JP4075679B2 - Start control device for internal combustion engine - Google Patents

Start control device for internal combustion engine Download PDF

Info

Publication number
JP4075679B2
JP4075679B2 JP2003128351A JP2003128351A JP4075679B2 JP 4075679 B2 JP4075679 B2 JP 4075679B2 JP 2003128351 A JP2003128351 A JP 2003128351A JP 2003128351 A JP2003128351 A JP 2003128351A JP 4075679 B2 JP4075679 B2 JP 4075679B2
Authority
JP
Japan
Prior art keywords
cylinder
combustion
ignition timing
engine
compression stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003128351A
Other languages
Japanese (ja)
Other versions
JP2004332598A (en
Inventor
小久保  直樹
英次 小木曽
英幸 前地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003128351A priority Critical patent/JP4075679B2/en
Priority to DE102004022163.4A priority patent/DE102004022163B4/en
Publication of JP2004332598A publication Critical patent/JP2004332598A/en
Application granted granted Critical
Publication of JP4075679B2 publication Critical patent/JP4075679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/004Generation of the ignition spark
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2002Control related aspects of engine starting characterised by the control method using different starting modes, methods, or actuators depending on circumstances, e.g. engine temperature or component wear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スタータによる始動の他に、膨張行程又は圧縮行程にある気筒内に燃料を噴射して燃焼させ、その燃焼圧力で内燃機関を始動させる“燃焼始動”を行う機能を備えた内燃機関の始動制御装置に関するものである。
【0002】
【従来の技術】
近年、車両に搭載されるエンジンにおいては、燃費節減、排気エミッション低減及び低騒音化を目的として、エンジン自動停止・始動装置(いわゆるアイドリングストップ装置)を採用したものがある。このエンジン自動停止・始動装置は、例えば、運転者が車両を停車させたときにエンジンを自動的に停止し、その後、運転者が車両を発進させようとする操作(例えばアクセルペダル踏込操作等)を行ったときにスタータに通電してエンジンを自動的に再始動するようにしている。このため、停車頻度が多くなる市街地走行等では、スタータの駆動回数が多くなって、スタータやバッテリに掛かる負荷が大きくなり、スタータの故障やバッテリ上がりが発生しやすくなるおそれがある。
【0003】
この対策として、特許文献1(特開2002−39038号公報)に示すように、エンジンを自動始動する際に、膨張行程にある気筒内に燃料を噴射して点火することで膨張行程燃焼を発生させ、この膨張行程燃焼の燃焼圧力でクランク軸を回転駆動(クランキング)することで、スタータを使用せずにエンジンを始動する“燃焼始動”を行なうようにしたものがある。
【0004】
また、最近では、燃焼始動による始動性を向上させるために、膨張行程の気筒に加え、圧縮行程の気筒にも燃料を噴射して点火することが提案されている。一般に、特許文献2(特開平2−191871号公報)に示すように、始動時の点火時期は、始動性を考慮して圧縮上死点(TDC)付近に設定される。
【0005】
【特許文献1】
特開2002−39038号公報(第3頁〜第5頁等)
【特許文献2】
特開平2−191871号公報(第4頁等)
【0006】
【発明が解決しようとする課題】
しかし、燃焼始動では、最初は、エンジンの回転が停止して回転慣性が全くない状態で膨張行程燃焼を発生させて、その燃焼圧力でクランク軸を回転駆動するため、最初の圧縮行程噴射気筒に圧縮上死点(TDC)付近で点火すると、点火時期が早すぎて、圧縮行程噴射気筒の燃焼圧力が正回転方向のトルクに有効に変換されず、エンジンがロック状態に陥って始動できないことがある。
【0007】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、燃焼始動時の圧縮行程噴射気筒の点火時期を適正化して、燃焼始動による始動性を向上させることができる内燃機関の始動制御装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、スタータ始動と燃焼始動とを始動条件に応じて切り換えるようにした内燃機関の始動制御装置において、燃焼始動時に始動位置において膨張行程にある膨張行程噴射気筒に対して、最初の点火を行い、始動位置において圧縮行程にある圧縮行程噴射気筒に対して、次の点火を行う点火時期制御手段を備え、前記点火時期制御手段は、前記始動位置において圧縮行程にある圧縮行程噴射気筒に対して、次の点火を行うときに、点火時期をスタータ始動時の点火時期よりも遅角させるようにしたものである。
【0009】
一般に、スタータ始動時の点火時期は、圧縮上死点(TDC)付近に設定されるため、始動位置において圧縮行程にある圧縮行程噴射気筒(以下「最初の圧縮行程噴射気筒」という)に対して、次の点火を行うときに、点火時期をスタータ始動時の点火時期よりも遅角させれば、最初の圧縮行程噴射気筒の点火時期が圧縮上死点からある程度遅角され、該圧縮行程噴射気筒のピストンが下降するようになってから点火されるようになる。これにより、最初の圧縮行程噴射気筒の燃焼圧力を、膨張行程噴射気筒の燃焼圧力と同じように有効に正回転方向のトルクに変換することができて、内燃機関のクランク軸を確実に正回転方向に駆動して始動することができ、燃焼始動による始動性を向上させることができる。
【0010】
また、請求項1では、燃焼始動時の最初の圧縮行程噴射気筒の点火時期をATDC5℃A〜ATDC35℃Aの範囲内で設定する。ここで、「ATDC」は「上死点後」の意味である。後述する本発明者の実験結果によれば、最初の圧縮行程噴射気筒の点火時期がATDC5℃Aよりも早いと(進角側であると)、燃焼圧力が正回転方向のトルクに有効に変換されず、始動できない可能性がある。また、最初の圧縮行程噴射気筒の点火時期がATDC35℃Aよりも遅いと(遅角側であると)、燃焼圧力が低くなってしまうため、燃焼圧力による正回転方向のトルクが小さくなって、始動できない可能性がある。従って、請求項2のように、燃焼始動時の最初の圧縮行程噴射気筒の点火時期をATDC5℃A〜ATDC35℃Aの範囲内で設定すれば、最初の圧縮行程噴射気筒の燃焼圧力による正回転方向のトルクを十分に発生させることができて、燃焼始動による始動性を向上させることができる。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。筒内噴射式の内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等のモータ15によって駆動されるスロットルバルブ16が設けられ、このスロットルバルブ16の開度(スロットル開度)がスロットル開度センサ17によって検出される。
【0012】
また、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20に、筒内の気流強度(スワール流強度やタンブル流強度)を制御する気流制御弁31が設けられている。
【0013】
エンジン11の各気筒の上部には、それぞれ燃料を筒内に直接噴射する燃料噴射弁21が取り付けられている。エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。
【0014】
エンジン11のシリンダブロックには、ノッキングを検出するノックセンサ32と、冷却水温を検出する冷却水温センサ23と、エンジン11のクランク角を検出するクランク角センサ24が取り付けられている。このクランク角センサ24は、エンジン11のクランク軸に嵌着されたシグナルロータ37の外周に対向するように配置され、該シグナルロータ37の外周には、所定クランク角毎に歯37aが形成され、該シグナルロータ37の外周の特定のクランク角位置(クランク角基準位置)には、1〜3個分の歯37aが欠けた欠歯部が形成されている。これにより、エンジン11の回転に伴って欠歯部以外のクランク角領域では、所定クランク角毎にクランク角センサ24から等間隔のクランク角パルス信号が出力され、欠歯部(クランク角基準位置)では、パルス間隔の長くなる不等間隔のクランク角パルス信号が出力される。
【0015】
一方、エンジン11の排気管25には、排出ガスを浄化する上流側触媒26と下流側触媒27が設けられ、上流側触媒26の上流側に、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ28(空燃比センサ、酸素センサ等)が設けられている。また、排気管25のうちの上流側触媒26の下流側と吸気管12のうちのスロットルバルブ16の下流側のサージタンク18との間に、排出ガスの一部を吸気側に還流させるためのEGR配管33が接続され、このEGR配管33の途中に排出ガス還流量(EGR量)を制御するEGR弁34が設けられている。
【0016】
前述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種の制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や燃料噴射時期、点火プラグ22の点火時期等を制御する。
【0017】
このECU30は、クランク角センサ24から出力されるクランク角パルス信号のパルス間隔が等間隔か不等間隔かを判別して、不等間隔のクランク角パルス信号が発生する位置(欠歯部)をクランク角基準位置として検出し、該クランク角基準位置から等間隔のクランク角パルス信号をカウントしてそのカウント数によりクランク角を検出して気筒判別し、更に、等間隔のクランク角パルス信号の発生周波数からエンジン回転速度を検出する。
【0018】
また、ECU30は、エンジン自動停止・自動始動の機能も備え、運転者が車両を停車させて所定の自動停止条件が成立したときに、燃料カット、点火カットを実行してエンジン11を自動的に停止させると共に、その時のエンジン停止位置を検出してECU30のメモリに記憶する。このエンジン停止位置の検出方法は、例えば、特許第3186524号公報、特開2002−39038号公報、特開昭60−240875号公報、特開平11−107823号公報等に記載された停止位置検出技術を用いて行えば良い。
【0019】
そして、ECU30は、エンジン11の自動停止中に所定の自動始動条件(燃焼始動条件)が成立したとき(運転者が車両を発進させようとする操作を行ったとき)、ECU30のメモリに記憶されているエンジン停止位置を基準にして気筒判別して、膨張行程と圧縮行程にある気筒内に燃料を噴射して点火することで燃焼を発生させ、この燃焼圧力でクランク軸を回転駆動(クランキング)することで、スタータ38を使用せずにエンジン11を始動する“燃焼始動”を実行する(図2参照)。
【0020】
また、ECU30は、運転者がエンジン停止中にイグニッションスイッチ39をスタート位置に操作したときに、スタータ38に通電してクランク軸を回転駆動してエンジン11を始動する“スタータ始動”を実行する。このスタータ始動時の点火時期は、始動性を考慮して圧縮上死点(TDC)付近に設定されている。尚、燃焼始動による始動を失敗した場合は、自動的にスタータ38に通電してスタータ始動を実行する。
【0021】
ここで、燃焼始動時の点火・噴射制御について図2を用いて説明する。図2は4気筒エンジン11を燃焼始動する場合の点火・噴射制御の一例を示している。図2の例では、エンジン停止位置において、第1気筒が膨張行程、第3気筒が圧縮行程、第4気筒が吸気行程、第3気筒が排気行程となっている。このエンジン停止位置で、自動始動条件(燃焼始動条件)が成立すると、まず、ECU30のメモリに記憶されているエンジン停止位置に基づいて燃焼始動時の始動位置における膨張行程の気筒(第1気筒)と圧縮行程の気筒(第3気筒)を判別し、この膨張行程の気筒(第1気筒)と圧縮行程の気筒(第3気筒)にそれぞれ燃料を噴射する。そして、まず、膨張行程噴射気筒(第1気筒)のみに点火して膨張行程燃焼を発生させ、この膨張行程燃焼の燃焼圧力でクランク軸を回転駆動する。これにより、圧縮行程噴射気筒(第3気筒)のピストン40が圧縮上死点(TDC)を乗り越えて、ATDC5℃A〜ATDC35℃Aの範囲内で設定された目標点火時期に到達すると、圧縮行程噴射気筒(第3気筒)に点火して燃焼を発生させ、この燃焼圧力でクランク軸を回転駆動してエンジン11を始動する。
【0022】
尚、エンジン停止位置において、吸気行程の気筒(第4気筒)と排気行程の気筒(第2気筒)については、燃焼始動によりクランク軸が回転駆動されるのに伴って、それぞれの気筒で、吸気行程で燃料を噴射して圧縮上死点(TDC)付近で点火する通常の噴射・点火制御を実行する。また、エンジン停止位置において、膨張行程の気筒(第1気筒)と圧縮行程の気筒(第3気筒)についても、それぞれ、2回目以降の噴射・点火は、吸気行程で燃料を噴射して圧縮上死点(TDC)付近で点火する通常の噴射・点火制御を実行する。
【0023】
燃焼始動では、最初は、エンジン11の回転が停止して回転慣性が全くない状態で膨張行程燃焼を発生させて、その燃焼圧力でクランク軸を回転駆動するため、最初の圧縮行程噴射気筒に圧縮上死点付近で点火すると、点火時期が早すぎて、圧縮行程噴射気筒の燃焼圧力が正回転方向のトルクに有効に変換されず、エンジン11がロック状態に陥って始動できないことがある。
【0024】
そこで、本実施形態の燃焼始動では、最初の圧縮行程噴射気筒の点火時期をスタータ始動時の点火時期(圧縮上死点付近)よりも遅角させて、ATDC5℃A〜ATDC35℃Aの範囲内で点火するようにしている。これにより、最初の圧縮行程噴射気筒の燃焼圧力を、膨張行程噴射気筒の燃焼圧力と同じように有効に正回転方向のトルクに変換することができて、エンジン11のクランク軸を確実に正回転方向に駆動して始動することができ、燃焼始動による始動性を向上させることができる。
【0025】
本発明者は、燃焼始動時の最初の圧縮行程噴射気筒の点火時期の適正範囲を考察する試験を行ったので、その試験結果を図3に示す。この燃焼始動の試験では、最初の圧縮行程噴射気筒の点火時期をBTDC10℃AからATDC55℃Aの範囲で少しずつ変化させ、各々の点火時期で点火して、その燃焼圧力で到達するクランク軸回転角度を計測した。この場合、クランク軸回転角度が大きくなるほど、最初の圧縮行程噴射気筒の燃焼圧力によって発生する正回転方向のトルクが大きくなって、始動性が向上することを意味する。
【0026】
図3の試験結果を評価すると、最初の圧縮行程噴射気筒の点火時期がATDC5℃A〜ATDC35℃Aの範囲内では、最初の圧縮行程噴射気筒の燃焼圧力で到達するクランク軸回転角度が大きくなり(つまり最初の圧縮行程噴射気筒の燃焼圧力によって発生する正回転方向のトルクが大きくなり)、始動性が良いことが分かる。これに対して、最初の圧縮行程噴射気筒の点火時期がATDC5℃Aよりも早いと(進角側であると)、燃焼圧力が正回転方向のトルクに有効に変換されないため、燃焼圧力による正回転方向のトルクが小さくなって、燃焼圧力で到達するクランク軸回転角度が小さくなり、始動性が悪くなる。また、最初の圧縮行程噴射気筒の点火時期がATDC35℃Aよりも遅いと(遅角側であると)、燃焼圧力が低くなってしまうため、燃焼圧力による正回転方向のトルクが小さくなって、燃焼圧力で到達するクランク軸回転角度が小さくなり、始動性が悪くなる。
【0027】
ところで、燃焼始動時に、クランク角センサ24がシグナルロータ37の欠歯部(クランク角基準位置)を正確に検出するまでは、クランク角センサ24から出力されるクランク角パルス信号のカウント数に基づいてクランク角を正確に検出することはできない。そのため、燃焼始動の初期のクランク角の検出や気筒判別は、始動前(前回のエンジン停止時)に検出したエンジン停止位置に基づいて行うようにしているが、エンジン停止時の回転慣性や逆転現象によりエンジン停止位置を正確に検出することは困難であるため、エンジン停止位置を基準にしてクランク角パルス信号のカウント数からクランク角を検出しても、クランク角の検出誤差を生じてしまう。
【0028】
従って、このクランク角の検出誤差による点火時期の制御誤差を考慮して、最初の圧縮行程噴射気筒の目標点火時期をATDC10℃A〜ATDC30℃A、より好ましくはATDC15℃A〜ATDC25℃Aの範囲に設定すると良い。クランク角の検出誤差が大きい場合は、最初の圧縮行程噴射気筒の目標点火時期を最適な点火時期であるATDC20℃Aに設定すれば良い。要は、クランク角の検出誤差(点火時期の制御誤差)を考慮して目標点火時期を設定して、実際の点火時期が適正範囲であるATDC5℃A〜ATDC35℃Aの範囲内に収まるように制御すれば良い。
【0029】
ECU30は、燃焼始動とスタータ始動のいずれかの始動要求が発生したときに、図4に示す始動時目標点火時期設定ルーチンを所定時間毎又は所定クランク角毎に実行し、特許請求の範囲でいう点火時期制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、始動時の最初の圧縮行程噴射気筒の点火であるか否かを判定し、最初の圧縮行程噴射気筒の点火でなければ、以降の処理を行うことなく本ルーチンを終了する。この場合は、通常運転時の目標点火時期設定ルーチン(図示せず)によって目標点火時期が設定される。
【0030】
一方、上記ステップ101で、始動時の最初の圧縮行程噴射気筒の点火であると判定されれば、ステップ102に進み、始動モードが燃焼始動モードであるか否かを判定し、このステップ102で「No」と判定された場合(スタータ始動の場合)には、ステップ104に進み、目標点火時期を圧縮上死点(TDC)に設定する。尚、燃焼始動による始動を失敗した場合も、上記ステップ102で「No」と判定されて、ステップ104に進み、目標点火時期を圧縮上死点(TDC)に設定し、スタータ38に通電してスタータ始動を実行する。
【0031】
これに対して、上記ステップ102で、始動モードが燃焼始動モードであると判定されれば、ステップ103に進み、目標点火時期を最適な点火時期であるATDC20℃Aに設定する。これにより、燃焼始動の初期にクランク角の検出誤差による点火時期の制御誤差があっても、実際の点火時期が適正範囲であるATDC5℃A〜ATDC35℃Aの範囲内に収まるように制御される。
【0032】
以上説明した本実施形態によれば、燃焼始動時に、最初の圧縮行程噴射気筒の点火時期をスタータ始動時の点火時期(TDC)よりも遅角させて、ATDC5℃A〜ATDC35℃Aの範囲内に制御するようにしたので、最初の圧縮行程噴射気筒の燃焼圧力によって正回転方向のトルクを有効に発生させることでできて、クランク軸を確実に正回転方向に駆動して始動することができ、燃焼始動による始動性を向上させることができる。
【0033】
尚、図4の始動時目標点火時期設定ルーチンでは、燃焼始動時の最初の圧縮行程噴射気筒の目標点火時期を最適な点火時期であるATDC20℃Aに設定したが、この目標点火時期を冷却水温等の始動条件やクランク角の検出誤差を考慮して、適正範囲であるATDC5℃A〜ATDC35℃Aの範囲内で変化させるようにしても良い。
【0034】
その他、本発明は、4気筒エンジンに限定されず、3気筒以下又は5気筒以上のエンジンにも適用して実施できることは言うまでもない。
【図面の簡単な説明】
【図1】本発明の一実施形態におけるエンジン制御システム全体を示す図
【図2】各気筒の行程と燃焼始動時の噴射時期と点火時期の関係を示す図
【図3】燃焼始動時の最初の圧縮行程噴射気筒の点火時期と、燃焼圧力で到達するクランク軸回転角度との関係を考察する試験データを示す図
【図4】始動時目標点火時期設定ルーチンの処理の流れを示すフローチャート
【符号の説明】
11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、24…クランク角センサ(クランク角パルス信号発生手段)、30…ECU(点火時期制御手段)、37…シグナルロータ、38…スタータ、39…イグニッションスイッチ、40…ピストン。
[0001]
BACKGROUND OF THE INVENTION
In addition to starting by a starter, the present invention has an internal combustion engine having a function of performing “combustion start” in which fuel is injected into a cylinder in an expansion stroke or a compression stroke and burned, and the internal combustion engine is started at the combustion pressure. This relates to a start control device.
[0002]
[Prior art]
In recent years, some engines mounted on vehicles employ an engine automatic stop / start device (so-called idling stop device) for the purpose of reducing fuel consumption, reducing exhaust emissions, and reducing noise. This automatic engine stop / start device, for example, automatically stops the engine when the driver stops the vehicle, and then the driver tries to start the vehicle (for example, accelerator pedal depression operation). When starting, the starter is energized and the engine is automatically restarted. For this reason, when driving in an urban area where the frequency of stopping is high, the number of times the starter is driven increases, and the load applied to the starter and the battery increases.
[0003]
As a countermeasure, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2002-39038), when the engine is automatically started, fuel is injected into the cylinder in the expansion stroke and ignited to generate expansion stroke combustion. In addition, there is a type in which “combustion start” for starting the engine without using a starter is performed by rotationally driving (cranking) the crankshaft with the combustion pressure of the expansion stroke combustion.
[0004]
Recently, in order to improve the startability by the combustion start, it has been proposed to inject and ignite fuel in the cylinder in the compression stroke in addition to the cylinder in the expansion stroke. Generally, as shown in Patent Document 2 (Japanese Patent Laid-Open No. 2-191871), the ignition timing at the time of starting is set in the vicinity of the compression top dead center (TDC) in consideration of the startability.
[0005]
[Patent Document 1]
JP 2002-39038 A (pages 3 to 5 etc.)
[Patent Document 2]
Japanese Patent Laid-Open No. 2-191871 (page 4, etc.)
[0006]
[Problems to be solved by the invention]
However, at the start of combustion, initially, the expansion stroke combustion is generated in a state where the rotation of the engine is stopped and there is no rotational inertia, and the crankshaft is rotationally driven by the combustion pressure. If ignition occurs near the compression top dead center (TDC), the ignition timing is too early, and the combustion pressure in the compression stroke injection cylinder is not effectively converted into torque in the forward rotation direction, and the engine falls into a locked state and cannot be started. is there.
[0007]
The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to optimize the ignition timing of the compression stroke injection cylinder at the start of combustion and improve the startability by the combustion start. An object of the present invention is to provide an engine start control device.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is an internal combustion engine start control device in which starter start and combustion start are switched according to a start condition, and is in an expansion stroke at a start position at the start of combustion. Ignition timing control means for performing first ignition for the expansion stroke injection cylinder and performing next ignition for the compression stroke injection cylinder in the compression stroke at the start position; When the next ignition is performed on the compression stroke injection cylinder in the compression stroke at the position, the ignition timing is retarded from the ignition timing at the start of the starter.
[0009]
Generally, since the ignition timing at the start of starter is set near the compression top dead center (TDC) , the compression stroke injection cylinder (hereinafter referred to as “first compression stroke injection cylinder”) in the compression stroke at the start position is referred to. When the next ignition is performed, if the ignition timing is delayed from the ignition timing at the starter start time, the ignition timing of the first compression stroke injection cylinder is retarded to some extent from the compression top dead center, and the compression stroke injection It is ignited after the piston of the cylinder descends. As a result, the combustion pressure of the first compression stroke injection cylinder can be converted into the torque in the positive rotation direction as effectively as the combustion pressure of the expansion stroke injection cylinder, and the crankshaft of the internal combustion engine can be reliably rotated forward. It is possible to start by driving in the direction, and startability by combustion start can be improved.
[0010]
Further, in claim 1, the ignition timing of the first compression stroke injection cylinder at the start of combustion is set within the range of ATDC 5 ° C. to ATDC 35 ° C. Here, “ATDC” means “after top dead center”. According to the results of experiments conducted by the inventor described later, when the ignition timing of the first compression stroke injection cylinder is earlier than ATDC 5 ° C. (when it is on the advance side), the combustion pressure is effectively converted into a torque in the forward rotation direction. May not start. If the ignition timing of the first compression stroke injection cylinder is later than ATDC 35 ° C. (on the retard side), the combustion pressure becomes low, and the torque in the positive rotation direction due to the combustion pressure becomes small. It may not be possible to start. Therefore, as in claim 2, if the ignition timing of the first compression stroke injection cylinder at the start of combustion is set within the range of ATDC 5 ° C. to ATDC 35 ° C., forward rotation by the combustion pressure of the first compression stroke injection cylinder The torque in the direction can be sufficiently generated, and the startability by the combustion start can be improved.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an in-cylinder internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. . A throttle valve 16 driven by a motor 15 such as a DC motor is provided on the downstream side of the air flow meter 14, and an opening degree (throttle opening degree) of the throttle valve 16 is detected by a throttle opening degree sensor 17.
[0012]
A surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 that introduces air into each cylinder of the engine 11, and controls the in-cylinder airflow strength (swirl flow strength and tumble flow strength) in the intake manifold 20 of each cylinder. An airflow control valve 31 is provided.
[0013]
A fuel injection valve 21 that directly injects fuel into the cylinder is attached to an upper portion of each cylinder of the engine 11. A spark plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 22.
[0014]
A knock sensor 32 that detects knocking, a cooling water temperature sensor 23 that detects the cooling water temperature, and a crank angle sensor 24 that detects the crank angle of the engine 11 are attached to the cylinder block of the engine 11. The crank angle sensor 24 is disposed so as to face the outer periphery of the signal rotor 37 fitted to the crankshaft of the engine 11, and teeth 37 a are formed on the outer periphery of the signal rotor 37 for each predetermined crank angle. At a specific crank angle position (crank angle reference position) on the outer periphery of the signal rotor 37, a missing tooth portion lacking 1 to 3 teeth 37a is formed. As a result, in the crank angle region other than the tooth missing portion with the rotation of the engine 11, crank angle pulse signals at equal intervals are output from the crank angle sensor 24 at every predetermined crank angle, and the tooth missing portion (crank angle reference position). Then, crank angle pulse signals with unequal intervals that increase the pulse interval are output.
[0015]
On the other hand, the exhaust pipe 25 of the engine 11 is provided with an upstream catalyst 26 and a downstream catalyst 27 for purifying the exhaust gas, and the air-fuel ratio or rich / lean of the exhaust gas is detected on the upstream side of the upstream catalyst 26. An exhaust gas sensor 28 (air-fuel ratio sensor, oxygen sensor, etc.) is provided. Further, a part of the exhaust gas is recirculated to the intake side between the downstream side of the upstream catalyst 26 in the exhaust pipe 25 and the surge tank 18 on the downstream side of the throttle valve 16 in the intake pipe 12. An EGR pipe 33 is connected, and an EGR valve 34 for controlling the exhaust gas recirculation amount (EGR amount) is provided in the middle of the EGR pipe 33.
[0016]
Outputs of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 30. The ECU 30 is mainly composed of a microcomputer, and executes various control programs stored in a built-in ROM (storage medium), so that the fuel injection amount of the fuel injection valve 21 and the fuel are controlled according to the engine operating state. The injection timing, the ignition timing of the spark plug 22 and the like are controlled.
[0017]
The ECU 30 determines whether the pulse interval of the crank angle pulse signal output from the crank angle sensor 24 is equal or unequal, and determines the position (missing tooth portion) where the unequal interval crank angle pulse signal is generated. Detected as a crank angle reference position, counts crank angle pulse signals at regular intervals from the crank angle reference position, detects the crank angle based on the counted number, discriminates the cylinder, and further generates crank angle pulse signals at regular intervals The engine speed is detected from the frequency.
[0018]
The ECU 30 also has an automatic engine stop / auto start function. When the driver stops the vehicle and a predetermined automatic stop condition is satisfied, fuel cut and ignition cut are executed to automatically start the engine 11. While stopping, the engine stop position at that time is detected and stored in the memory of the ECU 30. This engine stop position detection method is, for example, a stop position detection technique described in Japanese Patent No. 3186524, Japanese Patent Application Laid-Open No. 2002-39038, Japanese Patent Application Laid-Open No. 60-240875, Japanese Patent Application Laid-Open No. 11-107823, and the like. Can be used.
[0019]
The ECU 30 is stored in the memory of the ECU 30 when a predetermined automatic start condition (combustion start condition) is satisfied while the engine 11 is automatically stopped (when the driver performs an operation to start the vehicle). The cylinder is discriminated based on the engine stop position, the fuel is injected into the cylinders in the expansion stroke and the compression stroke and ignited to generate combustion, and the crankshaft is driven to rotate by this combustion pressure (cranking) ), The “combustion start” for starting the engine 11 without using the starter 38 is executed (see FIG. 2).
[0020]
Further, when the driver operates the ignition switch 39 to the start position while the engine is stopped, the ECU 30 executes “starter start” in which the starter 38 is energized to rotate the crankshaft to start the engine 11. The ignition timing at the start of the starter is set near the compression top dead center (TDC) in consideration of the startability. If the start by the combustion start fails, the starter 38 is automatically energized to start the starter.
[0021]
Here, the ignition / injection control at the start of combustion will be described with reference to FIG. FIG. 2 shows an example of ignition / injection control when starting combustion of the four-cylinder engine 11. In the example of FIG. 2, at the engine stop position, the first cylinder is in the expansion stroke, the third cylinder is in the compression stroke, the fourth cylinder is in the intake stroke, and the third cylinder is in the exhaust stroke. When an automatic start condition (combustion start condition) is established at this engine stop position, first, a cylinder (first cylinder) in the expansion stroke at the start position at the time of combustion start based on the engine stop position stored in the memory of the ECU 30 And the cylinder in the compression stroke (third cylinder) are discriminated, and fuel is injected into the cylinder in the expansion stroke (first cylinder) and the cylinder in the compression stroke (third cylinder), respectively. First, only the expansion stroke injection cylinder (first cylinder) is ignited to generate expansion stroke combustion, and the crankshaft is rotationally driven by the combustion pressure of the expansion stroke combustion. Thus, when the piston 40 of the compression stroke injection cylinder (third cylinder) gets over the compression top dead center (TDC) and reaches the target ignition timing set within the range of ATDC 5 ° C. to ATDC 35 ° C. A, the compression stroke The injection cylinder (third cylinder) is ignited to generate combustion, and the crankshaft is rotationally driven by this combustion pressure to start the engine 11.
[0022]
In the engine stop position, the cylinders in the intake stroke (fourth cylinder) and the cylinders in the exhaust stroke (second cylinder) are inducted in the respective cylinders as the crankshaft is rotationally driven by combustion start. Normal injection / ignition control is performed in which fuel is injected in the stroke and ignited near the compression top dead center (TDC). In addition, at the engine stop position, for the cylinders in the expansion stroke (first cylinder) and the cylinders in the compression stroke (third cylinder), the second and subsequent injections / ignitions are performed by compressing the fuel by injecting fuel in the intake stroke. Normal injection / ignition control is performed to ignite near the dead center (TDC).
[0023]
At the start of combustion, initially, since the rotation of the engine 11 is stopped and there is no rotational inertia, expansion stroke combustion is generated, and the crankshaft is rotationally driven by the combustion pressure. Therefore, compression is performed in the first compression stroke injection cylinder. If ignition is performed near the top dead center, the ignition timing is too early, and the combustion pressure in the compression stroke injection cylinder is not effectively converted into torque in the forward rotation direction, and the engine 11 may be locked and cannot be started.
[0024]
Therefore, in the combustion start of the present embodiment, the ignition timing of the first compression stroke injection cylinder is retarded from the ignition timing at the starter start (near the compression top dead center), and within the range of ATDC 5 ° C. to ATDC 35 ° C. I try to ignite. As a result, the combustion pressure of the first compression stroke injection cylinder can be effectively converted to the torque in the positive rotation direction in the same manner as the combustion pressure of the expansion stroke injection cylinder, and the crankshaft of the engine 11 is reliably positively rotated. It is possible to start by driving in the direction, and startability by combustion start can be improved.
[0025]
The present inventor conducted a test considering the appropriate range of the ignition timing of the first compression stroke injection cylinder at the start of combustion, and the test result is shown in FIG. In this combustion start test, the ignition timing of the first compression stroke injection cylinder is changed little by little in the range of BTDC 10 ° C. to ATDC 55 ° C., ignition is performed at each ignition timing, and crankshaft rotation that reaches at the combustion pressure is reached. The angle was measured. In this case, as the crankshaft rotation angle increases, the torque in the positive rotation direction generated by the combustion pressure of the first compression stroke injection cylinder increases, which means that startability is improved.
[0026]
3 is evaluated, when the ignition timing of the first compression stroke injection cylinder is within the range of ATDC 5 ° C. to ATDC 35 ° C., the crankshaft rotation angle reached by the combustion pressure of the first compression stroke injection cylinder becomes large. (In other words, the torque in the positive rotation direction generated by the combustion pressure of the first compression stroke injection cylinder increases), and it can be seen that the startability is good. On the other hand, when the ignition timing of the first compression stroke injection cylinder is earlier than ATDC 5 ° C. (when it is on the advance side), the combustion pressure is not effectively converted into the torque in the positive rotation direction. The torque in the rotational direction is reduced, the crankshaft rotation angle reached by the combustion pressure is reduced, and the startability is deteriorated. If the ignition timing of the first compression stroke injection cylinder is later than ATDC 35 ° C. (on the retard side), the combustion pressure becomes low, and the torque in the positive rotation direction due to the combustion pressure becomes small. The crankshaft rotation angle reached by the combustion pressure is reduced, and the startability is deteriorated.
[0027]
By the way, at the start of combustion, until the crank angle sensor 24 accurately detects the tooth missing portion (crank angle reference position) of the signal rotor 37, it is based on the count number of the crank angle pulse signal output from the crank angle sensor 24. The crank angle cannot be detected accurately. Therefore, detection of the crank angle and cylinder discrimination at the initial stage of combustion start are performed based on the engine stop position detected before start (when the engine was stopped last time). Therefore, it is difficult to accurately detect the engine stop position, so that even if the crank angle is detected from the count number of the crank angle pulse signal with the engine stop position as a reference, a crank angle detection error occurs.
[0028]
Therefore, in consideration of the control error of the ignition timing due to the detection error of the crank angle, the target ignition timing of the first compression stroke injection cylinder is in the range of ATDC 10 ° C. to ATDC 30 ° C., more preferably ATDC 15 ° C. A to ATDC 25 ° C. It is good to set to. If the detection error of the crank angle is large, the target ignition timing of the first compression stroke injection cylinder may be set to ATDC 20 ° C. which is the optimal ignition timing. In short, the target ignition timing is set in consideration of the crank angle detection error (ignition timing control error) so that the actual ignition timing falls within the proper range of ATDC 5 ° C. to ATDC 35 ° C. Just control.
[0029]
The ECU 30 executes a start target ignition timing setting routine shown in FIG. 4 every predetermined time or every predetermined crank angle when a start request of either combustion start or starter start occurs, and is referred to in the claims. It plays the role of ignition timing control means. When this routine is started, first, at step 101, it is determined whether or not it is ignition of the first compression stroke injection cylinder at the time of starting. If it is not ignition of the first compression stroke injection cylinder, the subsequent processing is performed. This routine is finished without executing. In this case, the target ignition timing is set by a target ignition timing setting routine (not shown) during normal operation.
[0030]
On the other hand, if it is determined in step 101 that the first compression stroke injection cylinder is ignited at the time of starting, the routine proceeds to step 102 where it is determined whether or not the starting mode is the combustion starting mode. If it is determined as “No” (in the case of starter start), the routine proceeds to step 104 where the target ignition timing is set to the compression top dead center (TDC). Even when the start by the combustion start fails, it is determined as “No” in the above step 102, the process proceeds to step 104, the target ignition timing is set to the compression top dead center (TDC), and the starter 38 is energized. Perform starter start.
[0031]
On the other hand, if it is determined in step 102 that the start mode is the combustion start mode, the routine proceeds to step 103, where the target ignition timing is set to the optimal ignition timing, ATDC 20 ° C. As a result, even if there is an ignition timing control error due to crank angle detection error at the beginning of combustion start, the actual ignition timing is controlled to fall within the proper range of ATDC 5 ° C. to ATDC 35 ° C. .
[0032]
According to the present embodiment described above, the ignition timing of the first compression stroke injection cylinder is retarded from the ignition timing (TDC) at the starter start at the time of combustion start, and within the range of ATDC 5 ° C. A to ATDC 35 ° C. A. Therefore, the torque in the positive rotation direction can be effectively generated by the combustion pressure of the first compression stroke injection cylinder, and the crankshaft can be reliably driven and started in the positive rotation direction. In addition, startability by combustion start can be improved.
[0033]
In the start target ignition timing setting routine of FIG. 4, the target ignition timing of the first compression stroke injection cylinder at the start of combustion is set to the optimal ignition timing ATDC 20 ° C., but this target ignition timing is set to the coolant temperature. In consideration of the starting conditions such as the above and the detection error of the crank angle, it may be changed within the appropriate range of ATDC 5 ° C. to ATDC 35 ° C.
[0034]
In addition, it goes without saying that the present invention is not limited to a four-cylinder engine and can be applied to an engine having three or less cylinders or five or more cylinders.
[Brief description of the drawings]
FIG. 1 is a diagram showing an entire engine control system according to an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the stroke of each cylinder, the injection timing at the start of combustion, and the ignition timing. FIG. 4 is a diagram showing test data for examining the relationship between the ignition timing of the compression stroke injection cylinder and the crankshaft rotation angle reached by the combustion pressure. FIG. 4 is a flowchart showing the processing flow of the start target ignition timing setting routine. Explanation of]
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 24 ... Crank angle sensor (crank angle pulse signal generation means), 30 ... ECU (ignition timing control) Means), 37 ... Signal rotor, 38 ... Starter, 39 ... Ignition switch, 40 ... Piston.

Claims (1)

スタータの駆動力により内燃機関のクランク軸を回転駆動して内燃機関を始動させる“スタータ始動”と、膨張行程又は圧縮行程にある気筒内に燃料を噴射して燃焼させ、その燃焼圧力で内燃機関のクランク軸を回転駆動して内燃機関を始動させる“燃焼始動”とを始動条件に応じて切り換えるようにした内燃機関の始動制御装置において、
燃焼始動時に始動位置において膨張行程にある膨張行程噴射気筒に対して、最初の点火を行い、始動位置において圧縮行程にある圧縮行程噴射気筒に対して、次の点火を行う点火時期制御手段を備え、
前記点火時期制御手段は、前記燃焼始動時の最初の圧縮行程噴射気筒の点火時期を上死点後5℃A〜上死点後35℃Aの範囲内で設定することを特徴とする内燃機関の始動制御装置。
“Starter start”, in which the crankshaft of the internal combustion engine is rotationally driven by the drive force of the starter to start the internal combustion engine, and fuel is injected into the cylinder in the expansion stroke or compression stroke, and the internal combustion engine is burned by the combustion pressure. In the internal combustion engine start control device, which switches between “combustion start” for starting the internal combustion engine by rotationally driving the crankshaft according to the start condition,
There is provided an ignition timing control means for performing the first ignition for the expansion stroke injection cylinder in the expansion stroke at the start position at the start of combustion and performing the next ignition for the compression stroke injection cylinder in the compression stroke at the start position. ,
The ignition timing control means sets the ignition timing of the first compression stroke injection cylinder at the start of combustion within a range of 5 ° C. A after top dead center to 35 ° C. after top dead center. Start control device.
JP2003128351A 2003-05-06 2003-05-06 Start control device for internal combustion engine Expired - Fee Related JP4075679B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003128351A JP4075679B2 (en) 2003-05-06 2003-05-06 Start control device for internal combustion engine
DE102004022163.4A DE102004022163B4 (en) 2003-05-06 2004-05-05 Start control system of an internal combustion engine with ignition timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128351A JP4075679B2 (en) 2003-05-06 2003-05-06 Start control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004332598A JP2004332598A (en) 2004-11-25
JP4075679B2 true JP4075679B2 (en) 2008-04-16

Family

ID=33504544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128351A Expired - Fee Related JP4075679B2 (en) 2003-05-06 2003-05-06 Start control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4075679B2 (en)
DE (1) DE102004022163B4 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183630A (en) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd Internal combustion engine and method of starting the same
JP2006183629A (en) 2004-12-28 2006-07-13 Nissan Motor Co Ltd Internal combustion engine and method of controlling the same
JP4534848B2 (en) * 2005-04-18 2010-09-01 株式会社デンソー Spark plug evaluation device
JP5396361B2 (en) * 2010-09-22 2014-01-22 日立オートモティブシステムズ株式会社 Internal combustion engine and control device therefor
JP6007841B2 (en) * 2013-03-25 2016-10-12 トヨタ自動車株式会社 Control device for internal combustion engine
JP6048296B2 (en) * 2013-04-19 2016-12-21 株式会社デンソー Engine control device
JP6111986B2 (en) * 2013-11-14 2017-04-12 マツダ株式会社 Control device for premixed compression ignition engine
JP2015183623A (en) * 2014-03-25 2015-10-22 三菱自動車工業株式会社 Internal combustion engine fuel injection system
EP3109443B1 (en) 2014-03-25 2021-01-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection device for internal combustion engine
JP7127337B2 (en) * 2018-04-06 2022-08-30 トヨタ自動車株式会社 Control device for internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240875A (en) * 1984-05-14 1985-11-29 Nissan Motor Co Ltd Cylinder discriminator for multi-cylinder internal-combustion engine
JPH02191871A (en) * 1989-01-18 1990-07-27 Toyota Motor Corp Start time ignition timing control device for internal combustion engine
JP3186524B2 (en) 1995-07-20 2001-07-11 トヨタ自動車株式会社 Internal combustion engine crank angle detection device
DE19743492B4 (en) 1997-10-01 2014-02-13 Robert Bosch Gmbh Method for starting an internal combustion engine, in particular of a motor vehicle
JPH11107823A (en) * 1997-10-01 1999-04-20 Honda Motor Co Ltd Stop position estimating device for internal combustion engine
DE10020104A1 (en) 2000-04-22 2001-10-31 Bosch Gmbh Robert Method for starting a multi-cylinder internal combustion engine
JP3939905B2 (en) 2000-07-27 2007-07-04 株式会社日立製作所 Engine starter

Also Published As

Publication number Publication date
DE102004022163A1 (en) 2005-01-05
JP2004332598A (en) 2004-11-25
DE102004022163B4 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
US7661403B2 (en) Start controller for internal combustion engine
JP2009019538A (en) Control device for cylinder injection type internal combustion engine
JP2000220458A (en) Method for controlling compression ignition type internal combustion engine
JP3971004B2 (en) Combustion switching control device for internal combustion engine
JP2012255366A (en) Control device and control method for internal combustion engine
JP2008190511A (en) Exhaust gas reduction device for direct injection gasoline engine
JP4075679B2 (en) Start control device for internal combustion engine
JP2005214102A (en) Control device of cylinder injection internal combustion engine
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4099755B2 (en) Start control device for internal combustion engine
JPH1193757A (en) Control device of internal combustion engine
JP3965577B2 (en) Start control device for internal combustion engine
JP3931820B2 (en) Internal combustion engine and control method for internal combustion engine
JP3265997B2 (en) Control device for internal combustion engine
US20120222407A1 (en) Catalyst warming-up controller for internal combustion engine
JP4198011B2 (en) Compressive self-ignition prevention device for internal combustion engine when starting
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP2003013785A (en) Control device of direct injection spark ignition type internal combustion engine
JP5593132B2 (en) Control device for internal combustion engine
JP2001098972A (en) Controller for spark-ignition direct injection engine
JP3648864B2 (en) Lean combustion internal combustion engine
US11162452B2 (en) Control apparatus for internal combustion engine
JP3812138B2 (en) Control device for turbocharged engine
US20210301751A1 (en) Control apparatus for internal combustion engine
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Ref document number: 4075679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees