に重量測定部を設け、該重量測定部にて搬送される農産物の重量を測定し、該重量測定値に対応する重量データを用いて、前記測定部にて得られた測定結果の補正を行うので、品質判定される農産物の内部状態によらず、受光手段にて受光される透過光スペクトルの大小を補正することが可能となる。すなわち、従来のように農産物の大きさ(果径)を測定し、この大きさの値を測定部で得られる測定値の補正に用いる場合に比べ、農産物の大きさを測定するために必要なセンサー類などの機器が省略でき、省コスト化が図れるのである。
【図面の簡単な説明】
【図1】 本発明の農産物非破壊品質判定装置の全体構成を示す背面図。
【図2】 同じく平面図。
【図3】 上流側から見た測定部を示す図。
【図4】 治具使用状態を示す図。
【図5】 搬送装置を示す側面図。
【図6】 防塵方法の一実施例を示す図。
【図7】 筐体一部開口状態を示す斜視図。
【図8】 載置台を示す側面断面図。
【図9】 検出カメラを用いた場合の一実施例を示す平面図。
【図10】 同じく別実施例を示す図。
【図11】 投光される光の波長と透過光強度との関係を示すグラフ。
【図12】 測定部に減光部材を用いた場合を示す図。
【図13】 載置台の孔部をスリットの代用とした場合の説明図。
【図14】 標準物を具備した光学系補正専用載置台を示す図。
【符号の説明】
1 農産物非破壊品質判定装置
2 搬送装置
3 測定部
10 投光・受光ステー
15 サンプル
17 投光手段
18 受光手段
50 載置台
80 治具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for nondestructively determining internal quality such as sugar content contained in agricultural products such as strawberries, tomatoes and mandarin oranges.
[0002]
[Prior art]
What is conventionally known as a non-destructive quality determination device that determines the internal quality of agricultural products such as sugar and acidity without destroying agricultural products, such as infrared light and laser light, etc. There is one configured to determine the internal quality such as sugar content (sweetness) and acidity (acidity) of agricultural products by irradiating light and analyzing the light transmitted through the agricultural products (for example, see Patent Document 1). ). In such an agricultural product nondestructive quality determination device, for example, a light projecting unit for irradiating the agricultural product with light is disposed on one side of the transport unit, and a light receiving unit for receiving the light transmitted through the agricultural product is provided. It was arranged on the other side of the conveying means. The light projecting means and the light receiving means are supported by separate support members. In addition, when the agricultural product to be measured is a relatively large fruit such as a mandarin orange or an apple, the determination operation has been performed practically without any problem as long as the optical axis is visually adjusted.
[0003]
[Patent Document 1]
JP 2001-228087 A
[0004]
[Problems to be solved by the invention]
However, in the conventional agricultural product nondestructive determination apparatus as described above, the light projecting means and the light receiving means are supported by separate members, so that the optical axis alignment is difficult and the maintainability is not good. Further, in the case where the object to be measured is a relatively small fruit such as a strawberry, the determination is performed with the voltage of the light source lowered, so that strict optical axis alignment is necessary to determine the quality with good sensitivity. Therefore, the present invention provides an agricultural product non-destructive quality judging device that enables accurate optical axis alignment with a simple structure and is excellent in maintainability.
[0005]
[Means for Solving the Problems]
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
[0006]
In Claim 1, the conveyance apparatus (2) which is a conveyance means for conveying agricultural products (15), and the measurement part (3) by which a light projection means (17) and a light-receiving means (18) are arrange | positioned facing each other The agricultural product (15) is placed on a mounting table (50) placed on the conveying device (2), and the agricultural product (15) is conveyed to the measuring unit (3) by the conveying device (2). In the nondestructive quality judging device (1) for judging the quality of the produce (15) based on the light transmitted through the produce (15) in the measuring unit (3), The light projecting means (17) and the light receiving means (18) are supported by a light projecting / light receiving stay (10) which is an integral support member, and the light projecting / light receiving stay (10) is supported by a conveying device (2). A U-shape is formed with respect to the conveying direction, an opening is provided on one side of the left and right, a light projecting means (17) is disposed below the measuring section (3), and the light projecting means (17) is irradiated above. A light receiving means (18) for receiving the emitted light, irradiating the agricultural product (15) with light from below, and receiving light by the light receiving means (18) above, in the measurement unit (3), An optical axis adjusting jig (80) is provided, and the optical axis adjusting jig (80) fits the light projecting means (17) and the light receiving means (18) on the same axis. Part (81) and the light receiving side cylindrical part (82), and a connecting cylinder (83) for connecting the light projecting side cylindrical part (81) and the light receiving side cylindrical part (82). The connecting cylinder 83 has a structure that can be expanded and contracted by overlapping cylinder parts (83a and 83b) having different diameters without a gap, and the light projecting side cylinder part of the optical axis adjusting jig (80). The light axis is automatically aligned by fitting the light projecting means (17) in (81) and the light receiving means (18) in the light receiving side cylinder (82). Is.
[0007]
[Claim 2]
In the agricultural product nondestructive quality judging device according to claim 1, an optical system correction standard is attached to the mounting table (50), and periodically measured by the measurement unit (3). Based on the measured value, Correct the measured value Is.
[0008]
[Claim 3]
The agricultural product nondestructive quality judging device according to claim 1, wherein a weight measuring unit is provided in a previous process of the measuring unit (3), the weight of the agricultural product conveyed by the weight measuring unit is measured, and the weight measurement value is obtained. Using the corresponding weight data, the measurement result obtained by the measurement unit is corrected. Is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the invention will be described.
[0010]
FIG. 1 is a rear view showing the overall configuration of the agricultural product nondestructive quality judging device of the present invention, FIG. 2 is a plan view, FIG. 3 is a diagram showing a measuring unit viewed from the upstream side, and FIG. FIG. 5 is a side view showing the conveying apparatus.
[0011]
6 is a diagram showing an embodiment of the dust prevention method, FIG. 7 is a perspective view showing a partially opened state of the housing, FIG. 8 is a side sectional view showing the mounting table, and FIG. 9 is an implementation using a detection camera. The top view which shows an example, FIG. 10 is a figure which shows another Example similarly.
[0012]
FIG. 11 is a graph showing the relationship between the wavelength of the projected light and the transmitted light intensity, FIG. 12 is a diagram showing a case where a light reducing member is used in the measurement unit, and FIG. 13 is a substitute for a slit in the hole of the mounting table. FIG. 14 is a diagram showing an optical system correction mounting table equipped with a standard.
[0013]
First, the configuration of an agricultural product nondestructive quality determination device (hereinafter referred to as “quality determination device”) 1 will be described with reference to FIGS. 1 and 2. In the following, for the sake of convenience, the transport direction of agricultural products is the front-rear direction (the downstream side is the front), and the direction orthogonal to the transport direction in the horizontal plane is the left-right (lateral) direction. The quality determination device 1 includes a transport device 2, which is a transport means, a measurement unit 3, a control device 4, a supply unit, a selection unit, and the like. Agricultural products such as strawberries and tomatoes (hereinafter referred to as sample 15) to be subjected to quality determination are placed on a placing table 50 such as a bread or bucket that is set (placed) on the carrying surface of the carrying device 2 in the supply unit. The measurement results are measured after being measured by the measuring unit 3 that is transported from the upstream side (supply side) to the downstream side (sorting unit side) by the transport device 2 and is provided in the middle of the transport path. Based on the above, the sorting unit sorts.
[0014]
The measuring unit 3 includes a light projecting unit 17, a light receiving unit 18, and the like, and is provided in the housing 60 in order to block light from the outside. The casing 60 has a substantially rectangular parallelepiped box shape, and its six surfaces are covered with walls and the like so that light does not enter inside, and is supported by leg portions 60f provided at the four corners of the bottom surface. Has been. Further, the inside of the housing 60 is vertically divided into two by a partition plate 61, and the upper space is further divided into two by a support wall 62 from substantially the center in the left-right direction. The control device 4 is accommodated on the right side of the upper space partitioned by the support wall 62, and the measurement unit 3 is provided on the left side. And in the housing | casing 60, the upstream opening part 60a and the downstream opening part 60b are provided in the left side (measuring part 3 side) of the upstream surface and downstream surface with respect to the sample 15 conveyance direction, respectively. It has a structure in which the transfer device 2 passes through these openings. Light shielding means 63 and 64 for preventing external light from entering the inside of the housing 60 are suspended from the upstream opening 60a and the downstream opening 60b. The light shielding means 63 and 64 are made of cloth, rubber sheet, etc., and a plurality of slits are provided in the vertical direction to block the insertion of light from the outside into the housing 60 without disturbing the conveyance of the sample 15. Yes.
[0015]
Furthermore, as shown in FIG. 3, the upstream opening 60 a of the housing 60 that is the entrance to the measurement unit 3 has a height from the conveying surface lower than the lower end of the lens barrel 18 b of the light receiving means 18. Is formed. That is, a difference d is provided between the height of the upstream opening 60a and the height of the lowest end position of a device or the like having one end in the measurement unit space. In short, the upstream opening 60a is made lower than the height of the measurement part space of the measurement part 3. By setting the height of the upstream opening 60a in this way, even if an abnormally large sample is conveyed so as to come into contact with the lower end of the light receiving means 18 if it is conveyed as it is, it is formed in this housing 60. It is possible to prevent the large sample from being caught by the upstream opening 60a before entering the housing 60 and being conveyed to the measurement unit 3. Therefore, it is possible to prevent damage or contamination of the light receiving means 18 and the like in the measuring unit 3 and deviation of the optical axis.
[0016]
In the lower space partitioned by the partition plate 61, the light source unit 8, the power source 5 for supplying power to the light source unit 8, and the like are accommodated. Light is emitted from the light projecting means 17 of the measuring unit 3 connected to the light source unit 8 via a communication cable 19 such as an optical fiber. As described above, in this embodiment, the light source of the light projecting means 17 is not installed in the box of the control device 4 but is provided as a separate light source unit 8. It can be installed at a distant position, and the influence of heat generated from the light source when the light source is activated can be suppressed. Therefore, it is possible to prevent the life of the device relating to the measuring unit 3 from being extended or malfunction due to the influence of heat. Furthermore, the light source lamps and the like constituting the light source unit 8 are consumables, and maintenance such as replacement of consumables is facilitated by placing the light source unit 8 separately.
[0017]
In the middle of the conveyance path of the quality determination apparatus 1, transmitted light with respect to each sample 15 is detected by the light projecting unit 17 and the light receiving unit 18 in the measurement unit 3 disposed in the housing 60. Data based on the transmitted light received by the light receiving means 18 is transmitted to the control device 4 via the communication cable 20, and this data is analyzed by the control device 4, and the sugar content and acidity are determined from the absorbance of each sample 15. The internal quality is determined by calculation.
[0018]
In addition, although the present Example demonstrates the case where internal quality, such as a sugar content and acidity of agricultural products, is determined using near-infrared spectroscopy, you may apply another determination method. Here, “near-infrared spectroscopy” refers to an object such as an agricultural product that is irradiated with near-infrared light (hereinafter also simply referred to as “light”), and the transmitted light or reflected light is measured, thereby measuring the agricultural product. This is a method for determining internal components such as sugar content and acidity.
[0019]
Next, details of the measurement unit 3 will be described with reference to FIG. The measuring unit 3 includes a light projecting unit 17 such as a lamp or LED that emits light having a wavelength in the near-infrared region below, and a photo diode for receiving light emitted from the light projecting unit 17 above. A light receiving means 18 which is an optical sensor such as a phototransistor or a CCD is provided. The light projecting means 17 and the light receiving means 18 are supported by a light projecting / light receiving stay 10 which is an integral support member.
[0020]
The light projecting / receiving stay 10 has a plate-like member having a lower support portion 10a having a substantially long diameter in plan view, and an upper support portion 10b and a vertical portion 10c having a substantially triangular shape in plan view provided to face the lower support portion 10a. Is a U-shaped member having an opening on the left and right sides in the transport direction (left side in this embodiment). The light projecting means 17 is supported via the flange 21 on the opening side (left side) of the lower support part 10a, and the light receiving means 18 is supported via the flange 22 on the same opening part side of the upper support part 10b. The light projecting means 17 and the light receiving means 18 are arranged with their positions aligned in the vertical direction, and their optical axes are set in the vertical direction. The light projecting means 17 and the light receiving means 18 are supported by the light projecting / light receiving stay 10 so that their positions can be adjusted in order to enable optical axis alignment. The light projecting means 17 may be disposed above and the light receiving means 18 may be disposed below.
[0021]
The light projecting / light receiving stay 10 with the light projecting means 17 and the light receiving means 18 supported and fixed in this way is bolted to the support wall 62 of the housing 60 via brackets 71 and 71 and fixed in place. Yes. The transport path of the transport device 2 is located between the light projecting means 17 and the light receiving means 18 disposed above and below the space surrounded by the light projecting / light receiving stay 10. In other words, in the past, the light projecting means 17 and the light receiving means 18 were each supported by separate members, but in the measuring section 3 according to the present invention, the light projecting means 17 and the light receiving means 18 are provided by the light projecting / light receiving stay 10. Is integrally supported.
[0022]
As described above, the light projecting unit 17 and the light receiving unit 18 are integrally supported by the light projecting / receiving unit 10 that is an integral support member, and thus the light projecting unit 17 and the light projecting unit 17 are combined with the light projecting unit 17. The light projecting / light receiving stay 10 can be attached to the support wall 62 in the housing 60 in a state where the optical axis alignment with the light receiving means 18 is performed to some extent in advance. Therefore, it is easy to align the optical axis when the light projecting means 17 and the light receiving means 18 are removed and reattached.
[0023]
Further, the light projecting unit 17 and the light receiving unit 18 are supported so that the optical axis is set in the vertical direction by using the light projecting / light receiving stay 10, and the space surrounded by the light projecting / light receiving stay 10 is set on the ground. On the other hand, since the transport path of the transport device 2 passes in the horizontal direction, the U-shaped light projecting / receiving stay 10 has an opening on the left and right sides in the transport direction (left side in this embodiment) as described above. It will be. That is, by using the light projecting / light receiving stay 10 having an opening on the left and right sides in the transport direction and setting the optical axis in the vertical direction, the position where the opening does not interfere with either the optical axis direction or the sample transport direction As compared with the case where the optical axis is set in the horizontal direction, that is, parallel to the transport surface and perpendicular to the transport direction, maintenance of the optical system such as optical axis alignment and cleaning becomes easier. Further, since the right and left sides in the transport direction of the light projecting / receiving stay 10 are opened, the transport device 2 to be described later has an independent structure with respect to the main body of the quality determination device 1, and thus the transport device 2 is attached. The work of removing or removing is facilitated, and the maintainability of the transfer device 2 can be improved.
[0024]
Similarly, as shown in FIG. 3, a filter 72 such as a glass filter that transmits light necessary for quality determination can be attached to the upper end of the lens barrel 17 b of the light projecting means 17. The filter 72 has a diameter larger than the effective diameter of the light projecting lens 17a. Thus, by attaching the filter 72 above the lens barrel 17b of the light projecting means 17, the light projecting lens 17a can be protected from dust, dust and the like. That is, when the projection lens 17a is directly cleaned with a cloth or the like, problems such as damage to the projection lens 17a or a decrease in transmittance or irregular reflection caused by dirt remaining on the end of the lens are prevented. It can be done. Further, by setting the diameter of the filter 72 to be larger than the effective diameter of the light projecting lens 17a, even if the filter 72 is wiped off at the end of the filter 72, the light is irradiated from the light projecting lens 17a. It is possible to prevent the amount of light to be reduced.
[0025]
Further, problems caused by dirt or dust on the filter 72 can be solved by removing the filter 72 and cleaning it, or by periodically replacing the filter 72, and the projection lens 17a can be removed or replaced. Therefore, it is possible to improve the maintainability and reduce the cost. When the light receiving portion 18a on the light receiving means 18 side is a lens or the like, the same effect can be obtained by using such a filter on the light receiving means 18 side.
[0026]
Next, countermeasures against dust in the light projecting lens 17a of the light projecting unit 17 and the light receiving unit 18a of the light receiving unit 18 will be described. As shown in FIG. 3, a fan 73 is provided in the vicinity of the light projecting lens 17a of the light projecting means 17 for blowing off dust or the like adhering to the light projecting lens 17a. In this embodiment, the fan 73 is driven by a motor built in the fan 73, and is attached to a stay 65 that is installed on the left side wall 60c and the support wall 62 of the housing 60 with bolts or the like. It is arranged upstream in the direction. And it blows away the dust, dust, etc. adhering to the light projection lens 17a by sending air toward the conveyance direction downstream side.
[0027]
Further, as another embodiment, a cooling fan for suppressing a temperature rise is attached to the light source unit 8 main body, and an exhaust port through which the outside air taken in by the cooling fan is exhausted is passed through the partition plate 61, The same effect can be obtained by communicating with the space of the housing 60 where the measurement unit 3 is provided and guiding the wind to the light projecting lens 17a and the light receiving unit 18a using a pipe or the like. As another example, as shown in FIG. 6, air guns 74 and 75 for dust removal are provided with stays 74a and 75a fixed in the vicinity of the measurement unit 3 such as the light projecting / receiving stay 10 or the support wall 62. One air gun 74 is directed toward the light projecting lens 17a, and the other air gun 75 is structured such that air is periodically blown toward the light receiving portion 18a to blow off dust and the like adhering to the lens. You can also.
[0028]
In this way, by sending wind to the light projecting lens 17a and the light receiving unit 18a to remove dust and dust attached to the lens, the light intensity is stabilized and measurement errors can be reduced. Furthermore, when the light source voltage becomes high, dust or the like can be prevented from igniting on the light projecting lens 17a, which is excellent from the viewpoint of safety.
[0029]
In the measuring unit 3 having such a structure, a signal of the light source unit 8 to which power is supplied from the power source 5 is sent to the light projecting unit 17 through the communication cable 19, and the light projecting unit 17 mounts on the mounting table 50. The sample 15 placed is irradiated with light, of which light having a predetermined wavelength is absorbed by the internal component contained in the sample 15, and the other light passes through the sample 15. The light transmitted through the sample 15 is detected by the light receiving means 18. Data based on the transmitted light detected by the light receiving means 18 is output to the control device 4 via the communication cable 20, and the absorbance of the sample 15 is calculated by the control device 4, so that the sugar content, acidity, etc. of the sample 15 are calculated. The internal quality is judged. Note that “measurement” in the measurement unit 3 means that in the measurement unit 3, the light projecting unit 17 irradiates the sample 15 with light and the light receiving unit 18 detects light transmitted through the sample 15. .
[0030]
Next, a dedicated jig 80 used for aligning the optical axes of the light projecting means 17 and the light receiving means 18 supported and fixed to the light projecting / light receiving stay 10 will be described. As shown in FIG. 4, the jig 80 includes a light projecting side cylinder portion 81 into which the lens barrel 17 b of the light projecting means 17 is inserted, a light receiving side cylinder portion 82 into which the lens barrel 18 b of the light receiving means 18 is inserted, and connects them. The light projecting side cylinder part 81, the light receiving side cylinder part 82 and the connection cylinder 83 are formed concentrically and integrally so that light can pass therethrough.
[0031]
The light emitting side cylinder portion 81 of the jig 80 has an inner diameter that is substantially the same as the outer diameter of the lens barrel 17 b of the light projecting means 17, and the light receiving side cylinder portion 82 has an inner diameter that is the mirror of the light receiving means 18. The outer diameter of the cylinder 18b is substantially the same. That is, the light projecting side cylinder portion 81 has a shape that can be inserted into the lens barrel 17b of the light projecting means 17 and the light receiving side cylinder portion 82 can be inserted into the lens barrel 18b of the light receiving means 18 without any gap. Further, the connecting cylinder 83 has a structure that can be expanded and contracted by overlapping a plurality of cylinders having different diameters such that there are no gaps, such as the cylinder portions 83a and 83b.
[0032]
When the optical axis is aligned using the jig 80 having such a structure, the light projecting means 17 and the light receiving means 18 are supported in advance without being fixed to the light projecting / light receiving stay 10, that is, the position can be adjusted. Keep it in a proper state. Then, by shortening the connecting cylinder 83, the entire length of the jig 80 is made shorter than the distance from the upper end of the lens barrel 17 b of the light projecting means 17 to the lower end of the lens barrel 18 b of the light receiving means 18. The light projecting side cylinder portion 81 is fitted into a portion of the 17 lens barrel 17 b protruding from the lower support portion 10 a of the light projecting / receiving light stay 10. Then, the connecting cylinder 83 is extended, and the light receiving side cylinder portion 82 is fitted into the lens barrel 18b of the light receiving means 18 in the same manner. In the state where the light projecting means 17 and the light receiving means 18 are integrated by the jig 80, the light projecting means 17 and the light receiving means 18 are connected to the lower support portion 10a and the upper support portion of the light projecting / light receiving stay 10. 10b is fixed via flanges 21 and 22, respectively. Thus, the optical axis can be automatically adjusted by fitting the light projecting means 17 and the light receiving means 18 into the jig 80. The structure and shape of the jig 80 are not limited to the present embodiment. For example, the connecting cylinder 83 is divided into two parts, and the light projecting side cylinder part 81 and the light receiving side cylinder part 82 are separated. A similar effect is obtained, for example, by connecting the lens barrel 17b of the light projecting means 17 and the lens barrel 18b of the light receiving means 18 so as to be concentric with each other using a separate connecting member. Anything can be used.
[0033]
As described above, by using the dedicated jig 80 when aligning the optical axes of the light projecting means 17 and the light receiving means 18, it is possible to facilitate highly accurate optical axis alignment between the light projecting means 17 and the light receiving means 18. It becomes possible. Therefore, this is particularly effective in the case of agricultural products that require strict optical axis alignment in order to perform measurement with the light source voltage lowered, such as a strawberry with a relatively small sample 15.
[0034]
Next, the conveying device 2 that is a conveying unit will be described with reference to FIGS. 3 and 5. The transport device 2 serving as a transport means is a belt conveyor system using transport belts 11 and 11. In this transport device 2, a drive case 24 is provided on the side opposite to the transport surface of the conveyor 14 in the vicinity of the start or end of the conveyor 14, that is, on the bottom surface side of the support frame 16 such as the transport belts 11 and 11. In the case 24, a drive device 25 such as a transmission motor, a drive pulley 26 and a transmission pulley 27 fixed to a drive shaft protruding from the drive device 25 are housed. Tension pulleys 28 and 29 are arranged. Driven pulleys 30 and 31 are supported at the start and end portions of the conveyor 14, and the conveyor belts 11 and 11 are stretched around the driven pulleys 30 and 31 and the transmission pulley 27. The leg portions 32 and 33 are provided on the left and right sides at the start and end portions of the conveyor 14, and the conveyor 14 is supported by the leg portions 32 and 33.
[0035]
In the conveyor 14 having such a configuration, the driving force of the driving device 25 is transmitted from the driving pulley 26 fixed to the driving shaft protruding from the driving device 25 to the transmission pulley 27 supported in the driving case 24. The rotation of the transmission pulley 27 drives the conveyor belts 11 and 11 stretched between the transmission pulley 27 and the driven pulleys 30 and 31. The tension of the conveyor belts 11 and 11 is adjusted by the tension pulleys 28 and 29. In addition, the conveyance speed, movement amount, etc. of the conveyor 14 are controlled by a controller (not shown) connected to an encoder 37 attached to the driving device 25.
[0036]
The conveyor 14 has a structure having a space for securing an optical path between the light projecting unit 17 and the light receiving unit 18 at a substantially central portion on the left and right sides with respect to the conveying direction of the conveyor 14. That is, the conveyance belt stretched on the conveyor 14 is divided into the conveyance belts 11 and 11 arranged on the left and right sides with respect to the conveyance direction, and a gap is provided between the conveyance belts 11 and 11. This gap is set such that the mounting table 50 on which the sample 15 is placed does not fall and a sufficient amount of light can pass from the light projecting means 17 to determine the quality of the sample 15. Further, a notch 16 a (FIG. 3) for securing a path of light emitted from the light projecting means 17 is also formed on the bottom surface of the support frame 16 of the conveyor 14 in the measurement unit 3.
[0037]
As described above, the conveyor belts 11 and 11 of the conveyor 14 are provided on both the left and right sides, a space is provided between the conveyor belts 11 and 11 and the support frame 16 is provided with the notches 16a. In such a measuring unit, the quality of the sample 15 can be judged by the measuring unit 3 having the optical path in the vertical direction. Note that the distance between the conveyor belts 11 and 11 and the size of the notches 16 a provided in the support frame 16 are projected from the light projecting lens 17 a of the light projecting means 17 and irradiated to the produce 15 on the bread 50. Each is set not to block light.
[0038]
Thus, the transport device 2 has a structure that can be independently driven. That is, the transport system composed of the transport device 2 and the optical system composed of the measuring unit 3 and the like have a separate and independent structure, and even after either one is installed, the other is installed and assembled. ing. That is, as shown in FIG. 7, the transport device 2 has an independent drive unit (drive case 24) and support units (leg portions 32 and 33). In the measurement unit 3, as described above. The light projecting / light receiving stay 10 has an opening on the left and right sides in the transport direction, so that the light projecting / light receiving stay 10 has an opening, that is, one side surface of the housing 60 (in this embodiment, the left side surface). ) Is an opening lid 66, the conveying system and the optical system are installed in a state where the opening lid 66 is removed, and the opening lid 66 is attached to make the inside of the housing 60 a dark room.
[0039]
As described above, the structure in which the transport system and the optical system are separated and independent makes it easy to adjust and maintain each device. In addition, high-precision optical measurement can be performed without the optical system being affected by the vibration of the transport system or the like.
[0040]
The opening lid 66 of the housing 60 is not limited to the shape shown in FIG. 7, and the portion covering the measurement unit 3 is a separate box case, or one end of the opening lid 66 is supported on the housing 60. And can be opened and closed. When the opening lid 66 is configured to be openable and closable as described above, the light source unit 8 and the power supply 5 of the transport device 2 can be turned off by opening the opening lid 66. In other words, a safety switch or the like is provided, and when the opening lid 66 is opened by interlocking opening / closing of the opening lid 66 and turning on / off of the power source 5, supply of electric power from the power source 5 is stopped. By doing so, when the opening lid 66 is opened in a state where the power supply is forgotten to be turned off during maintenance or the like, the light projected from the light projecting means 17 directly enters the eyes, or the machine such as the conveyor 14 of the transport device 2. It is possible to prevent injuries due to contact with the target operating part, and to improve safety.
[0041]
The sample 15 placed on the upstream side of the transport device 2 and outside the housing 60 at the substantially right and left center of the mounting table 50 is driven from the upstream to the downstream by the transport device 2 (see FIG. 3). It is sequentially conveyed from the front side to the rear side), enters the housing 60 from the upstream opening 60a, and is nondestructively quality-determined by the measuring unit 3 disposed in the middle of the conveyance path inside the housing 60. After that, it is conveyed from the downstream side opening 60b to the outside of the housing 60, and is sorted based on the determination result of the measurement unit 3 in the sorting unit.
[0042]
Next, the structure of the mounting table 50 for the sample 15 will be described. As shown in FIG. 8, the mounting table 50 according to the present invention is made of an elastic body such as rubber, a synthetic resin, or the like, and has a tray part 51 having a mounting surface 51 b on which the sample 15 is placed, and the dish. A cylindrical portion 52 that is a substantially cylindrical hollow member that forms a space below the portion 51 is integrally formed. The mounting table 50 is made of a light-shielding material in order to prevent transmission of light not directly related to measurement. The mounting surface 51b of the dish portion 51 has a bowl shape that is recessed toward the center, and holes 51a and 52a are formed in the center of the mounting surface 51b and the bottom surface 52b of the cylindrical portion 52, respectively. Thus, a path of light emitted from the light projecting means 17 is secured. A plurality of mounting tables 50 having holes 51a and 52a having a size corresponding to the type of agricultural product to be measured are prepared. Thus, by making the mounting surface 51b into a bowl shape, when the shape of the sample 15 is flat, it can be mounted in a stable state. Furthermore, even when the sample 15 is placed on the mounting table 50 in the supply unit by the operator, the sample 15 has a shape that is difficult to spill out and is easy to place.
[0043]
In this way, since the mounting table 50 secures a path of light emitted from the light projecting means 17 together with the conveyor 14 of the transport device 2, the light projecting means 17 and the light receiving means 18 are provided in the measuring unit 3. This is suitable for the quality determination apparatus 1 having the measuring unit 3 that forms an optical path that penetrates the conveyor 14 in the vertical direction. Therefore, it is possible to arrange the light projecting means 17 and the light receiving means 18 so as to face each other up and down with the conveyor 14 interposed therebetween, and the light projecting means 17 and the light receiving means 18 are arranged on both sides of the conveyor 14 as in the prior art. Compared with the case of irradiating agricultural products with light in the transverse direction perpendicular to the transport direction, the space can be saved, and this is suitable when there are a plurality of transport lanes such as a fruit selection field. Furthermore, by setting the optical path in the vertical direction, the present invention can be applied to the case where the quality judgment of individual agricultural products is performed while conveying agricultural products over a plurality of rows to the conveyor 14, and the versatility is further increased. Further, since a space on the left and right in the transport direction can be secured, the optical path length from the light projecting means 17 to the light receiving means 18 can be easily measured from this space, and the measurement result is obtained by actual measurement. It can be reflected when correcting the value.
[0044]
Further, by setting the optical path in the vertical direction, the sample 15 placed on the plate portion 51 of the mounting table 50 has a flat shape or is small, and protrudes from the upper end of the plate portion 51 in a side view. Measurement is possible even when there is not. Furthermore, since the optical path length in the vertical direction can be set short, a sufficient amount of light for measurement can be obtained with a small output.
[0045]
By the way, in the measurement unit 3, the optical system including the light projecting unit 17 and the light receiving unit 18 is fixed at a predetermined position with respect to the sample 15 placed on the mounting table 50 flowing through the transport path. ing. However, if the position and posture of the sample 15 on the mounting table 50 are different, the measurement conditions in the measurement unit 3 are different, and an error may occur in the obtained measurement value. Therefore, in order to solve such a problem, an embodiment in which a detection camera 78 for detecting the position and orientation of the sample 15 on the mounting table 50 is used will be described with reference to FIGS.
[0046]
First, an embodiment will be described with reference to FIG. In the present embodiment, a detection camera 78 for detecting the position and orientation of the sample 15 on the mounting table 50 is provided on the upstream side of the measurement unit 3 in the transport path of the sample 15. The detection camera 78 is a CCD camera having a sensor function or the like, and is connected to the control device 4 via a communication cable 78a. The light projecting / light receiving stay 10 in which the light projecting means 17 and the light receiving means 18 are integrally supported can be moved in the up / down / left / right and front / rear directions by the moving device 85. In such a structure, the detection camera 78 detects the position and orientation of the sample 15 on the mounting table 50, and transmits the detection data to the control device 4 via the communication cable 78a. A signal based on this detection data is transmitted to the optimum position (optical axis) for measuring the light projecting / light receiving stay 10 in which the light projecting means 17 and the light receiving means 18 are integrally supported by the moving device 85 via the communication cable 85a. Is driven so as to move to a position (through the substantially central portion of the sample 15). By adopting such a structure, the part irradiated with light from the light projecting means 17 is made uniform according to the position and posture of the sample 15 on the mounting table 50, and more stable measurement is possible.
[0047]
Next, another embodiment will be described with reference to FIG. In the present embodiment, the same detection camera 78 as that in the above embodiment is provided, and the position of the light projecting / light receiving stay 10 is fixed. Position adjustment devices 79 and 79 are provided between the detection camera 78 and the measurement unit 3. The position adjusting devices 79 and 79 are composed of solenoids, air cylinders, and the like, have a telescopic pressing portion 79b, and are connected to the control device 4 via a communication cable 79a. That is, data based on the position and orientation of the sample 15 on the mounting table 50 obtained by the detection camera 78 is transmitted to the control device 4 via the communication cable 78a, and a command based on this data is adjusted from the control device 4. The signal is transmitted to the device 79 via the communication cable 79a, and the pressing portion 79b of the position adjusting device 79/79 is driven by this signal, so that the sample 15 on the mounting table 50 is positioned at the optimum position (center portion of the mounting surface 51b). Thus, the position adjustment device 79 is controlled and driven by the control device 4. Even in such a structure, the same effect as in the above embodiment can be obtained. In this embodiment, when the sample 15 is previously placed on the center of the placement table 50, the position adjusting device 79 adjusts the position of the placement table 50 itself to the center of the transport path. You can also.
[0048]
On the other hand, in the light projecting means 17 of the measurement unit 3, conventionally, the light amount, that is, the voltage of the light source is changed according to the size of the agricultural product as the measurement target part. However, when the voltage of the light source is changed, a certain amount of time is required until the output is stabilized, and it is not suitable for measurement in a state where agricultural products having variations in size are mixed. In particular, measurement is impossible when the conveyance speed is high. Therefore, a structure suitable for measuring such different sizes of agricultural products will be described.
[0049]
In the measurement unit 3, when samples 15 having different sizes are measured using the same optical system, that is, the same light projecting unit 17 and the light receiving unit 18, the amount of light projected from the light projecting unit 17 is the same. Then, when the sample 15 is small or the sample 15 has a rot portion, there is a tendency that accurate measurement cannot be performed due to light leakage or excessive light transmission. A graph suggesting such a tendency is shown in FIG. This FIG. 11 shows the light reception with respect to the wavelength (nm) of the light projected from the light projecting means 17 for two sizes of small size (2S size) and large size (L size) in a certain variety of agricultural products. FIG. 9 is a graph showing the intensity of light received by means 18 (including light leakage, hereinafter collectively referred to as “transmitted light”). In this graph, a difference in transmitted light intensity depending on the size of sample 15 appears remarkably. ing. That is, the transmitted light in the case of 2S size is clearly stronger than that in the case where the size of the sample 15 is L size. Further, in the graph of 2S size, the wavelength of the projected light is horizontal from the first half of 700 nm to the middle of 800 nm. This is because the intensity of the transmitted light is saturated (set on the light receiving means 18 side). Saturation) A state where the value A is exceeded, indicating that an accurate measurement has not been made.
[0050]
As a method for dealing with such a tendency, first, the light projected from the light projecting means 17 is set to an amount of light that matches the average size of the sample 15. If the sample 15 is too small and the transmitted light received by the light receiving means 18 is too strong, the control device 4 recognizes the optical data as an abnormal value, and selects the sample 15 that caused the abnormal value. A structure that discharges or re-measures on the part side. For example, a structure in which a discharge device or the like connected to the control device 4 is provided on the side of the transport path, the discharge device is operated based on a measured value recognized as an abnormal value, and the transported sample 15 is discharged from the transport path. Or a structure in which the transport path is branched and the sample 15 in which an abnormal value is detected is transported again to the measurement unit so as to be remeasured.
[0051]
In this way, when the transmitted light received by the light receiving means 18 exceeds the arbitrarily set reference value range, this value is recognized as an abnormal value so that the sample 15 is smaller than the specified range. Alternatively, even if the sample 15 has an average size, if the sample 15 has a rot portion inside, the sample 15 corresponding to these can be excluded. Therefore, other normal samples 15 can be measured with high accuracy.
[0052]
Further, as another embodiment of the measuring unit 3 that can measure without adjusting the light amount of the light projecting means 17, as shown in FIG. 12, a slit, a neutral density filter or the like is reduced between the sample 15 and the light receiving means 18. There is a method of providing the optical member 76. That is, the light reducing member 76 attenuates the transmitted light when the sample 15 is small. By providing such a light reducing member 76, even when the sample 15 of the object to be measured is small, the saturation on the light receiving means 18 side as described above can be prevented, and the light amount is kept constant, that is, the light source. Measurement can be performed without changing the voltage. Therefore, measurement under stable optical conditions is possible, and a highly accurate measurement result can be obtained. Furthermore, the burden on the light source due to frequent switching of the light source voltage can be reduced, and the life of the light source can be extended.
[0053]
Further, the same effect can be obtained by providing such a light reducing member 76 between the light projecting lens 17 a of the light projecting means 17 and the sample 15. Furthermore, by providing both the light receiving means 18 side and the light projecting means 17 side, the light quantity can be adjusted over a wide range, so that the size range of the sample 15 measured by the same measuring unit 3 is remarkably increased. It can cope with a wide case. In the measurement by the measurement unit 3, a plurality of calibration curves may be stored in advance in the control device 4 in accordance with the degree of dimming by the dimming member 76. The “calibration curve” here refers to the relationship between the sample concentration measured using a sample with a known internal component concentration such as sugar content and the related measurement intensity (transmitted light intensity, absorbance, etc.). It is a curve (or straight line) in the case shown on the graph, and the internal quality is obtained from the measured intensity obtained when the agricultural product whose internal component is unknown is measured based on this calibration curve.
[0054]
Further, as shown in FIG. 13, instead of providing the light reducing member 76, the hole 51a for allowing light to pass through the plate part 51 of the mounting table 50 described above is used as a light reducing slit 51c. It is also possible. In this case, the light irradiated from the light projecting lens 17a of the light projecting means 17 is set so as to be focused in the vicinity of the bottom surface of the sample 15, and therefore the mounting table 50 is made of a light-shielding material. Yes. When the diameter of the slit 51c is φA and the spot diameter of light at the position of the slit 51c is φB, φA> in the case where the sample 15 placed on the mounting table 50 is difficult to transmit light. In order to satisfy the relationship of φB, and when the sample 15 tends to transmit light or easily leak light, the diameter φA of the slit 51c and the sample 15 are irradiated so as to satisfy the relationship of φA <φB. By adjusting the light projecting means 17 and setting the spot diameter φB of the light to be measured, a suitable measurement can be performed according to the type of the sample 15.
[0055]
By adopting such a structure for the mounting table 50 and the light projecting lens 17a of the light projecting means 17, the light receiving portion 18a of the light receiving means 18 receives light leakage even when the size and shape of the sample 15 vary. Thus, there is no need to press the sample 15 against the plate portion 51 of the mounting table 50, and extra labor can be saved. Furthermore, the amount of light applied to the sample 15 can be kept almost constant regardless of its size, and more accurate measurement is possible.
[0056]
By the way, in the measurement unit 3, in order to maintain reproducibility in the non-destructive measurement, the optical system is corrected using a pseudo agricultural product having a standard size and shape. However, when using simulated agricultural products, the simulated agricultural products deteriorate over time, so they cannot be used over a long period of time, and it is necessary to collect correction data each time the simulated agricultural products are changed. It was.
[0057]
Therefore, in this embodiment, as shown in FIG. 14, an optical system correction standard 77 whose measurement result is known instead of the simulated agricultural product is attached to the mounting table 50 of the sample 15, and this mounting table is dedicated for correction. The mounting table 50 ′ is used. The standard 77 is made of a material that hardly deteriorates with time, and is large enough to block the hole 51 a so that light does not leak from the hole 51 a provided in the dish 51 of the mounting table 50. I am trying. That is, this standard 77 is provided integrally with the mounting surface 51b of the plate portion 51 of the mounting table 50, and this mounting table is used as a correction-specific mounting table 50 '. When correcting the optical system, the normal sample 15 is measured. As in the case of performing the above, this correction dedicated mounting table 50 ′ is carried and performed. Then, the measurement unit 3 irradiates the standard 77 with the light from the light projecting means 17 and actually performs measurement to send a pseudo command. Based on the data obtained from the transmitted light, the control device 4 The optical system adjustment is automatically performed based on a deviation from known correction data stored in advance in the internal quality sensor. As a result, when the transmitted light that has passed through the standard 77 shows an abnormal value, a signal is transmitted from the control device 4 to notify an operator who operates the device to diagnose the device.
[0058]
As described above, when the correction-dedicated mounting table 50 ′ is used, the correction of the optical system with high accuracy can be easily performed every morning or immediately before the apparatus is stopped and driven again, without considering deterioration due to the passage of time. As a result, measurement can be performed under the same conditions of the optical system at every measurement, and more reliable measurement results can be obtained. In addition, the measurement unit 3 can perform measurement with a certain degree of accuracy without using a special device such as the position adjustment device for the sample 15 composed of a solenoid, an air cylinder, or the like as described above.
[0059]
Further, with respect to the measurement result obtained by the measurement unit 3, the measurement value is corrected in order to bring the measurement result closer to the actual quality. The correction of the measured value was performed by measuring the size (fruit diameter) of the sample 15 to be measured and using this value for correction. That is, a correction formula determined based on measurement data for a sample 15 having a certain standard size is stored in the control device 4, and the measurement value of the sample 15 is corrected according to this correction procedure. However, if the measurement value is corrected according to the size of the sample 15, the sample 15 having the same size may be used, for example, when the inside of the sample 15 is a cavity (cavity fruit) or when the moisture content of the sample 15 is different. Depending on the case, the light transmittance may change, and accurate correction may not be possible.
[0060]
Therefore, in the present embodiment, the correction of the measurement value obtained by the measurement unit 3 is performed based on the weight, not the size of the sample 15. That is, the correction of the measurement value as described above is performed by its weight regardless of the size (fruit diameter) of the sample 15. That is, a weight measuring unit (not shown) is provided in the previous process of the measuring unit 3, the weight of the sample 15 conveyed by the weight measuring unit is measured, and weight data corresponding to this weight value is used. The measurement result obtained by the measurement unit 3 is corrected.
[0061]
Specifically, as an example, in the case of a variety in which the sample 15 is selected based on its weight, the weight measurement unit is provided in the previous process of the measurement unit 3, and the sample 15 is measured in the previous process in which the measurement is performed by the measurement unit 3 of the present apparatus. The weight is measured, and this weight value is transmitted to the control device 4. Then, a correction program using weight data corresponding to the weight measurement value is stored in the control device 4 and corrected by an electronic computer or the like built in the control device 4. That is, the weight measurement value measured by the weight measurement unit is used when correcting the measurement value measured by the measurement unit 3. By doing so, it is possible to correct the magnitude of the transmitted light spectrum received by the light receiving means 18 regardless of the internal state of the sample 15 whose quality is determined. That is, in order to measure the size of the sample 15 as compared with the conventional case where the size (fruit diameter) of the sample 15 is measured and the value of this size is used to correct the measurement value obtained by the measurement unit 3. This eliminates the need for devices such as sensors, and saves costs.
[0062]
Moreover, it can also be performed as follows as another Example. The standard weight of the sample 15 to be measured is set as a reference weight, and a plurality of samples 15 having the reference weight are measured, and a transmission spectrum obtained from the average is set as a reference transmission light spectrum. Based on the reference transmitted light spectrum, a change in the transmitted light spectrum corresponding to the increase / decrease in the weight of the sample 15 with respect to the reference weight is prepared in advance by measurement, and stored in the control device 4 as a correction program using the weight data. Let me. Then, based on the weight measurement value of the sample 15 transmitted from the weight measurement unit, the control device 4 transmits the light based on the relationship between the transmitted light spectrum corresponding to the change in weight and the reference transmitted light spectrum. The optical spectrum is corrected, and then the measurement unit 3 performs measurement to determine the quality of the sample 15. Also by such a method, the same effect as in the above embodiment can be obtained.
[0063]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0064]
As shown in claim 1, a conveying device (2) which is a conveying means for conveying agricultural products (15), and a measuring section (3) in which a light projecting means (17) and a light receiving means (18) are arranged to face each other. ), The agricultural product (15) is placed on the mounting table (50) placed on the conveying device (2), and the agricultural product (15) is conveyed to the measuring unit (3) by the conveying device (2). In the non-destructive quality judging device (1) for judging the quality of the produce (15) based on the light transmitted through the produce (15) in the measuring section (3), The light projecting means (17) and the light receiving means (18) are supported by a light projecting / light receiving stay (10) which is an integral support member, and the light projecting / light receiving stay (10) is supported by a conveying device (2). A U-shape is formed with respect to the conveying direction, an opening is provided on one side of the left and right, a light projecting means (17) is disposed below the measuring section (3), and the light projecting means (17) is irradiated above. A light receiving means (18) for receiving the emitted light, irradiating the agricultural product (15) with light from below, and receiving light by the light receiving means (18) above, in the measurement unit (3), An optical axis adjusting jig (80) is provided, and the optical axis adjusting jig (80) fits the light projecting means (17) and the light receiving means (18) on the same axis. Part (81) and the light receiving side cylindrical part (82), and a connecting cylinder (83) for connecting the light projecting side cylindrical part (81) and the light receiving side cylindrical part (82). The connecting cylinder 83 has a structure that can be expanded and contracted by overlapping cylinder parts (83a and 83b) having different diameters without a gap, and the light projecting side cylinder part of the optical axis adjusting jig (80). The light axis is automatically aligned by fitting the light projecting means (17) in (81) and the light receiving means (18) in the light receiving side cylinder (82). Therefore, the support member can be attached to the measurement unit in a state where the optical axis alignment between the light projecting unit and the light receiving unit is performed to some extent in advance by the support member. Therefore, the optical axis can be easily aligned when the light projecting means and the light receiving means are removed and reattached.
[0065]
Also Since the support member is U-shaped with respect to the transport direction and an opening is provided on one side of the left and right, the optical axis and the transport direction so that the opening does not interfere with either the optical axis direction or the sample transport direction. Can be set, and maintenance of the optical system such as optical axis alignment and cleaning becomes easy.
[0066]
Also The light projecting means and the light receiving means of the measuring unit are arranged to face each other vertically and irradiate light from above or below the produce, so that space saving can be achieved and a plurality of transports such as a fruit selection field can be achieved. Suitable when there is a lane. Furthermore, by setting the optical path in the vertical direction, the present invention can be applied to the case where the quality of each agricultural product is judged while conveying agricultural products over a plurality of rows by the conveying device, and the versatility is further increased.
Further, when the light projecting means and the light receiving means are supported by the U-shaped support member, the opening side is in a position where it does not interfere with either the optical axis direction or the sample transport direction, and the optical system such as optical axis alignment and cleaning is used. Maintenance becomes easy.
[0067]
Further, in the measurement unit, the light projecting side cylindrical part and the light receiving side cylindrical part that fit the light projecting means and the light receiving means on the same axis are connected, and the light projecting side cylindrical part and the light receiving side cylindrical part are connected. Since the optical axis alignment is performed by the optical axis adjustment jig provided with the connecting cylinder, it is possible to facilitate the optical axis alignment with high accuracy between the light projecting means and the light receiving means. Therefore, this is particularly effective in the case of agricultural products that require strict optical axis alignment in order to measure in a state where the light source voltage is lowered, such as a strawberry with a relatively small sample.
[0068]
As shown in claim 2 The standard for optical system correction is attached to the mounting table and periodically measured by the measurement unit, and the measurement value is corrected based on this measurement value. Immediately before driving again, the optical system can be corrected with high accuracy without considering deterioration due to the passage of time, making it possible to measure under the same conditions of the optical system at every measurement. A reliable measurement result can be obtained. Further, it is possible to perform measurement with a certain accuracy in the measurement unit without using a special device such as an agricultural product position adjusting device including a solenoid and an air cylinder.
[0069]
As shown in claim 3 The weight measurement unit is provided in the previous process of the measurement unit, the weight of the agricultural product conveyed by the weight measurement unit is measured, and the weight data corresponding to the weight measurement value is used to obtain the measurement unit. Since the measurement result is corrected, the magnitude of the transmitted light spectrum received by the light receiving means can be corrected regardless of the internal state of the agricultural product whose quality is determined. That is, it is necessary to measure the size of the agricultural product as compared with the case where the size (fruit diameter) of the agricultural product is measured and the value of this size is used to correct the measurement value obtained by the measuring unit as in the past. Devices such as sensors can be omitted, and cost savings can be achieved.
[Brief description of the drawings]
FIG. 1 is a rear view showing the overall configuration of an agricultural product non-destructive quality judging device of the present invention.
FIG. 2 is also a plan view.
FIG. 3 is a diagram showing a measurement unit viewed from the upstream side.
FIG. 4 is a diagram showing a state where a jig is used.
FIG. 5 is a side view showing a transfer device.
FIG. 6 is a diagram showing an example of a dustproof method.
FIG. 7 is a perspective view showing a partially opened state of the housing.
FIG. 8 is a side sectional view showing the mounting table.
FIG. 9 is a plan view showing an embodiment when a detection camera is used.
FIG. 10 is also a diagram showing another embodiment.
FIG. 11 is a graph showing the relationship between the wavelength of light to be projected and the intensity of transmitted light.
FIG. 12 is a diagram showing a case where a light reducing member is used in the measurement unit.
FIG. 13 is an explanatory diagram when a hole of the mounting table is used as a substitute for a slit.
FIG. 14 is a view showing an optical system correction mounting table equipped with a standard.
[Explanation of symbols]
1 Agricultural product nondestructive quality judgment device
2 Transport device
3 Measurement unit
10 Light Emitting / Receiving Stay
15 samples
17 Light projection means
18 Light receiving means
50 mounting table
80 Jig

Claims (3)

農産物(15)を搬送するための搬送手段である搬送装置(2)と、投光手段(17)及び受光手段(18)が対向して配置される測定部(3)とを有し、該搬送装置(2)に載置される載置台(50)に農産物(15)を載せ、該搬送装置(2)によって農産物(15)を測定部(3)へと搬送し、該測定部(3)にて農産物(15)を透過した光に基づいて、該農産物(15)の品質判定を行う農産物非破壊品質判定装置(1)において、前記投光手段(17)と受光手段(18)とを一体の支持部材である投光・受光ステー(10)にて支持し、該投光・受光ステー(10)を、搬送装置(2)の搬送方向に対してコ字状とし、左右一側に開口部を設け、前記測定部(3)の下方に投光手段(17)を配置し、上方に該投光手段(17)から照射された光を受光する受光手段(18)を配置し、前記農産物(15)に対して下方向から光を照射し、上方で受光手段(18)により受光し、前記測定部(3)において、光軸調整用治具(80)を設け、該光軸調整用治具(80)は、同一軸心上に投光手段(17)及び受光手段(18)を嵌合する、投光側筒部(81)と受光側筒部(82)、及び、該投光側筒部(81)と受光側筒部(82)とを連結する連結筒(83)により構成し、該連結筒83は径の異なる筒部(83a・83b)を隙間のない状態で重ね合わせることにより伸縮可能な構造とし、該光軸調整用治具(80)の投光側筒部(81)に投光手段(17)を、受光側筒部(82)に受光手段(18)を嵌め込むことによって自動的に光軸合わせを行うことを特徴とする農産物非破壊品質判定装置。A transport device (2) which is a transport means for transporting the agricultural product (15), and a measuring section (3) in which the light projecting means (17) and the light receiving means (18) are arranged to face each other, The produce (15) is placed on the mounting table (50) placed on the transport device (2), and the produce (15) is transported to the measurement unit (3) by the transport device (2), and the measurement unit (3 In the non-destructive quality judging device (1) for judging the quality of the agricultural product (15) based on the light transmitted through the agricultural product (15), the light projecting means (17) and the light receiving means (18) Is supported by a light projecting / light receiving stay (10) which is an integral support member, and the light projecting / light receiving stay (10) is U-shaped with respect to the transport direction of the transport device (2). An opening is provided in the projector, and the light projecting means (17) is disposed below the measurement section (3), and the light projecting means (17 The light receiving means (18) for receiving the light emitted from the light source is disposed, the light is applied to the produce (15) from below, the light is received by the light receiving means (18) above, and the measuring unit (3) , An optical axis adjusting jig (80) is provided, and the optical axis adjusting jig (80) is configured to fit the light projecting means (17) and the light receiving means (18) on the same axis. The connecting cylinder (81) includes a side cylinder (81), a light receiving side cylinder (82), and a connecting cylinder (83) that connects the light emitting side cylinder (81) and the light receiving side cylinder (82). 83 has a structure that can be expanded and contracted by overlapping cylindrical portions (83a and 83b) having different diameters without gaps, and projecting light onto the light emitting side cylindrical portion (81) of the optical axis adjusting jig (80). means (17), automatically to perform optical axis alignment by fitting the light-receiving means (18) to the light receiving side tube section (82) Agricultural nondestructive quality determination apparatus characterized. 請求項1記載の農産物非破壊品質判定装置において、前記載置台(50)に光学系補正用の標準物を取り付け、前記測定部(3)にて定期的に測定し、この測定値に基づき、該測定値の補正を行うことを特徴とする農産物非破壊品質判定装置。 In the agricultural product nondestructive quality judging device according to claim 1, an optical system correction standard is attached to the mounting table (50), and periodically measured by the measurement unit (3). Based on the measured value, An agricultural product nondestructive quality judging device for correcting the measured value . 請求項1記載の農産物非破壊品質判定装置において、前記測定部(3)の前工程に重量測定部を設け、該重量測定部にて搬送される農産物の重量を測定し、該重量測定値に対応する重量データを用いて、前記測定部にて得られた測定結果の補正を行うことを特徴とする農産物非破壊品質判定装置。 The agricultural product nondestructive quality judging device according to claim 1, wherein a weight measuring unit is provided in a previous process of the measuring unit (3), the weight of the agricultural product conveyed by the weight measuring unit is measured, and the weight measurement value is obtained. The agricultural product nondestructive quality judging device , wherein the measurement result obtained by the measuring unit is corrected using corresponding weight data .
JP2003162675A 2003-06-06 2003-06-06 Agricultural products non-destructive quality judgment device Expired - Fee Related JP4077767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162675A JP4077767B2 (en) 2003-06-06 2003-06-06 Agricultural products non-destructive quality judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162675A JP4077767B2 (en) 2003-06-06 2003-06-06 Agricultural products non-destructive quality judgment device

Publications (2)

Publication Number Publication Date
JP2004361347A JP2004361347A (en) 2004-12-24
JP4077767B2 true JP4077767B2 (en) 2008-04-23

Family

ID=34054751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162675A Expired - Fee Related JP4077767B2 (en) 2003-06-06 2003-06-06 Agricultural products non-destructive quality judgment device

Country Status (1)

Country Link
JP (1) JP4077767B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101226A (en) * 2005-09-30 2007-04-19 Yanmar Co Ltd Measuring instrument of residual agricultural chemicals
JP4928208B2 (en) * 2006-09-25 2012-05-09 株式会社Lixilニッタン Smoke detector
JP5325434B2 (en) * 2008-03-17 2013-10-23 ヤンマー株式会社 Fruit and vegetable sorting device
JP5567995B2 (en) * 2010-11-30 2014-08-06 ヤンマー株式会社 Fruit and vegetable quality judgment device
JP6145275B2 (en) * 2013-01-29 2017-06-07 アルファクス株式会社 Laser beam profile measurement method
JP5983595B2 (en) * 2013-12-25 2016-08-31 ブラザー工業株式会社 Processing container and laser processing apparatus
CN106226248A (en) * 2016-08-31 2016-12-14 华中农业大学 Spherical agricultural product inside quality based on spectral technique detection classifying equipoment
JP6765722B2 (en) * 2017-09-15 2020-10-07 スガ試験機株式会社 Optical property measuring instrument
WO2019239489A1 (en) * 2018-06-12 2019-12-19 株式会社クボタ Measuring device and substrate mounting device
CN113075161B (en) * 2021-03-31 2023-11-17 重庆电子工程职业学院 Near infrared fruit internal quality detection system
CN113340823B (en) * 2021-06-02 2023-06-27 浙江德菲洛智能机械制造有限公司 Rapid nondestructive testing process for strawberry sugar

Also Published As

Publication number Publication date
JP2004361347A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4077767B2 (en) Agricultural products non-destructive quality judgment device
JP3746453B2 (en) Double-sided multi-lamp online internal quality inspection system
KR102317446B1 (en) Optical grain evaluation device and combine harvester provided with optical grain evaluation device
CN101341392B (en) Mixture identifying system
US6657722B1 (en) Side multiple-lamp type on-line inside quality inspecting device
US6520311B1 (en) Multi-row type online internal quality inspection device
JP4589897B2 (en) Internal quality judgment device
CA2332770C (en) Method and apparatus for inspection of hot glass containers
US7557922B2 (en) Detection system for use in a sorting apparatus, a method for determining drift in the detection system and a sorting apparatus comprising such detection system
EP0843974B1 (en) Method and device for inspecting without direct contact the ends of cigarettes, or similar
JP2005043315A (en) Nondestructive quality determination apparatus for agricultural product
JP4713731B2 (en) Equipment for measuring the internal quality of fruits and vegetables
JP4117220B2 (en) Agricultural product placement table of agricultural product nondestructive quality judgment device
JP2004251777A (en) Agricultural product nondestructive quality determination apparatus
JP3611519B2 (en) Agricultural product internal quality evaluation system
JP2003185577A (en) Nondestructive quality decision apparatus for agricultural products
JP4312123B2 (en) Projector for spectroscopic analyzer
JP4322185B2 (en) Photodetector for spectroscopic analyzer
JP2003185576A (en) Nondestructive quality decision apparatus for agricultural products
JP2002214135A (en) Internal quality measuring device
JP2005046794A5 (en)
JP2006047217A (en) Device for evaluating internal quality
JPH09118393A (en) Cap inspecting device
JP2005046794A (en) Agricultural product sorting system
JPH11147308A (en) Printed pattern checking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080201

R150 Certificate of patent or registration of utility model

Ref document number: 4077767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150208

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees