JP4071384B2 - Coating composition containing photocatalyst - Google Patents

Coating composition containing photocatalyst Download PDF

Info

Publication number
JP4071384B2
JP4071384B2 JP04029699A JP4029699A JP4071384B2 JP 4071384 B2 JP4071384 B2 JP 4071384B2 JP 04029699 A JP04029699 A JP 04029699A JP 4029699 A JP4029699 A JP 4029699A JP 4071384 B2 JP4071384 B2 JP 4071384B2
Authority
JP
Japan
Prior art keywords
titanium oxide
coating
coating composition
calcium phosphate
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04029699A
Other languages
Japanese (ja)
Other versions
JP2000001631A (en
Inventor
博史 垰田
野浪  亨
高明 藤輪
昌宏 籠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Daicel Chemical Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP04029699A priority Critical patent/JP4071384B2/en
Publication of JP2000001631A publication Critical patent/JP2000001631A/en
Application granted granted Critical
Publication of JP4071384B2 publication Critical patent/JP4071384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面の一部がリン酸カルシウムで被覆された光触媒を含む有機又は無機の塗料組成物に関する。
【0002】
【従来の技術】
塗料はその用途にもよるが、一般に塗布後の経時において、手垢などの油分や空気中の水分の付着、酸化、光による分解等によって黄ばみを生じたり劣化したりする。
そこで、塗料塗膜の耐久性向上及び美観保持のために、塗料中に抗菌剤を配合することが行われている。
【0003】
例えば、特開平8−259891号公報には、光触媒機能を有する粉末をシリカ塗料中に含有させる技術が開示されている。そして、光触媒機能を有する粉末として、酸化チタン、酸化ジルコニウム、酸化亜鉛、チタン酸ストロンチウム、酸化スズ、酸化タングステン、酸化鉄、酸化ビスマスが記載され、実施例によれば、酸化チタンを塗膜中に含有させることにより、脱臭、抗菌等の効果が得られることが記載されている。
【0004】
特開平5−305691号公報には、二酸化チタン、酸化クロム、酸化鉄から選ばれる平均粒子径5μm以下の無機物質及びシリカを含有する膜の上に、さらに少なくともシリカを含有する膜を有する親水性被膜が記載されている。
【0005】
国際公開公報WO96/29375号には、TiO2 、ZnO、SnO2 、SrTiO3 、WO3 、Bi2 3 及びFe2 3 から選ばれた光触媒性材料とシリカとを含む光触媒性親水性被膜が記載されている。
【0006】
特開平10−237357号公報(本件出願の優先権主張日より後の日の公開)には、結晶性酸化チタン粒子、塩化タングステン及びテトラヒドロフランを含む溶液からなる光触媒性親水性コーティング組成物が記載されている。
【0007】
また、疎水性表面を形成するものとして、特開平10−237431号公報(本件出願の優先権主張日より後の日の公開)には、酸化チタン等の光触媒性酸化物粒子、シリコーン及びはっ水性フッソ樹脂を含有するはっ水性材料が記載されている。
【0008】
しかしながら、これら公報に記載の光触媒を塗膜中に含有させても、脱臭、抗菌等の作用が不十分な場合もあり、さらに高い耐久性及び長期間の美観保持性能を有する塗料の開発が望まれている。
また、塗料成分として有機塗料を用いた場合には、有機塗料成分が直接TiO2 等と接触するために、塗膜の劣化が起こるという問題もある。
【0009】
【発明が解決しようとする課題】
そこで、本発明の目的は、上記従来技術の問題点を解決し、耐水性、耐候性、耐久性に優れ、長期間美観を保持し得る塗料組成物を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、光触媒として、リン酸カルシウム及び酸化チタンを含む光触媒、より具体的には、表面の一部がリン酸カルシウムで被覆された酸化チタンを用いることにより、上記目的を達成できることを見出だし、本発明を完成するに至った。
【0013】
発明は、塗料成分と、リン酸カルシウム及び酸化チタンを含む光触媒とを含む塗料組成物であって、
前記光触媒は、無機粒子の表面が酸化チタン膜で被覆され、さらに酸化チタン膜表面の一部がリン酸カルシウムで被覆されたものである、塗料組成物である。
上記塗料組成物において、前記光触媒は、無機粒子の表面が酸化チタン膜で被覆され、さらに酸化チタン膜表面の一部がリン酸カルシウムで被覆されたものである。前記無機粒子は、活性炭、活性アルミナ及びシリカゲルの内から選ばれる少なくとも一種の多孔体であることも好ましい。酸化チタン膜が、均一孔径の細孔を有することも好ましい。酸化チタン膜の細孔の孔径が、1nm〜2μmであることも好ましい。
【0014】
本発明において、酸化チタン表面の1〜99%(面積%)がリン酸カルシウムで被覆されていることが好ましい。
本発明において、酸化チタンの結晶形がアナターゼであることが好ましい。
本発明において、リン酸カルシウムが、アパタイト、リン酸三カルシウム及びリン酸八カルシウムからなる群から選ばれることが好ましい。
本発明において、塗料成分としては公知の有機又は無機塗料の如何なるものをも用いることができる。
以下、本発明について詳しく説明する。
【0015】
まず、本発明で用いる光触媒について説明する。本発明で用る光触媒の形態は、リン酸カルシウムがタンパク質や各種の水性の汚れ成分の吸着能に優れること、酸化チタンが光触媒機能に優れることを考慮して、酸化チタの表面の一部にリン酸カルシウム被覆を有する形態である。
【0016】
このような光触媒の形態のうち、第1のもの(参考)としては、表面の一部がリン酸カルシウムで被覆された酸化チタン粒子が挙げられ、第2のもの(本発明)としては、無機粒子の表面が酸化チタン膜で被覆され、さらに酸化チタン膜表面の一部がリン酸カルシウムで被覆されたものが挙げられる。
これら第1のもの及び第2のものは、光触媒機能を有する酸化チタン表面の一部上にリン酸カルシウム被覆を有する点で共通しており、本質的に同じ機能を有する。
【0017】
第1の光触媒における酸化チタン粒子としては、通常の酸化チタン粒子(平均粒径は例えば、1μm〜数mm程度)を用いれば良い。あるいは、多孔質の酸化チタン粒子を用いることも好ましく、この場合には粒子の表面積が大きくなるので、より大きな光触媒性能が得られる。
また、本発明において、酸化チタンの結晶形はアナターゼであることが、高い光触媒性能が得られるので好ましい。
【0018】
第2の光触媒においては、無機粒子の表面が酸化チタン膜で被覆されている。無機粒子としては、多孔質のセラミックスやガラス、金属など種々のものが挙げられるが、比表面積の大きさとコストの面から、活性炭、活性アルミナ、シリカゲルの内から選ばれる多孔体が特に好ましい。
【0019】
この酸化チタン膜は、均一孔径の細孔を有するものであることが好ましい。均一孔径の細孔を有することによって、比表面積が大きくなり、より大きな光触媒性能が得られる。すなわち、塗膜中あるいは塗膜表面の水分や有機成分を効率よく吸着し、光の照射によって生成した電子と正孔の酸化還元作用により、これを迅速に分解することが可能になる。
【0020】
また、酸化チタン膜の細孔の孔径は、特に限定されるものではないが、水分や有機成分を効率よく吸着するという観点から、1nm〜2μmであることが好ましい。
また、本発明において、酸化チタンの結晶形はアナターゼであることが、高い光触媒性能が得られるので好ましい。
【0021】
多孔体等の無機粒子の表面への酸化チタン膜の形成は、チタニアゾルを無機粒子の表面にコーティングした後、加熱焼成することにより行うことができる。チタニアゾルには、ポリエチレングリコール及び/又はポリエチレンオキサイドを添加することが好ましい。
【0022】
チタニアゾルは、超微粒子の酸化チタンを水に懸濁させたり、アルコールと四塩化チタンや金属チタンとの反応などによって得られるチタンのアルコキシドを加水分解したりすることによって調製することができる。その際、モノエタノールアミンやジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N,N−ジメチルジアミノエタノール、ジイソプロパノールアミンなどアルコールアミン類や、ジエチレングリコールなどのグリコール類を添加すると均一で透明なチタニアゾルが得られ、それを用いることによって高性能の多孔質光触媒を得ることができる。
【0023】
このようにして得られたチタニアゾルを、ディップコーティング法、滴下法、塗布法、スプレー法などによって多孔体の表面にコーティングした後、加熱焼成する。
【0024】
チタニアゾルに、ポリエチレングリコール及び/又はポリエチレンオキサイドを添加しておくと、細孔が形成された比表面積の大きな光触媒が得られるので好ましい。すなわち、チタニアゾルに、ポリエチレングリコール及び/又はポリエチレンオキサイドを添加することにより、加熱焼成段階でポリエチレングリコールやポリエチレンオキサイドが燃焼・消失するため、多孔体表面に孔が開いて細孔とつながり、比表面積の大きな多孔質光触媒が得られる。
【0025】
また、焼成は、室温から徐々に600℃〜700℃の最終温度にまで加熱昇温して焼成するか、400℃〜600℃の温度で加熱して焼成することが好ましい。この操作によって、多孔体の表面にコーティングされたチタニアゾルは、光触媒として高性能の、結晶形がアナターゼである酸化チタンに変化する。この時、直接600℃〜700℃の温度で加熱焼成したり、焼成温度が400℃未満であったり、700℃を超えた場合には、光触媒として低活性なルチルや非晶質の混じった酸化チタンしか得られない。
【0026】
本発明において、酸化チタン膜が多孔体と強く密着した丈夫な高性能のものを得るためには、ポリエチレングリコール及び/又はポリエチレンオキサイドを添加したチタニアゾルを多孔体の表面に薄く塗布あるいはスプレーあるいはコートした後、それを加熱焼成することによって、多孔体の表面に酸化チタンの薄膜を形成し、この操作を繰り返すことによって多孔体の表面に酸化チタンの多層膜を形成することが望ましい。また、多孔体が活性炭などの場合には、予め硝酸、硫酸、塩酸などの酸で多孔体を酸処理して、表面を親水性に変えたものを使用することが望ましい。そうすることにより、酸化チタン膜が多孔体の表面にしっかり結合して付き、丈夫で耐久性に優れた高性能の多孔質光触媒が得られる。
【0027】
本発明において、チタニアゾルに添加するポリエチレングリコールやポリエチレンオキサイドは、分子量が1000以上のものが好ましく、その中でも特に、分子量が1000、1500、2000、3000、6000、8000、11000、13000、2万、10万、30万、200万、250万のもの等が好ましい。分子量が1000以上のものを用いることにより、多孔体表面に形成された酸化チタン膜が多孔体から剥離することがなく、丈夫で耐久性に優れた高性能の多孔質光触媒が得られる。
【0028】
また、本発明において、チタニアゾルに添加するポリエチレングリコール及び/又はポリエチレンオキサイドの量は、その溶解度以下の量であることが好ましい。溶解度を超えて添加した場合には、孔径の揃った細孔ができず、また丈夫で耐久性に優れた酸化チタン膜が形成されにくい。
【0029】
本発明において、酸化チタン膜の細孔の孔径や細孔分布の密度は、ポリエチレングリコール及び/又はポリエチレンオキサイドの添加量や分子量を変えることによって制御することができる。添加量を少なくしたり、分子量の小さいものを使用した場合には細孔径が小さくなり、一方、添加量を多くしたり、分子量の大きなものを使用した場合には細孔径が大きくなる。そして、添加量が少ない場合には細孔分布の密度が小さくなり、一方、添加量が多い場合には細孔分布の密度が大きくなる。また、分子量分布の広いポリエチレングリコール及び/又はポリエチレンオキサイドを添加した場合には、細孔の孔径が多様なものになる。さらに、酸化チタン薄膜を積層することにより、特異な三次元構造を持ったものとなる。以上のようにして、多孔体の表面へ酸化チタン膜を形成することができる。
【0030】
本発明で用いる光触媒は、この酸化チタン膜表面の一部にさらにリン酸カルシウム被覆が形成されたものである。
【0031】
本発明において、リン酸カルシウムは、特に限定されないが、アパタイト、リン酸三カルシウム及びリン酸八カルシウムからなる群から選ばれることが好ましい。アパタイトとは、リン灰石であり、例えば、水酸アパタイト、フッ化アパタイト、炭酸アパタイト、銀アパタイト等が挙げられる。
【0032】
アパタイト等のリン酸カルシウムは、細菌等のタンパク質や、あるいは水性の汚れ(汗、手垢、水性インキなど)を吸着する。一方、酸化チタンはこのような吸着能はリン酸カルシウムに比べると乏しい。従って、酸化チタン表面の一部にさらにリン酸カルシウム被覆を形成することによって、リン酸カルシウムでタンパク質や各種の汚れ成分をより効率よく吸着し、これを酸化チタンの光触媒的酸化還元作用により分解する。
【0033】
このようなリン酸カルシウム及び酸化チタンの作用からして、本発明において一般に、酸化チタン表面の1〜99%(面積%)がリン酸カルシウムで被覆されていることが好ましい。すなわち、この被覆率が1%未満であると、リン酸カルシウムでの吸着効果があまり得られず、一方、被覆率が99%を超えると、酸化チタンの表面が覆われすぎて酸化チタンの光触媒効果が得られにくい。より好ましい被覆率は2〜80%程度であり、さらに好ましい被覆率は5〜70%程度である。
【0034】
リン酸カルシウム被覆の形態は、特に限定されるものではなく種々の形態が可能である。例えば、リン酸カルシウムが層状であっても良いし、微細片状や、微細粒状であっても良い。すなわち、酸化チタンの表面の一部にリン酸カルシウムの被覆層が形成された形態、酸化チタンの表面の一部が微細片状又は微細粒状のリン酸カルシウムが付着して覆われた形態のいずれの形態であってもよい。
微細粒状のリン酸カルシウムが、酸化チタン表面に均一に点在する形態が最も好ましく、その場合には、上記被覆率は20%以下、例えば2〜10%程度でも良い。
【0035】
リン酸カルシウムによる被覆は、酸化チタン粒子又は酸化チタン膜で覆われている粒子を、少なくともCa、Pを含む水溶液中に浸漬し、その後乾燥することによって行えばよい。水溶液は、例えば疑似体液でも良い。疑似体液としては、例えば、Na、K、Cl、Ca、P、Mg等のイオンを含むものが良い。特に、pHが7〜8のものが良く、pHが7.3〜7.7のものがさらに好ましい。水溶液中への浸漬は、例えば、20〜60℃で10分〜30日程度、好ましくは30〜40℃で20分〜24時間程度行う。
【0036】
リン酸カルシウム被覆の厚さは、特に限定されるものではないが、光触媒性能とコストの観点から1nm〜3μm程度が好ましく、1nm〜2μm程度がさらに好ましい。
【0037】
次に、本発明で用いる塗料成分について説明する。本発明において、塗料成分としては公知の水系あるいは溶剤系の有機塗料又は無機塗料の如何なるものをも用いることができる。
【0038】
例えば、水系有機塗料としては、ビニル系合成樹脂エマルションが挙げられる。ビニル系合成樹脂は、特に限定されるものではなく、乳化重合可能なビニル系モノマーの重合体であれば良く、例えば、アクリル樹脂、アクリル共重合樹脂、スチレン共重合樹脂、酢酸ビニル樹脂、酢酸ビニル共重合樹脂、エチレン−酢酸ビニル共重合樹脂などが挙げられる。また、各種樹脂のうち溶剤に可溶なものは、溶剤系の有機塗料して用いることができる。
【0039】
これら樹脂の重合用モノマー成分としては、例えば、(メタ)アクリル酸エステル、アミド結合含有ビニルモノマー、スチレン又はスチレン誘導体、(メタ)アクリロニトリル、カルボキシル基含有ビニルモノマー、ヒドロキシル基含有ビニルモノマー、ハロゲン化ビニル類、ビニルエステル類、シリル基含有ビニルモノマー等が挙げられる。
【0040】
より詳細には、(メタ)アクリル酸エステルとしては、アルキル基の炭素数が1〜12、好ましくは1〜8の(メタ)アクリル酸アルキルエステルが挙げられる。より具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸シクロヘキシル等が挙げられる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシル等が入手容易である点、他のビニル系モノマーとの共重合性が良好である点から好ましい。
【0041】
また、アミド結合含有ビニルモノマーとしては、例えば、アクリルアミド、メタクリルアミド、α−エチルアクリルアミド; N,N−ジメチルアクリルアミド、N,N−ジメチルメタクリルアミド、N−メチルアクリルアミド、N−メチルメタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミドなどのN−置換(メタ)アクリルアミド; メチレンビスアクリルアミド、メチレンビスメタクリルアミドなどのN−置換(メタ)アクリルアミド2量体; N−ビニルピロリドン等が挙げられる。これらのうち、アクリルアミド、メタクリルアミド、α−エチルアクリルアミド; N,N−ジメチルアクリルアミド、N,N−ジメチルメタクリルアミド等が入手容易である点、他のビニル系モノマーとの共重合性が良好である点から好ましい。
【0042】
スチレン又はスチレン誘導体としては、スチレン、α−メチルスチレン、p−tert−ブチルスチレン、ビニルトルエン、モノクロルスチレン等が挙げられる。これらのうち、スチレン、α−メチルスチレン等が入手容易である点、他のビニル系モノマーとの共重合性が良好である点から好ましい。
【0043】
カルボキシル基含有ビニルモノマーとしては、例えば、(メタ)アクリル酸、マレイン酸、マレイン酸の半エステル化物、フマル酸、フマル酸の半エステル化物、イタコン酸、イタコン酸の半エステル化物、クロトン酸、ケイ皮酸等のα,β−不飽和カルボン酸; さらには、カルボキシエチル(メタ)アクリレートやカルボキシプロピル(メタ)アクリレートなどのカルボキシアルキル(メタ)アクリレート; フタル酸モノヒドロキシエチルアクリレートやコハク酸モノヒドロキシエチルアクリレートなどのジカルボン酸とモノヒドロキシアルキルアクリレートとのエステル等が挙げられる。これらのうち、アクリル酸、メタクリル酸等が入手容易である点、他のビニル系モノマーとの共重合性が良好である点から好ましい。
【0044】
ヒドロキシル基含有ビニルモノマーとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等が挙げられる。ハロゲン化ビニル類としては、塩化ビニル、塩化ビニリデン等が挙げられる。ビニルエステル類としては、酢酸ビニル、プロピオン酸ビニル等が挙げられる。
【0045】
また、シリル基含有ビニルモノマーとしては、例えば、ジビニルジメトキシシラン、ジビニルジ−β−メトキシエトキシシラン、ビニルトリエトキシシラン、ビニルトリス−β−メトキシエトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン、γ−(メタ)アクリロキシプロピルメチルジエトキシシラン等が挙げられる。これらのうち、γ−(メタ)アクリロキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン等が入手容易である点、アルコキシシラン基の安定性の点から好ましい。
【0046】
これらの各種重合用モノマー成分は、必要に応じて任意に複数種を選択すれば良い。
さらに、重合用モノマーとして、必要に応じて上記の他に、ブタジエン、ジビニルベンゼン、ジアリルフタレートなどを、適宜用いることもできる。
【0047】
本発明において、ビニル系重合体は、公知の方法により得ることができる。すなわち、上記各種重合用モノマー成分を、常法により乳化剤存在下に乳化重合させることにより得ることができる。
【0048】
本発明において、ビニル系重合体の重量平均分子量は、特に限定されるものではないが、ポリスチレン換算で5万〜100万程度、好ましくは20万〜80万程度である。
【0049】
本発明に用いられる無機塗料としては、ゾル−ゲル法によって塗膜を形成するための加水分解重合性金属アルコキシドを含む溶液が挙げられる。
金属アルコキシドの金属としては、特に制限されるものではないが、例えばAl、Ti、Zr、Siなどが挙げられる。これらの金属のうち、Al、Siが好ましく、Siが特に好ましい。
【0050】
金属アルコキシドのアルコキシド基としては、特に制限されるものではなく、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、ペンチルオキシ、ヘキシルオキシなどのアルコキシ基等が挙げられる。これらのうち、炭素数1〜4の低級アルコキシ基が好ましく、特にメトキシ、エトキシ、プロポキシ等が好ましい。金属アルコキシドは、加水分解重合するために少なくとも2つのアルコキシド基を有する。
【0051】
アルミニウムのアルコキシド化合物としては、例えば、トリメトキシアルミニウム、トリエトキシアルミニウム、トリプロポキシアルミニウムなどが挙げられる。
【0052】
チタンのアルコキシド化合物としては、例えば、トリメトキシチタン、テトラメトキシチタン、トリエトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、クロロトリメトキシチタン、クロロトリエトキシチタン、エチルトリメトキシチタン、メチルトリエトキシチタン、エチルトリエトキシチタン、ジエチルジエトキシチタン、フェニルトリメトキシチタン、フェニルトリエトキシチタンなどが挙げられる。ジルコニウムのアルコキシド化合物としては、上記チタネートにそれぞれ対応するジルコネートが挙げられる。
【0053】
ケイ素のアルコキシド化合物は、本発明において好適に用いることができる。このケイ素化合物は、次式(1)で表されるものである。
(R11n Si(OR124-n (1)
この式において、R11は置換基を有していても良い低級アルキル基又は置換基を有していても良いアリール基を表し、R12は低級アルキル基を表し、R11及びR12はnにより異なっていても良い。nは0又は1の整数を表す。R11及びR12が表す低級アルキル基は通常、炭素数1〜4程度のアルキル基であり、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル基等が挙げられる。
【0054】
このようなケイ素化合物の具体例としては、例えば、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシランなどが挙げられる。
【0055】
これらのケイ素化合物のうち、好ましいものとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどが挙げられる。
【0056】
また、本発明において、上記ケイ素化合物に加えて、必要に応じて、ゲル化後の塗膜の硬さ、柔軟性などの調整のために、上記式(1)のn=2のケイ素化合物を用いることも可能である。このようなものとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどが挙げられる。
【0057】
これらの金属アルコキシド化合物は、部分的に重合されているものであっても良い。また、金属アルコキシド化合物として、1種のみを用いてもよいが、2種以上を併用しても良い。
【0058】
上述の金属アルコキシド化合物、好ましくはケイ素のアルコキシド化合物、またはコロイダルシリカを溶剤に希釈して、硬化剤として水または酸又はアルカリ触媒を添加し、加水分解重合反応を行い、無機塗料を作製することができる。
【0059】
また、無機塗料の作製の際には、水の他に、適当な有機溶媒を用いることも可能である。このような有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノールなどのアルコール類; ジエチルエーテル、ジオキサン、ジメトキシエタン、テトラヒドロフランなどのエーテル類; N−メチルピロリドン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、アセトン、ベンゼン等が挙げられる。あるいはこれらの混合溶媒とすることもできる。
【0060】
本発明の塗料組成物においては、リン酸カルシウムで一部被覆された光触媒を有機又は無機塗料に対して、固形分重量比で、一般に1〜50重量%、好ましくは5〜30重量%の配合割合で含む。この配合割合が1重量%未満であると光触媒効果が少なく、一方、配合割合が50重量%を超えるとコストが高くなる。配合割合は、塗料の種類によっても異なるが、光触媒効果とコストを考慮して当業者が適宜定めると良い。
【0061】
本発明の塗料組成物は、リン酸カルシウム及び酸化チタンを含む光触媒と有機又は無機塗料とを混合することによって得られる。この混合の際に、メチルセソルブ、カルビトール、トリエチレングリコール、テキサノール等の造膜助剤を用いてもよい。また、塗料組成物には、必要に応じて、消泡剤、増粘剤、凍結安定剤、湿潤剤、顔料、水溶性樹脂、浸透助剤などの公知の添加剤を配合しても良い。
塗料組成物の塗装対象物への塗布は、刷毛、ローラー、エアースプレー、エアレススプレー等の通常の方法により行うことができる。
【0062】
本発明の塗料組成物によれば、従来の光触媒よりも高い光触媒機能を有する酸化チタン表面の一部がリン酸カルシウムで被覆された光触媒を含むので、得られる塗料塗膜は、油分や水分の付着によっても黄ばみを生じたり劣化したりすることが非常に少なくなり、優れた耐久性と美観保持が得られる。
また、塗料成分として有機塗料を用いた場合にも、有機塗料成分が直接TiO2 と接触しにくくなるために、塗膜が安定である。
【0063】
【実施例】
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。以下において、部とは特に断りのない限り重量部を表す。
[参考例1](ビニル系合成樹脂エマルションの調製例)
【0064】
【表1】

Figure 0004071384
【0065】
上記表1に示す組成で、合成樹脂エマルションを調製した。
4つ口フラスコにイオン交換水を40部仕込んで、窒素気流中で80℃まで昇温し、次に重合開始剤を添加し、さらに残りの水に溶解した乳化剤水溶液で重合性モノマー類を乳化させて、この混合物を3時間かけて滴下した。滴下時の反応温度は78〜82℃に制御した。
【0066】
滴下終了後も、同温度範囲に2時間保持しつつ、攪拌下に反応を継続させ、その後冷却し、14%アンモニア水でpHを8〜9に調節して、固形分が50.4%、粒子径が174ナノメーターで、表面張力が48ダイン/センチメートルの安定な合成樹脂エマルションを調製した。
【0067】
[参考例2](リン酸カルシウムで一部被覆された光触媒の調製)
チタンテトライソプロポキシド45gを400mlの無水エタノールで希釈し、攪拌しながらトリエタノールアミン15gと水4gを添加し、さらに分子量1500のポリエチレングリコール4gを添加して透明なゾル液を調製し、滴下法により直径約10μmの球状シリカゲルの表面に酸化チタン膜をコーテイングした。すなわち、このゾル液を少量、球状シリカゲルの表面に滴下し、余分な液を落として乾燥した後、室温から徐々に600℃の温度にまで加熱昇温して焼成し、これを5回繰り返して、球状シリカゲルの表面に酸化チタン膜を形成した。得られた酸化チタン膜の結晶構造をX線回折によって調べた結果、アナターゼ100%であった。また、その表面を電子顕微鏡で観察したところ、約20nmの大きさの細孔で覆われていた。
【0068】
得られた酸化チタン膜被覆粒子を、疑似体液1リットル中に懸濁させ、2時間、37℃で静置し、その後100℃で乾燥した。疑似体液は、水1リットル中に、塩化ナトリウム8000mg、塩化カリウム200mg、リン酸一水素ナトリウム1150mg、リン酸二水素カリウム200mg、塩化カルシウム200mgを含むものであった。このようにして、酸化チタン膜表面の一部(約12%:電子顕微鏡観察による)がリン酸カルシウムで被覆された光触媒を得た。
【0069】
[参考例3](リン酸カルシウムで一部被覆された光触媒の調製)
アナターゼ型酸化チタン(昭和電工(株)製、スーパーチタニア:平均粒径30nm)10gを、参考例2で用いたのと同じ疑似体液1リットル中に懸濁させ、2時間、37℃で静置し、その後100℃で乾燥した。このようにして、酸化チタン粒子表面の一部(約2%:電子顕微鏡観察による)がリン酸カルシウムで被覆された光触媒を得た。
[実施例1(本発明)、実施例2(参考例)、比較例1〜2]
参考例1で得られた合成樹脂エマルションを、表2に示す配合組成で塗料化した。すなわち、光触媒として、実施例1では、参考例2で得られたリン酸カルシウム被覆TiO2 を、実施例2では、参考例3で得られたリン酸カルシウム被覆TiO2 を、比較例1では、TiO2 R630(石原産業製:平均粒径0.24μm)を、比較例2では、アナターゼ型TiO2 ST41(石原産業製:平均粒径0.1μm)をそれぞれ用いた。
これら各塗料につき、次のようにして塗料性能の評価を行った。
各塗料をバーコーター#20でアルミ板に塗布し、120℃で30分間焼付け、各テストピースを作製した。
【0070】
(耐候性)
各テストピースをQUV促進耐候性試験機にかけ、3000時間促進テストを行い、グロスメーターにより、光沢保持率(%)を定量した。
【0071】
(耐汚染性)
各テストピースの塗料膜上に、黒色水性インキで2mm幅の線を引いた。QUV 3000時間、60℃、湿度20%の条件で促進テストを行い、マクベス濃度計を用いて、黒色インキの分解率(%)を求めた。すなわち、インキ分解率(%)が高いほど、耐汚染性に優れる。
インキ分解率(%)=100×[(促進テスト前の黒色濃度)−(促進テスト後の黒色濃度)]/(促進テスト前の黒色濃度)
以上の結果を表2にまとめて示す。
【0072】
【表2】
Figure 0004071384
【0073】
表2より、実施例1及び2では、TiO2 はリン酸カルシウムで一部被覆されているので、塗膜中の塗料成分が直接TiO2 に接触していないために、通常のアナターゼ型TiO2 を用いた比較例2に比べ、塗膜が安定であり耐候性に優れる。さらに、実施例1及び2では、水性インキをリン酸カルシウムが吸着し、インキの分解がより促進されるので、耐汚染性にも優れる。
【0074】
[実施例3]
メチルトリメトキシシラン100部、、テトラエトキシシラン10部、オルガノシリカゲル90部、ジメチルジメトキシシラン30部及びイソプロピルアルコール100部を混合した後に、水90部と参考例2のリン酸カルシウム一部被覆TiO2 40部とを添加し攪拌した。その後、60℃の恒温水槽中で重量平均分子量1500に調製し、光触媒含有無機塗料を得た。
この塗料をバーコーター#20でアルミナ基板に塗布し、得られた塗膜を、さらに1重量%の水酸化ナトリウム水溶液に24時間浸漬して無機塗料塗膜を作製した。
【0075】
[比較例3]
光触媒として、参考例2のリン酸カルシウム一部被覆TiO2 に代えて、TiO2 (日本エアロジル社:P−25)を用いた以外は実施例と同様にして無機塗料塗膜を作製した。
【0076】
これらの無機塗料塗膜における光触媒作用を評価するために、アルデヒド除去率(%)、黒色水性インキ分解率(%)及び光沢保持率(%)を測定した。
(アルデヒド除去率)
無機塗料塗膜が形成されたアルミナ基板をプラスチック製容器中に入れ、この容器内に50ppmのアセトアルデヒドを注入し、10Wのブラックライトを30分間照射し、ガスクロマトグラフィーを用いて、アセトアルデヒドの除去率を求めた。
水性インキ分解率(%)及び光沢保持率(%)の測定は、実施例1と同様にして行った。以上の結果を表3にまとめて示す。
【0077】
【表3】
Figure 0004071384
【0078】
表3より、実施例3では、比較例に比べ、アルデヒド除去率、水性インキ分解率に優れる。
【0079】
[実施例4(参考例)
溶剤型2液架橋アクリルシリコン樹脂として、アレスシリコン(関西ペイント(株)製)を用いた。前記アレスシリコンのクリアーベースに、参考例3で得られたリン酸カルシウム被覆TiO2 を全樹脂中含有量10重量%となるように分散した。これにアレスシリコン硬化剤を、前記クリアーベース14部に対して前記硬化剤1部の割合で加え、これをアルミ板に20μmの厚みで塗布し、常温で1週間で硬化させ、テストピースを作製した。
【0080】
[比較例4]
光触媒として、参考例3のリン酸カルシウム一部被覆TiO2 に代えて、アナターゼ型TiO2 ST41(石原産業製:平均粒径0.1μm)を用いた以外は実施例4と同様にして、テストピースを作製した。
【0081】
実施例4及び比較例4の各テストピースについて、実施例1と同様にして、耐候性としての光沢保持率(%)及び耐汚染性としてのインキ分解率(%)を測定した。結果を表4に示す。
【0082】
【表4】
Figure 0004071384
【0083】
表4より、実施例4では、光触媒としてリン酸カルシウム被覆TiO2 を用いているので、通常のアナターゼ型TiO2 を用いた比較例4に比べ、塗膜が安定であり耐候性に優れる。さらに、実施例4では、インキの分解も促進され、耐汚染性にも優れる。
【0084】
本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施することができる。そのため、前述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変更は、すべて本発明の範囲内のものである。
【発明の効果】
本発明の塗料組成物は、上述のように構成されているので、この塗料組成物から形成される塗膜は、油分や水分の付着によっても黄ばみを生じたり劣化したりすることが非常に少なくなり、優れた耐久性と美観保持が得られる。
本発明の塗料組成物は、建築内外装用等の各種用途に好適に用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic or inorganic coating composition containing a photocatalyst partially coated with calcium phosphate.
[0002]
[Prior art]
Although the coating material depends on its application, it generally causes yellowing or deterioration due to adhesion of oil such as hand dust, moisture in the air, oxidation, decomposition by light, etc. over time after application.
Therefore, an antibacterial agent is blended in the paint to improve the durability of the paint film and maintain the aesthetic appearance.
[0003]
For example, Japanese Patent Laid-Open No. 8-259891 discloses a technique for incorporating a powder having a photocatalytic function into a silica paint. And as a powder having a photocatalytic function, titanium oxide, zirconium oxide, zinc oxide, strontium titanate, tin oxide, tungsten oxide, iron oxide, bismuth oxide are described. It describes that effects such as deodorization and antibacterial can be obtained by inclusion.
[0004]
Japanese Patent Application Laid-Open No. 5-305691 discloses hydrophilicity having a film containing at least silica on an inorganic substance having an average particle diameter of 5 μm or less selected from titanium dioxide, chromium oxide and iron oxide and a film containing silica. A coating is described.
[0005]
International Publication No. WO96 / 29375 discloses a photocatalytic hydrophilic coating comprising a photocatalytic material selected from TiO 2 , ZnO, SnO 2 , SrTiO 3 , WO 3 , Bi 2 O 3 and Fe 2 O 3 and silica. Is described.
[0006]
Japanese Patent Application Laid-Open No. 10-237357 (publication after the priority date of this application) describes a photocatalytic hydrophilic coating composition comprising a solution containing crystalline titanium oxide particles, tungsten chloride and tetrahydrofuran. ing.
[0007]
Further, as a method for forming a hydrophobic surface, Japanese Patent Application Laid-Open No. 10-237431 (publication after the priority claim date of the present application) discloses photocatalytic oxide particles such as titanium oxide, silicone, and Hac. A water repellent material containing an aqueous fluororesin is described.
[0008]
However, even if the photocatalyst described in these publications is contained in the coating film, the effects of deodorization, antibacterial action, etc. may be insufficient, and development of a paint having higher durability and long-term aesthetic retention performance is desired. It is rare.
In addition, when an organic paint is used as the paint component, there is a problem that the coating film is deteriorated because the organic paint component is in direct contact with TiO 2 or the like.
[0009]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a coating composition that solves the above-mentioned problems of the prior art, is excellent in water resistance, weather resistance, and durability, and can maintain aesthetics for a long time.
[0010]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above object can be achieved by using a photocatalyst containing calcium phosphate and titanium oxide as a photocatalyst, and more specifically, using titanium oxide whose surface is partially coated with calcium phosphate. As a result, the present invention has been completed.
[0013]
The present invention is a coating composition comprising a coating component and a photocatalyst containing calcium phosphate and titanium oxide,
The photocatalyst is a coating composition in which the surface of inorganic particles is coated with a titanium oxide film, and a part of the surface of the titanium oxide film is coated with calcium phosphate.
In the coating composition, the photocatalyst is one in which the surface of inorganic particles is coated with a titanium oxide film, and a part of the surface of the titanium oxide film is coated with calcium phosphate. The inorganic particles are also preferably at least one porous material selected from activated carbon, activated alumina, and silica gel. It is also preferred that the titanium oxide film has pores with a uniform pore size. It is also preferred that the pore diameter of the pores of the titanium oxide film is 1 nm to 2 μm.
[0014]
In the present invention, it is preferable that 1 to 99% (area%) of the surface of the titanium oxide film is covered with calcium phosphate.
In the present invention, the crystal form of titanium oxide is preferably anatase.
In the present invention, the calcium phosphate is preferably selected from the group consisting of apatite, tricalcium phosphate and octacalcium phosphate.
In the present invention, any known organic or inorganic paint can be used as the paint component.
The present invention will be described in detail below.
[0015]
First, the photocatalyst used in the present invention will be described. Form of use physician Ru photocatalyst in the present invention, the calcium-phosphate has excellent adsorbability of dirt components of the protein and various aqueous, considering that titanium oxide has excellent photocatalytic function, the surface of the titanium oxide emissions This is a form having a calcium phosphate coating on a part of .
[0016]
Among such photocatalyst forms, the first one (reference) includes titanium oxide particles partially covered with calcium phosphate, and the second one (invention) includes inorganic particles. The surface is coated with a titanium oxide film, and a part of the titanium oxide film surface is coated with calcium phosphate.
The first and second ones are common in that they have a calcium phosphate coating on a portion of the titanium oxide surface that has a photocatalytic function, and have essentially the same function.
[0017]
As titanium oxide particles in the first photocatalyst, ordinary titanium oxide particles (average particle diameter is, for example, about 1 μm to several mm) may be used. Alternatively, it is also preferable to use porous titanium oxide particles. In this case, since the surface area of the particles becomes large, a larger photocatalytic performance can be obtained.
In the present invention, the crystal form of titanium oxide is preferably anatase because high photocatalytic performance can be obtained.
[0018]
In the second photocatalyst, the surface of the inorganic particles is covered with a titanium oxide film. Examples of the inorganic particles include various types such as porous ceramics, glass, and metal, but a porous body selected from activated carbon, activated alumina, and silica gel is particularly preferable in terms of the specific surface area and cost.
[0019]
The titanium oxide film preferably has pores with a uniform pore size. By having pores with a uniform pore size, the specific surface area is increased, and a larger photocatalytic performance can be obtained. That is, it becomes possible to efficiently adsorb moisture and organic components in the coating film surface or the surface of the coating film, and to quickly decompose it by the redox action of electrons and holes generated by light irradiation.
[0020]
The pore diameter of the titanium oxide film is not particularly limited, but is preferably 1 nm to 2 μm from the viewpoint of efficiently adsorbing moisture and organic components.
In the present invention, the crystal form of titanium oxide is preferably anatase because high photocatalytic performance can be obtained.
[0021]
Formation of a titanium oxide film on the surface of inorganic particles such as a porous body can be carried out by coating the titania sol on the surface of the inorganic particles, followed by heating and firing. It is preferable to add polyethylene glycol and / or polyethylene oxide to the titania sol.
[0022]
The titania sol can be prepared by suspending ultrafine titanium oxide in water or hydrolyzing titanium alkoxide obtained by reaction of alcohol with titanium tetrachloride or metal titanium. In that case, it is uniform if alcohol amines such as monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N, N-dimethyldiaminoethanol, diisopropanolamine, or glycols such as diethylene glycol are added. A transparent titania sol can be obtained, and a high performance porous photocatalyst can be obtained by using it.
[0023]
The titania sol thus obtained is coated on the surface of the porous body by a dip coating method, a dropping method, a coating method, a spray method or the like, and then heated and fired.
[0024]
It is preferable to add polyethylene glycol and / or polyethylene oxide to the titania sol because a photocatalyst having a large specific surface area in which pores are formed can be obtained. That is, by adding polyethylene glycol and / or polyethylene oxide to titania sol, polyethylene glycol or polyethylene oxide burns and disappears in the heating and firing stage. A large porous photocatalyst is obtained.
[0025]
The firing is preferably performed by heating from room temperature to a final temperature of 600 ° C. to 700 ° C., or by heating at a temperature of 400 ° C. to 600 ° C. By this operation, the titania sol coated on the surface of the porous body is converted into titanium oxide having a high performance as a photocatalyst and having a crystal form of anatase. At this time, when directly calcined at a temperature of 600 ° C. to 700 ° C., or when the calcining temperature is lower than 400 ° C. or exceeds 700 ° C., oxidation with a low activity rutile or amorphous mixed as a photocatalyst. Only titanium can be obtained.
[0026]
In the present invention, in order to obtain a strong and high-performance titanium oxide film that is strongly adhered to the porous body, a titania sol added with polyethylene glycol and / or polyethylene oxide is thinly coated, sprayed or coated on the surface of the porous body. Then, it is desirable to form a titanium oxide thin film on the surface of the porous body by heating and baking it, and to form a multilayer film of titanium oxide on the surface of the porous body by repeating this operation. In addition, when the porous body is activated carbon or the like, it is desirable to use a material whose surface is made hydrophilic by previously treating the porous body with an acid such as nitric acid, sulfuric acid or hydrochloric acid. By doing so, a titanium oxide film is firmly bonded to the surface of the porous body, and a high-performance porous photocatalyst that is durable and excellent in durability is obtained.
[0027]
In the present invention, the polyethylene glycol or polyethylene oxide added to the titania sol preferably has a molecular weight of 1000 or more, and in particular, the molecular weight is 1000, 1500, 2000, 3000, 6000, 8000, 11000, 13000, 20,000, 10 Those of 10,000, 300,000, 2,000,000 and 2.5 million are preferable. By using the one having a molecular weight of 1000 or more, a titanium oxide film formed on the surface of the porous body is not peeled off from the porous body, and a high performance porous photocatalyst excellent in durability can be obtained.
[0028]
In the present invention, the amount of polyethylene glycol and / or polyethylene oxide added to the titania sol is preferably less than or equal to its solubility. When added in excess of solubility, pores having uniform pore diameters cannot be formed, and a durable and excellent titanium oxide film is difficult to form.
[0029]
In the present invention, the pore diameter and pore distribution density of the titanium oxide film can be controlled by changing the addition amount and molecular weight of polyethylene glycol and / or polyethylene oxide. The pore size decreases when the addition amount is small or the one having a small molecular weight is used. On the other hand, when the addition amount is large or the one having a large molecular weight is used, the pore size becomes large. When the addition amount is small, the density of the pore distribution becomes small. On the other hand, when the addition amount is large, the density of the pore distribution becomes large. In addition, when polyethylene glycol and / or polyethylene oxide having a wide molecular weight distribution is added, the pores have various pore sizes. Furthermore, by laminating a titanium oxide thin film, it has a unique three-dimensional structure. As described above, a titanium oxide film can be formed on the surface of the porous body.
[0030]
Photocatalyst used in the present invention, Ru der which some further calcium phosphate coating is formed of the titanium oxide film surface.
[0031]
In the present invention, the calcium phosphate is not particularly limited, but is preferably selected from the group consisting of apatite, tricalcium phosphate and octacalcium phosphate. Apatite is apatite, and examples thereof include hydroxyapatite, fluorinated apatite, carbonate apatite, and silver apatite.
[0032]
Calcium phosphate such as apatite adsorbs proteins such as bacteria or aqueous stains (sweat, dirt, water-based ink, etc.). On the other hand, titanium oxide has poor adsorption capacity compared to calcium phosphate. Therefore, by forming a calcium phosphate coating on a part of the titanium oxide surface, proteins and various soil components are more efficiently adsorbed by the calcium phosphate, and decomposed by the photocatalytic redox action of titanium oxide.
[0033]
In view of the action of calcium phosphate and titanium oxide, it is generally preferable in the present invention that 1 to 99% (area%) of the titanium oxide film surface is covered with calcium phosphate. That is, when the coverage is less than 1%, the adsorption effect with calcium phosphate is not so much obtained. On the other hand, when the coverage exceeds 99%, the surface of the titanium oxide is too covered and the photocatalytic effect of the titanium oxide is obtained. It is difficult to obtain. A more preferable coverage is about 2 to 80%, and a more preferable coverage is about 5 to 70%.
[0034]
The form of the calcium phosphate coating is not particularly limited, and various forms are possible. For example, the calcium phosphate may be layered, fine flaky, or fine granular. That is, either a form in which a coating layer of calcium phosphate is formed on a part of the surface of titanium oxide or a form in which part of the surface of titanium oxide is covered with fine flaky or fine-grained calcium phosphate attached. May be.
A form in which fine granular calcium phosphate is evenly scattered on the surface of titanium oxide is most preferable. In this case, the coverage may be 20% or less, for example, about 2 to 10%.
[0035]
The coating with calcium phosphate may be performed by immersing titanium oxide particles or particles covered with a titanium oxide film in an aqueous solution containing at least Ca and P, and then drying. The aqueous solution may be, for example, a simulated body fluid. As the simulated body fluid, for example, those containing ions such as Na, K, Cl, Ca, P, and Mg are preferable. In particular, a pH of 7 to 8 is good, and a pH of 7.3 to 7.7 is more preferable. The immersion in the aqueous solution is performed, for example, at 20 to 60 ° C. for about 10 minutes to 30 days, preferably at 30 to 40 ° C. for about 20 minutes to 24 hours.
[0036]
The thickness of the calcium phosphate coating is not particularly limited, but is preferably about 1 nm to 3 μm, more preferably about 1 nm to 2 μm from the viewpoint of photocatalytic performance and cost.
[0037]
Next, the paint component used in the present invention will be described. In the present invention, any known water-based or solvent-based organic paint or inorganic paint can be used as the paint component.
[0038]
For example, a water-based organic paint includes a vinyl-based synthetic resin emulsion. The vinyl-based synthetic resin is not particularly limited and may be any polymer of a vinyl-based monomer capable of emulsion polymerization. For example, acrylic resin, acrylic copolymer resin, styrene copolymer resin, vinyl acetate resin, vinyl acetate Examples thereof include copolymer resins and ethylene-vinyl acetate copolymer resins. Of the various resins, those soluble in a solvent can be used as a solvent-based organic paint.
[0039]
Examples of monomer components for polymerization of these resins include (meth) acrylic acid esters, amide bond-containing vinyl monomers, styrene or styrene derivatives, (meth) acrylonitrile, carboxyl group-containing vinyl monomers, hydroxyl group-containing vinyl monomers, and vinyl halides. , Vinyl esters, silyl group-containing vinyl monomers and the like.
[0040]
More specifically, examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters having 1 to 12, preferably 1 to 8, carbon atoms in the alkyl group. More specifically, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t- (meth) acrylate t- Examples include butyl, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like. Of these, methyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, etc. are easily available, and with other vinyl monomers It is preferable from the viewpoint of good copolymerizability.
[0041]
Examples of the amide bond-containing vinyl monomer include acrylamide, methacrylamide, α-ethylacrylamide; N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N-methylacrylamide, N-methylmethacrylamide, N- N-substituted (meth) acrylamides such as methylolacrylamide and N-methylolmethacrylamide; N-substituted (meth) acrylamide dimers such as methylenebisacrylamide and methylenebismethacrylamide; N-vinylpyrrolidone and the like. Among these, acrylamide, methacrylamide, α-ethylacrylamide; N, N-dimethylacrylamide, N, N-dimethylmethacrylamide and the like are easily available and have good copolymerizability with other vinyl monomers. It is preferable from the point.
[0042]
Examples of styrene or styrene derivatives include styrene, α-methylstyrene, p-tert-butylstyrene, vinyltoluene, and monochlorostyrene. Among these, styrene, α-methylstyrene and the like are preferable because they are easily available and have good copolymerizability with other vinyl monomers.
[0043]
Examples of the carboxyl group-containing vinyl monomer include (meth) acrylic acid, maleic acid, a half-esterified product of maleic acid, fumaric acid, a half-esterified product of fumaric acid, itaconic acid, a half-esterified product of itaconic acid, crotonic acid, and silicic acid. Α, β-unsaturated carboxylic acids such as cinnamate; carboxyalkyl (meth) acrylates such as carboxyethyl (meth) acrylate and carboxypropyl (meth) acrylate; monohydroxyethyl phthalate and monohydroxyethyl succinate Examples include esters of dicarboxylic acids such as acrylates and monohydroxyalkyl acrylates. Among these, acrylic acid, methacrylic acid and the like are preferable because they are easily available and have good copolymerizability with other vinyl monomers.
[0044]
Examples of the hydroxyl group-containing vinyl monomer include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and the like. Examples of the vinyl halides include vinyl chloride and vinylidene chloride. Examples of vinyl esters include vinyl acetate and vinyl propionate.
[0045]
Examples of the silyl group-containing vinyl monomer include divinyldimethoxysilane, divinyldi-β-methoxyethoxysilane, vinyltriethoxysilane, vinyltris-β-methoxyethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ -(Meth) acryloxypropyltriethoxysilane, γ- (meth) acryloxypropylmethyldiethoxysilane, and the like. Among these, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane and the like are preferable from the viewpoint of easy availability and the stability of the alkoxysilane group.
[0046]
These various monomer components for polymerization may be arbitrarily selected from a plurality of types as required.
In addition to the above, butadiene, divinylbenzene, diallyl phthalate, and the like can be used as appropriate as the polymerization monomer.
[0047]
In the present invention, the vinyl polymer can be obtained by a known method. That is, it can be obtained by emulsion polymerization of the above various monomer components for polymerization in the presence of an emulsifier by a conventional method.
[0048]
In the present invention, the weight average molecular weight of the vinyl polymer is not particularly limited, but is about 50,000 to 1,000,000, preferably about 200,000 to 800,000 in terms of polystyrene.
[0049]
Examples of the inorganic paint used in the present invention include a solution containing a hydrolyzable polymerizable metal alkoxide for forming a coating film by a sol-gel method.
The metal of the metal alkoxide is not particularly limited, and examples thereof include Al, Ti, Zr, and Si. Of these metals, Al and Si are preferable, and Si is particularly preferable.
[0050]
The alkoxide group of the metal alkoxide is not particularly limited, and examples thereof include alkoxy groups such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, pentyloxy, hexyloxy and the like. Of these, lower alkoxy groups having 1 to 4 carbon atoms are preferable, and methoxy, ethoxy, propoxy, and the like are particularly preferable. The metal alkoxide has at least two alkoxide groups for hydrolytic polymerization.
[0051]
Examples of the alkoxide compound of aluminum include trimethoxyaluminum, triethoxyaluminum, and tripropoxyaluminum.
[0052]
Examples of titanium alkoxide compounds include trimethoxy titanium, tetramethoxy titanium, triethoxy titanium, tetraethoxy titanium, tetrapropoxy titanium, chlorotrimethoxy titanium, chlorotriethoxy titanium, ethyl trimethoxy titanium, methyl triethoxy titanium, and ethyl. Examples include triethoxy titanium, diethyl diethoxy titanium, phenyl trimethoxy titanium, and phenyl triethoxy titanium. Examples of zirconium alkoxide compounds include zirconates corresponding to the titanates.
[0053]
Silicon alkoxide compounds can be suitably used in the present invention. This silicon compound is represented by the following formula (1).
(R 11 ) n Si (OR 12 ) 4-n (1)
In this formula, R 11 represents a lower alkyl group which may have a substituent or an aryl group which may have a substituent, R 12 represents a lower alkyl group, and R 11 and R 12 represent n May be different. n represents an integer of 0 or 1. The lower alkyl group represented by R 11 and R 12 is usually an alkyl group having about 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a sec-butyl group.
[0054]
Specific examples of such silicon compounds include, for example, trimethoxysilane, triethoxysilane, tripropoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxy Silane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ -Aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, etc. That.
[0055]
Among these silicon compounds, preferred are, for example, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxy. Silane etc. are mentioned.
[0056]
In the present invention, in addition to the silicon compound, if necessary, a silicon compound of n = 2 in the above formula (1) is used for adjusting the hardness and flexibility of the coating film after gelation. It is also possible to use it. Examples of such include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.
[0057]
These metal alkoxide compounds may be partially polymerized. Moreover, as a metal alkoxide compound, only 1 type may be used, but 2 or more types may be used together.
[0058]
The above-described metal alkoxide compound, preferably silicon alkoxide compound, or colloidal silica is diluted in a solvent, water, an acid or an alkali catalyst is added as a curing agent, and a hydrolysis polymerization reaction is performed to prepare an inorganic paint. it can.
[0059]
In addition, when preparing the inorganic paint, it is possible to use an appropriate organic solvent in addition to water. Examples of such an organic solvent include alcohols such as methanol, ethanol, propanol, isopropanol, and butanol; ethers such as diethyl ether, dioxane, dimethoxyethane, and tetrahydrofuran; N-methylpyrrolidone, acetonitrile, dimethylformamide, dimethylacetamide Dimethyl sulfoxide, acetone, benzene and the like. Or it can also be set as these mixed solvents.
[0060]
In the coating composition of the present invention, the photocatalyst partially coated with calcium phosphate is generally 1 to 50% by weight, preferably 5 to 30% by weight , based on the organic or inorganic coating, in terms of solid content. Including. When the blending ratio is less than 1% by weight, the photocatalytic effect is small, whereas when the blending ratio exceeds 50% by weight, the cost increases. The blending ratio varies depending on the type of paint, but it is preferable that those skilled in the art appropriately determine the blending ratio in consideration of the photocatalytic effect and cost.
[0061]
The coating composition of the present invention can be obtained by mixing a photocatalyst containing calcium phosphate and titanium oxide with an organic or inorganic coating. During this mixing, Mechiruse b cellosolve, carbitol, triethylene glycol, may be used coalescent such as Texanol. Moreover, you may mix | blend well-known additives, such as an antifoamer, a thickener, a freezing stabilizer, a wetting agent, a pigment, water-soluble resin, and a penetration aid, with a coating composition as needed.
Application of the coating composition to the object to be coated can be performed by a usual method such as brush, roller, air spray, airless spray or the like.
[0062]
According to the coating composition of the present invention, since a part of a conventional acid titanium surfaces that have a high photocatalytic function than photocatalyst containing coated photocatalyst calcium phosphate, resulting paint coatings, oil and water It is very unlikely that yellowing will occur or deteriorate due to the adhesion, and excellent durability and aesthetic retention can be obtained.
Also, when an organic paint is used as the paint component, the organic paint component is less likely to come into direct contact with TiO 2 , so that the coating film is stable.
[0063]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. Hereinafter, “parts” means “parts by weight” unless otherwise specified.
[Reference Example 1] (Preparation example of vinyl-based synthetic resin emulsion)
[0064]
[Table 1]
Figure 0004071384
[0065]
A synthetic resin emulsion was prepared with the composition shown in Table 1 above.
Charge 40 parts of ion-exchanged water into a four-necked flask, raise the temperature to 80 ° C. in a nitrogen stream, add a polymerization initiator, and then emulsify the polymerizable monomers with an aqueous emulsifier solution dissolved in the remaining water. The mixture was added dropwise over 3 hours. The reaction temperature during the dropwise addition was controlled at 78 to 82 ° C.
[0066]
After completion of the dropwise addition, the reaction was continued with stirring while maintaining the same temperature range for 2 hours, and then cooled, the pH was adjusted to 8-9 with 14% aqueous ammonia, the solid content was 50.4%, A stable synthetic resin emulsion having a particle size of 174 nanometers and a surface tension of 48 dynes / centimeter was prepared.
[0067]
[Reference Example 2] (Preparation of photocatalyst partially coated with calcium phosphate)
Dilute 45 g of titanium tetraisopropoxide with 400 ml of absolute ethanol, add 15 g of triethanolamine and 4 g of water while stirring, and then add 4 g of polyethylene glycol with a molecular weight of 1500 to prepare a transparent sol solution. The titanium oxide film was coated on the surface of spherical silica gel having a diameter of about 10 μm. That is, a small amount of this sol solution is dropped on the surface of the spherical silica gel, the excess solution is dropped and dried, and then the temperature is gradually raised from room temperature to 600 ° C. and baked. This is repeated 5 times. A titanium oxide film was formed on the surface of spherical silica gel. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. Further, when the surface was observed with an electron microscope, it was covered with pores having a size of about 20 nm.
[0068]
The obtained titanium oxide film-coated particles were suspended in 1 liter of simulated body fluid, allowed to stand at 37 ° C. for 2 hours, and then dried at 100 ° C. The simulated body fluid contained 8000 mg of sodium chloride, 200 mg of potassium chloride, 1150 mg of sodium monohydrogen phosphate, 200 mg of potassium dihydrogen phosphate, and 200 mg of calcium chloride in 1 liter of water. In this way, a photocatalyst in which a part of the surface of the titanium oxide film (about 12% by electron microscope observation) was coated with calcium phosphate was obtained.
[0069]
[Reference Example 3] (Preparation of a photocatalyst partially coated with calcium phosphate)
10 g of anatase type titanium oxide (manufactured by Showa Denko KK, super titania: average particle size 30 nm) is suspended in 1 liter of the same simulated body fluid used in Reference Example 2 and allowed to stand at 37 ° C. for 2 hours. And then dried at 100 ° C. In this way, a photocatalyst in which a part of the surface of the titanium oxide particles (about 2% by electron microscope observation) was coated with calcium phosphate was obtained.
[Example 1 (present invention), Example 2 (reference example) , Comparative Examples 1-2]
The synthetic resin emulsion obtained in Reference Example 1 was made into a paint with the formulation shown in Table 2. That is, as a photocatalyst, in Example 1, a calcium phosphate coating TiO 2 obtained in Reference Example 2, in Example 2, a calcium phosphate coating TiO 2 obtained in Reference Example 3, Comparative Example 1, TiO 2 R630 ( Ishihara Sangyo: average particle size 0.24 μm) was used in Comparative Example 2, and anatase TiO 2 ST41 (Ishihara Sangyo: average particle size 0.1 μm) was used.
For each of these paints, the paint performance was evaluated as follows.
Each paint was applied to an aluminum plate with a bar coater # 20 and baked at 120 ° C. for 30 minutes to prepare each test piece.
[0070]
(Weatherability)
Each test piece was subjected to a QUV accelerated weathering tester for 3000 hours, and the gloss retention (%) was quantified with a gloss meter.
[0071]
(Contamination resistance)
A 2 mm wide line was drawn with black aqueous ink on the paint film of each test piece. An accelerated test was conducted under the conditions of QUV 3000 hours, 60 ° C., and humidity 20%, and the decomposition rate (%) of the black ink was determined using a Macbeth densitometer. That is, the higher the ink decomposition rate (%), the better the stain resistance.
Ink degradation rate (%) = 100 × [(black density before accelerated test) − (black density after accelerated test)] / (black density before accelerated test)
The above results are summarized in Table 2.
[0072]
[Table 2]
Figure 0004071384
[0073]
From Table 2, in Examples 1 and 2, since TiO 2 is partially coated with calcium phosphate, the paint component in the coating film is not in direct contact with TiO 2 , so that ordinary anatase TiO 2 is used. Compared to Comparative Example 2, the coating film is stable and has excellent weather resistance. Further, in Examples 1 and 2, calcium phosphate is adsorbed on the water-based ink and the decomposition of the ink is further promoted, so that the stain resistance is excellent.
[0074]
[Example 3]
After mixing 100 parts of methyltrimethoxysilane, 10 parts of tetraethoxysilane, 90 parts of organosilica gel, 30 parts of dimethyldimethoxysilane and 100 parts of isopropyl alcohol, 90 parts of water and 40 parts of calcium phosphate partially coated TiO 2 of Reference Example 2 Were added and stirred. Then, it adjusted to the weight average molecular weight 1500 in a 60 degreeC constant temperature water tank, and obtained the photocatalyst containing inorganic coating material.
This coating material was applied to an alumina substrate with a bar coater # 20, and the obtained coating film was further immersed in a 1% by weight aqueous sodium hydroxide solution for 24 hours to prepare an inorganic coating film.
[0075]
[Comparative Example 3]
An inorganic coating film was prepared in the same manner as in Example 3 except that TiO 2 (Nippon Aerosil Co., Ltd .: P-25) was used in place of the calcium phosphate partially coated TiO 2 of Reference Example 2 as the photocatalyst.
[0076]
In order to evaluate the photocatalytic action in these inorganic coating films, the aldehyde removal rate (%), the black aqueous ink decomposition rate (%), and the gloss retention rate (%) were measured.
(Aldehyde removal rate)
Put alumina substrate with inorganic coating film into plastic container, inject 50ppm acetaldehyde into this container, irradiate with 10W black light for 30 minutes, and use gas chromatography to remove acetaldehyde Asked.
The water-based ink decomposition rate (%) and gloss retention rate (%) were measured in the same manner as in Example 1. The above results are summarized in Table 3.
[0077]
[Table 3]
Figure 0004071384
[0078]
From Table 3, Example 3 is superior to Comparative Example 3 in terms of aldehyde removal rate and water-based ink decomposition rate.
[0079]
[Example 4 (reference example) ]
Ares silicon (manufactured by Kansai Paint Co., Ltd.) was used as the solvent-type two-component crosslinked acrylic silicon resin. The calcium phosphate-coated TiO 2 obtained in Reference Example 3 was dispersed in the clear base of Ares Silicon so that the content in the total resin was 10% by weight. The Ares silicon curing agent is added to the clear base at a ratio of 1 part to the clear base, and this is applied to an aluminum plate with a thickness of 20 μm and cured at room temperature for 1 week to produce a test piece. did.
[0080]
[Comparative Example 4]
A test piece was prepared in the same manner as in Example 4 except that anatase TiO 2 ST41 (Ishihara Sangyo Co., Ltd .: average particle size 0.1 μm) was used as the photocatalyst instead of the calcium phosphate partially coated TiO 2 of Reference Example 3. Produced.
[0081]
For each test piece of Example 4 and Comparative Example 4, the gloss retention rate (%) as weather resistance and the ink decomposition rate (%) as stain resistance were measured in the same manner as in Example 1. The results are shown in Table 4.
[0082]
[Table 4]
Figure 0004071384
[0083]
From Table 4, since Example 4 uses calcium phosphate-coated TiO 2 as a photocatalyst, the coating film is more stable and weather resistant than Comparative Example 4 using ordinary anatase TiO 2 . Furthermore, in Example 4, the decomposition of the ink is promoted and the stain resistance is excellent.
[0084]
The present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. Further, all modifications belonging to the equivalent scope of the claims are within the scope of the present invention.
【The invention's effect】
Since the coating composition of the present invention is configured as described above, the coating film formed from this coating composition is very unlikely to be yellowed or deteriorated due to adhesion of oil or moisture. As a result, excellent durability and aesthetic retention can be obtained.
The coating composition of the present invention can be suitably used for various uses such as for interior and exterior of buildings.

Claims (10)

塗料成分と、リン酸カルシウム及び酸化チタンを含む光触媒とを含む塗料組成物であって、
前記光触媒は、無機粒子の表面が酸化チタン膜で被覆され、さらに酸化チタン膜表面の一部がリン酸カルシウムで被覆されたものである、塗料組成物。
A coating composition comprising a coating component and a photocatalyst comprising calcium phosphate and titanium oxide,
The photocatalyst is a coating composition in which the surface of inorganic particles is coated with a titanium oxide film, and a part of the surface of the titanium oxide film is coated with calcium phosphate.
前記無機粒子が、活性炭、活性アルミナ及びシリカゲルの内から選ばれる少なくとも一種の多孔体である、請求項に記載の塗料組成物。The coating composition according to claim 1 , wherein the inorganic particles are at least one porous material selected from activated carbon, activated alumina, and silica gel. 酸化チタン膜が、均一孔径の細孔を有する、請求項又はに記載の塗料組成物。The coating composition according to claim 1 or 2 , wherein the titanium oxide film has pores having a uniform pore size. 酸化チタン膜の細孔の孔径が、1nm〜2μmである、請求項に記載の塗料組成物。The coating composition according to claim 3 , wherein the pore diameter of the pores of the titanium oxide film is 1 nm to 2 µm. 酸化チタン表面の1〜99%がリン酸カルシウムで被覆されている、請求項1〜4項のうちのいずれか1項に記載の塗料組成物。The coating composition according to any one of claims 1 to 4, wherein 1 to 99% of the surface of the titanium oxide film is coated with calcium phosphate. 酸化チタンの結晶形がアナターゼである、請求項1〜5のうちのいずれか1項に記載の塗料組成物。The coating composition according to any one of claims 1 to 5 , wherein the crystal form of titanium oxide is anatase. リン酸カルシウムが、アパタイト、リン酸三カルシウム及びリン酸八カルシウムからなる群から選ばれる、請求項1〜6のうちのいずれか1項に記載の塗料組成物。The coating composition according to any one of claims 1 to 6 , wherein the calcium phosphate is selected from the group consisting of apatite, tricalcium phosphate and octacalcium phosphate. 塗料成分が、有機塗料及び無機塗料から選ばれる、請求項1〜7のうちのいずれか1項に記載の塗料組成物。The coating composition according to any one of claims 1 to 7 , wherein the coating component is selected from an organic coating and an inorganic coating. 有機塗料が、ビニル系合成樹脂エマルションである、請求項に記載の塗料組成物。The paint composition according to claim 8 , wherein the organic paint is a vinyl-based synthetic resin emulsion. 無機塗料が、ゾル−ゲル法によって塗膜を形成するための金属アルコキシドを含む溶液である、請求項に記載の塗料組成物。The coating composition according to claim 8 , wherein the inorganic coating is a solution containing a metal alkoxide for forming a coating film by a sol-gel method.
JP04029699A 1998-04-14 1999-02-18 Coating composition containing photocatalyst Expired - Lifetime JP4071384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04029699A JP4071384B2 (en) 1998-04-14 1999-02-18 Coating composition containing photocatalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-121868 1998-04-14
JP12186898 1998-04-14
JP04029699A JP4071384B2 (en) 1998-04-14 1999-02-18 Coating composition containing photocatalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007319808A Division JP4819784B2 (en) 1998-04-14 2007-12-11 Coating composition containing photocatalyst

Publications (2)

Publication Number Publication Date
JP2000001631A JP2000001631A (en) 2000-01-07
JP4071384B2 true JP4071384B2 (en) 2008-04-02

Family

ID=26379746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04029699A Expired - Lifetime JP4071384B2 (en) 1998-04-14 1999-02-18 Coating composition containing photocatalyst

Country Status (1)

Country Link
JP (1) JP4071384B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621859B2 (en) * 2000-02-28 2011-01-26 独立行政法人産業技術総合研究所 Method for producing porous photocatalyst
JP4531920B2 (en) * 2000-04-04 2010-08-25 岐阜県 Method for producing photocatalyst coated with porous ceramic coating
KR20020069256A (en) * 2000-11-17 2002-08-29 유겐가이샤 칸코우 데바이스 켄큐쇼 Coating responding to visible light, coating film and article
JP4799275B2 (en) * 2000-12-28 2011-10-26 昭和電工株式会社 Highly active photocatalyst
JP3949055B2 (en) * 2000-12-28 2007-07-25 昭和電工株式会社 Highly active photocatalyst
US6887816B2 (en) 2000-12-28 2005-05-03 Showa Denko K.K. Photocatalyst
CN1547507A (en) * 2001-07-10 2004-11-17 Coating material, paint, and process for producing coating material
JP3653572B2 (en) * 2001-09-06 2005-05-25 福井県 Method for producing porous photocatalyst
US7414009B2 (en) 2001-12-21 2008-08-19 Showa Denko K.K. Highly active photocatalyst particles, method of production therefor, and use thereof
WO2003053576A1 (en) * 2001-12-21 2003-07-03 Showa Denko K.K. High active photocatalyst particle, method for production thereof and use thereof
US7378371B2 (en) 2001-12-21 2008-05-27 Show A Denko K.K. Highly active photocatalyst particles, method of production therefor, and use thereof
DE60228763D1 (en) 2002-06-04 2008-10-16 Fujitsu Ltd ANTIBACTERIAL AND AGGREGATED PAINT FOR BUILDING MATERIAL AND COATED MATERIAL
JPWO2005026276A1 (en) * 2003-09-11 2007-11-08 株式会社ザック Coating material
EP1712280A4 (en) 2003-12-25 2013-11-06 Taiyo Kogyo Co Ltd Photocatalyst sheet, method of bonding thereof and process for producing the same
ES2319916T3 (en) * 2004-06-04 2009-05-14 Sto Ag COMPOSITION FOR FACADES AND SIMILAR COATINGS.
JP2007077391A (en) * 2005-08-15 2007-03-29 Fujikura Kasei Co Ltd Emulsion coating material and method for producing the same
JP2008050559A (en) * 2006-07-25 2008-03-06 Buhei Uchida Coating
EP2103349B1 (en) 2006-12-15 2016-09-07 National Institute of Advanced Industrial Science And Technology Stain-resistant material synthesized by reprecipitation method and having weather resistance, and process for production thereof
JP2008231260A (en) * 2007-03-20 2008-10-02 Able Engineering Kk Water-based coating and method for producing the same
JP2009024048A (en) * 2007-07-17 2009-02-05 Buhei Uchida Interior material
JP5207744B2 (en) * 2008-01-10 2013-06-12 笹野電線株式会社 Paint composition
JP2008291261A (en) * 2008-06-13 2008-12-04 Fujitsu Ltd Antibacterial coating material
UA100571C2 (en) * 2008-06-24 2013-01-10 Энэрджи Корея Инк. Coating composition comprising photocatalyst coated with apatite and radiant heating system having the same
JP5699546B2 (en) * 2010-11-05 2015-04-15 日立化成株式会社 Composite base material and method for producing the composite base material
JP6035778B2 (en) * 2012-03-01 2016-11-30 大日本印刷株式会社 Laminated sheet with photocatalytic function
JP2014091743A (en) * 2012-10-31 2014-05-19 Olympus Corp Coating material, optical coating film and optical element

Also Published As

Publication number Publication date
JP2000001631A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
JP4071384B2 (en) Coating composition containing photocatalyst
US5981425A (en) Photocatalyst-containing coating composition
JP3559892B2 (en) Photocatalytic film and method for forming the same
JP4819784B2 (en) Coating composition containing photocatalyst
JP5087184B2 (en) One-pack type coating composition, photocatalyst used therefor, coating film thereof, and production method thereof
EP1499692B1 (en) Substrates having a biofilm-inhibiting coating
JP2010163615A (en) Self-cleaning member, cohydrolysis condensate included therein, and method for producing the condensate
TW200925226A (en) Coating material, building material and method for coating building material
JP6283922B1 (en) Photocatalyst material and photocatalyst coating composition
JP2004143452A (en) Self-cleaning aqueous coating composition and self- cleaning member
JP4157943B2 (en) Compound having photoactivity and use thereof
US20200070124A1 (en) Photocatalytic coating, process for producing photocatalytic coating, and process for producing photocatalytic body
JP5552378B2 (en) Visible light responsive photocatalyst-containing interior coating composition and coating film containing the same
JP3598349B2 (en) Manufacturing method of composite ceramic material
JP4352721B2 (en) Functional inorganic paint and its coating composition
JP4695829B2 (en) Water-based paint composition
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP2001081412A (en) PHOTOCATALYTIC COATING FOR CLEANUP OF NOx AND METHOD FOR FORMING FILM THEREOF
JP2007077391A (en) Emulsion coating material and method for producing the same
JP2000212473A (en) Coating composition
JP2019157124A (en) Aqueous coating material
JP3980290B2 (en) Titanium oxide thin film forming coating solution and method for producing the same
JP4557197B2 (en) Photocatalyst composition and method for producing the same
JP5066540B2 (en) Semi-water-repellent member and coating method
JP4146156B2 (en) Method for preparing photocatalyst layer forming composition and method for producing photocatalyst carrying structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250