JP4076796B2 - Cold rolling oil and cold rolling method - Google Patents

Cold rolling oil and cold rolling method Download PDF

Info

Publication number
JP4076796B2
JP4076796B2 JP2002173547A JP2002173547A JP4076796B2 JP 4076796 B2 JP4076796 B2 JP 4076796B2 JP 2002173547 A JP2002173547 A JP 2002173547A JP 2002173547 A JP2002173547 A JP 2002173547A JP 4076796 B2 JP4076796 B2 JP 4076796B2
Authority
JP
Japan
Prior art keywords
oil
rolling
cold rolling
test
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002173547A
Other languages
Japanese (ja)
Other versions
JP2004018610A (en
Inventor
健一 田中
周平 高木
達郎 三辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2002173547A priority Critical patent/JP4076796B2/en
Publication of JP2004018610A publication Critical patent/JP2004018610A/en
Application granted granted Critical
Publication of JP4076796B2 publication Critical patent/JP4076796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、普通鋼、ステンレス鋼、珪素鋼等をはじめとする金属の冷間圧延時に使用するエマルション型の冷間圧延油に関する。更に詳しくは、乳化安定性および潤滑性に優れ、かつ圧延材の表面品質および作業環境の向上に寄与することが可能な冷間圧延油とその使用方法に関する。
【0002】
【従来技術】
冷間圧延に用いられるエマルションタイプの圧延油は、動植物油脂、鉱油およびエステル等の単体もしくは混合物を基油とし、更に界面活性剤、油性向上剤、極圧添加剤、酸化防止剤等の各種添加剤が適宜配合されており、これを水で通常0.2〜20体積%程度のエマルションに希釈したもの(以降、「クーラント液」と称する)を圧延加工部へ供給している。圧延油エマルションの供給方式としては、掛け捨て方式と循環方式があるが、循環方式の圧延機において、クーラント液は加工部の潤滑と加工時に発生する熱の冷却を目的として、フィルター類による清浄化を図りながら循環使用されている。
【0003】
クーラント液に要求される性能としては、被圧延材や圧延ロールに対する潤滑油分の付着性、すなわちプレートアウト性が良好であると同時に、安定した操業を行うためには長期の循環使用においても乳化安定性が低下しないことが挙げられるが、これらは一般的に相反する傾向がある。すなわち、クーラント液の乳化安定性を高めれば被圧延材表面へのプレートアウト性が低下し、良好な潤滑性が得られなくなる。一方、クーラント液の乳化安定性を低下させれば、高いプレートアウト性により良好な潤滑性が得られるが、加工時に発生する疎水性の金属摩耗粉に油粒子表面が覆われることで油粒子の合一が促進され、撹拌しても再乳化できないスカムが大量に生成する。再乳化できずに浮上したままのスカムが増加すると、クーラント液の油分濃度の低下により潤滑不足を招く。逆にスカムリッチな部分のクーラント液が供給された場合は潤滑変動を招き圧延操業に支障をきたすので、長期にわたる循環使用に耐えることができない。
更に、近年は圧延速度の上昇や圧下率の増大による生産効率の向上とともに、以前にも増して圧延材表面に対する要求品質も一層厳格化してきており、表面疵や汚れの発生原因となる圧延機廻り堆積スカムの低減による作業環境の向上が強く望まれている。圧延機廻りに堆積したスカムは作業環境悪化の原因となるばかりか、ひいては圧延板品質低下の引き金にもなるため、スカムの発生量を低減させるか、発生したスカムをフィルター等の清浄化装置で除去する必要がある。
【0004】
これらのことに対応すべく現在までに種々の検討がなされているが、従来の界面活性剤を使用した圧延油では、前述の要求性能を全て満足するようなものは得られていない。例えば、特開平02−305894号公報では、以前は分子量が1000未満の非イオン性界面活性剤が用いられていたものに対し、分子量が数千の非イオン性界面活性剤を用いることにより、良好な潤滑性と乳化安定性を両立できているが、発生スカムの除去性が必ずしも十分なものではなく、圧延材の表面品質および作業環境の向上という面で問題を有していた。また、特開2001−254092号公報には、特定構造の非イオン性界面活性剤を使用した潤滑油エマルション組成物が開示されているが、潤滑性と乳化安定に関しては良好な結果が得られてはいるものの、乳化安定性の評価は新油での試験結果のみであり、実際に長期循環使用したときに発生しうる鉄粉およびスカムの影響に関する具体的な記載はない。
【0005】
【発明が解決しようとする課題】
本発明は、従来の冷間圧延に用いられるエマルション型の圧延油が有する上述の諸問題を解決し、長期にわたる循環使用時の乳化安定性および潤滑性に優れ、かつ圧延材の表面品質および作業環境の向上に寄与できるエマルション型の冷間圧延油および冷間圧延方法を提供しようとするものである。
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究した結果、特定の非イオン性界面活性剤を用いると上記課題を効率的に解決できるとの知見に基づいてなされたものである。
すなわち、本発明は、(a)動植物油脂、鉱油および合成エステルからなる群から選ばれる少なくとも1種類以上の基油、および(b)式(i)で示される非イオン性界面活性剤を含有することを特徴とする冷間圧延油を提供する。
【化2】
R−[(BO)x(EO)yH]z (i)
(式中、Rは2個以上の活性水素を持つ化合物の残基、BOはオキシブチレン基、EOはオキシエチレン基、xおよびyは平均付加モル数を示し、xは2〜60、yは2〜60、BOとEOはブロック状に付加しており、zは2〜8、分子量が1500以上10000未満、分子量に対するオキシエチレン基の重量比が0.1〜0.6である。)
本発明は、又、圧延機にて、上記冷間圧延油を水で0.2〜20体積%に希釈したエマルションを循環方式で使用する冷間圧延方法を提供する。
【0006】
【発明の実施の形態】
本発明の成分(a)である基油としては、従来から冷間圧延油に用いられているものを使用できる。例えば、牛脂、ヤシ油、パーム油、パーム核油、ナタネ油、綿実油等の動植物油脂およびそれらの精製品;メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、オクチルアルコール、ラウリルアルコール、イソブチルアルコール、2−エチルヘキシルアルコール等の一価アルコールまたはエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、へキシレングリコール、グリセリン、ポリグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコールとラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸等の一価脂肪酸またはアクリル酸、メタクリル酸、コハク酸、炭素数12のアルケニルコハク酸、炭素数36のダイマー酸、炭素数54のトリマー酸等の多価脂肪酸との合成エステル;マシン油、スピンドル油、タービン油等の鉱油が挙げられ、これらの群から選ばれる一種または二種以上を選ぶことができる。ただし、特に温度が低い時期に起こりやすい圧延油の固化および圧延加工によって発生した金属粉と圧延油の混和による圧延機廻り堆積スカムの生成を防止するためには、流動点が20℃以下の基油を使用することが好ましい。流動点が20℃より高い動植物油脂や合成エステル等を用いる場合は、流動点が低い別の基油との組み合わせで構成し、圧延油自体の流動点を好ましくは20℃以下に、より好ましくは10℃以下にすることにより、圧延材の表面品質および作業環境について大幅に向上することが可能になる。
【0007】
本発明の成分(b)である非イオン性界面活性剤は式(i)で示され、Rは2個以上、好ましくは4個以上の活性水素を持つ化合物の残基であるが、未反応の活性水素を分子内に有していてもよい。さらに好ましくはRは活性水素を8個以下、より好ましくは6個以下有する化合物の残基であるのがよい。Rの例としてはエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、へキシレングリコール、グリセリン、ポリグリセリン(好ましくは2〜6量体)、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコールの残基、キシロース、グルコース、フルクトース、ガラクトース、ソルビトール、ソルビタン、ソルビタンアルキレート、アルキルグルコキシドなどの2個以上のヒドロキシル基を持つ化合物の残基、好ましくは糖類またはその誘導体の残基、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、プロピレンジアミン、ブチレンジアミン、アルキルアミノプロピルアミン、アルカノールアミンなどの含有窒素化合物の残基などが挙げられ、好ましくは2個以上のヒドロキシル基を持つ化合物の残基、より好ましくは多価アルコールの残基および糖類またはその誘導体の残基である。
【0008】
BOはオキシブチレン基であり、ブチレン骨格は直鎖、分岐のどちらでも良く、好ましくは1,2−オキシブチレン基である。EOはオキシエチレン基であり、BOとEOはそれぞれがブロック状ポリマーの形で付加されている。このとき、活性水素を有する化合物に対して親水基であるポリオキシエチレン、親油基であるポリオキシブチレンの順にブロック状に付加させることが重要である。ポリオキシエチレンとポリオキシブチレンの付加位置を逆転させると、良好な乳化安定性が得られなくなってしまうからである。また、親油基をポリオキシプロピレンにした場合は親油性が弱いため基油(a)に対する溶解性が悪くなると同時に、プレートアウト性も低下してしまう。一方、親油基をポリオキシブチレンよりも親油性が強いポリオキシアルキレンにした場合、現時点では工業上の実用化がされていないため製造コストが大幅に上昇してしまい不経済である。なお、本発明の効果が損なわれない範囲内であれば、分子内にBOおよびEO以外のオキシアルキレン基が混在しても良い。
【0009】
xおよびyは、それぞれオキシブチレン基およびオキシエチレン基の平均付加モル数を示し、xは2〜60、yは2〜60である。zはRに対して付加するポリオキシアルキレン鎖の結合数(価数)を示し、2〜8が適しているが、好ましくは4〜6である。zが2〜8の範囲にあると、良好なプレートアウト性を得ることができる。式(i)で示される非イオン性界面活性剤(b)の分子量は、1500以上10000未満の範囲が適しているが、好ましくは2000以上3500未満であり、分子量に対するオキシエチレン基の重量比は0.1〜0.6が適しており、好ましくは0.2〜0.5である。分子量が1500以上10000未満であると、良好な乳化安定性が得られ、又粘度が高くなりすぎることがなく、表面疵や汚れの発生原因となる圧延機廻り堆積スカムの生成が助長されないとの利点がある。また、分子量に対するオキシエチレン基の重量比が0.1〜0.6であると良好な乳化安定性が得られ、基油(a)に対する溶解性も良好で、プレートアウト性も良好である。
基油(a)に対する式(i)で示される非イオン性界面活性剤(b)の配合重量比は0.001〜0.1であるのが好ましく、この範囲で用いると、充分な乳化安定性を発揮することができる。
【0010】
式(i)で示される非イオン性界面活性剤(b)の合成には、公知の方法が利用できる。製法の一例を簡単に記すと、100〜150℃の高温、不活性ガス雰囲気下でアルカリ触媒または酸触媒を使用し、活性水素を持つ化合物に所定量のブチレンオキサイドを高圧で吹き込み、次いで所定量のエチレンオキサイドをブチレンオキサイドと同様に吹き込んでブロック状の付加反応物を作ることができる。この反応生成物中に含まれる未反応アルキレンオキサイドを必要に応じて除去後、残存しているアルカリ成分を吸着剤等で除去することで目的の非イオン性界面活性剤を得ることができる。
【0011】
本発明の冷間圧延油は、必須成分である基油(a)、および(b)式(i)で示される非イオン性界面活性剤以外にも、本発明の効果が損なわれない範囲内であれば、必要に応じて、他の界面活性剤、各種油性向上剤、極圧添加剤、酸化防止剤等の各種添加剤を含有しても良い。例えば他の界面活性剤としてはアルキル基の炭素数が12〜18のポリエチレングリコールアルキルエステル、アルキル基の炭素数が12〜18のポリオキシエチレンソルビタンアルキルエステル、アルキル基の炭素数が12〜18のポリオキシエチレンアルキルエーテル、アルキル基の炭素数が8〜12のポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマーおよびその変成物、炭素数が12〜18の脂肪酸のジエタノールアミド、炭素数が12〜18の脂肪酸のアルカノールアミン塩等が;油性向上剤としては炭素数12〜18の一価脂肪酸、炭素数36のダイマー酸、炭素数54のトリマー酸等が;極圧添加剤としては、亜リン酸エステル、酸性リン酸エステル、硫化エステル、硫化オレフィン、ポリサルファイド等が;酸化防止剤としては2,6−ジ−t−ブチル−4−メチルフェノール、α−ナフチルアミン等が挙げられる。
