JP4074145B2 - 液体金属用無冷却型電磁ポンプの予熱方法 - Google Patents

液体金属用無冷却型電磁ポンプの予熱方法 Download PDF

Info

Publication number
JP4074145B2
JP4074145B2 JP2002202243A JP2002202243A JP4074145B2 JP 4074145 B2 JP4074145 B2 JP 4074145B2 JP 2002202243 A JP2002202243 A JP 2002202243A JP 2002202243 A JP2002202243 A JP 2002202243A JP 4074145 B2 JP4074145 B2 JP 4074145B2
Authority
JP
Japan
Prior art keywords
temperature
duct
electromagnetic pump
liquid metal
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002202243A
Other languages
English (en)
Other versions
JP2004048894A (ja
Inventor
利枝 相澤
裕之 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002202243A priority Critical patent/JP4074145B2/ja
Publication of JP2004048894A publication Critical patent/JP2004048894A/ja
Application granted granted Critical
Publication of JP4074145B2 publication Critical patent/JP4074145B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体金属冷却型高速炉の冷却材主循環ポンプとして適用される無冷却型電磁ポンプや液体金属を流動するための無冷却型電磁ポンプの予熱方法に関する。
【0002】
【従来の技術】
従来の電磁ポンプは冷却型であり、ダクトの外周側に冷却型電磁ポンプが設置されており、ダクトと鉄心及びコイル間に絶縁材が設けられてある。このため、液体金属を充填するために配管をヒータで暖める予熱時にも、ダクトからの温度上昇は遮断され、冷却型電磁ポンプ内部構造物は温度上昇しない。ダクトとケーシング間、ダクトと鉄心を支持する支持構造物間に温度差が生じないので、冷却型電磁ポンプはダクトとケーシング間、鉄心と支持構造物間及びダクトと支持構造物間との温度差による破損を考慮する必要はなかった。
【0003】
ところが、無冷却型電磁ポンプが液体金属中に浸漬して設置され、電磁ポンプ内部構造物である電磁コイルのジュール熱、ダクトの渦電流や鉄心の渦電流による発熱は電磁コイル健全性や鉄心及び支持構造物の機能を保持するために鉄心、ダクト、内部ガスやケーシングを介して液体金属中に放熱するが、無冷却型電磁ポンプはこの放熱を妨げるダクトと鉄心及びコイル間に絶縁材を設けていなかった。しかし、予熱時にはダクトがヒータ加熱により温度上昇し、ダクトと支持構造物間及び鉄心と支持構造物間で温度差が生じる。また、予熱時は液体金属がないためケーシングはほとんど温度上昇せず、ダクトとケーシング間にも温度差が生じる。このようなダクトとケーシング間、鉄心と支持構造物及びダクトと支持構造物間の温度差による破損を考慮した無冷却型電磁ポンプの予熱方法について従来は何ら対策はとられていなかった。
【0004】
一般の三相誘導型電磁ポンプは、三相巻線を流体の流れ方向、電磁ポンプの軸方向に各相の順に分布させ配置する。そして、三相巻線に三相交流電流を流して、この電流の流れ方向に進行磁場を発生させ、いわゆる「フレミングの右手の法則」の応用により、導電性流体である液体金属に誘導電流を流す。この誘導電流と進行磁界との相互作用により電磁力が生じ、この電磁力が液体金属を流す力となりポンプとして作用する。この電磁力は誘導電動機におけるトルクを発生する力、リニアモータにおける推力等と同じである。三相誘導型電磁ポンプは、この原理に基づいて液体金属を移送する。
【0005】
ここで、従来の電磁ポンプを図5の一部切除した斜視図及び図6の断面図を参照して説明する。
電磁ポンプ1は、液体金属、例えば液体ナトリウムなどの導電性流体2を流すために、外側ダクト3及び内側ダクト4により同心の二重管構造の二重ダクトを構成し、その外側ダクト3と内側ダクト4により形成された環状流路5内を導電性流体2が流動するようになっている。
【0006】
外側ダクト3の外側には多数枚の電磁鋼板を積み重ねた外側鉄心6が周方向に配置されている。各外側鉄心6の外側ダクト側の端部に形成されたスロット7内に環状の外側電磁コイル8が軸方向に多数配置されており、これら外側電磁コイル8は三相交流が進行磁場を作るように結線されている。外側鉄心6は、多数枚ある電磁鋼板の周方向両端に端板を設置し、その電磁鋼板を外側鉄心6の周方向に設けた穴に差し込まれた固定具で固定する構成となっている。また、内側ダクト4の内側には多数枚の電磁鋼板を積み重ねた内側鉄心9が周方向に配されており、各内側鉄心4に形成されたスロット内に内側電磁コイル13が軸方向に多数配置されている。
【0007】
このように構成された電磁ポンプ1は、外側電磁コイル8に三相交流電流を供給することにより、導電性流体2が吸込口である流体入口10から環状流路5を流れ、吐出口である流体出口11から外部へ移送される。そして、外側電磁コイル8に発生するジュール損失や、外側鉄心6に発生する鉄損等の内部発熱、及び導電性流体2からの入熱等を外側鉄心6の外周側に配設されたケーシング12内に外部から冷媒を循環させて除熱するのが一般的である。
【0008】
【発明が解決しようとする課題】
無冷却型電磁ポンプのように通常運転時にコイルのジュール熱や鉄心の渦電流及びダクトの渦電流による発熱を液体金属に放熱するシステムの場合、電磁ポンプ内部構造物は液体金属がない予熱時と通常運転時とで内部構造物の温度分布が異なり、ダクトとケーシング間、鉄心と支持構造物間及びダクトと支持構造物間に温度差がつき、ダクト、ケーシング及び支持構造物が破損する恐れがある。
【0009】
すなわち、従来の無冷却型電磁ポンプでは、予熱時はダクトをヒータで加熱しているが、ケーシング及び支持構造物はヒータの加熱はなく、さらにケーシングは周囲に液体金属もないため大気と同程度の温度もしくはダクトの温度上昇に伴い若干の温度上昇が見込めるが、ダクトとケーシング間、ダクトと支持構造物間に通常運転時以上に温度差がつきやすいという問題がある。
【0010】
本発明は、上記情況に対処するためになされたもので、その課題は、液体金属を充填させる予熱時に電磁ポンプの健全性を維持し、安全性が高く、効率のよい液体金属無冷却型励磁ポンプの予熱方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、液体金属流路を形成するダクトと、電磁コイルと、鉄心と、前記鉄心を支持する支持構造物と、前記電磁コイルと鉄心と支持構造物を密閉するケーシングを有する液体金属用無冷却型電磁ポンプの予熱方法において、液体金属を充填するために当該電磁ポンプを予熱する際、前記ダクトと電磁コイルと鉄心と支持構造物とケーシングの予熱時の温度上昇率を毎時20℃以下に設定することを特徴とする。
【0012】
請求項2記載の発明は、請求項1記載の液体金属用無冷却型電磁ポンプの予熱方法において、昇温過程及び昇温終了時において、ダクト温度とケーシング温度の温度差を100℃以下、鉄心温度と支持構造温度の温度差を50℃以下、ダクト温度と支持構造物温度の温度差を80℃以下に制限することを特徴とする。
【0013】
請求項1及び請求項2によると、ダクトの温度上昇率を徐々に上げることにより、ダクトとケーシング間、ダクトと支持構造物間の温度差を抑える予熱方法であるので、支持構造物の破損を防止できる。
【0014】
請求項3記載の発明は、請求項1または請求項2記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁コイルに交流電流を通電することで生ずるコイルのジュール熱、鉄心の渦電流及びダクトの渦電流を加熱源として利用することを特徴とする。
【0015】
請求項3によると、電磁コイルに通電することで、ダクト、鉄心等に渦電流が流れるので、ダクトは、ヒータ加熱に加えダクト渦電流による発熱があるため、ダクト温度上昇を抑えることができる。
【0016】
請求項4記載の発明は、請求項3記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁ポンプに通電する周波数を定格周波数以下に設定することを特徴とする。
請求項4によると、交流電流周波数を電磁ポンプの定格周波数以下に設定しているので、ダクトの温度上昇が抑制される。
【0017】
請求項5記載の発明は、請求項3記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁ポンプに通電する交流電流を定格電流の30%以下に設定することを特徴とする。
請求項5によると、電磁コイルの通電電流を定格電流の30%以下とすることで、ダクトの温度上昇が抑えられる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は本発明の実施形態(請求項1ないし請求項5対応)の電磁ポンプの要部拡大断面図、図2は図1のII−II矢視断面図である。
【0019】
電磁ポンプ1においては、外側鉄心6が外側ダクト3の周りに放射状に配置され、外側電磁コイル8がこの外側鉄心6で軸方向に挟み込んで配置されている。これら鉄心6、電磁コイル8、電磁コイル及び鉄心を支持する支持構造物はケーシング12内に密閉配置されている。外側ダクト3及びケーシング12の材質は非磁性体で導電性流体(液体金属)2による腐食がしにくく、かつ高温で十分な強度を有する材質を適用しており、鉄心の材質は強磁性体の材質を適用している。
【0020】
また、本実施形態の電磁ポンプ1の径方向支持構造物は外側鉄心6の径方向両端部をサイドプレート14によって挟み込んだ構成とされており、この一対のサイドプレート14は、それらが挟み込んでいる1つの外側鉄心6の外周側に突出して互いに対向しており、これらのサイドプレート14突出部の対向部分に、軸方向に沿う長尺なアライメントプレート15が嵌合され、ボルト15aによって締着されている。サイドプレート14とアライメントプレート15との熱膨張を同じにするために熱膨張率が同等の材料、例えば同材質材料により構成している。
【0021】
外側鉄心6のさらに外周側には、アライメントプレート15の外周面側から径方向支持を行うためのフレーム16及びバッキングリング17が配置されている。フレーム16とバッキングリング17とはボルト17aにより固定され、これらが軸方向に沿って複数連結されている。
【0022】
さらに、アライメントプレート15の背面には、複数の板ばねからなる径方向スプリングプレート18が配置されている。この径方向スプリングプレート18は、それぞれの中央部でフレーム16にボルト18aにより固定されており、両端部分が、アライメントプレート15の背面に設けた径方向スプリングプレート受け19に弾性的に当接し、これにより、クランプ機構が構成されている。すなわち、外側鉄心6とアライメントプレート15との径方向変位は、径方向スプリングプレート受け19を介して径方向スプリングプレート18に伝わる。そして、径方向スプリングプレート18の変形によって反力が生じ、これによりクランプ機構が構成される。
【0023】
電磁ポンプ1は、液体金属2を充填させるための予熱時には配管(ダクト)をヒータで暖める。ダクト温度上昇に伴い、この熱が鉄心、支持構造物及びケーシングへ伝熱される。この時、ヒータ加熱によりダクトのみが急激に温度上昇すると、鉄心、支持構造物及びケーシングの温度が追従せず、ダクト温度とケーシング温度間、ダクト温度と鉄心温度間、ダクト温度と支持構造物温度間で温度差が生じ、この温度差が内部構造物の機能保持できない温度となり、ダクト、ケーシング及び支持構造物が破損する恐れがある。このような破損を防止するために、内部構造物との温度上昇率を制限し、内部構造物の健全性を図るようにしている。すなわち、内部温度上昇率は、鉄心温度、電磁コイル温度、支持構造物温度及びケーシング温度を徐々に上昇させるため毎時20℃(毎分0.3℃)以下となるように設定する。さらに各温度を毎時20℃以下となるように各温度を監視制御装置で監視し、毎時20℃以上になる時は監視制御装置からの制御信号でダクトのヒータのON/OFF制御を行い、内部構造物の温度上昇率を毎時20℃以下となるようコントロールする。
【0024】
また、電磁ポンプ1において径方向スプリングプレート18は電磁ポンプの通常運転時に電磁コイルで発生したジュール熱が鉄心を介して液体金属2へ放熱するため鉄心背面にあるアライメントプレート15をスプリングプレート18の変形によって生じる反力で押し付けている。さらにポンプ運転時には組立時に比べて外側鉄心6と外側ダクト3の隙間が広がる傾向にある。そこで、組立時に径方向スプリングを予め変形させて反力が発生する状態としている。系統つまりダクト配管内を真空引きした場合、ダクトに外圧がかかり、さらに予め変形させている径方向スプリングプレート18の反力及びヒータ加熱によるダクトの径方向熱膨張が加わり、ダクトが座屈する恐れがある。このため、系統真空引き時にダクト座屈防止の観点から、ダクト温度と支持構造物温度の温度差を80℃以下に制御している。
【0025】
次に、外側鉄心6の軸方向一端側(図1の上部)においては、鉄心押え20が、アライメントプレート15にボルト(図示しない)によって固定されている。また、フレーム16の同端部側には、上部押え板21がボルト21aによって固定されている。さらに、上部鉄心押え20と上部押え板21とが、キー22によって周方向及び径方向に位置決めされている。そして、上部押え板21の外側面とフレーム16のフランジ23との間に、弾性板からなる軸方向スプリングプレート24が、ボルト23aによって挟持固定されている。この軸方向スプリングプレート24に、上部鉄心押え20上に取り付けた軸方向スプリングプレート受け26が当接している。
【0026】
このような構造により、外側鉄心6とアライメントプレート15との間の軸方向変位は、上部鉄心押え20及び軸方向スプリングプレート受け26を介して軸方向スプリングプレート24に伝わり、軸方向スプリングプレート24の変形によって反力が生じ、クランプ機構が構成されている。この軸方向スプリングプレート24は応力保持の観点から、鉄心温度と支持構造物温度(アライメントプレートは支持構造物の一部)の温度差を50℃以下に制限している。
【0027】
図3は図1の実施形態に係る流体循環を示す電磁ポンプの縦断面図である。 図に示すように、電磁ポンプ1はダクト3,4上部にベローズ28を設置し、ダクト及びケーシング12とを結合している。このベローズ28によりケーシング12の温度とダクト3,4の温度の熱膨張変位を吸収する構成となっている。
【0028】
次に、本実施形態の運転方法について説明する。
電磁ポンプ1の通常運転時に電磁ポンプ1は液体金属2に浸漬しているので、ケーシング12もダクトと同様に周囲の液体金属2の温度とほぼ同じ温度になり、ダクト温度とケーシング温度の温度差がほとんどつかない。予熱時はダクト温度のみ上昇し、ダクトの熱で徐々にケーシング12が伝熱されていくが、ダクト温度とケーシング温度の温度差は通常運転時に比べて予熱時は大きくなる。ダクトの軸方向熱膨張は電磁ポンプ1軸方向上端部に設置してあるベローズ28で吸収されるが、この温度差が大きくなるとベローズ28の熱膨張を吸収できる範囲を超え、ベローズ28が破損する恐れがある。このベローズ28の破損を防ぐためにダクト温度とケーシング温度の温度差を100℃以下に制御する。
【0029】
ダクトのヒータ加熱に加え、電磁コイルに3相交流電流を通電し、電磁コイルのジュール熱、鉄心の渦電流、ダクトの渦電流による発熱を利用して、鉄心、支持構造物及びケーシング12の温度を上昇させる。電磁コイルに3相交流電流を通電することにより、電磁ポンプ1内部にヒータがあることと同様の効果があり、ダクト温度と鉄心温度、ダクト温度と支持構造物温度、ダクト温度とケーシング12温度の温度差を低減する効果がある。さらに、内部構造物の温度を上昇させて温度制御を行うことで、温度上昇率と温度差制限を満足し、予熱時間を短縮することもできる。
【0030】
電磁コイルに3相交流電流を通電する際、ダクトにも渦電流による発熱があり、ダクト温度と各構造物温度の温度差は大きくなる。そこで、ダクト温度上昇抑制の観点から交流電流周波数を当該電磁ポンプ1の定格周波数以下に設定する。
【0031】
電磁コイルに3相交流電流を通電すると電磁コイルのジュール熱、鉄心及びダクトの渦電流による発熱で電磁ポンプ1の内部温度が上昇する。この時、通電電流値を電磁ポンプ1の定格電流とした場合、内部構造物の温度上昇率がダクト温度上昇率より高くなる恐れがあり、温度上昇率の制限、温度差制限を満足しない。温度上昇の制限と温度差制限を満足させるために、電磁コイルの通電電流を定格電流の30%以下とし、予熱時の各構造物の温度制御を行う。
【0032】
上記の予熱方法を考慮して電磁ポンプの外側ステータ部の予熱を実施した予熱特性図を図4に示す。この予熱特性図から、ダクト、鉄心、支持構造物及びケーシングの健全性は十部満足できることがわかる。
【0033】
【発明の効果】
以上説明したように、本発明によれば、液体金属を充填させる予熱時にダクト、鉄心、鉄心及び電磁コイルを支持する支持構造物の破損を防止し、液体金属を充填させる予熱時間を短縮することができるので、液体金属を充填させる予熱時に電磁ポンプの健全性を維持し、安全性が高く、効率のよい液体金属無冷却型電磁ポンプの予熱方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の要部拡大図。
【図2】図1のII−II矢視断面図。
【図3】図1の実施形態に係る流体循環を示す電磁ポンプの縦断面図。
【図4】電磁ポンプの外側ステータ部の予熱特性図。
【図5】従来の電磁ポンプの一部切除した斜視図。
【図6】図6の横断面図。
【符号の説明】
1…電磁ポンプ、2…導電性流体(液体金属)、3…外側ダクト、4…内側ダクト、5…環状流路、6…外側鉄心、7…スロット、8…外側電磁コイル、9…内側鉄心、10…流体入口、11…流体出口、12…ケーシング、13…内側電磁コイル、14…サイドプレート、15…アライメントプレート、15a,17a,18a,21a,23a…ボルト、16…フレーム、17…バッキングリング、18…径方向スプリングプレート、19…径方向スプリングプレート受け、20…上部鉄心押え、21…上部押え板、22…キー、23…フランジ、24…軸方向スプリングプレート、25…ボルト、26…軸方向スプリングプレート受け、27…タンク、28…ベローズ、29…外側ステータ、30…内側ステータ。

Claims (5)

  1. 液体金属流路を形成するダクトと、電磁コイルと、鉄心と、前記鉄心を支持する支持構造物と、前記電磁コイルと鉄心と支持構造物を密閉するケーシングを有する液体金属用無冷却型電磁ポンプの予熱方法において、液体金属を充填するために当該電磁ポンプを予熱する際、前記ダクトと電磁コイルと鉄心と支持構造物とケーシングの予熱時の温度上昇率を毎時20℃以下に設定することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。
  2. 請求項1記載の液体金属用無冷却型電磁ポンプの予熱方法において、昇温過程及び昇温終了時において、ダクト温度とケーシング温度の温度差を100℃以下、鉄心温度と支持構造温度の温度差を50℃以下、ダクト温度と支持構造物温度の温度差を80℃以下に設定することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。
  3. 請求項1または請求項2記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁コイルに交流電流を通電することで生ずるコイルのジュール熱、鉄心の渦電流及びダクトの渦電流を加熱源として利用することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。
  4. 請求項3記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁ポンプに通電する周波数を定格周波数以下に設定することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。
  5. 請求項3記載の液体金属用無冷却型電磁ポンプの予熱方法において、電磁ポンプに通電する交流電流を定格電流の30%以下に設定することを特徴とする液体金属用無冷却型電磁ポンプの予熱方法。
JP2002202243A 2002-07-11 2002-07-11 液体金属用無冷却型電磁ポンプの予熱方法 Expired - Fee Related JP4074145B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202243A JP4074145B2 (ja) 2002-07-11 2002-07-11 液体金属用無冷却型電磁ポンプの予熱方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202243A JP4074145B2 (ja) 2002-07-11 2002-07-11 液体金属用無冷却型電磁ポンプの予熱方法

Publications (2)

Publication Number Publication Date
JP2004048894A JP2004048894A (ja) 2004-02-12
JP4074145B2 true JP4074145B2 (ja) 2008-04-09

Family

ID=31708480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202243A Expired - Fee Related JP4074145B2 (ja) 2002-07-11 2002-07-11 液体金属用無冷却型電磁ポンプの予熱方法

Country Status (1)

Country Link
JP (1) JP4074145B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640235B (zh) * 2022-05-09 2022-08-23 浙江大学 电磁泵
CN114640234B (zh) * 2022-05-09 2022-08-19 浙江大学 电磁泵

Also Published As

Publication number Publication date
JP2004048894A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
US5425048A (en) Heating apparatus for induction ladle and vacuum furnaces
US20130093273A1 (en) Rotary electric machine
US6988389B2 (en) Continuous extrusion apparatus
JP2011171731A (ja) 改良型の支持構造を備えた超伝導マグネット
CN112803713B (zh) 液态金属电磁泵
JPH10290543A (ja) モータ
JP4074145B2 (ja) 液体金属用無冷却型電磁ポンプの予熱方法
GB2501788A (en) Cooling hotspots in a stator core flange
JP5854550B2 (ja) 静止誘導機器、金属管誘導加熱装置及びインボリュート鉄心冷却構造
JP2001158020A (ja) タイヤ加硫用割金型コンテナ
WO2024078439A1 (zh) 隔杜瓦壁励磁结构、方法及导磁中间件
JPH10304647A (ja) 電磁ポンプ
JP2001013805A (ja) 定着装置
US3260209A (en) Electromagnetic pump
JP4082830B2 (ja) 電磁ポンプおよび同ポンプを用いた流体循環装置
JP2714336B2 (ja) 浸漬型電磁ポンプ
JP2953964B2 (ja) 電磁誘導加熱を利用した液体加熱装置
CN115395757B (zh) 电磁泵
JPH02108998A (ja) 耐熱駆動コイル及び制御棒駆動装置
CN220985503U (zh) 感应加热设备和电驱端盖压装机构
US20230163657A1 (en) Electric Motor with Air-Gap Sleeve
JPS5857678B2 (ja) 電磁撹拌装置
JP2587156B2 (ja) 誘導加熱コイル
JPH06121521A (ja) 電磁ポンプ
JPH06217522A (ja) 電磁ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4074145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees