JP4074012B2 - Method for manufacturing prismatic battery - Google Patents

Method for manufacturing prismatic battery Download PDF

Info

Publication number
JP4074012B2
JP4074012B2 JP24943598A JP24943598A JP4074012B2 JP 4074012 B2 JP4074012 B2 JP 4074012B2 JP 24943598 A JP24943598 A JP 24943598A JP 24943598 A JP24943598 A JP 24943598A JP 4074012 B2 JP4074012 B2 JP 4074012B2
Authority
JP
Japan
Prior art keywords
laser beam
sealing plate
welding
case
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24943598A
Other languages
Japanese (ja)
Other versions
JPH11167903A (en
Inventor
和典 原口
浩司 芳澤
琢也 中嶋
崇 竹内
菊雄 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24943598A priority Critical patent/JP4074012B2/en
Publication of JPH11167903A publication Critical patent/JPH11167903A/en
Application granted granted Critical
Publication of JP4074012B2 publication Critical patent/JP4074012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laser Beam Processing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、角形電池の製造方法に関し、特に発電要素を収容した角形ケースの開口端に封口板を溶接して角形ケースを密閉封止する溶接方法を改良した角形電池の製造方法に関するものである。
【0002】
【従来の技術】
例えば、携帯用電子機器の電源として用いられる二次電池は、高エネルギー密度であることが要求されると同時に、軽量化や小型化のためにスペース使用効率のよい形状が要求されている。これらの要求を満たす電池として角形のアルミニウムケースを用いたリチウムイオン二次電池が脚光をあびている。
【0003】
このリチウムイオン二次電池は、その構造上からも長期にわたって安定した密閉性が要求されるため、有底角筒形状に形成された角形ケースの開口端に封口板をレーザー溶接により接合して開口端を封口する。このレーザー溶接は、他の溶接方法に比してケース内部に収容された電解液や電気絶縁部分に対する熱的影響が少なく、作業効率に優れた特徴を有している。
【0004】
この角形ケースと封口板との間をレーザー溶接して角形電池を製造する従来方法は、特開平8−315788号、特開平8−315789号、特開平8−315790号の各公報に開示されたものが知られている。これらに開示された製造方法では、開口端を上向きにして配置した角形ケースの開口端に封口板を嵌入させ、角形ケースと封口板との当接部位に鉛直方向からレーザービームを照射し、レーザービームで当接ラインを走査して溶接することにより、角形ケースの開口端は封口板により密閉封止される。
【0005】
【発明が解決しようとする課題】
しかしながら、開口端を上向きにして配置された角形ケースに対し、封口板と角形ケースとの当接部位を鉛直方向から照射されるレーザービームにより溶接するためには、開口端形状の4辺の直線部をつなぐ各角部で形成される溶接ラインに沿ってレーザービームまたは角形ケースを移動させる必要があり、溶接する当接ラインをレーザービームで走査する制御が複雑になり、生産効率が低い問題点があった。また、当接部位を鉛直方向から照射されるレーザービームにより溶接すると、溶接による溶け込みの進行方向は電池内部方向であり、溶け込み量が大きくなったとき電池内部に金属溶融物が侵入する危険性がある。角形ケース及び封口板として加工される板材の加工精度には限度があり、溶接時の溶け込み量を電池内部に達しない最適量に設定していても、板厚の加工精度のばらつきにより電池内部にまで達する溶け込みが生じて電池内部に金属溶融物が飛散すると、内部短絡の原因となる。また、レーザー溶接は電解液や電気的絶縁物等に対する熱的影響を与えにくい溶接方法であるが、加熱方向が電池内部に向いているため、角形ケースや封口板の加工精度あるいは溶接精度の限界から熱的影響を排除することは困難である。
【0006】
本発明は上記従来技術の課題に鑑みて創案されたもので、その目的とするところは、レーザー溶接を行うためのレーザービームの走査制御を簡単に行い得ると共に、電池内部に熱的影響を与えることなく均一な溶接により角形ケースと封口板との間の溶接接合を行い得るようにした角形電池の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明は、四角形の4辺が直線で各角部が所定半径の曲線となる開口形状に形成された有底角筒形状の角形ケース内に発電要素を収容し、この角形ケースの開口端に封口板をレーザー溶接することにより、封口板によって角形ケースの開口端を封止する角形電池の製造方法において、前記角形ケースの開口端に、封口板を当接させ、角形ケースと封口板とが当接する当接ラインに対して角形ケースの側方方向からレーザービームを入射させ、このレーザービームを4辺の直線に平行する方向に直線的に走査して角形ケースと封口板との間をレーザー溶接する角形電池の製造方法であって、角形ケース及び封口板それぞれの加工時に当接ライン位置に発生するバリの方向が、角形ケースにおいては電池内部方向に、封口板においては角形ケース方向になるようにしたことを特徴とする。
【0008】
本発明によれば、角形ケースの開口端に、封口板が当接され、角形ケースの上端側部には開口端と封口板とが当接する当接ラインが形成される。この当接ラインに対して角形ケースの側方からレーザービームを照射し、4辺の直線に平行して走査することにより、角形ケースの開口端に封口板が溶接される。この溶接方法では、レーザービームによる走査方向は一直線の走査ラインとなるので、その制御が容易である。また本発明によれば、角形ケース及び封口板それぞれの加工時に当接ライン位置に発生するバリの方向が、角形ケースにおいては電池内部方向に、封口板においては角形ケース方向になるように加工しているので、レーザービームの入射位置にバリによる突起が生じたり、逆に窪みにより平面性が損なわれることがなくなる結果、突起が溶融されて飛散するスパッタが発生することによる溶接外観の不良や、平面性が損なわれたことによる溶接不良の発生がなく、精度よく角形ケースに封口板を溶接することができる。
【0009】
上記製造方法において、4辺のそれぞれに対応して設けられた4本のレーザービームを、それぞれ各辺の直線に平行する方向に走査して各当接ラインを一斉に溶接することにより、全周にわたる溶接が同時進行するので、作業効率がよく溶接動作による封口板の位置ずれが生じない。
【0010】
また、4辺の直線と平行に2本または単一のレーザービームで各当接ラインを順次走査して溶接することにより、任意の対向する当接ラインを同時に溶接することによって、封口板の溶接動作による位置ずれを発生させることなく効率的に溶接を実行することができる。また、封口板を角形ケース上に確実に位置固定すれば、任意の辺に平行にレーザービームで走査して順次溶接することもできる。
【0011】
また、レーザービームによる走査が、各辺の直線部と角部との間で移動するとき、角部の曲線半径に応じてレーザー出力を変化させるように制御することにより、直線辺と角部の曲線部との間のレーザービームの焦点距離の差による溶接強度の不均一をレーザー出力の変化によって補い、角部の溶接強度が低下することを防止することができる。
【0012】
また、レーザービームによる走査が、各辺の直線部と角部との間で移動するとき、角部の曲線半径に応じてレーザービームのパルス時間間隔を変化させるように制御することにより、直線辺と角部の曲線部との間のレーザービームの焦点距離の差による溶接強度の不均一は、レーザービームのパルス時間間隔を変化させることによって、単位時間当たりのレーザービームの照射量を一致させ、角部の溶接強度が低下することを防止できる。
【0013】
また、レーザービームの照射角度を、走査ライン方向に対し所定角度に傾斜させることにより、角部に対するレーザービームの入射角度が浅くならないので、角部の溶接強度の低下が少なくなる。また、照射レーザービームの反射がレーザー発射口に戻ることによるレーザー発射口の損傷をなくすことができる。
【0014】
また、開口端に封口板を載置した角形ケースを複数個列設配置し、列設方向と交差する方向からレーザービームを照射し、このレーザービームで列設方向に平行な対向辺の各直線部と平行に走査して各角形ケースと各封口板との当接ラインを溶接することにより、封口板を載置して列設された各角形ケースは列設方向に走査されるレーザービームにより順次レーザー溶接される。レーザービームを列設された角形ケースと相対的に移動させることにより複数個の溶接が一括してなされ、量産工程における生産効率を向上させることができる。
【0016】
また、レーザービームによる溶接ナゲット径dと、角部の半径Rとの関係が、0.3<(d/R)となるように溶接することにより、レーザー溶接によるクラックの発生を抑えることができる。
【0017】
【発明の実施の形態】
以下、添付図面を参照して本発明の一実施形態について説明し、本発明の理解に供する。
【0018】
図1は、本実施形態に係る角形電池の外観形状を示しており、発電要素を収容した角形ケース1の開口端に封口板2を溶接することにより、角形ケース1を封止して角形電池が製造される。前記角形ケース1は、4角形状の有底筒状に形成され、その開口端の平面形状は、図2に示すように、長辺a、b、及び短辺c、dが直線で、各角部eが所定半径の曲線に形成されている。
【0019】
封口板2は、この角形ケース1の開口端の外形寸法と同一寸法の外形形状に成形されている。この角形ケース1の開口端上に封口板2を載置し、各辺a〜dの直線の間を角部eの曲線でつないだ当接ラインをレーザー溶接することにより、角形ケース1の開口端は封口板2によって封止される。この角形ケース1の開口端と封口板2との間の溶接方法について以下に説明する。
【0020】
図3(a)は、角形ケース1をその開口端を上向きとして、各筒の筒形成軸が鉛直方向となるようにして所定位置に配置し、開口端を覆って封口板2を載置した状態を上方から見た状態を示しており、長辺a、b、短辺c、dの直線に平行にそれぞれレーザービーム3a〜3dを移動させ、図3(b)に示すように、角形ケース1と封口板2とが当接する当接ライン4をレーザー溶接し、角形ケース1の開口端を封口板2で封止する。このように各レーザービーム3a〜3dによる走査方向は各辺a〜dに沿った一直線なので、その移動制御は容易であり、精密な溶接動作を行わせることができる。
【0021】
レーザー溶接の手順は、図3に示すように、長辺a、b、短辺c、dに平行な直線で4本のレーザービーム3a、3b、3c、3dで走査すれば、各角部eを含む各辺a、b、c、dに対する溶接動作が同時進行するので、載置した封口板2を角形ケース1上に仮止めしない状態でも封口板2の位置ずれは生じず効率的に溶接加工を行うことができる。また、量産工程においては、図4(a)に示すように、封口板2を当接させた角形ケース1を複数個配列し、レーザービーム3c、3dを配列方向に相対的に移動させながらオン・オフ動作させて、各角部eを含む短辺c、dを同時に溶接し、次に、図4(b)に示すように、配列方向を変えて残された各角部eを含む長辺a、bをレーザー溶接する。このとき、長辺a、bに同時にレーザービーム3a、3bを照射してもよいが、レーザー溶接による加熱が集中しないように、長辺aまたはbの片方づつが溶接されるようにレーザービーム3a、3bの走査方向あるいは走査位置を変えると、電池に与える熱的影響を抑えることができる。また、角形ケース1に封口板2を載置した状態が位置ずれしないように仮止めしておけば、任意の角部eを含む1辺から順次溶接していくようにすることもできる。
【0022】
上記のように各辺a、b、c、dに対して平行にレーザービーム3で走査するとき、曲線に形成された各角部eではレーザービーム3の焦点距離が遠くなり、角部eにおけるレーザー溶接の能力が低下することになる。即ち、図5に示すように、レーザービーム3aについて見れば、走査開始位置は角部eの曲線上にあり、長辺aを走査する位置とはレーザービーム3aの焦点距離に最大で距離差βが生じる。この状態は走査終了位置でも同様で、図5に示すレーザービーム3cで見れば、短辺cを走査する位置とはレーザービーム3cの焦点距離に最大で距離差βが生じる。この距離差βによる角部eの溶接強度の低下は、次に示す溶接方法によって解消される。
【0023】
まず、第1の方法は、レーザービーム3a〜3dそれぞれにより角部eを走査する位置においては、各辺a〜dとの距離差に対応させてレーザー出力を変化させるものである。即ち、焦点距離が遠くなる角部eにおける溶接能力の低下をレーザー出力の増加で補うことができるので、当接ライン4の全周にわたって均一な溶接がなされることになる。
【0024】
また、第2の方法は、レーザービーム3a〜3dそれぞれにより角部eを走査する位置においては、レーザーパルスの発射時間間隔を各辺a〜dとの距離差に対応させて変化させるものである。即ち、距離差が大きくなるに従ってレーザーパルスの発射時間間隔が短くなるように制御する。このよるレーザーパルスの発射時間間隔の変化により、距離差はレーザービーム3の単位時間当たりの照射量で補われるので、当接ライン4の全周にわたって均一な溶接がなされることになる。
【0025】
以上説明した当接ライン4に対するレーザー溶接において、図6に示すように、レーザービーム3a〜3dそれぞれの水平方向の照射角度を、各辺a、b、c、dに直交する方向から角度θに傾けることにより、角部eに対するレーザービーム3a〜3dの入射角度が深くなるためレーザービーム3a〜3dの反射が少なく溶接強度を低下させることなく溶接することができる。また、当接ライン4に照射されたレーザービーム3の反射光がレーザービーム発射口に戻ることがなく、反射光によるレーザービーム発射口の損傷が防止される。更に、このレーザービーム3a〜3dの照射角度を傾斜させることにより、前記のように角部eの溶接強度が低下することをレーザー出力の変化等の方法により補正しなくても、均等な溶接強度を得ることができる。
【0026】
また、レーザービーム3が照射されることによって溶融するナゲットの径は、各角部eを溶接するとき、角部eの半径をR、ナゲット径をdとすると、その関係が0.3<(d/R)となるように、レーザービーム3のスポット径や出力を調整することにより、レーザー溶接によるクラックの発生を抑制することができる。
【0027】
また、図7に示すように、当接ライン4に対するレーザービーム3a〜3dそれぞれの水平方向からの照射角度を角度αで上向きに入射させることにより、レーザー溶接による熱的影響が電池内部に及ばないようにすることができる。本実施形態によるレーザー溶接の方向は、発電要素を収容した角形ケース1の上端に対して側方から溶接するのでレーザー溶接による熱的影響が電池内部に及ぶことは少ないが、この照射角度の傾きにより、角形ケース1の材厚誤差により溶け込みが電池内部に至ったような場合に有効となる。
【0028】
角形ケース1及び封口板2は軽量化、薄型化のために材厚の薄いアルミニウム板を使用しており、また、その加工精度には限界があり、特に角形ケース1は絞り加工して有底筒状に形成されるため、その材厚にばらつきが生じやすくなる。
【0029】
そのため、レーザービーム3a〜3dそれぞれの照射による当接ライン4の溶け込み量を一定に設定しておいても、材厚の僅かなばらつきにより溶け込みが電池内部にまで達することがある。図8は当接ライン4に対するレーザー溶接の状態を断面状態で説明するもので、図8(a)に示すように、当接ライン4に対して水平方向からレーザービーム3を入射させた場合、前記のように薄い板材の材厚のばらつきにより溶け込みが図示破線のように電池内部にまで達したような場合に、電池内部には発電要素が収容されているので、溶け込みが電池内部にまで達すると、角形ケース1及び封口板2が溶融した金属溶融物が電池内部に飛散することになり、内部短絡による電池不良を発生させる原因となる。そこで、図8 (b)に示すように、レーザービーム3の照射方向を水平方向から上向き方向にして当接ライン4に入射させるようにすると、溶け込みの進行方向は封口板2側に向いているので、溶け込みが深くなったときにも、破線で示すように電池内部に至らず、材厚のばらつきによる金属溶融物の電池内部への飛散は防止される。
【0030】
角形ケース1及び封口板2は、それらを製造する切断工程において、バリの発生が避けられない。図9は角形ケース1に生じたバリ1aと封口板2に生じたバリ2aとを誇張して模式的に示すもので、バリ1a、2aは切断方向に突起として発生するので、図9(a)(b)に示すように、溶接する当接ラインに角形ケース1のバリ1aが外側方向に向いて生じていると、バリ1aが照射されるレーザービーム3により溶融して飛び散るスパッタが生じて溶接の外観不良となる。
【0031】
また、図9(a)に示すように、角形ケース1のバリ1aが外向きで、封口板2のバリ2aが角形ケース1との当接側に生じている場合には、バリ2aの突起により封口板2が角形ケース1に密着しないことになり、この状態でレーザー溶接するとスパッタが発生するばかりでなく、当接ライン間の空隙により溶接不良を発生させる。また、図9(c)に示すように、角形ケース1のバリ1aが内側方向、封口板2のバリ2aが上向き方向に生じていると、当接ライン4に凹部が生じて平面性が損なわれ溶接不良が発生する。
【0032】
そこで、図9(d)に示すように、角形ケース1のバリ1aが内側方向、封口板2のバリ2aが下向き方向になるように切断方向を設定すると、角形ケース1上に封口板2を載置したとき、図示するように角形ケース1のバリ1aによる内側方向への窪みは、封口板2の下向きのバリ2によって覆われることになり、溶接部位に突起や窪みがなく、バリ1a、2aによる溶接不良の発生が防止される。
【0033】
【発明の効果】
以上の説明の通り本発明によれば、角形ケースの開口端に、封口板を載置した当接ラインに対して角形ケースの側方からレーザービームを入射させ、4辺の直線と平行した直線的に走査することによって角形ケースと封口板との間はレーザー溶接され、角形ケースの開口端は封口板によって封止される。この溶接方法では、各辺に平行な直線的な操作で溶接されるので、その制御が容易である。また、当接ラインに生じるバリの方向を規制しているので、一定した溶接強度により角形ケースの開口端は封口板により確実に密閉封止される。
【図面の簡単な説明】
【図1】本発明の実施形態に係る角形電池の斜視図。
【図2】角形ケースの開口端の平面図。
【図3】(a)は当接ラインに対するレーザービームの走査方向を示す平面図、(b)は当接ラインに対するレーザービームの入射方向を示す側面図。
【図4】複数個の角形電池の溶接を同時に実行するレーザー溶接工程の例を示すもので、(a)は短辺側の溶接、(b)は長辺側の溶接を示す平面図。
【図5】角部に対するレーザービームの焦点距離差の発生を説明する説明図。
【図6】レーザービームの水平方向の入射角度を傾斜させて走査する方法を示す平面図。
【図7】レーザービームの鉛直方向の入射角度を傾斜させて走査する方法を示す側面図。
【図8】鉛直方向上の入射方向を傾斜させた作用効果を説明する説明図。
【図9】角形ケース及び封口板のバリ方向が不適切な状態(a)〜(c)と、適切なバリ方向の状態(d)とを断面で示す模式図。
【符号の説明】
1 角形ケース
1a、2a バリ
2 封口板
3、3a、3b、3c、3d レーザービーム
4 当接ライン
a、b、c、d 直線辺
e 角部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a prismatic battery, and more particularly to a method for manufacturing a prismatic battery by improving a welding method in which a sealing plate is welded to an open end of a prismatic case containing a power generation element to hermetically seal the prismatic case. .
[0002]
[Prior art]
For example, a secondary battery used as a power source of a portable electronic device is required to have a high energy density, and at the same time, a shape with good space use efficiency is required for weight reduction and miniaturization. As a battery that satisfies these requirements, lithium ion secondary batteries using a rectangular aluminum case are in the spotlight.
[0003]
Since this lithium ion secondary battery is required to have a stable sealing property over a long period of time, the sealing plate is joined by laser welding to the opening end of a rectangular case formed into a bottomed rectangular tube shape. Seal the edges. This laser welding has a feature that it has less thermal influence on the electrolytic solution and the electrical insulation portion accommodated in the case than other welding methods and has excellent work efficiency.
[0004]
Conventional methods for manufacturing a prismatic battery by laser welding between the rectangular case and the sealing plate are disclosed in JP-A-8-315788, JP-A-8-315789, and JP-A-8-315790. Things are known. In the manufacturing methods disclosed in these, a sealing plate is fitted into the opening end of a rectangular case arranged with the opening end facing upward, a laser beam is irradiated from the vertical direction to a contact portion between the rectangular case and the sealing plate, and laser By scanning and welding the contact line with a beam, the open end of the rectangular case is hermetically sealed with a sealing plate.
[0005]
[Problems to be solved by the invention]
However, in order to weld the contact portion between the sealing plate and the square case with a laser beam irradiated from the vertical direction to a square case arranged with the open end facing upward, a straight line with four sides of the open end shape is used. It is necessary to move the laser beam or the square case along the welding line formed at each corner connecting the parts, and the control of scanning the contact line to be welded with the laser beam becomes complicated and the production efficiency is low was there. In addition, if the contact part is welded by a laser beam irradiated from the vertical direction, the penetration direction of the penetration by welding is the internal direction of the battery, and there is a risk of the metal melt entering the battery when the penetration amount increases. is there. There is a limit to the processing accuracy of the plate material processed as a square case and a sealing plate, and even if the amount of penetration during welding is set to an optimal amount that does not reach the inside of the battery, due to variations in the processing accuracy of the plate thickness, If the melting reaches up to the point and the metal melt is scattered inside the battery, it causes an internal short circuit. Laser welding is a welding method that does not easily cause thermal effects on electrolytes and electrical insulators, but because the heating direction is toward the inside of the battery, the processing accuracy of the rectangular case and sealing plate or the limit of welding accuracy is limited. It is difficult to eliminate thermal effects from
[0006]
The present invention was devised in view of the above-mentioned problems of the prior art, and the object of the present invention is to easily perform scanning control of a laser beam for performing laser welding and to thermally influence the inside of the battery. It is an object of the present invention to provide a method for manufacturing a rectangular battery that enables welding between a rectangular case and a sealing plate by uniform welding without any problem.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention accommodates a power generation element in a rectangular case having a bottomed rectangular tube shape formed into an opening shape in which four sides of a quadrangle are straight and each corner has a curve with a predetermined radius, By laser welding a sealing plate to the opening end of the rectangular case, in the method of manufacturing a rectangular battery that seals the opening end of the rectangular case with the sealing plate, the sealing plate is brought into contact with the opening end of the rectangular case, A laser beam is incident from a side direction of the rectangular case to a contact line where the rectangular case and the sealing plate abut, and the laser beam is linearly scanned in a direction parallel to a straight line of four sides. between the sealing plate and a manufacturing method of a prismatic battery of laser welding, the direction of the burr generated at the contact line position when the respective prismatic case and sealing plate processing, the battery internal direction in prismatic cases, sealing Characterized in that was set to rectangular casing direction in the plate.
[0008]
According to the present invention , the sealing plate is in contact with the opening end of the rectangular case, and the contact line where the opening end and the sealing plate are in contact is formed on the upper end side portion of the rectangular case. The sealing plate is welded to the open end of the rectangular case by irradiating the abutting line with a laser beam from the side of the rectangular case and scanning in parallel with the four straight lines. In this welding method, since the scanning direction by the laser beam is a straight scanning line, the control is easy. Further, according to the present invention, the direction of the burr generated at the contact line position at the time of processing each of the rectangular case and the sealing plate is processed so as to be in the battery internal direction in the rectangular case and in the rectangular case direction in the sealing plate. As a result, there are no protrusions due to burrs at the incident position of the laser beam, and conversely the flatness is not impaired by the depression, resulting in poor appearance of welding due to the occurrence of spatter that melts and scatters, There is no occurrence of poor welding due to the loss of flatness, and the sealing plate can be accurately welded to the square case.
[0009]
In the manufacturing method described above, the four laser beams provided corresponding to each of the four sides are scanned in a direction parallel to the straight line of each side, and the respective contact lines are welded all at once. As the welding process proceeds simultaneously, the working efficiency is good and the sealing plate is not displaced by the welding operation.
[0010]
Welding of the sealing plate is possible by simultaneously welding any opposed contact lines by scanning each contact line sequentially with two or a single laser beam in parallel with the four straight lines and welding. Welding can be performed efficiently without causing positional displacement due to operation. Further, if the sealing plate is securely fixed on the rectangular case, it can be sequentially welded by scanning with a laser beam parallel to an arbitrary side.
[0011]
In addition, when the scanning with the laser beam moves between the straight part and the corner part of each side, by controlling the laser output according to the curve radius of the corner part, It is possible to compensate for uneven welding strength due to the difference in the focal length of the laser beam from the curved portion by changing the laser output, and to prevent the welding strength at the corner portion from being lowered.
[0012]
In addition, when scanning with the laser beam moves between the straight part and the corner part of each side, the linear side is controlled by changing the pulse time interval of the laser beam according to the curve radius of the corner part. The non-uniformity of the welding strength due to the difference in the focal length of the laser beam between the curved portion of the laser beam and the corner portion makes the laser beam irradiation amount per unit time equal by changing the pulse time interval of the laser beam, It can prevent that the welding strength of a corner part falls.
[0013]
In addition, by tilting the irradiation angle of the laser beam at a predetermined angle with respect to the scanning line direction, the incident angle of the laser beam with respect to the corner portion does not become shallow, so that a decrease in the welding strength at the corner portion is reduced. In addition, it is possible to eliminate damage to the laser launcher due to the reflection of the irradiated laser beam returning to the laser launcher.
[0014]
In addition, a plurality of rectangular cases with sealing plates placed on the open ends are arranged in a row, and a laser beam is emitted from the direction intersecting the arrangement direction, and each straight line on the opposite side parallel to the arrangement direction is irradiated with this laser beam. The rectangular cases arranged by placing the sealing plates are scanned by a laser beam scanned in the arrangement direction by welding parallel contact lines between the rectangular cases and the sealing plates. Laser welding is performed sequentially. By moving the laser beam relative to the square cases arranged in a row, a plurality of welds are made at once, and the production efficiency in the mass production process can be improved.
[0016]
Further, by performing welding so that the relationship between the welding nugget diameter d by the laser beam and the radius R of the corner portion is 0.3 <(d / R), generation of cracks due to laser welding can be suppressed. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
[0018]
FIG. 1 shows the external shape of a prismatic battery according to the present embodiment. The prismatic battery 1 is sealed by welding a sealing plate 2 to the open end of the prismatic case 1 containing a power generation element. Is manufactured. The rectangular case 1 is formed in a square bottomed cylindrical shape, and the planar shape of the open end thereof is, as shown in FIG. 2, long sides a and b and short sides c and d are straight lines, The corner e is formed in a curve with a predetermined radius.
[0019]
The sealing plate 2 is formed in an outer shape having the same size as the outer size of the open end of the rectangular case 1. The sealing plate 2 is placed on the opening end of the rectangular case 1 and the contact line connecting the straight lines of the sides a to d with the curve of the corner portion e is laser-welded. The end is sealed by the sealing plate 2. A welding method between the open end of the rectangular case 1 and the sealing plate 2 will be described below.
[0020]
In FIG. 3A, the rectangular case 1 is placed at a predetermined position with its opening end facing upward and the cylinder forming axis of each cylinder being in the vertical direction, and the sealing plate 2 is placed covering the opening end. The state is shown from above, and the laser beams 3a to 3d are moved in parallel with the straight lines of the long sides a, b and short sides c, d, respectively, as shown in FIG. The contact line 4 where 1 and the sealing plate 2 contact is laser-welded, and the open end of the rectangular case 1 is sealed with the sealing plate 2. Thus, since the scanning direction by each laser beam 3a-3d is a straight line along each side a-d, the movement control is easy and it can perform a precise welding operation.
[0021]
As shown in FIG. 3, the laser welding procedure is performed by scanning the four laser beams 3a, 3b, 3c, and 3d with straight lines parallel to the long sides a and b and the short sides c and d. Since the welding operation to the sides a, b, c, d including the same progresses at the same time, even if the placed sealing plate 2 is not temporarily fixed on the rectangular case 1, the sealing plate 2 is not displaced and is efficiently welded. Processing can be performed. In the mass production process, as shown in FIG. 4 (a), a plurality of rectangular cases 1 with the sealing plate 2 in contact are arranged, and the laser beams 3c and 3d are turned on while relatively moving in the arrangement direction. -The short side c and d including each corner e are welded simultaneously by turning off, and then the length including each corner e left by changing the arrangement direction as shown in FIG. Sides a and b are laser welded. At this time, the laser beams 3a and 3b may be simultaneously irradiated onto the long sides a and b, but the laser beam 3a is welded so that one of the long sides a or b is welded so that the heating by the laser welding is not concentrated. Changing the scanning direction or the scanning position of 3b can suppress the thermal influence on the battery. Moreover, if it temporarily fixes so that the state which mounted the sealing board 2 in the square case 1 may not be displaced, it can also be made to weld sequentially from one side including the arbitrary corner | angular parts e.
[0022]
When scanning with the laser beam 3 parallel to the sides a, b, c, and d as described above, the focal length of the laser beam 3 becomes far at each corner e formed in a curve, and the corner e The ability of laser welding will be reduced. That is, as shown in FIG. 5, when the laser beam 3a is viewed, the scanning start position is on the curve of the corner portion e, and the position where the long side a is scanned is a maximum distance difference β from the focal length of the laser beam 3a. Occurs. This state is the same at the scanning end position, and when viewed with the laser beam 3c shown in FIG. 5, a maximum distance difference β is generated in the focal length of the laser beam 3c from the position where the short side c is scanned. The decrease in the welding strength of the corner portion e due to the distance difference β is eliminated by the following welding method.
[0023]
First, in the first method, the laser output is changed in accordance with the distance difference between the sides a to d at the positions where the corners e are scanned by the laser beams 3a to 3d. That is, a decrease in welding ability at the corner e where the focal distance is long can be compensated by an increase in laser output, so that uniform welding is performed over the entire circumference of the contact line 4.
[0024]
In the second method, at the positions where the corners e are scanned by the laser beams 3a to 3d, the emission time intervals of the laser pulses are changed corresponding to the distance differences from the sides a to d. . That is, control is performed so that the laser pulse emission time interval is shortened as the distance difference increases. Due to the change in the laser pulse emission time interval, the distance difference is compensated by the irradiation amount of the laser beam 3 per unit time, so that uniform welding is performed over the entire circumference of the contact line 4.
[0025]
In the laser welding to the contact line 4 described above, as shown in FIG. 6, the irradiation angle in the horizontal direction of each of the laser beams 3a to 3d is changed from the direction orthogonal to the sides a, b, c, d to an angle θ. By tilting, the incident angle of the laser beams 3a to 3d with respect to the corner e becomes deep, so that the laser beams 3a to 3d are less reflected and welding can be performed without reducing the welding strength. Further, the reflected light of the laser beam 3 irradiated on the contact line 4 does not return to the laser beam launch port, and damage to the laser beam launch port due to the reflected light is prevented. Further, by inclining the irradiation angle of the laser beams 3a to 3d, even if the welding strength at the corner e is lowered as described above without being corrected by a method such as a change in laser output, the uniform welding strength is obtained. Can be obtained.
[0026]
The diameter of the nugget that is melted by irradiation with the laser beam 3 is such that when each corner e is welded, the radius of the corner e is R and the nugget diameter is d, and the relationship is 0.3 <( d / R), the occurrence of cracks due to laser welding can be suppressed by adjusting the spot diameter and output of the laser beam 3.
[0027]
Further, as shown in FIG. 7, the laser beam 3a to 3d with respect to the contact line 4 is irradiated with the irradiation angle from the horizontal direction upward at an angle α, so that the thermal influence by laser welding does not reach the inside of the battery. Can be. The direction of laser welding according to the present embodiment is such that the thermal effect of laser welding hardly reaches the inside of the battery because the welding is performed from the side with respect to the upper end of the rectangular case 1 containing the power generation element. Thus, this is effective when the penetration has reached the inside of the battery due to the material thickness error of the rectangular case 1.
[0028]
The square case 1 and the sealing plate 2 use a thin aluminum plate for weight reduction and thinning, and the processing accuracy is limited. In particular, the square case 1 is bottomed by drawing. Since it is formed in a cylindrical shape, the thickness of the material tends to vary.
[0029]
Therefore, even if the amount of penetration of the contact line 4 due to the irradiation of each of the laser beams 3a to 3d is set constant, the penetration may reach the inside of the battery due to slight variations in the material thickness. FIG. 8 illustrates a state of laser welding with respect to the contact line 4 in a cross-sectional state. As shown in FIG. 8A, when the laser beam 3 is incident on the contact line 4 from the horizontal direction, As described above, when the melting reaches the inside of the battery due to the variation in the thickness of the thin plate material, since the power generation element is accommodated inside the battery, the penetration reaches the inside of the battery. Then, the metal melt in which the rectangular case 1 and the sealing plate 2 are melted is scattered inside the battery, which causes a battery failure due to an internal short circuit. Therefore, as shown in FIG. 8 (b), when the irradiation direction of the laser beam 3 is changed from the horizontal direction to the upward direction so as to be incident on the contact line 4, the progress direction of the melting is directed to the sealing plate 2 side. Therefore, even when the penetration becomes deeper, as shown by the broken line, it does not reach the inside of the battery, and scattering of the metal melt into the battery due to variation in material thickness is prevented.
[0030]
The square case 1 and the sealing plate 2 inevitably generate burrs in the cutting process for manufacturing them. FIG. 9 schematically shows the burrs 1a generated in the square case 1 and the burrs 2a generated in the sealing plate 2 in an exaggerated manner. Since the burrs 1a and 2a are generated as protrusions in the cutting direction, FIG. ) As shown in (b), when the burr 1a of the square case 1 is directed outward in the contact line to be welded, spatter that is melted and scattered by the laser beam 3 irradiated with the burr 1a occurs. The appearance of welding is poor.
[0031]
Further, as shown in FIG. 9A, when the burr 1a of the square case 1 faces outward and the burr 2a of the sealing plate 2 is formed on the contact side with the square case 1, the protrusion of the burr 2a As a result, the sealing plate 2 does not adhere to the square case 1, and when laser welding is performed in this state, not only spatter is generated but also welding defects are generated due to the gap between the contact lines. Further, as shown in FIG. 9C, when the burr 1a of the square case 1 is inward and the burr 2a of the sealing plate 2 is upward, a recess is formed in the contact line 4 and the flatness is impaired. This causes poor welding.
[0032]
Accordingly, as shown in FIG. 9D, when the cutting direction is set so that the burr 1a of the rectangular case 1 is inward and the burr 2a of the sealing plate 2 is downward, the sealing plate 2 is placed on the rectangular case 1. As shown in the figure, the inward depression by the burr 1a of the square case 1 is covered by the downward burr 2 of the sealing plate 2 as shown in the figure, and there is no protrusion or depression at the welded portion, and the burr 1a, Occurrence of poor welding due to 2a is prevented.
[0033]
【The invention's effect】
As described above, according to the present invention, a laser beam is incident on the opening end of the rectangular case from the side of the rectangular case with respect to the contact line on which the sealing plate is placed, and a straight line parallel to the four sides of the straight line. By scanning regularly, the rectangular case and the sealing plate are laser-welded, and the open end of the rectangular case is sealed by the sealing plate. In this welding method, since welding is performed by a linear operation parallel to each side, the control is easy. Further, since the restricting direction of the burrs produced on the contact line, the open end of the prismatic case with constant welding strength is locked securely hermetic by sealing plate.
[Brief description of the drawings]
FIG. 1 is a perspective view of a prismatic battery according to an embodiment of the present invention.
FIG. 2 is a plan view of an open end of a rectangular case.
3A is a plan view showing the scanning direction of the laser beam with respect to the contact line, and FIG. 3B is a side view showing the incident direction of the laser beam with respect to the contact line.
FIGS. 4A and 4B show an example of a laser welding process in which welding of a plurality of rectangular batteries is simultaneously performed, wherein FIG. 4A is a plan view showing welding on the short side and FIG. 4B is welding on the long side.
FIG. 5 is an explanatory diagram for explaining generation of a focal length difference of a laser beam with respect to a corner portion.
FIG. 6 is a plan view showing a method for scanning by tilting the incident angle of the laser beam in the horizontal direction.
FIG. 7 is a side view showing a method for scanning by tilting the incident angle of the laser beam in the vertical direction.
FIG. 8 is an explanatory diagram for explaining the effect of tilting the incident direction in the vertical direction.
FIG. 9 is a schematic diagram showing, in cross section, states (a) to (c) where the burr direction of the rectangular case and the sealing plate is inappropriate and states (d) where the burr direction is appropriate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Square case 1a, 2a Burr 2 Sealing plate 3, 3a, 3b, 3c, 3d Laser beam 4 Contact line a, b, c, d Straight edge e Corner part

Claims (8)

四角形の4辺が直線で各角部が所定半径の曲線となる開口形状に形成された有底角筒形状の角形ケース内に発電要素を収容し、この角形ケースの開口端に封口板をレーザー溶接することにより、封口板によって角形ケースの開口端を封止する角形電池の製造方法において、
前記角形ケースの開口端に、封口板を当接させ、角形ケースと封口板とが当接する当接ラインに対して角形ケースの側方方向からレーザービームを入射させ、このレーザービームを4辺の直線に平行する方向に直線的に走査して角形ケースと封口板との間をレーザー溶接する角形電池の製造方法であって、
角形ケース及び封口板それぞれの加工時に当接ライン位置に発生するバリの方向が、角形ケースにおいては電池内部方向に、封口板においては角形ケース方向になるようにしたことを特徴とする角形電池の製造方法。
A power generation element is accommodated in a rectangular case with a bottomed rectangular tube shape in which the four sides of the quadrangle are straight and each corner has a curve with a predetermined radius, and a sealing plate is lasered at the opening end of the rectangular case. In the method of manufacturing a rectangular battery that seals the open end of the rectangular case by a sealing plate by welding,
A sealing plate is brought into contact with the open end of the rectangular case, and a laser beam is incident from the lateral direction of the rectangular case to a contact line where the rectangular case and the sealing plate are in contact. A method of manufacturing a prismatic battery that linearly scans in a direction parallel to a straight line and performs laser welding between the prismatic case and the sealing plate ,
The direction of the burr generated at the contact line position at the time of processing each of the square case and the sealing plate is in the direction of the battery inside in the square case and the direction of the square case in the sealing plate. Production method.
4辺のそれぞれに対応して設けられた4本のレーザービームを、それぞれ各辺の直線に平行する方向に走査して各当接ラインを一斉に溶接する請求項1記載の角形電池の製造方法。  2. The method of manufacturing a prismatic battery according to claim 1, wherein the four laser beams provided corresponding to each of the four sides are scanned in a direction parallel to the straight line of each side, and the respective contact lines are welded together. . 4辺の直線と平行に2本または単一のレーザービームで各当接ラインを順次走査して溶接する請求項1記載の角形電池の製造方法。  2. The method of manufacturing a prismatic battery according to claim 1, wherein each contact line is sequentially scanned and welded with two or a single laser beam in parallel with a straight line of four sides. レーザービームによる走査が、各辺の直線部と角部との間で移動するとき、角部の曲線半径に応じてレーザー出力を変化させるように制御する請求項1、2または3記載の角形電池の製造方法。  4. The prismatic battery according to claim 1, wherein the laser output is controlled so as to change the laser output in accordance with the curve radius of the corner when scanning by the laser beam moves between the straight portion and the corner of each side. Manufacturing method. レーザービームによる走査が、各辺の直線部と角部との間で移動するとき、角部の曲線半径に応じてレーザービームのパルス時間間隔を変化させるように制御する請求項1、2または3記載の角形電池の製造方法。  The scanning with the laser beam is controlled so as to change the pulse time interval of the laser beam in accordance with the curve radius of the corner when moving between the straight portion and the corner of each side. The manufacturing method of the square battery of description. レーザービームの照射角度を、走査ライン方向に対し所定角度に傾斜させた請求項1〜5いずれか一項に記載の角形電池の製造方法。  The manufacturing method of the square battery as described in any one of Claims 1-5 which inclined the irradiation angle of the laser beam to the predetermined angle with respect to the scanning line direction. 開口端に封口板を載置した角形ケースを複数個列設配置し、列設方向と交差する方向からレーザービームを照射し、このレーザービームで列設方向に平行な対向辺の各直線部と平行に走査して各角形ケースと各封口板との当接ラインを溶接する請求項1〜6いずれか一項に記載の角形電池の製造方法。  A plurality of rectangular cases with sealing plates placed on the open ends are arranged in a row, and a laser beam is irradiated from the direction intersecting the row direction, and each linear portion on the opposite side parallel to the row direction is irradiated with this laser beam. The manufacturing method of the square battery as described in any one of Claims 1-6 which scans in parallel and welds the contact line of each square case and each sealing board. レーザービームによる溶接ナゲット径dと、角部の半径Rとの関係が、0.3<(d/R)となるように溶接する請求項1〜7いずれか一項に記載の角形電池の製造方法。  The prismatic battery according to any one of claims 1 to 7, wherein welding is performed so that a relationship between a welding nugget diameter d by the laser beam and a radius R of the corner portion is 0.3 <(d / R). Method.
JP24943598A 1997-09-30 1998-09-03 Method for manufacturing prismatic battery Expired - Lifetime JP4074012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24943598A JP4074012B2 (en) 1997-09-30 1998-09-03 Method for manufacturing prismatic battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26609297 1997-09-30
JP9-266092 1997-09-30
JP24943598A JP4074012B2 (en) 1997-09-30 1998-09-03 Method for manufacturing prismatic battery

Publications (2)

Publication Number Publication Date
JPH11167903A JPH11167903A (en) 1999-06-22
JP4074012B2 true JP4074012B2 (en) 2008-04-09

Family

ID=26539285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24943598A Expired - Lifetime JP4074012B2 (en) 1997-09-30 1998-09-03 Method for manufacturing prismatic battery

Country Status (1)

Country Link
JP (1) JP4074012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171829A (en) * 2022-02-11 2022-03-11 中创新航科技股份有限公司 Battery and battery device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489017B1 (en) * 1999-12-27 2005-05-11 에스케이씨 주식회사 the Method of Sealing Covered Battery
KR101201743B1 (en) * 2011-04-07 2012-11-15 에스비리모티브 주식회사 Rechargeable battery
JP6465186B2 (en) * 2017-09-26 2019-02-06 株式会社Gsユアサ Power storage element and power storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171829A (en) * 2022-02-11 2022-03-11 中创新航科技股份有限公司 Battery and battery device
CN114171829B (en) * 2022-02-11 2022-05-03 中创新航科技股份有限公司 Battery and battery device

Also Published As

Publication number Publication date
JPH11167903A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
KR100471169B1 (en) Method of manufacturing a rectangular battery
US20060207085A1 (en) Battery and method for manufacturing same
EP2960005B1 (en) Laser welding apparatus and laser welding method
US5879416A (en) Method of manufacturing battery having polygonal case
RU2664583C2 (en) Laser welding apparatus
KR101525331B1 (en) Battery module and method for welding battery module
JPH08315790A (en) Welding method of sealed vessel of square battery
JP2000133211A (en) Manufacture of square battery
US20100247992A1 (en) Sealed secondary battery, and method for manufacturing the battery
JP2011076776A (en) Welding method between core exposed part of electrode body and current collection member
CN215731935U (en) Battery case and battery
JP4074012B2 (en) Method for manufacturing prismatic battery
JPH08315789A (en) Manufacture of square battery
JP2003181666A (en) Method of welding container for rectangular battery and method of manufacturing rectangular battery
JPH11167904A (en) Manufacture of rectangular battery
US20200112015A1 (en) Method and apparatus for laser welding
JPH08315788A (en) Manufacture of square battery
JP2015107514A (en) Laser welding method and laser welding device
JPH1190657A (en) Square pressure-resistant case and its welding method
JP2000090891A (en) Manufacture of sealed battery
EP0942476A1 (en) Method of manufacturing a rectangular battery
US20200290153A1 (en) Method for manufacturing joined body
KR20180072964A (en) Process for Preparing Battery Cell Comprising Ablation Step of Burr Using Fiber Pulse Type Laser
JPH08250079A (en) Welding method of sealed vessel for rectangular battery
JP2011210464A (en) Method of manufacturing square case

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150201

Year of fee payment: 7

EXPY Cancellation because of completion of term