以上の各成分を混合して本発明の冷間圧延油を製造する際の混合の仕方については、特に制限はない。通常は基油(a)を40〜80℃に加温、撹拌しながら、(b)式(i)で示される非イオン性界面活性剤および、必要に応じて前記の各種添加剤を添加して製造するのがよいが、(b)および各種添加剤は、いずれを先に添加しても良いし、同時に添加しても良い。
【0012】
本発明の冷間圧延油の使用方法であるが、通常は水により0.2〜20体積%のエマルションに希釈したものをクーラント液として圧延加工部へ供給するのがよい。希釈に使用する水は、脱イオン水、水道水、工業用水のいずれでも良く、エマルションの作成方法に特に制限はない。また、本発明の冷間圧延油は循環使用時にマグネチックセパレーター、DEMフィルター、ストレーナー、ラバルセパレーターやフラットベットフィルター等のフィルター類を併用したときのスカム除去によるクーラント液清浄化効果が大きいので、圧延材の表面品質および作業環境を向上するとともに、圧延油原単位の低減にも寄与できる。
【0013】
以下に実施例を比較例と共に示し、本発明による効果をより具体的に説明する。
【実施例】
実施例1〜8
本発明の成分(a)である圧延油の基油としてトリメチロールプロパントリオレエート(流動点-30℃)を使用し、成分(b)として表1に示す界面活性剤A〜Oを使用し、表2に示す組成比で混合することにより供試圧延油(実施例は1〜8、比較例は9〜15)を調製した。この供試圧延油を、以下に示す試験例で評価した。なお、性能評価項目は乳化安定性(乳化安定性試験)、潤滑性(プレートアウト性試験、圧延潤滑性試験)、圧延材の表面品質および作業環境の向上について(スカム除去性試験)であり、評価結果は表2に併記した。
【0014】
【表1】

Figure 0004076796
【0015】
【表2】
Figure 0004076796
【0016】
試験1 乳化安定性試験
表2に示す各供試圧延油を下記の条件でエマルション建浴し、ホモミキサー(TKロボミックス)撹拌後のエマルション粒子径をコールターカウンター(マルチライザーII)で測定した。本試験では新油と鉄粉添加時における平均粒径の変化が小さいほど乳化安定性が良好であるといえる。
(乳化安定性試験条件)
圧延油濃度:3体積%
建浴量 :1L
浴温度 :50℃
撹拌条件 :ホモミキサー10000rpm×30min
鉄粉混入量:エマルションに対して0ppm(新油)または1000ppm
使用鉄粉 :市販酸化鉄粉(Fe3O4、平均粒径1μm以下)
【0017】
(乳化安定性評価基準)
新油と鉄粉添加時における平均粒径の変化率の大小で評価
変化率=(鉄粉添加時の平均粒径−新油の平均粒径)/新油の平均粒径
乳化安定性の評価基準;
◎:変化率0.1未満
○:変化率0.1以上、0.2未満
△:変化率0.2以上、0.5未満
×:変化率0.5以上
【0018】
試験2 プレートアウト性試験
試験1で調製した各供試圧延油の新油エマルション中にテストピースを浸漬し、引き上げてからテストピース上の余剰エマルションを湯洗後、表面炭素分析装置(LECO)にてテストピース上の付着油分量を測定した。本試験では付着油分量が多いほどプレートアウト性が良好なため、潤滑性に優れるといえる。
(プレートアウト性試験条件)
供試液 :試験1で調整した各供試圧延油の新油エマルション
テストピース :SPCC−SB(0.3mm×50mm×100mm)
浸漬時間 :1sec
湯洗条件 :50℃の湯槽に浸漬1sec
付着油分量測定:表面炭素分析装置(LECO)にて500℃×5minでテストピース上の付着炭素量測定後、付着炭素量を1.3倍することで付着油分量に換算
(プレートアウト性評価基準)
付着油分量からプレートアウト性を評価
プレートアウト性の評価基準;
◎:付着油分量が400mg/m2以上
○:付着油分量が300mg/m2以上、400mg/m2未満
△:付着油分量が200mg/m2以上、300mg/m2未満
×:付着油分量が200mg/m2未満
【0019】
試験3 圧延潤滑性試験
表2に示す各供試圧延油を高速短冊圧延試験機にて下記条件で圧延潤滑試験を行い、圧延荷重で比較評価した。圧延荷重が低いほど圧延潤滑性が良好であるといえる。
(圧延潤滑性試験条件)
テストピース:SPCC−SB(1.2mm×30mm×500mm)
圧延ロール :500mmφ(エメリー紙#80研磨;表面粗度Ra0.3μm)
圧延速度 :500m/min
圧下率 :30%
圧延油濃度 :3体積%
建浴量 :10L
浴温度 :50℃
スプレ−量 :ベースレスポンプにて1L/minを上下のロールに供給
【0020】
(圧延潤滑性評価基準)
圧延荷重から圧延潤滑性を評価
圧延潤滑性の評価基準;
◎:圧延荷重が250N未満
○:圧延荷重が250N以上、270N未満
△:圧延荷重が270N以上、300N未満
×:圧延荷重が300N以上
【0021】
試験4 スカム除去性試験
表2に示す各供試圧延油を下記の条件でエマルション建浴し、クーラント清浄化用のフィルター類を組み入れた循環装置内を所定時間循環後、エマルションの油分濃度と鉄分濃度を測定した。本試験では循環後の油分濃度の低下が小さく(油分残存率が高い)、鉄分濃度の低下が大きいもの(鉄粉除去率が高い)ほどスカム除去性が良好であるといえる。
(スカム除去性試験条件)
圧延油濃度 :3体積%
建浴量 :3L
浴温度 :50℃
鉄粉混入量 :エマルションに対して1000ppm
使用鉄粉 :市販酸化鉄粉(Fe3O4、平均粒径1μm以下)
循環条件 :ベースレスポンプにて流量1L/min×30min
フィルター :▲1▼濾布(保留粒子径25μm)、▲2▼永久磁石
油濃度測定 :乳脂計に循環後のエマルションを一定量採取し、硫酸と硝酸を 各10mL加え1hr加熱分解後、浮上した油分量を読みとる
鉄分濃度測定:循環後のエマルションを一定量採取、塩酸加熱分解し5A濾紙 で濾過後、原子吸光光度法にて鉄分濃度を測定
【0022】
(スカム除去性評価基準)
油分残存率および鉄粉除去率から総合的にスカム除去性を評価。
ただし、油分残存率=循環後油分濃度/建浴時油分濃度
また、鉄分除去率=(建浴時鉄分濃度−循環後鉄分濃度)/建浴時鉄分濃度
スカム除去性の評価基準;
◎:油分残存率が0.8以上でかつ鉄分除去率が0.5以上
○:油分残存率が0.6以上0.8未満でかつ鉄分除去率が0.5以上
△:油分残存率が0.4以上0.6未満でかつ鉄分除去率が0.5以上
×:油分残存率が0.4未満または鉄粉除去率が0.5未満
表2に示す結果から明らかなように、本発明の圧延油は乳化安定性、プレートアウト性および圧延潤滑性に優れるばかりでなく、スカム除去性にも優れている。一方、比較例に挙げた圧延油は前記の性能評価項目について、全てを同時に満たすことはできないことがいえる。
【0023】
【発明の効果】
本発明の冷間圧延油を適用した冷間圧延方法による効果としては、長期にわたる循環使用時の乳化安定性および潤滑性に優れると同時に、循環系にフィルター類を併用した時のスカム除去によるクーラント液清浄化効果が大きいので、圧延材の表面品質および作業環境を向上することが可能であり、更には圧延油原単位の低減にも寄与できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an emulsion-type cold rolling oil used during cold rolling of metals such as ordinary steel, stainless steel, silicon steel and the like. More specifically, the present invention relates to a cold rolling oil that is excellent in emulsification stability and lubricity, and that can contribute to improving the surface quality and working environment of the rolled material, and a method for using the cold rolling oil.
[0002]
[Prior art]
Emulsion-type rolling oil used for cold rolling is based on a single or mixture of animal and vegetable oils and fats, mineral oils and esters, and various additions such as surfactants, oiliness improvers, extreme pressure additives, antioxidants, etc. An agent is appropriately blended, and this is diluted with water to an emulsion of usually about 0.2 to 20% by volume (hereinafter referred to as “coolant liquid”) and supplied to the rolling section. There are two methods for supplying the rolling oil emulsion: the throwing-off method and the circulation method. In the circulation method rolling mill, the coolant is cleaned with filters for the purpose of lubricating the processing part and cooling the heat generated during processing. It is being used in a circulating manner.
[0003]
The required performance of the coolant liquid is good adhesion of the lubricating oil to the material to be rolled and the rolling roll, that is, the plate-out property, and at the same time, emulsification even in long-term circulation use for stable operation. Although stability is not reduced, these generally tend to conflict. That is, if the emulsion stability of the coolant liquid is increased, the plate-out property to the surface of the material to be rolled is lowered, and good lubricity cannot be obtained. On the other hand, if the emulsion stability of the coolant is lowered, good lubricity can be obtained due to high plate-out properties, but the oil particle surface is covered by the hydrophobic metal wear powder generated during processing. Coalescence is promoted, and a large amount of scum that cannot be re-emulsified even when stirred is formed. If the scum that remains floating without being re-emulsified increases, insufficient lubrication is caused by a decrease in the oil concentration of the coolant. On the other hand, if the coolant liquid in the scum rich portion is supplied, lubrication fluctuation is caused and the rolling operation is hindered, so that it cannot withstand long-term circulation use.
Furthermore, in recent years, the production efficiency has been improved by increasing the rolling speed and the rolling reduction, and the required quality on the surface of the rolled material has become stricter than before. There is a strong demand for improving the working environment by reducing the accumulated scum. The scum accumulated around the rolling mill not only causes a deterioration of the working environment, but also triggers a reduction in the quality of the rolled sheet. Therefore, the amount of scum generated can be reduced, or the generated scum can be removed with a cleaning device such as a filter. Need to be removed.
[0004]
Various studies have been made so far to cope with these problems, but no rolling oil using a conventional surfactant has been obtained that satisfies all of the above-mentioned required performance. For example, in Japanese Patent Laid-Open No. 02-305894, a nonionic surfactant having a molecular weight of less than 1000 was previously used, whereas a nonionic surfactant having a molecular weight of several thousand was used. However, it has a problem in terms of improving the surface quality of the rolled material and the working environment. Japanese Patent Laid-Open No. 2001-254092 discloses a lubricating oil emulsion composition using a nonionic surfactant having a specific structure. However, good results have been obtained with respect to lubricity and emulsion stability. However, the evaluation of emulsification stability is only a test result with new oil, and there is no specific description about the influence of iron powder and scum that may occur when actually used for long-term circulation.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of emulsion-type rolling oil used in conventional cold rolling, is excellent in emulsification stability and lubricity during cyclic use over a long period of time, and surface quality and work of the rolled material It is an object of the present invention to provide an emulsion-type cold rolling oil and a cold rolling method that can contribute to improving the environment.
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have been made based on the knowledge that the use of a specific nonionic surfactant can efficiently solve the above problems.
That is, the present invention contains (a) at least one base oil selected from the group consisting of animal and vegetable fats and oils, mineral oils and synthetic esters, and (b) a nonionic surfactant represented by formula (i). A cold rolling oil is provided.
[Chemical 2]
R-[(BO) x (EO) yH] z (i)
(In the formula, R is a residue of a compound having two or more active hydrogens, BO is an oxybutylene group, EO is an oxyethylene group, x and y represent the average number of added moles, x is 2 to 60, and y is 2 to 60, BO and EO are added in block form, z is 2 to 8, the molecular weight is 1500 or more and less than 10,000, and the weight ratio of the oxyethylene group to the molecular weight is 0.1 to 0.6.)
The present invention also provides a cold rolling method in which an emulsion obtained by diluting the cold rolling oil with water to 0.2 to 20% by volume is used in a circulating manner in a rolling mill.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As the base oil which is the component (a) of the present invention, those conventionally used for cold rolling oil can be used. For example, animal and vegetable oils and fats such as beef tallow, coconut oil, palm oil, palm kernel oil, rapeseed oil, cottonseed oil and the like; methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, octyl alcohol, lauryl alcohol, isobutyl alcohol, 2 -Monohydric alcohols such as ethylhexyl alcohol or polyhydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, hexylene glycol, glycerin, polyglycerin, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol And monovalent fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, or acrylic acid, methacrylic acid, succinic acid, alcohol having 12 carbon atoms Synthetic esters with polyhydric fatty acids such as nil succinic acid, dimer acid having 36 carbon atoms, trimer acid having 54 carbon atoms; mineral oils such as machine oil, spindle oil, turbine oil, etc., and one or two selected from these groups You can choose more than seeds. However, in order to prevent the formation of scum around the rolling mill due to the solidification of the rolling oil and the mixing of the rolling powder with the metal powder, which tends to occur particularly when the temperature is low, the pour point is 20 ° C. or lower. It is preferred to use oil. When using animal and vegetable fats and oils or synthetic esters having a pour point higher than 20 ° C., the pour point of the rolling oil itself is preferably 20 ° C. or lower, more preferably, in combination with another base oil having a low pour point. By making it 10 degrees C or less, it becomes possible to improve significantly about the surface quality and working environment of a rolling material.
[0007]
The nonionic surfactant which is the component (b) of the present invention is represented by the formula (i), and R is a residue of a compound having 2 or more, preferably 4 or more active hydrogens. The active hydrogen may be present in the molecule. More preferably, R is a residue of a compound having 8 or less active hydrogens, more preferably 6 or less. Examples of R include ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, hexylene glycol, glycerin, polyglycerin (preferably 2-6 mer), trimethylol ethane, trimethylol propane, pentaerythritol, dipentaerythritol. Residues of polyhydric alcohols such as xylose, glucose, fructose, galactose, sorbitol, sorbitan, sorbitan alkylate, alkyl glucooxide, and the like, preferably sugars or derivatives thereof Residue, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, oleylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, propylene Residues of nitrogen compounds such as amines, butylenediamine, alkylaminopropylamines, alkanolamines, and the like, preferably residues of compounds having two or more hydroxyl groups, more preferably residues of polyhydric alcohols and Residues of sugars or their derivatives.
[0008]
BO is an oxybutylene group, and the butylene skeleton may be either linear or branched, and is preferably a 1,2-oxybutylene group. EO is an oxyethylene group, and BO and EO are added in the form of a block polymer. At this time, it is important to add a polyoxyethylene which is a hydrophilic group and a polyoxybutylene which is a lipophilic group in the order of blocks to the compound having active hydrogen. This is because if the addition positions of polyoxyethylene and polyoxybutylene are reversed, good emulsification stability cannot be obtained. Further, when the lipophilic group is polyoxypropylene, the lipophilicity is weak, so the solubility in the base oil (a) is deteriorated and at the same time the plate-out property is lowered. On the other hand, when the lipophilic group is changed to polyoxyalkylene having higher lipophilicity than polyoxybutylene, since it has not been industrially put into practical use at present, the production cost is greatly increased, which is uneconomical. As long as the effects of the present invention are not impaired, oxyalkylene groups other than BO and EO may be mixed in the molecule.
[0009]
x and y show the average addition mole number of an oxybutylene group and an oxyethylene group, respectively, x is 2-60, y is 2-60. z represents the number of bonds (valence) of the polyoxyalkylene chain added to R, and 2 to 8 is suitable, but 4 to 6 is preferable. When z is in the range of 2 to 8, good plate-out property can be obtained. The molecular weight of the nonionic surfactant (b) represented by the formula (i) is suitably in the range of 1500 or more and less than 10,000, preferably 2000 or more and less than 3500, and the weight ratio of the oxyethylene group to the molecular weight is 0.1-0.6 is suitable, Preferably it is 0.2-0.5. When the molecular weight is 1500 or more and less than 10,000, good emulsification stability is obtained, the viscosity does not become too high, and the generation of deposition scum around the rolling mill that causes surface flaws and dirt is not promoted. There are advantages. Further, when the weight ratio of the oxyethylene group to the molecular weight is 0.1 to 0.6, good emulsion stability is obtained, the solubility in the base oil (a) is good, and the plate-out property is also good.
The blending weight ratio of the nonionic surfactant (b) represented by the formula (i) to the base oil (a) is preferably 0.001 to 0.1. Can demonstrate its sexuality.
[0010]
A known method can be used for the synthesis of the nonionic surfactant (b) represented by the formula (i). An example of the production method is simply described. An alkali catalyst or an acid catalyst is used at a high temperature of 100 to 150 ° C. under an inert gas atmosphere, a predetermined amount of butylene oxide is blown into a compound having active hydrogen at a high pressure, and then a predetermined amount. A block-like addition reaction product can be produced by blowing ethylene oxide in the same manner as butylene oxide. After removing unreacted alkylene oxide contained in the reaction product as necessary, the remaining alkali component is removed with an adsorbent or the like to obtain the desired nonionic surfactant.
[0011]
The cold-rolled oil of the present invention is within the range in which the effects of the present invention are not impaired other than the nonionic surfactant represented by the base oil (a) and (b) formula (i) which are essential components. If necessary, various additives such as other surfactants, various oil improvers, extreme pressure additives, and antioxidants may be contained as necessary. For example, as other surfactants, polyethylene glycol alkyl ester having 12 to 18 carbon atoms in the alkyl group, polyoxyethylene sorbitan alkyl ester having 12 to 18 carbon atoms in the alkyl group, and 12 to 18 carbon atoms in the alkyl group. Polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether having 8 to 12 carbon atoms in the alkyl group, polyoxyethylene polyoxypropylene block polymer and its modification, diethanolamide of fatty acid having 12 to 18 carbon atoms, carbon number Is an alkanolamine salt of a fatty acid having 12 to 18 carbon atoms; examples of oiliness improvers are monovalent fatty acids having 12 to 18 carbon atoms, dimer acid having 36 carbon atoms, trimer acid having 54 carbon atoms; , Phosphites, acid phosphates, sulfide esters, Olefins, polysulfide and the like; The antioxidant 2,6-di -t- butyl-4-methylphenol, alpha-naphthylamine, and the like.
There is no particular limitation on the mixing method when the above components are mixed to produce the cold rolled oil of the present invention. Usually, while heating and stirring the base oil (a) at 40 to 80 ° C., (b) adding the nonionic surfactant represented by the formula (i) and the various additives as necessary. However, any of (b) and various additives may be added first or at the same time.
[0012]
Although it is a usage method of the cold rolling oil of this invention, it is good to usually supply what was diluted to 0.2-20 volume% emulsion with water as a coolant liquid to a rolling process part. The water used for the dilution may be any of deionized water, tap water, and industrial water, and there is no particular limitation on the method for preparing the emulsion. In addition, the cold rolling oil of the present invention has a large coolant cleaning effect by removing scum when combined with filters such as a magnetic separator, a DEM filter, a strainer, a Laval separator, and a flat bed filter during circulation use. In addition to improving the surface quality and working environment of the material, it can also contribute to the reduction of the rolling oil intensity.
[0013]
Examples will be shown below together with comparative examples to more specifically explain the effects of the present invention.
【Example】
Examples 1-8
Trimethylolpropane trioleate (pour point -30 ° C) is used as the base oil of the rolling oil that is component (a) of the present invention, and surfactants A to O shown in Table 1 are used as component (b), Sample rolling oils (Examples 1 to 8, Comparative Examples 9 to 15) were prepared by mixing at the composition ratios shown in Table 2. This sample rolling oil was evaluated by the following test examples. The performance evaluation items are emulsification stability (emulsification stability test), lubricity (plate-out property test, rolling lubricity test), surface quality of the rolled material and work environment improvement (scum removability test), The evaluation results are also shown in Table 2.
[0014]
[Table 1]
Figure 0004076796
[0015]
[Table 2]
Figure 0004076796
[0016]
Test 1 Emulsification stability test Each test rolling oil shown in Table 2 was emulsion-built under the following conditions, and the emulsion particle size after stirring with a homomixer (TK Robotics) was measured with a Coulter counter (Multilyzer II). In this test, it can be said that the smaller the change in the average particle size when adding new oil and iron powder, the better the emulsion stability.
(Emulsion stability test conditions)
Rolling oil concentration: 3% by volume
Bathing capacity: 1L
Bath temperature: 50 ° C
Stirring conditions: Homomixer 10000 rpm x 30 min
Iron powder contamination: 0 ppm (new oil) or 1000 ppm based on the emulsion
Iron powder used: Commercial iron oxide powder (Fe3O4, average particle size of 1 μm or less)
[0017]
(Emulsification stability evaluation criteria)
Evaluation rate of change in average particle size when new oil and iron powder are added Change rate = (average particle size when iron powder is added-average particle size of new oil) / Evaluation of emulsion stability of average particle size of new oil Criteria;
◎: Change rate less than 0.1 ○: Change rate 0.1 or more, less than 0.2 Δ: Change rate 0.2 or more, less than 0.5 ×: Change rate 0.5 or more
Test 2 Plate-out property test A test piece is immersed in a new oil emulsion of each test rolling oil prepared in Test 1 and pulled up, and then the excess emulsion on the test piece is washed with hot water, and then placed in a surface carbon analyzer (LECO). The amount of adhered oil on the test piece was measured. In this test, the greater the amount of oil adhered, the better the plate-out property, so it can be said that the lubricity is excellent.
(Plate-out test conditions)
Test solution: New oil emulsion test piece of each test rolling oil adjusted in Test 1: SPCC-SB (0.3 mm × 50 mm × 100 mm)
Immersion time: 1 sec
Hot water washing conditions: 1 sec immersion in a 50 ° C. water bath
Adhesive oil amount measurement: After measuring the amount of adhering carbon on the test piece at 500 ° C x 5 min with a surface carbon analyzer (LECO), the amount of adhering carbon is multiplied by 1.3 to convert it to the amount of adhering oil (plate out property evaluation Standard)
Evaluating plate-out properties from the amount of attached oil Evaluation criteria for plate-out properties;
A: Adhering oil amount is 400 mg / m2 or more. O: Adhering oil amount is 300 mg / m2 or more and less than 400 mg / m2. Δ: Adhering oil amount is 200 mg / m2 or more and less than 300 mg / m2. X: Adhering oil amount is less than 200 mg / m2. [0019]
Test 3 Rolling lubricity test Each of the test rolling oils shown in Table 2 was subjected to a rolling lubrication test under the following conditions using a high-speed strip rolling tester, and subjected to a comparative evaluation with a rolling load. It can be said that the rolling lubricity is better as the rolling load is lower.
(Rolling lubricity test conditions)
Test piece: SPCC-SB (1.2 mm x 30 mm x 500 mm)
Rolling roll: 500 mmφ (emery paper # 80 polishing; surface roughness Ra 0.3 μm)
Rolling speed: 500 m / min
Rolling rate: 30%
Rolling oil concentration: 3% by volume
Bathing capacity: 10L
Bath temperature: 50 ° C
Spray amount: 1 L / min is supplied to the upper and lower rolls with a baseless pump.
(Rolling lubricity evaluation criteria)
Evaluation of rolling lubricity from rolling load Evaluation criteria for rolling lubricity;
◎: Rolling load is less than 250N ○: Rolling load is 250N or more and less than 270N Δ: Rolling load is 270N or more and less than 300N ×: Rolling load is 300N or more
Test 4 Scum removability test Each test rolling oil shown in Table 2 is emulsion-embedded under the following conditions, and after circulating for a predetermined time in a circulation device incorporating filters for cleaning the coolant, the oil concentration and iron content of the emulsion Concentration was measured. In this test, it can be said that the scum removability is better as the decrease in the oil concentration after circulation is smaller (the oil remaining rate is higher) and the decrease in the iron concentration is larger (the iron powder removal rate is higher).
(Scum removal test conditions)
Rolling oil concentration: 3% by volume
Bathing volume: 3L
Bath temperature: 50 ° C
Iron powder mixing amount: 1000ppm with respect to the emulsion
Iron powder used: Commercial iron oxide powder (Fe3O4, average particle size of 1 μm or less)
Circulation condition: Flow rate 1L / min × 30min with baseless pump
Filter: (1) Filter cloth (retained particle diameter: 25 μm), (2) Permanent magnet oil concentration measurement: A certain amount of the emulsion after circulation was collected in a milk fat meter, 10 mL each of sulfuric acid and nitric acid was added, and the mixture was floated after 1 hr thermal decomposition. Iron concentration measurement by reading the oil content: Collecting a certain amount of the emulsion after circulation, pyrolyzing it with hydrochloric acid, filtering it with 5A filter paper, and measuring the iron concentration by atomic absorption spectrophotometry.
(Evaluation criteria for scum removability)
Overall evaluation of scum removability based on oil residual rate and iron powder removal rate.
However, oil remaining rate = oil concentration after circulation / oil concentration during building bath and iron removal rate = (iron concentration during building-iron concentration after circulation) / evaluation standard of iron concentration scum removal property during building;
A: Oil remaining rate is 0.8 or more and iron removal rate is 0.5 or more. ○: Oil remaining rate is 0.6 or more and less than 0.8 and iron removal rate is 0.5 or more. Δ: Oil remaining rate is 0.4 or more and less than 0.6 and the iron removal rate is 0.5 or more x: The oil residual rate is less than 0.4 or the iron powder removal rate is less than 0.5 As is clear from the results shown in Table 2, The rolling oil of the invention is not only excellent in emulsification stability, plate-out property and rolling lubricity, but also excellent in scum removability. On the other hand, it can be said that the rolling oil mentioned in the comparative example cannot satisfy all the performance evaluation items at the same time.
[0023]
【The invention's effect】
The effect of the cold rolling method using the cold rolling oil of the present invention is excellent in emulsification stability and lubricity during long-term circulation use, and at the same time, coolant by removing scum when combined with filters in the circulation system Since the liquid cleaning effect is great, it is possible to improve the surface quality and working environment of the rolled material, and further contribute to the reduction of the rolling oil intensity.

Claims (4)

(a)動植物油脂、鉱油および合成エステルからなる群から選ばれる少なくとも1種類以上の基油、および(b)式(i)で示される非イオン性界面活性剤を含有することを特徴とする冷間圧延油。
Figure 0004076796
(式中、Rは2個以上の活性水素を持つ化合物の残基、BOはオキシブチレン基、EOはオキシエチレン基、xおよびyは平均付加モル数を示し、xは2〜60、yは2〜60、BOとEOはブロック状に付加しており、zは2〜8、分子量が2000以上3500未満、分子量に対するオキシエチレン基の重量比が0.1〜0.6である。)
(A) a cold containing at least one base oil selected from the group consisting of animal and vegetable fats and oils, mineral oils and synthetic esters, and (b) a nonionic surfactant represented by formula (i) Inter rolling oil.
Figure 0004076796
(In the formula, R is a residue of a compound having two or more active hydrogens, BO is an oxybutylene group, EO is an oxyethylene group, x and y represent the average number of added moles, x is 2 to 60, and y is 2 to 60, BO and EO are added in block form, z is 2 to 8, molecular weight is 2000 or more and less than 3500 , and weight ratio of oxyethylene group to molecular weight is 0.1 to 0.6.)
(a)1重量部当たり(b)を0.001〜0.1重量部含有する請求項1記載の冷間圧延油。  The cold-rolled oil according to claim 1, which contains 0.001 to 0.1 part by weight of (b) per part by weight of (a). (b)式(i)中のRが4個以上の活性水素を持つ化合物の残基であり、zが4〜6、分子量に対するオキシエチレン基の重量比が0.2〜0.5である請求項1又は2に記載の冷間圧延油。  (B) R in the formula (i) is a residue of a compound having 4 or more active hydrogens, z is 4 to 6, and the weight ratio of the oxyethylene group to the molecular weight is 0.2 to 0.5. The cold rolling oil according to claim 1 or 2. 圧延機にて、請求項1〜のいずれか1項に記載の冷間圧延油を水で0.2〜20体積%に希釈したエマルションを循環方式で使用する冷間圧延方法。The cold rolling method which uses the emulsion which diluted the cold rolling oil of any one of Claims 1-3 with water to 0.2-20 volume% with the rolling system with a rolling mill.
JP2002173547A 2002-06-14 2002-06-14 Cold rolling oil and cold rolling method Expired - Fee Related JP4076796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173547A JP4076796B2 (en) 2002-06-14 2002-06-14 Cold rolling oil and cold rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173547A JP4076796B2 (en) 2002-06-14 2002-06-14 Cold rolling oil and cold rolling method

Publications (2)

Publication Number Publication Date
JP2004018610A JP2004018610A (en) 2004-01-22
JP4076796B2 true JP4076796B2 (en) 2008-04-16

Family

ID=31172738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173547A Expired - Fee Related JP4076796B2 (en) 2002-06-14 2002-06-14 Cold rolling oil and cold rolling method

Country Status (1)

Country Link
JP (1) JP4076796B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275605B1 (en) * 2004-10-06 2013-06-14 니치유 가부시키가이샤 Cosmetic bases and cosmetics containing the same
JP4736112B2 (en) * 2005-03-31 2011-07-27 日油株式会社 Cosmetic base material and cosmetic comprising the same
JP4923789B2 (en) * 2006-06-30 2012-04-25 Jfeスチール株式会社 Cold rolling method for metal sheet
JP5502261B2 (en) * 2006-12-26 2014-05-28 日本乳化剤株式会社 Amphiphilic vitamin E derivatives
RU2542048C2 (en) * 2009-05-08 2015-02-20 Квакер Кемикал Корпорейшн Small particle oil-in-water type lubricant
JP5447793B2 (en) * 2009-05-08 2014-03-19 日本パーカライジング株式会社 Cold rolling oil composition for steel sheet and cold rolling method
CN102476131A (en) 2010-11-26 2012-05-30 宝山钢铁股份有限公司 Cold rolling method for preventing high-silicon strip steel from being broken
JP5427258B2 (en) * 2011-03-31 2014-02-26 三洋化成工業株式会社 Base oil for lubricating oil and lubricating oil composition
JP5936099B2 (en) * 2011-08-04 2016-06-15 日油株式会社 Electrolytic solution for electrolytic capacitors
CN112934987B (en) * 2021-02-23 2022-06-24 山西太钢不锈钢股份有限公司 Method for reducing dirty marks of residues of stainless steel strip rolling cooling liquid

Also Published As

Publication number Publication date
JP2004018610A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
DE19983092B4 (en) Cutting oil, cutting oil composition and their use
JP4076796B2 (en) Cold rolling oil and cold rolling method
CN108315748A (en) A kind of metal cleaner and preparation method thereof
JP2012502121A (en) Emulsifier for metal working fluid
US3518917A (en) Method of supplying fluids to machine tools
KR900000875B1 (en) Cold strip rolling oil of steel plate
JP2017506261A (en) High performance water reducible lubricant additive for multi-metal processing
JP5298374B2 (en) Cold rolling oil additive and cold rolling oil
JP2014159529A (en) Aqueous processing liquid for fixed abrasive grain wire saw and cutting processing method
JP4484651B2 (en) Water-soluble cutting fluid composition and cutting method using the same
JP5753366B2 (en) Steel plate cleaning composition
JPH11323363A (en) Aqueous lubricant for cold forging
JP2011219730A (en) Detergent composition for steel plate
CN104204161B (en) Cooling and/or lubricating fluids for wafer production
JP5076047B2 (en) Water dilution type lubricant for metalworking oil
JP5592190B2 (en) Cold rolling oil and cold rolling method
JPH10298577A (en) Lubricant composition
JP7316883B2 (en) Cold rolling oil composition and method for producing rolled steel sheet using the same
JP5447793B2 (en) Cold rolling oil composition for steel sheet and cold rolling method
KR102636604B1 (en) Cooling lubricant for aluminum cold rolling
JP2011241293A (en) Aqueous composition for cutting fluid, method for producing the same, and aqueous cutting fluid
JPH08325588A (en) Cold-rolling lubricating oil for steel sheet
JP4415494B2 (en) Dialkylthiodipropionate-containing metal processing agent composition and metal processing method
JP2009007510A (en) Cold rolling oil and cold rolling method
JP3920367B2 (en) Cold rolling oil for steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees