JP4074368B2 - Heat generation type thin film element sensor and manufacturing method thereof - Google Patents

Heat generation type thin film element sensor and manufacturing method thereof Download PDF

Info

Publication number
JP4074368B2
JP4074368B2 JP06424398A JP6424398A JP4074368B2 JP 4074368 B2 JP4074368 B2 JP 4074368B2 JP 06424398 A JP06424398 A JP 06424398A JP 6424398 A JP6424398 A JP 6424398A JP 4074368 B2 JP4074368 B2 JP 4074368B2
Authority
JP
Japan
Prior art keywords
thin film
insulating layer
conductive film
substrate
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06424398A
Other languages
Japanese (ja)
Other versions
JPH11251104A (en
Inventor
勤 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP06424398A priority Critical patent/JP4074368B2/en
Publication of JPH11251104A publication Critical patent/JPH11251104A/en
Application granted granted Critical
Publication of JP4074368B2 publication Critical patent/JP4074368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Non-Adjustable Resistors (AREA)
  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、発熱状態にした薄膜素子の抵抗値の変化から相対湿度や相対流量、ガス等を検出する発熱型薄膜素子を備えた発熱型薄膜素子センサとその製造方法に関する。
【0002】
【従来の技術】
従来のこの種の発熱型薄膜素子を備えたセンサは、図5に示すように、例えばシリコン単結晶等の半導体基板1の上面に下側絶縁膜2を形成し、その上に発熱部と通電部及び電極部を含む薄膜からなる導電膜3を設けたものがあった。半導体基板1には、導電膜3とは反対側の下方に開口させて下側絶縁膜2に達する空洞部4が形成されている。空洞部4は、異方性エッチングにより形成され、空洞部4内の下側絶縁膜2と発熱部を含む導電膜3とにより、発熱型薄膜素子5を構成していた。また、下側絶縁膜2の上には、導電膜3の発熱部を覆って上側絶縁膜6が設けられていた。
【0003】
この発熱型薄膜素子5を備えたセンサの製造は、シリコン単結晶等の半導体基板1の上面にスパッタリングによりSiO2やTa25等により下側絶縁膜2を形成し、その上にPt等の導電膜3を形成し、エッチング等により所定の形状に形成する。下側絶縁膜2の表面には、必要に応じて導電膜3を覆うように、スバッタリング等によりSiO2やTa25等の上側絶縁膜6を形成する。次に、半導体基板1の下方から下側絶縁膜2まで異方性エッチングして、空洞部4を形成するものであった。
【0004】
【発明が解決しようとする課題】
このような従来の発熱型薄膜素子を備えたセンサは、シリコンウエハの基板1に下側絶縁膜2を梁状にして導電膜3の抵抗値変化から湿度や流量を検知するため、その感度を高めるために導電膜3に電流を流して加熱し、その状態の抵抗値から検知対象のデータを検知していた。しかし、導電膜3の熱分布が不均一となるため、特定の部位の温度が常に高くなり易く、その部分の劣化を早め、断線の原因ともなっていた。さらに、感度の低下や寿命の低下にも繋がり易いものであった。
【0005】
この発明は、上記従来の技術の問題点に鑑みてなされたもので、熱分布に偏りが少なく、耐久性及び検知精度が高い発熱型薄膜素子センサとその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明の発熱型薄膜素子センサは、半導体の基板の下方に開口した空洞部と、この基板の表面側に絶縁層を介して形成された導電膜と、この導電膜と上記絶縁層を介して反対側の上記空洞部内に形成された発熱部と、上記発熱部と上記導電膜との間に絶縁層を介して設けられた多結晶Si等の熱伝導率の良い均熱層とを備えたものである。上記基板は半導体単結晶のウエハであり、上記発熱部は上記半導体に所定の不純物が拡散した拡散部である。上記導電膜と発熱部の電極は上記基板の表面側に各々別々に設けられている。
【0007】
この発熱型薄膜素子センサは、検知部である導電膜と、この導電膜を加熱する発熱部とを絶縁層及び均熱層を介して別々に形成したものである。検知に際しては、発熱部に電流を流して、導電膜を所定の温度に加熱して所定の検知を行う。また、表面に埃等が付着した場合は、発熱部により導電膜を高温に加熱して埃を除去する。
【0008】
この発明の発熱型薄膜素子センサの製造方法は、基板に所定のパターンの発熱部を形成し、この発熱部の表面側に絶縁層を形成し、その絶縁層の表面に上記不純物拡散部と対面して熱伝導率の高い均熱層を真空薄膜形成技術により形成し、さらに絶縁層を介して導電膜を形成し、上記基板裏面側から上記発熱部に向けてエッチングを行い、上記基板裏面に空洞部を形成するとともに、この空洞部内に上記発熱部を残すようにする発熱型薄膜素子センサの製造方法である。
【0009】
特に、この発明の発熱型薄膜素子センサの製造方法は、半導体基板に所定のパターンの発熱部となる不純物拡散部を形成する。そして、この不純物拡散部が形成された上記基板表面に絶縁層を形成し、その絶縁層の表面に、上記不純物拡散部と対面して熱伝導率の高いSi等の均熱層を真空薄膜形成技術により形成し、さらに絶縁層を介して導電膜を形成する。そして、この導電膜を覆って保護する絶縁層を形成する。この後、上記基板裏面側から上記不純物拡散部に向けて異方性エッチングを行い、上記基板裏面に空洞部を形成しする。このとき、上記不純物拡散部は、エッチングされずに選択的に残るように上記異方性エッチングを行う。
【0010】
【発明の実施の形態】
以下、この発明の発熱型薄膜素子センサの一実施の形態について図面に基づいて説明する。この実施形態の発熱型薄膜素子センサは、シリコン(Si)単結晶の半導体基板10を有し、この半導体基板10には、下方に開口した空洞部14が形成され、この空洞部14の上部は、SiO2の1μm程度の薄い絶縁層12により覆われている。
【0011】
絶縁層12にはさらにSiO2の1μm程度の薄い絶縁層13が積層され、絶縁層12,13の間の中央部には、Siの多結晶薄膜からなる均熱層15が挟み込まれている。均熱15の厚さは、例えば、5000〜10000Å程度の厚さである。
【0012】
絶縁層13の表面側には、4000〜5000Å程度の厚さの導電膜16がコ字状に形成されている。導電膜16は、プラチナ(Pt)やチタン(Ti)等の温度係数の大きい金属薄膜からなる。この導電膜16の両端部には、基板10の表面の側方に形成された図示しない電極が形成されている。さらに、導電膜16の表面には、保護膜である1μm程度の薄いSiO2の絶縁層18が積層されている。
【0013】
空洞部14内の絶縁層12の裏面側には、導電膜16に沿って対面した形状のコ字型の発熱部20が形成されている。発熱部20は、シリコンに高濃度に不純物であるボロン(B)を拡散したP+Siによって構成される。この不純物拡散部である発熱部20のボロン濃度は、例えば約1020cm-3である。コ字形の発熱部20の両端部から続く拡散部は、絶縁層12の裏面に沿って基板10の側方に至り、基板10の表面に形成された電極に接続されている。導電膜16の電極と発熱部20の電極とは、基板10の表面側方で各々別々に位置している。
【0014】
次に、この実施形態の発熱型薄膜素子センサの製造方法について、図3をもとにして説明する。この製造方法では、先ず図3(A)に示すように、N型Si単結晶の基板10の表面に、酸化膜22を形成し、発熱部20の形状を形成するパターンに窓24を開ける。そして、ボロン等のP型ドーパントをSi基板10中に高濃度に拡散させる。これにより、不純物拡散部26が所定形状、例えばコ字状に形成される。
【0015】
この後、酸化膜22を除去し、図3(B)に示すように、基板10の表面に絶縁層12をスパッタリング等により形成する。さらに、図4等に示すように、多結晶薄膜からなる均熱層15をスパッタリングにより絶縁層12の中央部に形成する。均熱層15の形状は、マスクを用いて形成する。そして、均熱層15及びその周囲の絶縁層12を覆うように、絶縁層13をスパッタリング等により形成する。
【0016】
さらに、金属薄膜の導電膜16を絶縁層13の表面で均熱層15の内側に位置するように形成する。所定形状に形成する方法は、金属薄膜を全面に蒸着やスパッタリングにより形成した後エッチングして、図3(C)、図4等に示すように、導電膜16を所定形状に形成する。そして、導電膜16及びその周囲の絶縁層13を覆うように、保護膜である絶縁層18をスパッタリング等により形成する。
【0017】
次に、基板10の裏面側から異方性エッチングし、図3(D)に示すように、発熱部20を形成する不純物拡散部26が選択的に残るようにする。不純物拡散部26は、KOH(水酸化カリウム)、TMAH(水酸化テトラメチルアンモニウム)等のアルカリエッチング液により、Siを異方性エッチングすると、選択的にエッチングされずに残る。
【0018】
この実施形態の発熱型薄膜素子センサは、絶縁層12,13を介して検知部分となる導電膜16と発熱部20とが別々に設けられ、導電膜16に汚れが着いた際も発熱部20を、例えば700℃程度に発熱させて導電膜16を加熱すれば良く、加熱が均一に適切に行われ、導電膜16の一部に発熱が集中したりして断線することがない。しかも、絶縁層12,13の間に比較的熱伝導率の高い均熱層15を設け、発熱部20の熱を均一に周囲に広げているので、導電膜16がより均一に加熱されるものである。これにより、導電膜16に加熱ムラが発生しにくくなり、均一な加熱が可能となり、寿命を延ばすことができ、測定精度も高いものとなる。
【0019】
さらに、検知時の加熱にも、発熱部20により例えば200〜300℃に導電膜16を間接的に加熱するので、導電膜16には常時発熱に必要な大きな電流を流す必要がなく、検知に必要なわずかな電流を流すだけで良く、導電膜16の耐久性がより高くなる。
【0020】
なお、この発明の発熱型薄膜素子センサとその製造方法は、上記実施形態に限定されず、基板はSi単結晶以外に、他の半導体や絶縁体を用いても良い。また絶縁層は、SiO2やTa25等を適宜選択可能である。また発熱部は、ボロンを拡散する他、他の不純物の拡散によるものでも良く、また拡散により選択的にエッチングする他、基板表面に所定形状に発熱部を蒸着等により形成し絶縁層を形成した後、基板をエッチングし、絶縁層の裏面に所定形状に発熱部が形成されるようにしても良い。さらに、均熱層は、シリコン以外に、金属や他の比較的熱伝導率の高い材料でも良い。
【0021】
【発明の効果】
この発明の発熱型薄膜素子センサによれば、検知を行う導電膜に直接大きな電流を流して発熱させる必要がなく、発熱部により間接的に導電膜を加熱するので、導電膜に加熱むらが生じたり、さらに局部的に高温になることがなく、センサの耐久性が向上する。さらに、発熱部の熱は均熱層により、より均一に導電膜に伝えられ、導電膜の位置による温度むらを抑えることができ、測定精度も上げることができる。
【図面の簡単な説明】
【図1】この発明の発熱型薄膜素子センサの一実施形態部分破断斜視図である。
【図2】この実施形態の発熱型薄膜素子センサの縦断面図である。
【図3】この実施形態の発熱型薄膜素子センサの製造工程を示す縦断面図である。
【図4】この実施形態の発熱型薄膜素子センサの均熱層の部分破断平面図である。
【図5】従来の技術の発熱型薄膜素子センサの縦断面図である。
【符号の説明】
10 基板
12,13,18 絶縁層
14 空洞部
15 均熱層
16 導電膜
20 発熱部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat generation type thin film element sensor including a heat generation type thin film element that detects relative humidity, relative flow rate, gas, and the like from a change in resistance value of a thin film element in a heat generation state, and a manufacturing method thereof.
[0002]
[Prior art]
As shown in FIG. 5, a conventional sensor equipped with this type of heat generating thin film element has a lower insulating film 2 formed on the upper surface of a semiconductor substrate 1 such as a silicon single crystal, and a heat generating portion and a current supply thereon. Some have provided a conductive film 3 made of a thin film including a portion and an electrode portion. A cavity 4 is formed in the semiconductor substrate 1 so as to open to the lower side opposite to the conductive film 3 and reach the lower insulating film 2. The cavity 4 is formed by anisotropic etching, and the heat generating thin film element 5 is constituted by the lower insulating film 2 in the cavity 4 and the conductive film 3 including the heat generating part. Further, an upper insulating film 6 was provided on the lower insulating film 2 so as to cover the heat generating portion of the conductive film 3.
[0003]
In the manufacture of the sensor including the heat generating thin film element 5, the lower insulating film 2 is formed by sputtering on the upper surface of the semiconductor substrate 1 such as silicon single crystal by SiO 2 or Ta 2 O 5 , and Pt or the like is formed thereon. The conductive film 3 is formed and formed into a predetermined shape by etching or the like. An upper insulating film 6 such as SiO 2 or Ta 2 O 5 is formed on the surface of the lower insulating film 2 by sputtering or the like so as to cover the conductive film 3 as necessary. Next, anisotropic etching was performed from below the semiconductor substrate 1 to the lower insulating film 2 to form the cavity 4.
[0004]
[Problems to be solved by the invention]
A sensor having such a conventional heat generation type thin film element has a lower insulating film 2 formed on a silicon wafer substrate 1 to detect a humidity and a flow rate from a change in the resistance value of the conductive film 3. In order to increase the temperature, the conductive film 3 is heated by flowing current, and the detection target data is detected from the resistance value in that state. However, since the heat distribution of the conductive film 3 becomes non-uniform, the temperature of a specific part is always likely to be high, so that the deterioration of that part is accelerated and it causes disconnection. Furthermore, it is easy to lead to a decrease in sensitivity and a decrease in life.
[0005]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a heat-generating thin film element sensor with little bias in heat distribution, high durability and high detection accuracy, and a method for manufacturing the same. .
[0006]
[Means for Solving the Problems]
The exothermic thin film element sensor according to the present invention includes a cavity opened below a semiconductor substrate, a conductive film formed on the surface side of the substrate via an insulating layer, and the conductive film and the insulating layer interposed therebetween. A heating part formed in the cavity on the opposite side, and a soaking layer with good thermal conductivity such as polycrystalline Si provided through an insulating layer between the heating part and the conductive film Is. The substrate is a semiconductor single crystal wafer, and the heat generating portion is a diffusion portion in which predetermined impurities are diffused in the semiconductor. The conductive film and the electrode of the heat generating part are separately provided on the surface side of the substrate.
[0007]
In this heat generation type thin film element sensor, a conductive film as a detection part and a heat generation part for heating the conductive film are separately formed via an insulating layer and a soaking layer. At the time of detection, a predetermined current is detected by flowing a current through the heat generating portion and heating the conductive film to a predetermined temperature. Further, when dust or the like adheres to the surface, the conductive film is heated to a high temperature by the heat generating portion to remove the dust.
[0008]
According to the method of manufacturing the heat-generating thin film element sensor of the present invention, a heat generating portion having a predetermined pattern is formed on a substrate, an insulating layer is formed on the surface side of the heat generating portion, and the impurity diffusion portion is opposed to the surface of the insulating layer. Then, a soaking layer having a high thermal conductivity is formed by a vacuum thin film forming technique, a conductive film is further formed through an insulating layer, etching is performed from the back side of the substrate toward the heating portion, and the back side of the substrate is formed. This is a method for manufacturing a heat-generating thin film element sensor in which a hollow portion is formed and the heat generating portion is left in the hollow portion.
[0009]
In particular, in the method for manufacturing a heat-generating thin film element sensor according to the present invention, an impurity diffusion portion serving as a heat generating portion having a predetermined pattern is formed on a semiconductor substrate. Then, an insulating layer is formed on the surface of the substrate where the impurity diffusion portion is formed, and a soaking layer such as Si having high thermal conductivity is formed on the surface of the insulating layer so as to face the impurity diffusion portion. A conductive film is formed by a technique and further through an insulating layer. Then, an insulating layer that covers and protects the conductive film is formed. Thereafter, anisotropic etching is performed from the substrate rear surface side toward the impurity diffusion portion to form a cavity in the substrate rear surface. At this time, the anisotropic etching is performed so that the impurity diffusion portion remains selectively without being etched.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a heat generation type thin film element sensor of the present invention will be described with reference to the drawings. The heat generation type thin film element sensor of this embodiment includes a silicon (Si) single crystal semiconductor substrate 10, and a cavity portion 14 opened downward is formed in the semiconductor substrate 10. , Covered with a thin insulating layer 12 of about 2 μm of SiO 2 .
[0011]
The insulating layer 12 is further laminated with a thin insulating layer 13 of SiO 2 of about 1 μm, and a soaking layer 15 made of a polycrystalline Si thin film is sandwiched between the insulating layers 12 and 13. The thickness of the heat equalizing layer 15 is, for example, a thickness of about 5000~10000A.
[0012]
On the surface side of the insulating layer 13, a conductive film 16 having a thickness of about 4000 to 5000 mm is formed in a U shape. The conductive film 16 is made of a metal thin film having a large temperature coefficient such as platinum (Pt) or titanium (Ti). Electrodes (not shown) formed on the sides of the surface of the substrate 10 are formed at both ends of the conductive film 16. Further, a thin SiO 2 insulating layer 18 having a thickness of about 1 μm, which is a protective film, is laminated on the surface of the conductive film 16.
[0013]
On the back side of the insulating layer 12 in the cavity 14, a U-shaped heat generating portion 20 having a shape facing the conductive film 16 is formed. The heat generating part 20 is composed of P + Si obtained by diffusing boron (B) as an impurity at a high concentration in silicon. The boron concentration of the heat generating portion 20 as the impurity diffusion portion is, for example, about 10 20 cm −3 . Diffusion portions continuing from both end portions of the U-shaped heat generating portion 20 reach the side of the substrate 10 along the back surface of the insulating layer 12 and are connected to electrodes formed on the surface of the substrate 10. The electrode of the conductive film 16 and the electrode of the heat generating part 20 are separately located on the surface side of the substrate 10.
[0014]
Next, a method for manufacturing the heat-generating thin film element sensor of this embodiment will be described with reference to FIG. In this manufacturing method, first, as shown in FIG. 3A, an oxide film 22 is formed on the surface of an N-type Si single crystal substrate 10 and a window 24 is opened in a pattern that forms the shape of the heat generating portion 20. Then, a P-type dopant such as boron is diffused in the Si substrate 10 at a high concentration. Thereby, the impurity diffusion part 26 is formed in a predetermined shape, for example, a U-shape.
[0015]
Thereafter, the oxide film 22 is removed, and as shown in FIG. 3B, the insulating layer 12 is formed on the surface of the substrate 10 by sputtering or the like. Further, as shown in FIG. 4 and the like, a soaking layer 15 made of a polycrystalline thin film is formed at the center of the insulating layer 12 by sputtering. The shape of the soaking layer 15 is formed using a mask. Then, the insulating layer 13 is formed by sputtering or the like so as to cover the soaking layer 15 and the surrounding insulating layer 12.
[0016]
Further, a conductive film 16 of a metal thin film is formed so as to be positioned inside the soaking layer 15 on the surface of the insulating layer 13. As a method for forming the conductive film 16, a metal thin film is formed on the entire surface by vapor deposition or sputtering and then etched to form the conductive film 16 in a predetermined shape as shown in FIGS. Then, an insulating layer 18 as a protective film is formed by sputtering or the like so as to cover the conductive film 16 and the surrounding insulating layer 13.
[0017]
Next, anisotropic etching is performed from the rear surface side of the substrate 10 so that the impurity diffusion portion 26 forming the heat generating portion 20 remains selectively as shown in FIG. The impurity diffusion portion 26 remains without being selectively etched when Si is anisotropically etched with an alkaline etching solution such as KOH (potassium hydroxide) or TMAH (tetramethylammonium hydroxide).
[0018]
In the heat generation type thin film element sensor of this embodiment, the conductive film 16 and the heat generating part 20 which are detection parts are provided separately via the insulating layers 12 and 13, and the heat generating part 20 is also provided when the conductive film 16 becomes dirty. The conductive film 16 may be heated by, for example, generating heat at about 700 ° C., and the heating is performed uniformly and appropriately, and the heat generation is not concentrated on a part of the conductive film 16 and is not disconnected. In addition, since the soaking layer 15 having a relatively high thermal conductivity is provided between the insulating layers 12 and 13 and the heat of the heat generating portion 20 is spread uniformly around, the conductive film 16 is heated more uniformly. It is. This makes it difficult for heating unevenness to occur in the conductive film 16, enabling uniform heating, extending the life, and improving the measurement accuracy.
[0019]
Furthermore, since the conductive film 16 is indirectly heated to, for example, 200 to 300 ° C. by the heat generating unit 20 for heating at the time of detection, it is not necessary to constantly flow a large current necessary for heat generation through the conductive film 16. It is only necessary to pass a necessary small amount of current, and the durability of the conductive film 16 becomes higher.
[0020]
The heat-generating thin film element sensor and the manufacturing method thereof according to the present invention are not limited to the above embodiment, and the substrate may be made of other semiconductors or insulators besides Si single crystal. The insulating layer can be appropriately selected from SiO 2 , Ta 2 O 5 and the like. In addition to diffusing boron, the heat generating part may be diffused by other impurities. In addition to selective etching by diffusion, the heat generating part is formed in a predetermined shape on the substrate surface by vapor deposition or the like to form an insulating layer. Thereafter, the substrate may be etched to form a heat generating portion in a predetermined shape on the back surface of the insulating layer. Further, the soaking layer may be a metal or other material having a relatively high thermal conductivity other than silicon.
[0021]
【The invention's effect】
According to the heat generation type thin film element sensor of the present invention, it is not necessary to flow a large current directly to the conductive film to be detected to generate heat, and the conductive film is indirectly heated by the heat generating portion. In addition, the durability of the sensor is improved without being locally heated. Furthermore, the heat of the heat generating portion is more uniformly transmitted to the conductive film by the soaking layer, temperature unevenness due to the position of the conductive film can be suppressed, and the measurement accuracy can be increased.
[Brief description of the drawings]
FIG. 1 is a partial cutaway perspective view of an embodiment of a heat generation type thin film element sensor of the present invention.
FIG. 2 is a longitudinal sectional view of a heat generation type thin film element sensor of this embodiment.
FIG. 3 is a longitudinal sectional view showing a manufacturing process of the heat generating thin film element sensor of this embodiment.
FIG. 4 is a partially broken plan view of a soaking layer of the heat generation type thin film element sensor of this embodiment.
FIG. 5 is a longitudinal sectional view of a conventional heat-generating thin film element sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Board | substrate 12, 13, 18 Insulating layer 14 Cavity part 15 Soaking | uniform-heating layer 16 Conductive film 20 Heat generating part

Claims (2)

半導体単結晶の基板の下方に開口した空洞部と、この基板の表面側に絶縁層を介して形成された導電膜と、この導電膜と上記絶縁層を介して反対側の上記空洞部内に形成され上記半導体に所定の不純物が拡散した拡散部である発熱部と、上記発熱部と上記導電膜との間に絶縁層を介して設けられた熱伝導率の良い多結晶半導体から成る均熱層とを備えた発熱型薄膜素子センサ。A cavity opened below the substrate of the semiconductor single crystal, a conductive film formed on the surface side of the substrate via an insulating layer, and formed in the cavity on the opposite side via the conductive film and the insulating layer A heat generating part which is a diffusion part in which a predetermined impurity is diffused in the semiconductor, and a soaking layer made of a polycrystalline semiconductor having a good thermal conductivity provided between the heat generating part and the conductive film via an insulating layer A heat-generating thin film element sensor. 半導体単結晶の基板に所定のパターンの発熱部となる不純物拡散部を形成し、この不純物拡散部が形成された上記基板表面に絶縁層を形成し、その絶縁層の表面に上記不純物拡散部と対面して上記パターンに沿って熱伝導率の高い多結晶薄膜の均熱層を真空薄膜形成技術により形成し、さらに絶縁層を介して導電膜を形成し、この後、上記基板裏面側から上記不純物拡散部に向けてエッチングを行い、上記基板裏面に空洞部を形成するとともに、上記不純物拡散部を選択的に残して上記発熱部とする発熱型薄膜素子センサの製造方法。An impurity diffusion portion serving as a heat generating portion having a predetermined pattern is formed on a semiconductor single crystal substrate, an insulating layer is formed on the surface of the substrate on which the impurity diffusion portion is formed, and the impurity diffusion portion and the surface of the insulating layer are formed. A soaking layer of a polycrystalline thin film having high thermal conductivity facing the pattern is formed by a vacuum thin film forming technique, and a conductive film is further formed through an insulating layer. Etching toward the impurity diffusion portion to form a cavity on the back surface of the substrate and selectively leaving the impurity diffusion portion to form the heat generating thin film element sensor.
JP06424398A 1998-02-27 1998-02-27 Heat generation type thin film element sensor and manufacturing method thereof Expired - Fee Related JP4074368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06424398A JP4074368B2 (en) 1998-02-27 1998-02-27 Heat generation type thin film element sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06424398A JP4074368B2 (en) 1998-02-27 1998-02-27 Heat generation type thin film element sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11251104A JPH11251104A (en) 1999-09-17
JP4074368B2 true JP4074368B2 (en) 2008-04-09

Family

ID=13252523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06424398A Expired - Fee Related JP4074368B2 (en) 1998-02-27 1998-02-27 Heat generation type thin film element sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4074368B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168649A (en) * 2008-01-17 2009-07-30 Ishizuka Electronics Corp Indirect heat type heat-sensitive resistance element, and absolute humidity sensor using the indirect heat type heat-sensitivie resistance element
JP6718363B2 (en) * 2016-11-09 2020-07-08 日立オートモティブシステムズ株式会社 Humidity sensor and manufacturing method thereof
JP6951225B2 (en) * 2017-12-08 2021-10-20 日立Astemo株式会社 Humidity sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206071B2 (en) * 1992-01-14 2001-09-04 富士ゼロックス株式会社 Method for manufacturing semiconductor device
JPH04343023A (en) * 1991-05-20 1992-11-30 Tokico Ltd Flowrate sensor
JP2553980B2 (en) * 1991-12-07 1996-11-13 光照 木村 Oxygen sensor
JP2742641B2 (en) * 1992-03-17 1998-04-22 光照 木村 Flow sensor
JPH05313529A (en) * 1992-05-12 1993-11-26 Hitachi Koki Co Ltd Thermal fixing device
JPH06304075A (en) * 1993-04-27 1994-11-01 Hitachi Home Tec Ltd Electric cooker
JPH07153820A (en) * 1993-11-30 1995-06-16 Kyocera Corp Susceptor for semiconductor process and its manufacture
JP3379736B2 (en) * 1994-06-13 2003-02-24 矢崎総業株式会社 Heat propagation time measurement type flow sensor and its manufacturing method
JPH0864675A (en) * 1994-08-19 1996-03-08 Ube Ind Ltd Composite semiconductor substrate and fabrication thereof
JP3460749B2 (en) * 1995-04-25 2003-10-27 リコーエレメックス株式会社 Detector
JP3204365B2 (en) * 1996-03-29 2001-09-04 矢崎総業株式会社 Micro heater and CO sensor

Also Published As

Publication number Publication date
JPH11251104A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
KR100812996B1 (en) Micro gas sensor and method for manufacturing the same
EP0715359B1 (en) Infrared radiation sensor
JP3542614B2 (en) Temperature sensor and method for manufacturing the temperature sensor
US6139758A (en) Method of manufacturing a micromachined thermal flowmeter
JP2003279394A (en) Gas flowmeter and its manufacturing method
JP4590764B2 (en) Gas sensor and manufacturing method thereof
JP2001012986A (en) Thermal air flow sensor
US6023091A (en) Semiconductor heater and method for making
US6378365B1 (en) Micromachined thermal flowmeter having heating element disposed in a silicon island
JP4074368B2 (en) Heat generation type thin film element sensor and manufacturing method thereof
US6259350B1 (en) Sensor and method for manufacturing a sensor
JP4497165B2 (en) Manufacturing method of semiconductor device
JP4653265B2 (en) Heat generation type thin film element sensor and manufacturing method thereof
JP3485151B2 (en) Contact combustion type gas sensor
JP2021535375A (en) Temperature sensor and its manufacturing method
JP2648828B2 (en) Micro heater
KR100511268B1 (en) Method for manufacturing gas sensor
US20050020007A1 (en) Semiconductor element and method for its production
JP3638786B2 (en) Flow rate detecting element and flow rate sensor
JPH09318569A (en) Gas sensor and fabrication thereof
JP2002014070A (en) Thermal type sensor
US12025480B2 (en) Thermal flow sensor chip
KR100559129B1 (en) Thermal air flow sensor
US20230113770A1 (en) Thermal flow sensor chip
JPH05307045A (en) Flow speed sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees