JP4075055B2 - Impact energy absorbing member and manufacturing method thereof - Google Patents

Impact energy absorbing member and manufacturing method thereof Download PDF

Info

Publication number
JP4075055B2
JP4075055B2 JP2003100061A JP2003100061A JP4075055B2 JP 4075055 B2 JP4075055 B2 JP 4075055B2 JP 2003100061 A JP2003100061 A JP 2003100061A JP 2003100061 A JP2003100061 A JP 2003100061A JP 4075055 B2 JP4075055 B2 JP 4075055B2
Authority
JP
Japan
Prior art keywords
panel
impact energy
absorbing member
energy absorbing
convex portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003100061A
Other languages
Japanese (ja)
Other versions
JP2004306682A (en
Inventor
寛 桜井
治 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003100061A priority Critical patent/JP4075055B2/en
Publication of JP2004306682A publication Critical patent/JP2004306682A/en
Application granted granted Critical
Publication of JP4075055B2 publication Critical patent/JP4075055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、自動車の構造部材として用いられて、衝突時に崩壊しながら衝撃エネルギを吸収して衝撃を和らげるのに利用される衝撃エネルギ吸収部材に関するものである。
【0002】
【従来の技術】
上記した衝撃エネルギの吸収部材としては、近年注目されている多孔質金属がある。従来における多孔質金属の成形方法としては、発泡性金属粉末として水素化マグネシウムを用いて焼結体を発泡させることによって、金属の多孔質構造体を得る方法があった(例えば、特許文献1参照。)。
【0003】
また、これとは別の多孔質金属の成形方法として、金属の溶解工程の後に発泡工程を設けて、溶融金属の粘性を上昇させたうえで発泡介助剤を用いて発泡させる方法がある(例えば、特許文献2参照。)。
【0004】
一方、上記した多孔質金属以外の衝撃エネルギ吸収部材としては、剛性を高めた金属製パネル体がある。この金属製パネル体は、コーン形状のエンボスを有する一方のパネルと、平板状の他方のパネルを備えており、一方のパネルのエンボス底部を平板状の他方のパネルにスポット溶接する構造を成している(例えば、特許文献3参照。)。
【0005】
【特許文献1】
特開平11−012605号公報
【特許文献2】
特開平07−233428号公報
【特許文献3】
特開2002−307117号公報
【0006】
【発明が解決しようとする課題】
ところが、従来において、衝撃エネルギ吸収部材を多孔質金属とした場合に
は、その成形時に金属の融点近傍まで一旦材料を加熱する必要があることから、製造コストがかかるという問題があった。
【0007】
一方、従来の衝撃エネルギ吸収部材としての剛性を高めた金属製パネル体にあっては、一方のパネルにおけるコーン形状のエンボス底部を他方のパネルに接合させているため、空間を形成することができず、多孔質金属に類似する構造を形成することができないという問題を有しており、これらの問題を解決することが従来の課題となっていた。
【0008】
【発明の目的】
本発明は、上記した従来の課題に着目してなされたもので、多孔質金属と同レベルの衝撃エネルギ吸収能を有しかつ製造コストが安価な衝撃エネルギ吸収部材及びその製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の衝撃エネルギ吸収部材は、一方のパネルに設けた多数の凸部と他方のパネルに設けた多数の凸部との間に空洞を形成するべく各凸部を互いに相反する側に向けて各凸部以外のフランジ部同士を接合して成るパネル体を複数備え、上記パネル体を1層おきにパネル体のサイズのほぼ半分の寸法分だけずらして順次積層して、積層方向に隣接する一方のパネル体の凸部以外のフランジ部と他方のパネル体の凸部とを接合した構成としており、この衝撃エネルギ吸収部材の構成を前述した従来の課題を解決するための手段としている。
【0010】
【発明の効果】
本発明の衝撃エネルギ吸収部材では、上記した構成としたから、プレス成形によるパネルの組合せによって、多孔質金属に類似する構造を得ることができると共に、同一平面内に位置するパネル体同士を直接接合することなく、大きなサイズの衝撃エネルギ吸収部材とすることができ、したがって、製造コストの低減を実現したうえで、多孔質金属と同等の吸収エネルギ量を確保することが可能であるという非常に優れた効果がもたらされる。
【0011】
【発明の実施の形態】
本発明において、パネルに設ける凸部を、例えば、断面が四角形状をなすものとすると、プレス成形機によるエンボス加工時においてポンチ底部で割れが発生する危険性が高くなる。この際、ポンチ底部のR(丸み)を大きくする方が歪を均一化することができ、エンボスの大きさに対して深さを大きくすることができることから、凸部を半円形状又は半楕円形状の断面を有する形状とすることが望ましい。
【0012】
凸部を断面が略半円形状を成すものとした場合、隣接する凸部の中心間距離が凸部の直径の2.5倍よりも大きいと、質量の増加が大きくなってしまい、一方、隣接する凸部の中心間距離が近すぎると、プレス成形によって断面略半円形状を成す凸部の成形ができなくなることから、隣接する凸部の中心間距離を凸部の直径の1.5〜2.5倍とすることが必要である。
【0013】
また、ひずみ時効性の鋼板は、成形時に耐力が低く熱処理後に耐力が上昇するという特性を有しているため、本発明のようにひずみ時効性の鋼板を用いれば、規則的に整列している凸部、例えば、断面半円状の凸部を成形するのに必要な成形性及び成形後においてパネルに要求される高耐力を有する材料の特性をより高い耐力レベルにまで両立させることができる。
【0014】
【実施例】
以下、図面を参照しながら本発明の実施例について説明するが、本発明は、以下の実施例のみに限定されないことは言うまでもない。
【0015】
図1〜図4は、本発明の衝撃エネルギ吸収部材の一実施例を示しており、図1に示すように、この衝撃エネルギ吸収部材1は、複数枚のパネル体2を備えている。
【0016】
パネル体2は、板厚0.5mm、引張り強度390MPaのひずみ時効性を有する鋼板から成る2枚のパネル3,3を具備している。パネル3には、断面が直径10mm程度のほぼ半円形状を成す多数の凸部3aが約20mmの中心間距離をとりつつ規則的に配置してあり、一方のパネル3における多数の凸部3aと他方のパネル3における多数の凸部3aとの間に空洞4を形成するべく各凸部3a,3aを互いに相反する側に向けて各凸部3a以外のフランジ部3b,3b同士をスポット溶接によって接合することにより、パネル体2を形成している。
【0017】
この場合、パネル3の断面略半円形状を成す凸部3aをプレス加工により成形するようにしているが、プレス成形時における材料の流入を行い易くして凸部3aの成形を容易にするために、凸部3aを配置しようとする部位の周囲に小さなスリット又は孔を設けておいてもよい。
【0018】
この衝撃エネルギ吸収部材1において、上記パネル体2を順次積層するようにしており、隣接するパネル体2,2は、断面略半円形状を成す凸部3aの各頂点同士が当たらないようにして接合してある、すなわち、一方のパネル体2の凸部3a以外のフランジ部3bと他方のパネル体2の凸部3aの頂点とを当接させて接合してある。この実施例において、パネル体2,2同士の接合には、熱硬化型の接着剤を用いている。
【0019】
上記した衝撃エネルギ吸収部材1を製造するに際しては、まず、図1(a)に示すように、板厚0.5mm、引張り強度390MPaのひずみ時効性を有する鋼板3’に対して、金型P,Dによるプレス加工を行って、図1(b)に示すように、断面が直径10mm程度のほぼ半円形状を成す多数の凸部3aを約20mmの中心間距離をもって規則的に配置したパネル3を複数形成する。
【0020】
次いで、上記パネル3を適当な大きさに切断するのに続いて、図1(c)に示すように、一方のパネル3の凸部3aと他方のパネル3の凸部3aとの間に空洞4を形成するべく各凸部3a,3aを互いに相反する側に向けてフランジ部3b,3b同士を電極チップC,Cで挟み込み、図1(d)に示すように、パネル3,3同士をスポット溶接により接合してパネル体2を形成する。
【0021】
次に、図1(e)に示すように、上記パネル体2を順次積層し、断面略半円形状を成す凸部3aの各頂点同士が当たらないようにして隣接するパネル体2,2同士を熱硬化型の接着剤により接合する、すなわち、一方のパネル体2の凸部3a以外のフランジ部3bと他方のパネル体2の凸部3aの頂点とを当接させて隣接するパネル体2,2同士を熱硬化型の接着剤により接合する。
【0022】
ここで、上記プレス金型P,Dよりも大きなサイズの衝撃エネルギ吸収部材1を製造する場合には、図2に示すように、パネル体2を順次積層するに際して、1層おきにパネル体2のサイズのほぼ半分の寸法分だけずらして積層するようになすことによって、図2の拡大円内に示すように、同一平面内に位置するパネル体2同士を直接接合することなく、大きなサイズの衝撃エネルギ吸収部材1を製造することができる。
【0023】
この衝撃エネルギ吸収部材1において、パネル3に、板厚0.5mm、引張り強度390MPaのひずみ時効性を有する鋼板を用いているので、車体構造用として適用した場合には、塗装工程における熱処理、つまり170℃、20分の熱処理により、プレス成形時に導入されたひずみで板材料が硬化して440MPa程度まで強度が上昇することから、変形荷重が作用した際の構造体中の耐力を増加させることができる。
【0024】
そこで、上記衝撃エネルギ吸収部材1の変形の様子と強度特性を調べたところ、図3及び図4に示すように、白抜き矢印方向に作用した荷重Lに対して、パネル体2の多数の空洞4が順じ潰れてパネル体2に順次変形が生じており、これにより、多孔質金属と同レベルの崩壊荷重を得られることが判った。
【0025】
上記した衝撃エネルギ吸収部材1では、プレス成形によるパネル3を用いて多数の空洞4を有するパネル体2を形成すると共に、このパネル体2を順次積層するようにしているので、多孔質金属に類似する構造を容易且つ安価に得ることができ、したがって、製造コストの低減を実現したうえで、多孔質金属と同等の吸収エネルギ量を確保することが可能となる。
【0026】
また、上記した衝撃エネルギ吸収部材1において、図5に示すように、パネル体2の積層方向の荷重Lに対しては、図3及び図4に示したような変形特性を呈するが、これと直交する方向の荷重Lhは、各層におけるパネル体2のフランジ部3bが座屈して対応することから、この方向の崩壊荷重は、パネル体2の積層方向の崩壊荷重と比べて大きいものとなる、すなわち、この衝撃エネルギ吸収部材1は異方性の変形特性を有していることとなる。
【0027】
上記した実施例では、パネル3にプレス加工により成形する凸部3aが断面略半円形状を成す場合を示したが、これに限定されるものではなく、例えば、凸部の断面が略半楕円形状を成していても差し支えない。
【0028】
また、上記した実施例では、パネル3,3同士の接合にスポット溶接を採用した場合を示したが、これに限定されるものではなく、他の接合手段として、接着剤による接合やかしめによる接合を用いてもよい。
【図面の簡単な説明】
【図1】本発明の一実施例による衝撃エネルギ吸収部材の製造工程説明図(a)〜(e)である。
【図2】図1における衝撃エネルギ吸収部材の製造で用いたプレス成形型よりも大きいサイズの衝撃エネルギ吸収部材の製造要領を示す部分断面説明図である。
【図3】図1における衝撃エネルギ吸収部材に積層方向の荷重が加わった際の変形状況を示す斜視説明図である。
【図4】図3に示した状況における衝撃エネルギ吸収部材の変形特性を表すグラフである。
【図5】図1における衝撃エネルギ吸収部材が異方性の変形特性を有していることを示す断面説明図である。
【符号の説明】
1 衝撃エネルギ吸収部材
2 パネル体
3 パネル
3a 凸部
3b フランジ部
4 空洞
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an impact energy absorbing member that is used, for example, as a structural member of an automobile and is used to absorb impact energy and soften the impact while collapsing during a collision.
[0002]
[Prior art]
As the impact energy absorbing member, there is a porous metal which has been attracting attention in recent years. As a conventional method for forming a porous metal, there is a method of obtaining a porous structure of metal by foaming a sintered body using magnesium hydride as an expandable metal powder (see, for example, Patent Document 1). .)
[0003]
As another porous metal molding method, there is a method in which a foaming step is provided after the metal melting step to increase the viscosity of the molten metal and then foam using a foaming aid (for example, , See Patent Document 2).
[0004]
On the other hand, as an impact energy absorbing member other than the above-described porous metal, there is a metal panel having increased rigidity. This metal panel body includes one panel having cone-shaped embossing and the other flat panel, and has a structure in which the embossed bottom of one panel is spot-welded to the other flat panel. (For example, refer to Patent Document 3).
[0005]
[Patent Document 1]
JP 11-012605 A [Patent Document 2]
JP 07-233428 A [Patent Document 3]
JP-A-2002-307117 [0006]
[Problems to be solved by the invention]
However, conventionally, when the impact energy absorbing member is made of a porous metal, there has been a problem that it takes a manufacturing cost because it is necessary to heat the material once to the vicinity of the melting point of the metal at the time of molding.
[0007]
On the other hand, in the metal panel body with increased rigidity as a conventional impact energy absorbing member, since by bonding the embossed bottom of the cone shape in the one panel to the other panel, to form a closed space However, it has a problem that a structure similar to a porous metal cannot be formed, and it has been a conventional problem to solve these problems.
[0008]
OBJECT OF THE INVENTION
The present invention has been made paying attention to the above-described conventional problems, and provides an impact energy absorbing member having the same level of impact energy absorption capability as a porous metal and having a low manufacturing cost, and a method for manufacturing the same. It is an object.
[0009]
[Means for Solving the Problems]
In the impact energy absorbing member of the present invention, the convex portions are directed to the opposite sides so as to form cavities between the multiple convex portions provided on one panel and the multiple convex portions provided on the other panel. A plurality of panel bodies formed by joining flange portions other than the convex portions are provided, and the panel bodies are sequentially stacked by shifting by an amount approximately half the size of the panel body every other layer, and adjacent to each other in the stacking direction . The flange portion other than the convex portion of one panel body is joined to the convex portion of the other panel body, and the configuration of the impact energy absorbing member is a means for solving the above-described conventional problems.
[0010]
【The invention's effect】
Since the impact energy absorbing member of the present invention has the above-described configuration, a structure similar to a porous metal can be obtained by combining panels by press molding , and panel bodies located in the same plane can be directly joined together. Therefore, it is possible to obtain a large-sized impact energy absorbing member, and therefore, it is possible to secure an amount of absorbed energy equivalent to that of a porous metal while realizing a reduction in manufacturing cost. Effect.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, if the convex portion provided on the panel has, for example, a quadrangular cross section, there is a high risk of cracking at the bottom of the punch during embossing by a press molding machine. At this time, increasing R (roundness) at the bottom of the punch can make the distortion uniform and increase the depth with respect to the size of the emboss. It is desirable to have a shape having a cross section.
[0012]
When the convex portion has a substantially semicircular cross section, if the distance between the centers of adjacent convex portions is larger than 2.5 times the diameter of the convex portion, the increase in mass becomes large, If the distance between the centers of the adjacent convex portions is too close, it becomes impossible to form the convex portion having a substantially semicircular cross section by press molding, so the distance between the centers of the adjacent convex portions is 1.5 of the diameter of the convex portion. It is necessary to make it ~ 2.5 times.
[0013]
In addition, the strain-aged steel sheet has a characteristic that the yield strength is low at the time of forming and the yield strength is increased after the heat treatment, so if the strain-aged steel sheet is used as in the present invention, it is regularly aligned. It is possible to achieve both the formability necessary for forming a convex portion, for example, a convex portion having a semicircular cross section, and the characteristics of a material having a high yield strength required for the panel after molding to a higher strength level.
[0014]
【Example】
Hereinafter, examples of the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples.
[0015]
1 to 4 show an embodiment of an impact energy absorbing member of the present invention. As shown in FIG. 1, the impact energy absorbing member 1 includes a plurality of panel bodies 2.
[0016]
The panel body 2 includes two panels 3 and 3 made of a steel plate having a thickness of 0.5 mm and a tensile strength of 390 MPa. In the panel 3, a large number of convex portions 3a having a substantially semicircular shape with a cross section of about 10 mm in diameter are regularly arranged with a center-to-center distance of about 20 mm. The flanges 3b, 3b other than the respective protrusions 3a are spot welded so that the respective protrusions 3a, 3a face each other in order to form a cavity 4 between the first panel 3 and the plurality of protrusions 3a in the other panel 3. The panel body 2 is formed by joining by the above.
[0017]
In this case, the convex part 3a having a substantially semicircular cross section of the panel 3 is formed by press working. However, in order to facilitate the inflow of the material at the time of press molding and to facilitate the formation of the convex part 3a. In addition, a small slit or hole may be provided around the portion where the convex portion 3a is to be disposed.
[0018]
In the impact energy absorbing member 1, the panel bodies 2 are sequentially laminated, and the adjacent panel bodies 2 and 2 are arranged so that the apexes of the convex portions 3a having a substantially semicircular cross section do not hit each other. In other words, the flange portion 3b other than the convex portion 3a of one panel body 2 and the apex of the convex portion 3a of the other panel body 2 are brought into contact with each other and joined. In this embodiment, a thermosetting adhesive is used for joining the panel bodies 2 and 2 together.
[0019]
When manufacturing the impact energy absorbing member 1 described above, first, as shown in FIG. 1A, a mold P is applied to a steel plate 3 'having a plate thickness of 0.5 mm and a tensile strength of 390 MPa. , D, and as shown in FIG. 1 (b), a panel in which a large number of convex portions 3a having a substantially semicircular cross section having a diameter of about 10 mm are regularly arranged with a center-to-center distance of about 20 mm. A plurality of 3 are formed.
[0020]
Next, after cutting the panel 3 to an appropriate size, as shown in FIG. 1C, a cavity is formed between the convex portion 3a of one panel 3 and the convex portion 3a of the other panel 3. The flanges 3b and 3b are sandwiched between the electrode chips C and C so that the convex portions 3a and 3a are opposed to each other in order to form 4, and the panels 3 and 3 are connected to each other as shown in FIG. The panel body 2 is formed by joining by spot welding.
[0021]
Next, as shown in FIG. 1 (e), the panel bodies 2 are sequentially laminated, and adjacent panel bodies 2 and 2 are arranged so that the vertices of the convex portions 3a having a substantially semicircular cross section do not touch each other. Are bonded by a thermosetting adhesive, that is, the adjacent panel body 2 with the flange 3b other than the projection 3a of one panel body 2 and the apex of the projection 3a of the other panel body 2 in contact with each other. , 2 are joined together by a thermosetting adhesive.
[0022]
Here, when manufacturing the impact energy absorbing member 1 having a size larger than that of the press dies P, D, as shown in FIG. As shown in the enlarged circle of FIG. 2, the panel bodies 2 located in the same plane are directly joined to each other without being directly joined to each other. The impact energy absorbing member 1 can be manufactured.
[0023]
In this impact energy absorbing member 1, the panel 3 is made of a steel plate having a strain aging property of 0.5 mm thickness and a tensile strength of 390 MPa. By heat treatment at 170 ° C. for 20 minutes, the plate material is cured by the strain introduced at the time of press forming and the strength is increased to about 440 MPa, so that the proof stress in the structure when a deformation load is applied can be increased. it can.
[0024]
Accordingly, when the deformation state and strength characteristics of the impact energy absorbing member 1 were examined, as shown in FIGS. 3 and 4, a large number of cavities of the panel body 2 with respect to the load L acting in the direction of the white arrow. 4 was crushed in order and the panel body 2 was sequentially deformed, and it was found that a collapse load of the same level as that of the porous metal can be obtained.
[0025]
In the impact energy absorbing member 1 described above, the panel body 2 having a large number of cavities 4 is formed by using the panel 3 formed by press molding, and the panel bodies 2 are sequentially laminated. Thus, it is possible to easily and inexpensively obtain the structure to be achieved. Therefore, it is possible to secure an amount of absorbed energy equivalent to that of the porous metal while realizing a reduction in manufacturing cost.
[0026]
Moreover, in the above-described impact energy absorbing member 1, as shown in FIG. 5, with respect to the load L in the stacking direction of the panel body 2, the deformation characteristics as shown in FIGS. 3 and 4 are exhibited. Since the flange portion 3b of the panel body 2 in each layer corresponds to the load Lh in the orthogonal direction, the collapse load in this direction is larger than the collapse load in the stacking direction of the panel body 2. That is, the impact energy absorbing member 1 has anisotropic deformation characteristics.
[0027]
In the above-described embodiment, the case where the convex portion 3a formed by pressing on the panel 3 has a substantially semicircular cross section is shown. However, the present invention is not limited to this. For example, the convex portion has a substantially semi-elliptical cross section. It does not matter if it has a shape.
[0028]
Moreover, although the case where spot welding was adopted for joining the panels 3 and 3 was shown in the above-described embodiment, it is not limited to this, and joining by adhesive or caulking as another joining means May be used.
[Brief description of the drawings]
FIGS. 1A to 1E are manufacturing process explanatory views (a) to (e) of an impact energy absorbing member according to an embodiment of the present invention. FIGS.
2 is a partial cross-sectional explanatory view showing a manufacturing procedure of an impact energy absorbing member having a size larger than that of a press mold used for manufacturing the impact energy absorbing member in FIG. 1;
FIG. 3 is a perspective explanatory view showing a deformation state when a load in the stacking direction is applied to the impact energy absorbing member in FIG. 1;
4 is a graph showing deformation characteristics of an impact energy absorbing member in the situation shown in FIG.
FIG. 5 is a cross-sectional explanatory view showing that the impact energy absorbing member in FIG. 1 has anisotropic deformation characteristics.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Impact energy absorption member 2 Panel body 3 Panel 3a Convex part 3b Flange part 4 Cavity

Claims (6)

一方のパネルに設けた多数の凸部と他方のパネルに設けた多数の凸部との間に空洞を形成するべく各凸部を互いに相反する側に向けて各凸部以外のフランジ部同士を接合して成るパネル体を複数備え、上記パネル体を1層おきにパネル体のサイズのほぼ半分の寸法分だけずらして順次積層して、積層方向に隣接する一方のパネル体の凸部以外のフランジ部と他方のパネル体の凸部とを接合したことを特徴とする衝撃エネルギ吸収部材。In order to form a cavity between a large number of convex portions provided on one panel and a large number of convex portions provided on the other panel, the flange portions other than the convex portions are made to face each other on opposite sides. A plurality of panel bodies formed by joining are provided, and the panel bodies are sequentially laminated by shifting by an amount approximately half the size of the panel body every other layer, except for the convex portion of one panel body adjacent in the laminating direction . An impact energy absorbing member, wherein a flange portion and a convex portion of the other panel body are joined. 凸部は断面略半円形状を成し、隣接する凸部の中心間距離を凸部の直径の1.5〜2.5倍とした請求項1に記載の衝撃エネルギ吸収部材。  The impact energy absorbing member according to claim 1, wherein the convex portion has a substantially semicircular cross section, and the distance between the centers of adjacent convex portions is 1.5 to 2.5 times the diameter of the convex portion. 凸部は断面略半楕円形状を成している請求項1に記載の衝撃エネルギ吸収部材。  The impact energy absorbing member according to claim 1, wherein the convex portion has a substantially semi-elliptical cross section. パネル素材としてひずみ時効性板材を用いた請求項1〜3のいずれか1つの項に記載の衝撃エネルギ吸収部材。  The impact energy absorbing member according to any one of claims 1 to 3, wherein a strain-aged plate is used as the panel material. パネル素材としてひずみ時効性を有するスチール板材を用いた請求項1〜4のいずれか1つの項に記載の衝撃エネルギ吸収部材。  The impact energy absorbing member according to any one of claims 1 to 4, wherein a steel plate having strain aging is used as a panel material. 請求項1〜5のいずれかの衝撃エネルギ吸収部材を製造するに際して、プレス加工により多数の凸部を有するパネルを複数形成した後、一方のパネルの凸部と他方のパネルの凸部との間に空洞を形成するべく各凸部を互いに相反する側に向けて各凸部以外のフランジ部同士を接合してパネル体を形成し、このパネル体を1層おきにパネル体のサイズのほぼ半分の寸法分だけずらして順次積層して、積層方向に隣接する一方のパネル体の凸部以外のフランジ部に他方のパネル体の凸部を接合することを特徴とする衝撃エネルギ吸収部材の製造方法。In producing the impact energy absorbing member according to any one of claims 1 to 5, after forming a plurality of panels having a large number of convex portions by press working, between the convex portions of one panel and the convex portions of the other panel A panel body is formed by joining flange portions other than the respective convex portions so that the respective convex portions are opposed to each other in order to form cavities, and this panel body is formed at almost half the size of the panel body every other layer. The method of manufacturing an impact energy absorbing member comprising: sequentially laminating by shifting the dimension of the first and second panels, and joining the convex part of the other panel body to a flange part other than the convex part of one panel body adjacent in the stacking direction. .
JP2003100061A 2003-04-03 2003-04-03 Impact energy absorbing member and manufacturing method thereof Expired - Fee Related JP4075055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100061A JP4075055B2 (en) 2003-04-03 2003-04-03 Impact energy absorbing member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100061A JP4075055B2 (en) 2003-04-03 2003-04-03 Impact energy absorbing member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004306682A JP2004306682A (en) 2004-11-04
JP4075055B2 true JP4075055B2 (en) 2008-04-16

Family

ID=33464303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100061A Expired - Fee Related JP4075055B2 (en) 2003-04-03 2003-04-03 Impact energy absorbing member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4075055B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062750A1 (en) * 2022-09-21 2024-03-28 株式会社ジーテクト Shock-absorbing member, method for producing shock-absorbing member for automobile, and method for producing side sill
JP7253102B1 (en) 2022-09-21 2023-04-05 株式会社ジーテクト Shock absorbing member, method for manufacturing shock absorbing member for automobile, and method for manufacturing side sill

Also Published As

Publication number Publication date
JP2004306682A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US10889095B2 (en) Lamination structure and a method for manufacturing the same
US9108239B2 (en) Sheet material having concave-convex section, and laminated structure and vehicle panel using the same
US8835016B2 (en) Optimal sandwich core structures and forming tools for the mass production of sandwich structures
WO2014148618A1 (en) Production method for press-molded member and press molding device
JP5893955B2 (en) Method for manufacturing fastening structure of foamed resin core composite plate
WO2006049406A1 (en) Curved honeycomb structural and method for procesing the same
JP6892099B2 (en) Manufacturing method of laminated structure
JP5733900B2 (en) Manufacturing method of plate heat exchanger and plate heat exchanger
KR20150049290A (en) Tubular back beam for vehicle and manufacturing method thereof
US20130244006A1 (en) Optimal sandwich core structures and forming tools for the mass production of sandwich structures
JP4075055B2 (en) Impact energy absorbing member and manufacturing method thereof
JP2017196782A (en) Laminate structure
JP5980110B2 (en) Diffusion bonding jig and diffusion bonding method
JP7350489B2 (en) Vehicle structural components
JP7398081B2 (en) hollow structure
KR100519943B1 (en) Honeycomb core , mold for honeycomb core and manufacturing method of honeycomb core
CA2538762A1 (en) A method of producing honeycomb structure
KR100513626B1 (en) Method for manufacturing aluminium sheets material
JPH08128487A (en) Energy absorbing member and manufacture thereof
JP5446336B2 (en) Metal plate joining method, joining apparatus and joined product
JP6662142B2 (en) Method of manufacturing panel-shaped molded product
CA2848562C (en) Optimal sandwich core structures and forming tools for the mass production of sandwich structures
KR100730572B1 (en) Manufacturing Method of Sandwich Type Panel and Manufacturing Metal Mold Set
JP2014238912A (en) Battery pack and manufacturing method thereof
WO2022219990A1 (en) Vehicular frame structure and method for manufacturing vehicular frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees