JPH08315789A - Manufacture of square battery - Google Patents

Manufacture of square battery

Info

Publication number
JPH08315789A
JPH08315789A JP7331888A JP33188895A JPH08315789A JP H08315789 A JPH08315789 A JP H08315789A JP 7331888 A JP7331888 A JP 7331888A JP 33188895 A JP33188895 A JP 33188895A JP H08315789 A JPH08315789 A JP H08315789A
Authority
JP
Japan
Prior art keywords
laser
welding
corner
case
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7331888A
Other languages
Japanese (ja)
Inventor
Masaya Nakamura
雅也 中村
Tokuichi Hosokawa
徳一 細川
Manabu Yamada
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7331888A priority Critical patent/JPH08315789A/en
Priority to US08/611,401 priority patent/US5879416A/en
Publication of JPH08315789A publication Critical patent/JPH08315789A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a welding method of a sealed vessel of a square battery by which a fitting part having a straight line-shaped side part and a corner part having a prescribed radius of curvature can be excellently welded by a laser over its whole circumference. CONSTITUTION: A cover plate 2 composed of a metallic plate is fitted in an opening of a square case 1 composed of a straight line-shaped side part 31 and a corner part 32 having a prescribed radius of curvature, and a fitting part 3 is welded by a laser, and a sealed vessel of a square battery is formed. In first constitution, a radius of curvature of a locus (either a continuous locus or a sporadic locus) of the spot center of a laser beam is made smaller than a radius of curvature of the corner part 32 of the fitting part 3. In second constitution, laser output at welding time of the corner part 32 of the fitting part 3 is reduced more than laser output at welding time of the side part 31 of the fitting part 3. In third constitution, laser beam scanning speed at welding time of the corner part 32 of the fitting part 3 is increased more than laser beam scanning speed at welding time of the corner part 31 of the fitting part 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、角形電池の製造方
法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a prismatic battery.

【0002】[0002]

【従来の技術】特公平6ー54660号公報に開示され
る密閉型の角形電池は、金属からなる角形ケースの一端
に形成された開口に金属板からなる蓋板を嵌入し、嵌合
部にレーザー溶接して角形電池の容器を形成しており、
特に、レーザー照射開始の所定時間前から角形ケースを
載置したテーブルの移動を開始し、かつ、レーザー照射
終了部位を過ぎても所定時間、テーブルの移動を持続し
て、溶接領域各部を均一の溶接速度で溶接することを提
案している。
2. Description of the Related Art In a closed prismatic battery disclosed in Japanese Patent Publication No. 6-54660, a lid plate made of a metal plate is fitted into an opening formed at one end of a prismatic case made of metal, and is fitted to a fitting portion. Laser welding is used to form a prismatic battery container,
In particular, the movement of the table on which the rectangular case is placed is started from a predetermined time before the start of laser irradiation, and the movement of the table is continued for a predetermined time even after the laser irradiation end portion is passed, so that each part of the welding area is evenly distributed. It proposes to weld at a welding speed.

【0003】なお、このような角形電池は円筒形電池に
比べてスペース使用効率が優れており、また、レーザー
溶接は他の溶接方式に比較して電解液や電気絶縁部分な
どに対する熱的影響が少なく作業効率が優れるという利
点を有している。通常、上記した角形ケースは金属平板
の成形にて形成されるので、角部(コーナー部ともい
う)はある曲率半径をもち、それに応じて蓋板の角部も
それに応じた曲率半径をもち、嵌合部は直線状の辺部と
所定曲率半径の角部とからなる。
Such prismatic batteries are more efficient in space use than cylindrical batteries, and laser welding has a greater thermal effect on the electrolytic solution and electrically insulating parts than other welding methods. It has the advantage that the work efficiency is low and it is excellent. Usually, the above-mentioned rectangular case is formed by molding a metal flat plate, so that a corner portion (also referred to as a corner portion) has a certain radius of curvature, and accordingly, a corner portion of the lid plate also has a corresponding radius of curvature. The fitting portion includes a straight side portion and a corner portion having a predetermined radius of curvature.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来のレーザー溶接で形成した角形密閉電池の検査に
おいて、内部ショートや溶接部からの電解液の漏洩や溶
接部の耐圧不足が発見される場合があった。本発明者ら
は、溶接不良品の分解、断面観察から不良原因が角部の
溶接に起因していることを発見した。
However, in the inspection of the prismatic sealed battery formed by the above-mentioned conventional laser welding, an internal short circuit, leakage of electrolyte from the welded portion, or insufficient pressure resistance of the welded portion may be found. there were. The present inventors have found that the cause of the defect is due to the welding of the corners by disassembling the defective welding product and observing the cross section.

【0005】すなわち、溶接経路は、図3に示すように
嵌合部に沿って定速、定出力(パルス密度一定)で順次
行われ、このために嵌合部の直線状の辺部での溶融領域
(溶け込み領域ともいう)の縦断面は図4に点線で示す
谷形形状(単峰形状)となる。なお、図3、図4におい
て、1はケース、2は蓋板、3は嵌合部、31はその直
線状の辺部、32はその1/4円状の角部、Wは溶接経
路である。
That is, the welding path is sequentially performed at a constant speed and a constant output (constant pulse density) along the fitting portion as shown in FIG. 3, and for this reason, the straight sides of the fitting portion are connected. The vertical cross section of the melting region (also referred to as the melting region) has a valley shape (single peak shape) shown by a dotted line in FIG. In FIGS. 3 and 4, 1 is a case, 2 is a cover plate, 3 is a fitting portion, 31 is a linear side portion thereof, 32 is a quarter circular corner portion thereof, and W is a welding path. is there.

【0006】しかし、嵌合部3の角部32では、嵌合部
3の単位長さ当たりの照射エネルギの増大及びビード
(溶融領域=溶け込み領域)の内周と外周との寸法差に
より特にビードの内周側の部分での照射エネルギの増大
が生じ、このために溶融領域(溶け込み領域ともいう)
の縦断面は図4に実線で示す谷形形状となる。すなわ
ち、嵌合部3の角部32では溶け込み領域の最大深さの
部位はビードの内周寄りに偏るとともに、嵌合部3の角
部32では溶け込み領域の最大深さが嵌合部3の辺部3
1より増大することがわかった。
However, at the corner portion 32 of the fitting portion 3, the bead (melting area = melting area) is particularly beaded due to an increase in irradiation energy per unit length of the fitting portion 3 and a dimensional difference between the inner circumference and the outer circumference of the bead (melting area = melting area). The irradiation energy is increased in the inner peripheral part of the melt, and for this reason the melted region (also called the melted region)
The vertical section has a valley shape shown by the solid line in FIG. That is, in the corner portion 32 of the fitting portion 3, the portion having the maximum depth of the penetration area is biased toward the inner circumference of the bead, and in the corner portion 32 of the fitting portion 3, the maximum depth of the penetration area is equal to that of the fitting portion 3. Side 3
It was found to increase from 1.

【0007】例えば、図6に模式的に示すパルス式レー
ザー溶接機で嵌合部を溶接した状態を図7に示す。図7
において、1は角形ケース、2は蓋板、10はケースの
頂面、200は溶接部、201は円形溶接部、202は
溶接部200のうちで特に溶融深さが増大する溶け込み
増加部である。このようなパルス式レーザー溶接機で
は、溶融が行われる溶接部200は、円形溶接部201
が重なりあった形状となり、嵌合部の角部では円形溶接
部201の重なり具合が内周に偏るため、嵌合部の角部
における溶融している溶接部200の最大溶融深さは、
嵌合部の辺部におけるそれよりも増大する。
For example, FIG. 7 shows a state in which the fitting portion is welded by the pulse type laser welding machine schematically shown in FIG. Figure 7
In FIG. 1, 1 is a rectangular case, 2 is a cover plate, 10 is the top surface of the case, 200 is a welded part, 201 is a circular welded part, and 202 is a penetration increasing part of the welded part 200 where the melting depth is particularly increased. . In such a pulse type laser welding machine, the welded portion 200 to be melted is a circular welded portion 201.
Have overlapping shapes, and the degree of overlap of the circular welded portions 201 is biased toward the inner circumference at the corners of the fitting portion, so the maximum melting depth of the molten weld portion 200 at the corners of the fitting portion is:
It is larger than that at the side of the fitting part.

【0008】その結果、嵌合部3の辺部31において溶
け込み量(溶融量)を最適に設定すると、嵌合部3の角
部32において溶け込み量すなわち照射エネルギ密度が
過大となり、溶融液のスパッタが角形ケース1の内部に
飛散したりスパッタの跡に微小クラックが残ったりし
て、嵌合部3の角部32における溶接不良が生じて電解
液漏れや内部ショートの原因となったりする。また、照
射が角部32の内周側に偏るため電池内部への熱的影響
も大きくなる。一方、嵌合部3の角部32において照射
エネルギを最適に設定すれば、嵌合部3の辺部31にお
いて照射エネルギ過少となり、溶け込み量不足による溶
接不良が生じてしまう。
As a result, if the amount of melting (melting amount) at the side portion 31 of the fitting portion 3 is optimally set, the amount of melting, that is, the irradiation energy density, at the corner portion 32 of the fitting portion 3 becomes excessive, and the spatter of the molten liquid occurs. May be scattered inside the rectangular case 1 or small cracks may remain in the traces of spatter, resulting in defective welding at the corner 32 of the fitting part 3 and causing electrolyte leakage or internal short circuit. Further, since the irradiation is biased toward the inner peripheral side of the corner portion 32, the thermal influence on the inside of the battery becomes large. On the other hand, if the irradiation energy is optimally set at the corner portion 32 of the fitting portion 3, the irradiation energy will be too small at the side portion 31 of the fitting portion 3 and welding failure will occur due to insufficient penetration.

【0009】本発明は上記問題点に鑑みなされたもので
あり、直線状の辺部と所定曲率半径の角部とをもつ嵌合
部をその全周にわたって良好にレーザー溶接可能な角形
電池の製造方法を提供することを、その目的としてい
る。
The present invention has been made in view of the above problems, and manufactures a prismatic battery in which a fitting portion having a straight side portion and a corner portion having a predetermined radius of curvature can be favorably laser-welded over the entire circumference thereof. Its purpose is to provide a method.

【0010】[0010]

【課題を解決するための手段】請求項1記載の溶接方法
によれば、直線状の辺部と所定曲率半径の角部とからな
るとともに金属ケースの一端に形成される角形の開口に
金属板からなる蓋板を嵌入し、嵌合部をレーザー溶接し
て角形電池の容器を形成する。本構成では更に、レーザ
ービームのスポット中心の軌跡(連続軌跡でもよく飛び
飛びの軌跡でもよい)の曲率半径を嵌合部の角部の曲率
半径よりも小さくする。すなわち、スポット中心の軌跡
を嵌合部の角部において、嵌合部の角部の外側に設定す
る。このようにすれば、上記した理由により例えば図4
に示す嵌合部の角部における溶け込み領域の最深点が内
周側に変位するのを補償して、この最深点が嵌合部より
角形ケース側に変位させることができ、これにより角形
ケース内部への溶接時のスパッタ飛散を防止して内部シ
ョートの発生を防止できる。
According to another aspect of the present invention, there is provided a metal plate having a rectangular opening formed at one end of a metal case, the metal plate having straight side portions and corner portions having a predetermined radius of curvature. A lid plate made of is fitted and the fitting portion is laser-welded to form a prismatic battery container. In this configuration, the radius of curvature of the spot center of the laser beam (which may be continuous or discrete) may be smaller than the radius of curvature of the corners of the fitting portion. That is, the locus of the center of the spot is set at the corner of the fitting portion and outside the corner of the fitting portion. By doing this, for example, as shown in FIG.
It is possible to compensate for the deepest point of the penetration area at the corner of the fitting part shown in Figure 4 to be displaced to the inner circumference side, and this deepest point can be displaced to the square case side from the fitting part. It is possible to prevent spatter from scattering during welding and to prevent internal short circuit.

【0011】請求項2記載の溶接方法によれば、直線状
の辺部と所定曲率半径の角部とからなるとともに金属ケ
ースの一端に形成される角形の開口に金属板からなる蓋
板を嵌入し、嵌合部をレーザー溶接して角形電池の容器
を形成する。本構成では更に、嵌合部の角部溶接時のレ
ーザー出力を嵌合部の辺部溶接時のレーザー出力よりも
低減する。このようにすれば、上記した理由により例え
ば図4に示す嵌合部の角部における溶け込み領域の最深
点が辺部におけるその最深点よりも深くなって嵌合部を
突き抜けることがない。つまり、嵌合部の角部において
溶け込み量が過大となり、溶融液のスパッタが角形ケー
ス内部に飛散したりスパッタの跡に微小クラックが残っ
たりして、嵌合部の角部における溶接不良が生じて電解
液漏れや内部ショートの原因となったりするのを防止す
ることができる。
According to the welding method of the second aspect, a lid plate made of a metal plate is fitted into a square opening formed at one end of the metal case, the straight plate side portion and the corner portion having a predetermined radius of curvature. Then, the fitting portion is laser-welded to form a prismatic battery container. In this configuration, the laser output at the time of welding the corner portion of the fitting portion is further reduced than the laser output at the time of welding the side portion of the fitting portion. With this configuration, for example, the deepest point of the melted region at the corner of the fitting portion shown in FIG. 4 is deeper than the deepest point at the side portion and does not penetrate through the fitting portion due to the reasons described above. In other words, the amount of melting at the corners of the mating part becomes excessive, the spatter of the molten liquid scatters inside the rectangular case, and minute cracks remain on the traces of the spatter, resulting in poor welding at the corners of the mating part. It is possible to prevent electrolyte leakage and internal short circuit.

【0012】請求項3記載の溶接方法によれば、直線状
の辺部と所定曲率半径の角部とからなるとともに金属ケ
ースの一端に形成される角形の開口に金属板からなる蓋
板を嵌入し、嵌合部をレーザー溶接して角形電池の容器
を形成する。本構成では更に、嵌合部の角部溶接時のレ
ーザービーム走査速度を嵌合部の辺部溶接時のレーザー
ビーム走査速度よりも増大する。このようにすれば、請
求項2記載の溶接方法と同じ作用効果を奏することがで
きる。
According to the welding method of the third aspect, a lid plate made of a metal plate is fitted into a square opening formed at one end of the metal case, the lid plate having straight side portions and corner portions having a predetermined radius of curvature. Then, the fitting portion is laser-welded to form a prismatic battery container. In this configuration, the laser beam scanning speed at the time of welding the corner portion of the fitting portion is further increased than the laser beam scanning speed at the time of welding the side portion of the fitting portion. If it does in this way, the same operation effect as the welding method according to claim 2 can be produced.

【0013】請求項4記載の溶接方法によれば、直線状
の辺部と曲線状の角部とからなるとともに金属ケースの
一端に形成される開口に金属板からなる蓋板を嵌入し、
嵌合部をレーザー溶接して角形電池の容器を形成する。
本構成では更に、角部の溶接時にレーザースポットの中
心を角部の外側へオフセットさせ、辺部の溶接時にレー
ザースポットの中心を辺部上に合わせてレーザ溶接を行
う。このようにすれば、請求項2記載の溶接方法と同じ
作用効果を奏することができる。
According to the welding method of the fourth aspect, a lid plate made of a metal plate is fitted into an opening formed at one end of the metal case, the lid plate being formed of straight side portions and curved corner portions,
The fitting portion is laser-welded to form a prismatic battery container.
In this configuration, the center of the laser spot is further offset to the outside of the corner when welding the corner, and the center of the laser spot is aligned with the side when welding the side to perform laser welding. If it does in this way, the same operation effect as the welding method according to claim 2 can be produced.

【0014】請求項5記載の溶接方法によれば、直線状
の辺部と曲線状の角部とからなるとともに金属ケースの
一端に形成される角形の開口に金属板からなる蓋板を嵌
入し、嵌合部をレーザー溶接して角形電池の容器を形成
する。本構成では更に、レーザービームの走査速度を所
定値に維持しつつ、角部の溶接時のレーザービームの発
射間隔を辺部の溶接時のそれよりも延長する。このよう
にすれば、請求項1記載の溶接方法と同じ作用効果を奏
することができる。
According to the welding method of the fifth aspect, a lid plate made of a metal plate is fitted into a square opening formed at one end of the metal case and having straight side portions and curved corner portions. , The fitting portion is laser-welded to form a prismatic battery container. Further, in this configuration, while maintaining the scanning speed of the laser beam at a predetermined value, the laser beam emission interval at the time of welding the corner portion is made longer than that at the time of welding the side portion. If it does in this way, the same operation effect as the welding method according to claim 1 can be produced.

【0015】請求項6〜9記載の溶接方法によれば請求
項2〜5記載の溶接方法において更に、X−Yテーブル
を用いるとともに、その載置面を溶接すべき嵌合部を含
む平面に平行とすることによりレーザースポットの平面
走査制御を行うので、装置構成の簡素化を図ることがで
き、かつ請求項2〜5記載の溶接方法を確実に実施する
ことができる。
According to the welding method according to claims 6 to 9, the XY table is further used in the welding method according to claims 2 to 5, and the mounting surface thereof is a flat surface including the fitting portion to be welded. Since the plane scanning control of the laser spot is performed by making them parallel to each other, it is possible to simplify the structure of the apparatus and to reliably carry out the welding method according to claims 2 to 5.

【0016】請求項6記載の溶接方法によれば請求項1
乃至5のいずれか記載の溶接方法において更に、蓋板を
圧入によりケースの開口に嵌合するようにしたので、溶
接又は仮止め前に蓋板がずれることを防止することがで
きる。
According to the welding method of claim 6, claim 1
Further, in the welding method according to any one of items 1 to 5, the lid plate is fitted into the opening of the case by press fitting, so that the lid plate can be prevented from being displaced before welding or temporary fixing.

【0017】[0017]

【発明の実施の形態】本発明の好適な態様を実施例によ
り説明する。 (実施例1)本発明の角形電池の製造方法の一実施例を
図1及び図2を参照して説明する。本実施例の溶接方法
が適用される角形電池を図2に示す。この電池の容器は
角形ケース(本発明でいう金属ケース)1と、この角形
ケース1の上端の開口に嵌入され、レーザー溶接されて
この開口を密閉する蓋板2とからなる。なお、図3にお
いて、5は蓋板2の中央部に蓋板2から電気絶縁されて
固定された正極ターミナルである。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described with reference to examples. (Embodiment 1) An embodiment of a method for manufacturing a prismatic battery of the present invention will be described with reference to FIGS. FIG. 2 shows a prismatic battery to which the welding method of this embodiment is applied. The container of this battery comprises a rectangular case (metal case in the present invention) 1 and a lid plate 2 which is fitted into an opening at the upper end of the rectangular case 1 and is laser-welded to seal the opening. In FIG. 3, reference numeral 5 is a positive electrode terminal fixed to the central portion of the lid plate 2 so as to be electrically insulated from the lid plate 2 and fixed.

【0018】角形ケース1は、角箱形状を有し、ニッケ
ルめっき鋼板を成形してなる。角形ケース1内には、リ
チウムコバルト酸化物からなる正極活物質、セパレー
タ、カーボンからなる負極活物質及び非水系電解液から
なる電池要素9(図4参照)が収容されている。蓋板2
は、上記開口に圧入にて嵌入されたニッケルめっき鋼板
(周縁はめっき無し)からなり、角形ケース1の開口に
嵌め込まれた後、蓋板2の外周縁を角形ケース1の開口
の内周(開口端縁)に突き合わせた状態を保ちつつ、嵌
合部3を全周にわたってパルス式YAGレーザー溶接機
(図6参照)で溶接して角形ケース1を容器としてい
る。
The rectangular case 1 has a rectangular box shape and is formed by molding a nickel-plated steel plate. A battery element 9 (see FIG. 4) made of a positive electrode active material made of lithium cobalt oxide, a separator, a negative electrode active material made of carbon, and a non-aqueous electrolyte is housed in the rectangular case 1. Lid plate 2
Is made of a nickel-plated steel plate (the periphery of which is not plated) that is press-fitted into the opening. After being fitted into the opening of the rectangular case 1, the outer peripheral edge of the lid plate 2 is attached to the inner circumference of the opening of the rectangular case 1 ( While keeping the state of abutting against the opening edge), the fitting portion 3 is welded over the entire circumference by a pulse type YAG laser welding machine (see FIG. 6) to form the rectangular case 1 as a container.

【0019】この溶接機は、図6に示すように、溶接対
象としての電池組立体100が固定されてそれぞれ水平
なX方向及びY方向へ変位するX、Yテーブル6と、こ
のX、Yテーブル6の上方に不動に位置して垂直にレー
ザーパルスを照射するレーザー発振器7と、パソコンか
ら構成されてこれらX、Yテーブル6及びレーザー発振
器7を制御するコントローラ8とからなる。70はレー
ザー発振器7から照射されたレーザービームを結像(集
光)するためのレンズである。
As shown in FIG. 6, in this welding machine, a battery assembly 100 to be welded is fixed and displaced in horizontal X and Y directions, respectively, and an X and Y table 6. 6, a laser oscillator 7 which is immovably positioned above and vertically emits a laser pulse, and a controller 8 which is composed of a personal computer and controls the X and Y tables 6 and the laser oscillator 7. Reference numeral 70 is a lens for focusing (focusing) the laser beam emitted from the laser oscillator 7.

【0020】したがって、嵌合部3は角形ケース1の開
口端縁(開口部の内周端)と蓋板2の外周縁とで構成さ
れている。嵌合部3は、4本の直線からなる辺部31と
所定曲率半径の角部32とからなる角輪形状を有してい
る(図1参照)。以下、溶接工程を詳細に説明する。嵌
合部3上の所定の溶接開始部位から嵌合部3に沿ってレ
ーザー照射位置を移動させつつパルスレーザー光を順次
出力して溶接を行い、密閉を完了する。
Therefore, the fitting portion 3 is composed of the opening edge of the rectangular case 1 (the inner peripheral edge of the opening) and the outer peripheral edge of the cover plate 2. The fitting part 3 has a square ring shape composed of four side parts 31 made of straight lines and corner parts 32 having a predetermined radius of curvature (see FIG. 1). Hereinafter, the welding process will be described in detail. While the laser irradiation position is moved along the fitting portion 3 from the predetermined welding start portion on the fitting portion 3, the pulse laser light is sequentially output to perform welding, and the sealing is completed.

【0021】本実施例の溶接方法の特徴は、図1に示す
ように、X、Yテーブル6の制御によって形成されるレ
ーザービームのスポット中心の軌跡(この場合には飛び
飛びのスポット中心位置を結ぶ線となる)を意味する溶
接経路Wの角部の曲率半径が嵌合部3の角部32の曲率
半径よりも小さく設定されている点にある。すなわち、
溶接経路Wは嵌合部3の角部32の外側に設定されてい
る。このようにすれば、上記した理由により嵌合部の角
部において溶接経路Wより溶け込み領域の最深点が内周
側に変位し、しかも最深点の深さが深くなっても図5に
実線で示すように最深点が角形ケース1側にシフトする
ので、溶接によるスパッタが内部に飛散したりするのを
防止することができる。
As shown in FIG. 1, the welding method of this embodiment is characterized in that the locus of the spot center of the laser beam formed by the control of the X and Y tables 6 (in this case, the spot center positions of the spots are connected). This means that the radius of curvature of the corner portion of the welding path W, which means a line), is set smaller than the radius of curvature of the corner portion 32 of the fitting portion 3. That is,
The welding path W is set outside the corner 32 of the fitting portion 3. By doing so, even if the deepest point of the melted region is displaced to the inner peripheral side from the welding path W at the corner of the fitting portion due to the above-mentioned reason, and the deepest point becomes deep, the solid line in FIG. As shown in the drawing, the deepest point is shifted to the side of the rectangular case 1, so that it is possible to prevent the spatter due to welding from scattering inside.

【0022】(実施例2)本発明の角形電池の製造方法
の他実施例を図3を参照して説明する。本実施例の溶接
方法は、実施例1と以下の点だけが異なっている。すな
わち、本実施例の溶接方法の特徴は、図3に示すよう
に、レーザービームのスポット中心の軌跡(この場合に
は飛び飛びのスポット中心位置を結ぶ線となる)を意味
する溶接経路Wの角部の曲率半径が嵌合部3の角部32
の曲率半径に一致して設定されるとともに、レーザー発
振器7の制御により嵌合部3の角部32溶接時の1パル
ス当たりのレーザー出力を嵌合部3の辺部31の溶接時
の1パルス当たりのレーザー出力よりも約5%低減する
点にある。このようにすれば、嵌合部3の角部32の特
に溶け込み領域の内周側において上記した理由により溶
け込み領域の最深点が図4に実線で示すその最深点dm
axより浅くなる。したがって、従来の定エネルギ照射
法における欠点であった嵌合部3の角部32において溶
け込み量が過大となって溶融液のスパッタが角形ケース
1内部に飛散したりスパッタの跡に微小クラックが残っ
たりし、これにより電解液漏れや内部ショートが生じる
場合があるという問題を解決することができる。なお、
この実施例において、レーザービーム走査速度及び単位
時間当たりのレーザーパルス発射割合は嵌合部3の角部
32及び辺部31で等しくされている。
(Embodiment 2) Another embodiment of the method for manufacturing a prismatic battery of the present invention will be described with reference to FIG. The welding method of this embodiment differs from the welding method of Embodiment 1 only in the following points. That is, as shown in FIG. 3, the characteristic of the welding method of the present embodiment is that the corner of the welding path W means the locus of the spot center of the laser beam (in this case, it becomes a line connecting the spot center positions of the spots). The radius of curvature of the part is the corner 32 of the fitting part 3.
Is set in accordance with the radius of curvature of the fitting portion 3, and the laser output per pulse when welding the corner portion 32 of the fitting portion 3 is controlled by the laser oscillator 7 to be 1 pulse when welding the side portion 31 of the fitting portion 3. It is about 5% less than the laser output per hit. By doing so, the deepest point of the melted region is indicated by the solid line in FIG.
It becomes shallower than ax. Therefore, the penetration amount becomes excessive at the corner portion 32 of the fitting portion 3 which is a defect in the conventional constant energy irradiation method, and the spatter of the molten liquid is scattered inside the rectangular case 1 or a minute crack remains in the trace of the spatter. However, this can solve the problem that electrolyte leakage and internal short circuit may occur. In addition,
In this embodiment, the laser beam scanning speed and the laser pulse emission rate per unit time are made equal at the corner portion 32 and the side portion 31 of the fitting portion 3.

【0023】(実施例3)本発明の角形電池の製造方法
の他実施例を図3を参照して説明する。本実施例の溶接
方法は、実施例2と以下の点だけが異なっている。すな
わち、本実施例の溶接方法の特徴は、図3に示すよう
に、レーザービームのスポット中心の軌跡(この場合に
は飛び飛びのスポット中心位置を結ぶ線となる)を意味
する溶接経路Wの角部の曲率半径が嵌合部3の角部32
の曲率半径に一致して設定されるのは実施例2と同じで
あるが、X、Yテーブル6の制御により嵌合部3の角部
32を溶接する時のレーザービーム走査速度を嵌合部3
の辺部31を溶接する時のレーザービーム走査速度より
も約10%増大する点にある。このようにすれば、嵌合
部3の角部32の特に溶け込み領域の内周側において上
記した理由により溶け込み領域の最深点が図4に実線で
示すその最深点dmaxより浅くなる。したがって、従
来の定エネルギ照射法における欠点であった嵌合部3の
角部32において溶け込み量が過大となって溶融液のス
パッタが角形ケース1内部に飛散したりスパッタの跡に
微小クラックが残ったりし、これにより電解液漏れや内
部ショートが生じる場合があるという問題を解決するこ
とができる。なお、この実施例において、レーザービー
ムの1パルス当たりの出力及び単位時間当たりのレーザ
ーパルス発射割合は嵌合部3の角部32及び辺部31で
等しくされている。
(Embodiment 3) Another embodiment of the method for manufacturing a prismatic battery of the present invention will be described with reference to FIG. The welding method of this example is different from Example 2 only in the following points. That is, as shown in FIG. 3, the characteristic of the welding method of the present embodiment is that the corner of the welding path W means the locus of the spot center of the laser beam (in this case, it becomes a line connecting the spot center positions of the spots). The radius of curvature of the part is the corner 32 of the fitting part 3.
It is set in accordance with the radius of curvature of the same as in the second embodiment, but the laser beam scanning speed when welding the corner 32 of the fitting part 3 by the control of the X and Y table 6 is set to the fitting part. Three
It is about 10% higher than the laser beam scanning speed when welding the side portion 31 of the. By doing so, the deepest point of the melted region becomes shallower than the deepest point dmax shown by the solid line in FIG. 4 at the corner portion 32 of the fitting portion 3, especially on the inner peripheral side of the melted region, for the reason described above. Therefore, the melting amount becomes excessive at the corner 32 of the fitting portion 3, which is a drawback of the conventional constant energy irradiation method, and the spatter of the molten liquid scatters inside the rectangular case 1 or minute cracks remain in the trace of the spatter. However, this can solve the problem that electrolyte leakage and internal short circuit may occur. In this embodiment, the output per pulse of the laser beam and the laser pulse emission rate per unit time are made equal in the corner portion 32 and the side portion 31 of the fitting portion 3.

【0024】(実施例4)本発明の角形電池の製造方法
の他実施例を図3を参照して説明する。本実施例の溶接
方法は、実施例3と以下の点だけが異なっている。すな
わち、本実施例の溶接方法の特徴は、図3に示すよう
に、レーザービームのスポット中心の軌跡(この場合に
は飛び飛びのスポット中心位置を結ぶ線となる)を意味
する溶接経路Wの角部の曲率半径が嵌合部3の角部32
の曲率半径に一致して設定されるのは実施例2、3と同
じであるが、嵌合部3の角部32を溶接する時の単位時
間当たりのレーザーパルス発射割合を嵌合部3の辺部3
1を溶接する時の単位時間当たりのレーザーパルス発射
割合よりも約10%低減する点にある。このようにすれ
ば、実施例2、3と同じ効果を奏することができる。な
お、この実施例において、レーザービームの1パルス当
たりの出力及びレーザービーム走査速度は嵌合部3の角
部32及び辺部31で等しくされている。
(Embodiment 4) Another embodiment of the method for manufacturing a prismatic battery of the present invention will be described with reference to FIG. The welding method of this embodiment is different from the welding method of Embodiment 3 only in the following points. That is, as shown in FIG. 3, the characteristic of the welding method of the present embodiment is that the corner of the welding path W means the locus of the spot center of the laser beam (in this case, it becomes a line connecting the spot center positions of the spots). The radius of curvature of the part is the corner 32 of the fitting part 3.
Although it is set in accordance with the radius of curvature of the same as in the second and third embodiments, the laser pulse firing rate per unit time when welding the corner portion 32 of the fitting portion 3 is set to the fitting portion 3. Side 3
It is about 10% less than the laser pulse firing rate per unit time when welding No. 1. By doing so, the same effects as those of the second and third embodiments can be obtained. In this embodiment, the output per pulse of the laser beam and the laser beam scanning speed are made equal at the corner portion 32 and the side portion 31 of the fitting portion 3.

【0025】(実施例5)なお、上記した実施例2〜4
では上記したレーザービームの1パルス当たりの出力又
はレーザービーム走査速度又は単位時間当たりのレーザ
ーパルス発射割合は嵌合部3の辺部31から嵌合部3の
角部32に移行した瞬間からステップ状に変化している
が、嵌合部3の辺部31から嵌合部3の角部32に移行
した後、嵌合部3の角部32の値に徐々に変化させ、そ
して嵌合部3の角部32から辺部31へ戻る際にも角部
32の値を徐々に変化させる。
(Fifth Embodiment) Incidentally, the above-mentioned second to fourth embodiments.
Then, the output per pulse of the laser beam or the laser beam scanning speed or the laser pulse emission rate per unit time is stepped from the moment when the side portion 31 of the fitting portion 3 moves to the corner portion 32 of the fitting portion 3. However, after the transition from the side portion 31 of the fitting portion 3 to the corner portion 32 of the fitting portion 3, the value of the corner portion 32 of the fitting portion 3 is gradually changed, and the fitting portion 3 The value of the corner 32 is gradually changed also when returning from the corner 32 to the side 31.

【0026】このようにすれば、上記した実施例効果を
一層円滑に実現することができる。 (実施例6)本実施例は、実施例1の溶接経路Wの曲率
半径縮小と、上記した実施例2〜4のどれかとを同時に
実施するものである。このようにすれば嵌合部3の角部
32において、溶け込み領域の最深点に嵌合部3に一致
させることができ、かつ、この最深点の深さを辺部31
の最深点の深さと一致させることができる。
By doing so, the effects of the above-described embodiment can be realized more smoothly. (Embodiment 6) In this embodiment, the reduction of the radius of curvature of the welding path W of Embodiment 1 and any one of Embodiments 2 to 4 described above are carried out at the same time. In this way, in the corner portion 32 of the fitting portion 3, the deepest point of the melted region can be matched with the fitting portion 3, and the depth of this deepest point can be the side portion 31.
The depth of the deepest point of can be matched.

【0027】以下、試験結果を説明する。角形ケース1
は縦34mm、横8.5mm、高さ48mm、角部32
の曲率半径は0.5mm、角形ケース1及び蓋板2の肉
厚は0.4mm、辺部のパルス密度10個/mm、辺部
の1パルスのエネルギを2.4J、辺部のレーザービー
ム走査速度を10mm/秒、1パルスによる溶融面積の
直径は約0.7mmとして溶接を行い、蓋板2の内側に
ポリプロピレン樹脂板を一面に接合しておき、このポリ
プロピレン樹脂板上に現れたスパッタの痕跡や熱的影響
について調査した。また、密封した電池を溶接部を下側
として90日間放置して電解液漏れを調べた。
The test results will be described below. Square case 1
Is height 34mm, width 8.5mm, height 48mm, corner 32
Has a radius of curvature of 0.5 mm, the rectangular case 1 and the cover plate 2 have a wall thickness of 0.4 mm, the side has a pulse density of 10 pieces / mm, the side has a pulse energy of 2.4 J, and the side has a laser beam. The scanning speed was 10 mm / sec, the diameter of the melting area by one pulse was about 0.7 mm, welding was performed, and a polypropylene resin plate was joined to one surface inside the lid plate 2, and the spatter appeared on this polypropylene resin plate. Was investigated for the traces and thermal effects. In addition, the sealed battery was left for 90 days with the welded part facing downward, and the leakage of the electrolytic solution was examined.

【0028】(試験1)実施例1の試験として、嵌合部
3の角部32における溶接経路Wの曲率半径を0.35
mmとし、上記辺部31のレーザー照射条件を嵌合部3
の角部32にも適用して溶接を行った。 (試験2)実施例2の試験として、嵌合部3の角部32
における溶接経路Wの曲率半径は0.5mmとして溶接
経路Wと嵌合部3とを一致させ、嵌合部3の角部32に
おける1パルス当たりのエネルギを嵌合部3の辺部31
における1パルス当たりのエネルギより5%低減し、そ
れ以外は上記辺部31のレーザー照射条件を嵌合部3の
角部32にも適用して溶接を行った。
(Test 1) As a test of Example 1, the radius of curvature of the welding path W at the corner 32 of the fitting portion 3 is 0.35.
mm, and the laser irradiation condition of the side portion 31 is set to the fitting portion 3
Welding was also performed by applying it to the corner portion 32. (Test 2) As the test of Example 2, the corner 32 of the fitting part 3
The radius of curvature of the welding path W at 0.5 is set to 0.5 mm so that the welding path W and the fitting portion 3 are aligned, and the energy per pulse at the corner 32 of the fitting portion 3 is set to the side portion 31 of the fitting portion 3.
The energy per pulse was reduced by 5%, and other than that, the laser irradiation condition of the side portion 31 was applied to the corner portion 32 of the fitting portion 3 to perform welding.

【0029】(試験3)実施例3の試験として、上記溶
接経路Wの曲率半径は0.35mmとし、角部32にお
けるレーザービーム走査速度を11mm/秒、辺部31
におけるレーザービーム走査速度を10mm/秒とし、
それ以外は上記辺部31のレーザー照射条件を嵌合部3
の角部32にも適用して溶接を行った。
(Test 3) As a test of Example 3, the radius of curvature of the welding path W was 0.35 mm, the laser beam scanning speed at the corner 32 was 11 mm / sec, and the side 31 was.
Laser beam scanning speed at 10 mm / sec,
Other than that, the laser irradiation condition of the side portion 31 is set to the fitting portion 3
Welding was also performed by applying it to the corner portion 32.

【0030】(比較例)比較例として、嵌合部3の角部
32における溶接経路Wの曲率半径は0.5mmとして
溶接経路Wと嵌合部3とを一致させ、上記辺部31のレ
ーザー照射条件を嵌合部3の角部32に全て適用して溶
接を行った。これらの試験結果を表1に示す。なお、試
験はそれぞれ50サンプルずつ実施した。
(Comparative Example) As a comparative example, the radius of curvature of the welding path W at the corner portion 32 of the fitting portion 3 is set to 0.5 mm so that the welding path W and the fitting portion 3 are aligned with each other and the laser of the side portion 31 is used. Welding was performed by applying all the irradiation conditions to the corner portions 32 of the fitting portion 3. The results of these tests are shown in Table 1. The test was carried out for 50 samples each.

【0031】[0031]

【表1】 次に、具体的なレーザースポット制御例についてフロー
チャートを参照して以下に説明する。
[Table 1] Next, a specific example of laser spot control will be described below with reference to a flowchart.

【0032】なお、パルス式レーザー溶接機としては、
図6に模式的に示すものを用い、コントローラ8は、そ
の内蔵プログラムに従って、レーザースポットの中心
(対物レンズ70の焦点)が電池組立体100の嵌合部
に沿って順次移動するようにX、Yテーブル6を制御し
ているものとする。このような制御自体は本発明の要旨
ではないのでその詳細な説明は省略する。
As a pulse type laser welding machine,
Using what is schematically shown in FIG. 6, the controller 8 follows the built-in program so that the center of the laser spot (focal point of the objective lens 70) moves sequentially along the fitting part of the battery assembly 100, X, It is assumed that the Y table 6 is controlled. Since such control itself is not the gist of the present invention, its detailed description is omitted.

【0033】(制御例1)実施例2の制御を具体化した
第1の制御例を図8のフローチャートを参照して説明す
る。まず、X、Yテーブル6の制御により現在、レーザ
ースポット(対物レンズ70の焦点位置)が直線状の辺
部31を走行中かどうか(角部32を走行中でないかど
うか)を内蔵のプログラムに基づいて判定し(10
0)、辺部31を走行中であればレーザーパルス出力の
設定値を所定の高値PHに設定し(103)、そうでな
ければ、すなわち角部32を走行中であればそれを所定
の低値PLに設定して(102)、溶接が全て終了した
かどうかを判定し(110)、終了していなければステ
ップ100にリターンし、終了したらルーチンを終了す
る。
(Control Example 1) A first control example embodying the control of the second embodiment will be described with reference to the flowchart of FIG. First, the built-in program determines whether the laser spot (focal position of the objective lens 70) is currently traveling on the linear side portion 31 (whether the corner portion 32 is traveling) by controlling the X and Y tables 6. Based on (10
0), set the set value of the laser pulse output to a predetermined high value PH if the side part 31 is running (103), otherwise set it to a predetermined low value if the corner part 32 is running. The value PL is set (102), and it is judged whether or not the welding is completed (110). If not completed, the process returns to step 100, and when completed, the routine is completed.

【0034】(制御例2)実施例3の制御を具体化した
第2の制御例を図9のフローチャートを参照して説明す
る。まず、X、Yテーブル6の制御により現在、レーザ
ースポットが辺部31を走行中かどうか(角部32を走
行中でないかどうか)を内蔵のプログラムに基づいて判
定し(100)、辺部31を走行中であればレーザービ
ームの走査速度すなわちX、Yテーブル6の嵌合部に沿
っての移動速度の設定値を所定の低値VLに設定し(1
05)、角部32を走行中であればそれを所定の高値V
Hに設定して(104)、溶接が全て終了したかどうか
を判定し(110)、終了していなければステップ10
0にリターンし、終了したらルーチンを終了する。
(Control Example 2) A second control example embodying the control of the third embodiment will be described with reference to the flowchart of FIG. First, the control of the X and Y tables 6 determines whether the laser spot is currently traveling on the side portion 31 (whether or not it is traveling on the corner portion 32) based on a built-in program (100). If the vehicle is traveling, the set value of the scanning speed of the laser beam, that is, the moving speed along the fitting portion of the X and Y table 6 is set to a predetermined low value VL (1
05), if it is traveling on the corner 32, set it to a predetermined high value V
It is set to H (104), and it is judged whether or not welding is completed (110). If not completed, step 10
The routine returns to 0 and ends the routine when completed.

【0035】(制御例3)実施例5の制御を具体化した
第3の制御例を図10のフローチャートを参照して説明
する。まず、X、Yテーブル6の制御により現在、レー
ザースポットが辺部31を走行中かどうか(角部32を
走行中でないかどうか)を内蔵のプログラムに基づいて
判定し(100)、辺部31を走行中であればレーザー
ビームの走査軌跡すなわちX、Yテーブル6の移動経路
の設定値を嵌合部3の辺部31に沿って設定し(10
7)、角部32を走行中であれば、現在の走行位置に基
づいてROM内蔵のテーブルから嵌合部3の角部32か
らのオフセット量を読み込み(101)、読み込んだオ
フセット量だけ嵌合部3の角部32から所定距離だけ外
側にオフセットするように設定して(106)、溶接が
全て終了したかどうかを判定し(110)、終了してい
なければステップ100にリターンし、終了したらルー
チンを終了する。
(Control Example 3) A third control example embodying the control of the fifth embodiment will be described with reference to the flowchart of FIG. First, the control of the X and Y tables 6 determines whether the laser spot is currently traveling on the side portion 31 (whether or not it is traveling on the corner portion 32) based on a built-in program (100). When the vehicle is traveling, the set value of the scanning locus of the laser beam, that is, the moving path of the X, Y table 6 is set along the side portion 31 of the fitting portion 3 (10
7) If the vehicle is traveling on the corner 32, the offset amount from the corner 32 of the fitting part 3 is read from the ROM built-in table based on the current traveling position (101), and only the read offset amount is fitted. It is set so as to be offset by a predetermined distance from the corner 32 of the part 3 (106), and it is determined whether or not the welding is completed (110). If not completed, the process returns to step 100, and when completed, Exit the routine.

【0036】なお、上記テーブルには、嵌合部3の角部
32に近接しつつ湾曲して走行する際の走行位置と、こ
の走行位置と角部32との間の最短距離であるオフセッ
ト量との関係を記憶するものである。この実施例では、
走行経路(走行軌跡)が急激に飛ぶのを防止するために
辺部31から離れる場合にはオフセット量が0から徐々
に増大し、次の辺部31に次第に接近する場合にはオフ
セット量が0へ向けて徐々に減少するように設定してあ
る。これにより円滑な走行軌跡のオフセットが可能とな
る。
In the table, the traveling position when traveling in a curved manner while approaching the corner 32 of the fitting portion 3 and the offset amount which is the shortest distance between the traveling position and the corner 32. It remembers the relationship with. In this example,
In order to prevent the travel route (travel locus) from jumping sharply, the offset amount gradually increases from 0 when it is separated from the side portion 31, and the offset amount is 0 when it gradually approaches the next side portion 31. It is set to gradually decrease toward. As a result, it becomes possible to smoothly offset the traveling locus.

【0037】(制御例4)実施例4の制御を具体化した
第4の制御例を図11のフローチャートを参照して説明
する。まず、X、Yテーブル6の制御によりレーザース
ポットの中心(対物レンズ70の焦点位置)が電池組立
体100の嵌合部に沿って一定速度で順次移動するよう
にX、Yテーブル6を制御しておく。このような制御自
体は本発明の要旨ではないのでその詳細な説明は省略す
る。
(Control Example 4) A fourth control example embodying the control of the fourth embodiment will be described with reference to the flowchart of FIG. First, by controlling the X and Y tables 6, the X and Y tables 6 are controlled so that the center of the laser spot (the focal position of the objective lens 70) sequentially moves at a constant speed along the fitting portion of the battery assembly 100. Keep it. Since such control itself is not the gist of the present invention, its detailed description is omitted.

【0038】まず、現在、レーザースポットが辺部31
を走行中かどうか(角部32を走行中でないかどうか)
を内蔵のプログラムに基づいて判定し(100)、辺部
31を走行中であればレーザーパルスの発射間隔を所定
の短間隔に設定し(109)、角部32を走行中であれ
ば、それを所定の長間隔に設定して(108)、溶接が
全て終了したかどうかを判定し(110)、終了してい
なければステップ100にリターンし、終了したらルー
チンを終了する。
First, the laser spot is currently on the side 31.
Whether you are traveling (whether you are not traveling the corner 32)
Is determined based on a built-in program (100), the laser pulse emission interval is set to a predetermined short interval if the side portion 31 is traveling (109), and if the corner portion 32 is traveling, Is set to a predetermined long interval (108), and it is determined whether or not the welding is completed (110). If not completed, the process returns to step 100, and when completed, the routine is completed.

【0039】(制御例5)実施例1の制御を具体化した
第5の制御例を図12のフローチャートを参照して説明
する。まず、X、Yテーブル6の制御により現在、嵌合
部3の角部32近傍を走行(走査)中かどうかを調べ
(200)、そうでなければ、すなわち辺部31近傍を
走行中であればレーザービームのスポット中心が辺部3
1上を走査するようにX、Yテーブル6を制御し(21
2)、嵌合部3の角部32近傍を走行(走査)中であれ
ば、現在、角部32近傍を走行する期間の初期かどうか
を調べ(202)、初期であればステップ204にて直
前の直線走行を継続してから、初期でなければ直接、ス
テップ206に進む。
(Fifth Control Example) A fifth control example embodying the control of the first embodiment will be described with reference to the flowchart of FIG. First, by controlling the X and Y tables 6, it is checked whether or not the vicinity of the corner portion 32 of the fitting portion 3 is currently traveling (scanning) (200). If not, that is, if the vicinity of the side portion 31 is traveling. For example, the laser beam spot center is side 3
The X, Y table 6 is controlled so that the scanning is performed on the upper part of (1)
2) If it is traveling (scanning) in the vicinity of the corner 32 of the fitting part 3, it is checked whether or not the period of traveling in the vicinity of the corner 32 is the initial stage (202). After continuing the last straight running, if it is not the initial stage, the process directly proceeds to step 206.

【0040】ステップ206では、現在、角部32近傍
を走行する期間の終期かどうかを調べ(206)、終期
であれば、その後に走行する予定の辺部31の延長線上
を直線走行し(210)、そうでなければ(初期でも終
期でもなければ)、所定半径の円弧上を走行する。もち
ろん、この円弧の半径は角部32の半径よりも小さく設
定されている。
In step 206, it is checked whether or not it is the end of the period in which the vehicle is currently traveling near the corner 32 (206). If it is the end, the vehicle travels in a straight line on the extension of the side 31 to be traveled thereafter (210). ), Otherwise (neither in the beginning nor in the end) run on an arc of a given radius. Of course, the radius of this arc is set smaller than the radius of the corner 32.

【0041】次に、溶接が全て終了したかどうかを判定
し(110)、終了していなければステップ100にリ
ターンし、終了したらルーチンを終了する。
Next, it is judged whether or not all the welding is completed (110). If not completed, the process returns to step 100, and when completed, the routine is completed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の角形電池の製造方法の一実施例として
その溶接経路Wを示す説明図である。
FIG. 1 is an explanatory view showing a welding route W as an example of a method for manufacturing a prismatic battery of the present invention.

【図2】本発明の溶接方法が適用される角形電池の容器
の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of a rectangular battery container to which the welding method of the present invention is applied.

【図3】本発明の角形電池の製造方法の他実施例として
その溶接経路Wを示す説明図である。
FIG. 3 is an explanatory view showing a welding route W as another embodiment of the method for manufacturing a prismatic battery of the present invention.

【図4】嵌合部3の角部32と溶接経路Wとが一致する
場合の辺部31及び角部32でのレーザー溶融時の溶け
込み領域の縦断面を説明する図である。
FIG. 4 is a diagram illustrating a vertical cross-section of a welded region at the time of laser melting at the side portion 31 and the corner portion 32 when the corner portion 32 of the fitting portion 3 and the welding path W coincide with each other.

【図5】嵌合部3の角部32より溶接経路Wを外側にオ
フセットした場合の辺部31及び角部32でのレーザー
溶融時の溶け込み領域の縦断面を説明する図である。
FIG. 5 is a diagram illustrating a vertical cross section of a welded region at a side portion 31 and a corner portion 32 at the time of laser melting when the welding path W is offset from the corner portion 32 of the fitting portion 3 to the outside.

【図6】パルス式レーザー溶接機の模式斜視図である。FIG. 6 is a schematic perspective view of a pulse type laser welding machine.

【図7】図6に示すパルス式レーザー溶接機によって嵌
合部3に沿ってその角部を溶接する場合における溶け込
み領域(溶接部)の形状を示す部分平面図である。
7 is a partial plan view showing the shape of a penetration region (welded part) when the corners of the pulse type laser welding machine shown in FIG. 6 are welded along the fitting part 3. FIG.

【図8】照射制御の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of irradiation control.

【図9】照射制御の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of irradiation control.

【図10】照射制御の一例を示すフローチャートであ
る。
FIG. 10 is a flowchart showing an example of irradiation control.

【図11】照射制御の一例を示すフローチャートであ
る。
FIG. 11 is a flowchart showing an example of irradiation control.

【図12】照射制御の一例を示すフローチャートであ
る。
FIG. 12 is a flowchart showing an example of irradiation control.

【符号の説明】[Explanation of symbols]

1は角形ケース(本発明でいう金属ケース)、2は蓋
板。
Reference numeral 1 is a rectangular case (metal case in the present invention), and 2 is a cover plate.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】直線状の辺部と所定曲率半径の角部とから
なるとともに金属ケースの一端に形成される角形の開口
に金属板からなる蓋板を嵌入し、嵌合部をレーザー溶接
して角形電池の容器を形成する角形電池の製造方法にお
いて、 前記嵌合部の角部の曲率半径よりも小さい曲率半径で前
記嵌合部の角部の溶接を行うことを特徴とする角形電池
の製造方法。
1. A lid plate made of a metal plate is fitted into a rectangular opening formed at one end of a metal case, which is composed of straight sides and corners having a predetermined radius of curvature, and the fitting portion is laser-welded. In a method of manufacturing a prismatic battery for forming a container of a prismatic battery, the corner of the fitting part is welded with a radius of curvature smaller than that of the corner of the fitting part. Production method.
【請求項2】直線状の辺部と所定曲率半径の角部とから
なるとともに金属ケースの一端に形成される角形の開口
に金属板からなる蓋板を嵌入し、嵌合部をレーザー溶接
して角形電池の容器を形成する角形電池の製造方法にお
いて、 前記嵌合部の角部溶接時のレーザー出力は前記嵌合部の
辺部溶接時のレーザー出力よりも低減されることを特徴
とする角形電池の製造方法。
2. A lid plate made of a metal plate is fitted into a rectangular opening formed at one end of a metal case, which is composed of a straight side portion and a corner portion having a predetermined radius of curvature, and the fitting portion is laser-welded. In the method of manufacturing a prismatic battery for forming a prismatic battery container, the laser output at the time of welding the corner of the fitting portion is lower than the laser output at the time of welding the side portion of the fitting portion. Method for manufacturing prismatic battery.
【請求項3】直線状の辺部と所定曲率半径の角部とから
なるとともに金属ケースの一端に形成される角形の開口
に金属板からなる蓋板を嵌入し、嵌合部をレーザー溶接
して角形電池の容器を形成する角形電池の製造方法にお
いて、 前記嵌合部の角部溶接時のレーザービーム走査速度は前
記嵌合部の辺部溶接時のレーザービーム走査速度よりも
増大されることを特徴とする角形電池の製造方法。
3. A lid plate made of a metal plate is fitted into a rectangular opening formed at one end of a metal case, which is composed of straight sides and corners having a predetermined radius of curvature, and the fitting portion is laser-welded. In the method of manufacturing a prismatic battery for forming a prismatic battery container, the laser beam scanning speed during corner welding of the fitting portion is higher than the laser beam scanning speed during side welding of the fitting portion. And a method for manufacturing a prismatic battery.
【請求項4】内部に電池要素を備えた断面角形の金属ケ
ースと、該ケースの開口に嵌合されて該ケースを塞ぐ金
属蓋板との嵌合部をレーザー溶接により接合する角形電
池の製造方法において、 前記嵌合部の平面形態を、直線状の辺部と、隣接する一
対の辺部を結合する曲線状の角部とからなる線状に形成
し、 前記角部の溶接時にレーザービームのスポット中心を所
定寸法だけ前記角部の外側へオフセットさせ、前記辺部
の溶接時に前記レーザービームのスポット中心を前記辺
部上に合わせてレーザ溶接を行うことを特徴とする角形
電池の製造方法。
4. A method of manufacturing a prismatic battery, wherein a metal case having a rectangular cross section having a battery element inside and a metal cover plate fitted in an opening of the case to close the case are joined by laser welding. In the method, a planar form of the fitting portion is formed into a linear shape including a linear side portion and a curved corner portion that joins a pair of adjacent side portions, and a laser beam is used when welding the corner portion. The method of manufacturing a prismatic battery, wherein the spot center of the laser beam is offset to the outside of the corner portion by a predetermined dimension, and laser welding is performed by aligning the spot center of the laser beam with the side portion when welding the side portion. .
【請求項5】内部に電池要素を備えた断面角形の金属ケ
ースと、該ケースの開口に嵌合されて該ケースを塞ぐ金
属蓋板との嵌合部をレーザー溶接により接合する角形電
池の製造方法において、 前記嵌合部の平面形態を、直線状の辺部と、隣接する一
対の辺部を結合する曲線状の角部とからなる線状に形成
し、 前記レーザービームの走査速度を所定速度に維持し、前
記角部の溶接時のレーザーパルス発射時間間隔は前記辺
部の溶接時のレーザーパルス発射時間間隔よりも延長す
ることを特徴とする角形電池の製造方法。
5. A manufacturing method of a prismatic battery, wherein a metal case having a prismatic cross section having a battery element inside and a metal cover plate fitted into an opening of the case to close the case are joined by laser welding. In the method, the planar shape of the fitting portion is formed in a linear shape including a linear side portion and a curved corner portion connecting a pair of adjacent side portions, and a scanning speed of the laser beam is set to a predetermined value. A method for manufacturing a prismatic battery, wherein the speed is maintained, and the laser pulse firing time interval during welding of the corner portion is longer than the laser pulse firing time interval during welding of the side portion.
【請求項6】前記ケースと、該ケースの開口部に嵌合さ
れた前記蓋板とを含む電池組立体をX−Yテーブルの載
置面上に載置し、 レーザービームの照射位置が前記載置面の所定位置に固
定するように前記テーブルの上方にレーザー発振器を配
設し、 前記テーブルを前記載置面に平行でかつ互いに直交する
X座標方向及びY座標方向に駆動して前記レーザービー
ムのスポットの移動を行いつつ前記レーザー発振器の出
力を制御することにより、レーザービームのスポットを
前記角部に照射する時の前記レーザー発振器のレーザー
出力を、前記辺部に照射する時の前記レーザー出力に比
較して低減する請求項2記載の角形電池の容器溶接方
法。
6. A battery assembly including the case and the cover plate fitted in the opening of the case is mounted on a mounting surface of an XY table, and the irradiation position of the laser beam is in front. A laser oscillator is arranged above the table so as to be fixed at a predetermined position on the placing surface, and the laser is driven by driving the table in the X coordinate direction and the Y coordinate direction which are parallel to the placing surface and orthogonal to each other. By controlling the output of the laser oscillator while moving the beam spot, the laser output of the laser oscillator when irradiating the corner of the laser beam spot, the laser when irradiating the side The method for welding a rectangular battery container according to claim 2, wherein the output is reduced compared to the output.
【請求項7】前記ケースと、該ケースの開口部に嵌合さ
れた前記蓋板とを含む電池組立体をX−Yテーブルの載
置面上に載置し、 レーザービームの照射位置が前記載置面の所定位置に固
定するように前記テーブルの上方にレーザー発振器を配
設し、 前記テーブルを前記載置面に平行でかつ互いに直交する
X座標方向及びY座標方向に駆動して前記レーザービー
ムのスポットの走査速度を制御することにより、レーザ
ービームのスポットを前記角部に照射する時の前記走査
速度を、前記辺部に照射する時の前記走査速度より高速
とする請求項3記載の角形電池の容器溶接方法。
7. A battery assembly including the case and the cover plate fitted in the opening of the case is mounted on a mounting surface of an XY table, and the irradiation position of the laser beam is in front. A laser oscillator is arranged above the table so as to be fixed at a predetermined position on the placing surface, and the laser is driven by driving the table in the X coordinate direction and the Y coordinate direction which are parallel to the placing surface and orthogonal to each other. The scanning speed of the spot of the beam is controlled so that the scanning speed of irradiating the corner of the laser beam spot is higher than the scanning speed of irradiating the side. Welding method for rectangular battery container.
【請求項8】前記ケースと、該ケースの開口部に嵌合さ
れた前記蓋板とを含む電池組立体をX−Yテーブルの載
置面上に載置し、 レーザービームの照射位置が前記載置面の所定位置に固
定するように前記テーブルの上方にレーザー発振器を配
設し、 前記テーブルを前記載置面に平行でかつ互いに直交する
X座標方向及びY座標方向に駆動して前記レーザービー
ムのスポットの移動を行うことにより、前記角部の溶接
時にレーザービームのスポットの中心を所定寸法だけ前
記角部の外側へオフセットさせ、前記辺部の溶接時に前
記レーザースポットの中心を前記辺部上に合わせてレー
ザー溶接を行う請求項4記載の角形電池の製造方法。
8. A battery assembly including the case and the cover plate fitted in the opening of the case is mounted on a mounting surface of an XY table, and the irradiation position of the laser beam is in front. A laser oscillator is arranged above the table so as to be fixed at a predetermined position on the placing surface, and the laser is driven by driving the table in the X coordinate direction and the Y coordinate direction which are parallel to the placing surface and orthogonal to each other. By moving the spot of the beam, the center of the spot of the laser beam is offset to the outside of the corner by a predetermined dimension when welding the corner, and the center of the laser spot is welded to the side when welding the side. The method for manufacturing a prismatic battery according to claim 4, wherein laser welding is performed in accordance with the above.
【請求項9】前記ケースと、該ケースの開口部に嵌合さ
れた前記蓋板とを含む電池組立体をX−Yテーブルの載
置面上に載置し、 レーザービームの照射位置が前記載置面の所定位置に固
定するように前記テーブルの上方にレーザー発振器を配
設し、 前記テーブルを前記載置面に平行でかつ互いに直交する
X座標方向及びY座標方向に駆動して前記レーザービー
ムのスポットの移動を行いつつ前記レーザーパルスの発
射間隔を制御することにより、レーザービームのスポッ
トを前記角部に照射する時の前記発射間隔を、前記辺部
に照射する時の前記発射間隔よりも延長する請求項5記
載の角形電池の容器溶接方法。
9. A battery assembly including the case and the cover plate fitted in the opening of the case is mounted on a mounting surface of an XY table, and the irradiation position of the laser beam is in front. A laser oscillator is arranged above the table so as to be fixed at a predetermined position on the placing surface, and the laser is driven by driving the table in the X coordinate direction and the Y coordinate direction which are parallel to the placing surface and orthogonal to each other. By controlling the firing interval of the laser pulse while moving the beam spot, the firing interval when irradiating the corner portion with the laser beam spot is more than the firing interval when irradiating the side portion. The method for welding a container of a prismatic battery according to claim 5, which is also extended.
【請求項10】前記蓋板は、圧入により前記ケースの開
口に嵌合される請求項1乃至9のいずれか記載の角形電
池の製造方法。
10. The method for manufacturing a prismatic battery according to claim 1, wherein the lid plate is fitted into the opening of the case by press fitting.
JP7331888A 1995-03-13 1995-12-20 Manufacture of square battery Pending JPH08315789A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7331888A JPH08315789A (en) 1995-03-14 1995-12-20 Manufacture of square battery
US08/611,401 US5879416A (en) 1995-03-13 1996-03-06 Method of manufacturing battery having polygonal case

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-54652 1995-03-14
JP5465295 1995-03-14
JP7331888A JPH08315789A (en) 1995-03-14 1995-12-20 Manufacture of square battery

Publications (1)

Publication Number Publication Date
JPH08315789A true JPH08315789A (en) 1996-11-29

Family

ID=26395450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7331888A Pending JPH08315789A (en) 1995-03-13 1995-12-20 Manufacture of square battery

Country Status (1)

Country Link
JP (1) JPH08315789A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017385A1 (en) * 1997-09-30 1999-04-08 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a rectangular battery
US6627348B1 (en) 1998-10-27 2003-09-30 Matsushita Electric Industrial Co., Ltd. Method for producing rectangular cell
JP2007313544A (en) * 2006-05-26 2007-12-06 Pioneer Electronic Corp Beam welding equipment and beam welding method
US7696452B2 (en) * 2003-09-24 2010-04-13 Kuka Systems Gmbh Process for the laser beam machining, especially laser beam welding, of components
JP2011181215A (en) * 2010-02-26 2011-09-15 Hitachi Vehicle Energy Ltd Square battery, and manufacturing method thereof
JP2011224618A (en) * 2010-04-20 2011-11-10 Miyachi Technos Corp Laser beam welding method
JP2012110905A (en) * 2010-11-22 2012-06-14 Panasonic Corp Method and apparatus for welding
KR20150039771A (en) * 2012-08-08 2015-04-13 스미또모 가가꾸 가부시키가이샤 Optical display device production method and optical display device production system
US20150140413A1 (en) * 2012-06-27 2015-05-21 Toyota Jidosha Kabushiki Kaisha Rectangular battery and method of manufacturing rectangular battery
JP2015228334A (en) * 2014-06-02 2015-12-17 トヨタ自動車株式会社 Secondary battery and method for manufacturing the same
JP2017054786A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Manufacturing method of secondary battery
WO2017122572A1 (en) * 2016-01-16 2017-07-20 株式会社村田製作所 Electric storage device and method for manufacturing same
JP2017168206A (en) * 2016-03-14 2017-09-21 Necプラットフォームズ株式会社 Electron beam processing device
CN107790883A (en) * 2017-10-13 2018-03-13 大族激光科技产业集团股份有限公司 A kind of laser seal system and method for electrokinetic cell
JP2019046528A (en) * 2017-09-06 2019-03-22 株式会社東芝 Magnetic disk device
US10471540B2 (en) 2014-02-25 2019-11-12 Panasonic Intellectual Property Management Co., Ltd. Laser welding method
CN110961783A (en) * 2018-09-28 2020-04-07 大族激光科技产业集团股份有限公司 Sealing method of ultrathin stainless steel shell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264708B1 (en) 1997-09-30 2001-07-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a prismatic battery
KR100471169B1 (en) * 1997-09-30 2005-03-07 마츠시타 덴끼 산교 가부시키가이샤 Method of manufacturing a rectangular battery
CN1315205C (en) * 1997-09-30 2007-05-09 松下电器产业株式会社 Method of mfg. rectangular battery
WO1999017385A1 (en) * 1997-09-30 1999-04-08 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a rectangular battery
US6627348B1 (en) 1998-10-27 2003-09-30 Matsushita Electric Industrial Co., Ltd. Method for producing rectangular cell
US7696452B2 (en) * 2003-09-24 2010-04-13 Kuka Systems Gmbh Process for the laser beam machining, especially laser beam welding, of components
JP2007313544A (en) * 2006-05-26 2007-12-06 Pioneer Electronic Corp Beam welding equipment and beam welding method
JP2011181215A (en) * 2010-02-26 2011-09-15 Hitachi Vehicle Energy Ltd Square battery, and manufacturing method thereof
JP2011224618A (en) * 2010-04-20 2011-11-10 Miyachi Technos Corp Laser beam welding method
JP2012110905A (en) * 2010-11-22 2012-06-14 Panasonic Corp Method and apparatus for welding
US10741801B2 (en) * 2012-06-27 2020-08-11 Toyota Jidosha Kabushiki Kaisha Rectangular battery and method of manufacturing rectangular battery
US20150140413A1 (en) * 2012-06-27 2015-05-21 Toyota Jidosha Kabushiki Kaisha Rectangular battery and method of manufacturing rectangular battery
KR20150039771A (en) * 2012-08-08 2015-04-13 스미또모 가가꾸 가부시키가이샤 Optical display device production method and optical display device production system
US10471540B2 (en) 2014-02-25 2019-11-12 Panasonic Intellectual Property Management Co., Ltd. Laser welding method
JP2015228334A (en) * 2014-06-02 2015-12-17 トヨタ自動車株式会社 Secondary battery and method for manufacturing the same
JP2017054786A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Manufacturing method of secondary battery
WO2017122572A1 (en) * 2016-01-16 2017-07-20 株式会社村田製作所 Electric storage device and method for manufacturing same
JPWO2017122572A1 (en) * 2016-01-16 2018-08-16 株式会社村田製作所 Electric storage device and manufacturing method thereof
JP2017168206A (en) * 2016-03-14 2017-09-21 Necプラットフォームズ株式会社 Electron beam processing device
JP2019046528A (en) * 2017-09-06 2019-03-22 株式会社東芝 Magnetic disk device
CN107790883A (en) * 2017-10-13 2018-03-13 大族激光科技产业集团股份有限公司 A kind of laser seal system and method for electrokinetic cell
CN110961783A (en) * 2018-09-28 2020-04-07 大族激光科技产业集团股份有限公司 Sealing method of ultrathin stainless steel shell

Similar Documents

Publication Publication Date Title
JPH08315789A (en) Manufacture of square battery
US5879416A (en) Method of manufacturing battery having polygonal case
CN102642088B (en) Laser lap welding method
JP5425690B2 (en) Manufacturing method of sealed battery
US8841577B2 (en) Laser lap welding method for parts made of galvanized steel sheet
US20060207085A1 (en) Battery and method for manufacturing same
CN104011896B (en) Battery case and manufacture method thereof
US9012804B2 (en) Laser lap welding method for parts made of galvanized steel sheet
US8575512B2 (en) Laser lap welding method for galvanized steel sheet
JPH08315790A (en) Welding method of sealed vessel of square battery
JP2013220462A (en) Welding method and metal case
US9054393B2 (en) Secondary battery and method of manufacturing the same
EP4098392A1 (en) Welding method of battery cover plate
US6264708B1 (en) Method of manufacturing a prismatic battery
JP5884692B2 (en) Laser welding method
JP2001155698A (en) Encapsulated type battery
JP2000133211A (en) Manufacture of square battery
JPH08315788A (en) Manufacture of square battery
JP2005040853A (en) Laser welding method
JPH097560A (en) Sealing mouth welding method for sealed battery
CN106041308A (en) Method for controlling gaps of laser fusion weld plates of aluminum alloy vehicle bodies
JP2003181666A (en) Method of welding container for rectangular battery and method of manufacturing rectangular battery
JPH1190657A (en) Square pressure-resistant case and its welding method
CN114147348A (en) Laser welding method for sealing nail
KR20150073805A (en) Method of laser welding