JP4069328B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4069328B2
JP4069328B2 JP2005174478A JP2005174478A JP4069328B2 JP 4069328 B2 JP4069328 B2 JP 4069328B2 JP 2005174478 A JP2005174478 A JP 2005174478A JP 2005174478 A JP2005174478 A JP 2005174478A JP 4069328 B2 JP4069328 B2 JP 4069328B2
Authority
JP
Japan
Prior art keywords
refrigeration cycle
compressor
motor
distortion
operating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005174478A
Other languages
Japanese (ja)
Other versions
JP2006352982A (en
Inventor
伊藤  誠
富夫 吉川
春雄 小原木
菊地  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005174478A priority Critical patent/JP4069328B2/en
Priority to CN2006100842310A priority patent/CN1880888B/en
Priority to CN 201010227684 priority patent/CN101893359B/en
Publication of JP2006352982A publication Critical patent/JP2006352982A/en
Application granted granted Critical
Publication of JP4069328B2 publication Critical patent/JP4069328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転子に永久磁石を設けた電動機によって駆動される圧縮機を備えた冷凍サイクル装置(空気調和機、冷凍装置など)に関し、特に、回転子の鉄心に誘導電動機として機能するかご形導体と、同期電動機として機能するように着磁された永久磁石を設けたものに好適である。   The present invention relates to a refrigeration cycle apparatus (air conditioner, refrigeration apparatus, etc.) provided with a compressor driven by an electric motor provided with a permanent magnet in a rotor, and in particular, a cage shape that functions as an induction motor in an iron core of a rotor. This is suitable for a conductor and a permanent magnet that is magnetized so as to function as a synchronous motor.

蒸気圧縮冷凍サイクルを使用した冷凍サイクル装置に用いる冷媒圧縮機としては、回転数がほぼ一定として駆動される一定速形圧縮機、回転速度が制御されるインバータ形圧縮機があり、商用周波数の交流電圧で容易に駆動できること等よりかご型導体(巻線)を設けた誘導電動機が採用されることが多い。しかし、最近、高効率化の観点より高効率で商用電源駆動が可能なものとして埋込磁石同期電動機が提案されている。   Refrigerant compressors used in refrigeration cycle devices that use a vapor compression refrigeration cycle include constant-speed compressors that are driven at a substantially constant rotational speed and inverter-type compressors that control the rotational speed. An induction motor provided with a squirrel-cage conductor (winding) is often employed because it can be easily driven by voltage. However, recently, an embedded magnet synchronous motor has been proposed as one capable of driving a commercial power source with high efficiency from the viewpoint of high efficiency.

そして、冷凍サイクルを始動する場合、圧縮機の吐出側と吸入側の差圧が大きいと始動が不可能となったり、定常運転時、つまり同期状態の運転時に過負荷が生じると埋込磁石同期電動機の回転子が大きく失速したりして、装置の信頼性が著しく損なわる恐れがあるので、冷凍サイクルの運転中に圧縮機の吐出圧力が設定圧力値以上になった場合、圧縮機の吐出側と吸入側をバイパスすることが知られ、例えば特許文献1に記載されている。   When starting the refrigeration cycle, if the pressure difference between the discharge side and the suction side of the compressor is large, it will be impossible to start, or if an overload occurs during steady operation, that is, during synchronized operation, If the compressor discharge pressure exceeds the set pressure value during the operation of the refrigeration cycle, the rotor of the motor may stall significantly and the reliability of the equipment may be significantly impaired. It is known to bypass the suction side and the suction side, and is described in Patent Document 1, for example.

また、圧縮機の負荷は一様でないため、過大な負荷を生じた場合、電動機の巻線に過大電流が流れ、それによって発生する磁界によって回転子に用いられる磁石が減磁するので、それを防ぐために圧縮機の電流値を検出し、設定電流が生じた場合、電源を遮断することとし、さらには温度が低いときの方が、高いときよりも遮断する電流値を小さくすることが知られ、例えば特許文献2に記載されている。   In addition, since the load on the compressor is not uniform, if an excessive load is generated, an excessive current flows in the winding of the motor, and the magnet used in the rotor is demagnetized by the magnetic field generated thereby. In order to prevent this, the current value of the compressor is detected, and when a set current is generated, the power supply is shut off. Further, it is known that the current value to be cut off is lower when the temperature is low than when it is high. For example, it is described in Patent Document 2.

特開2001−227778号公報JP 2001-227778 A 特開平7−67390号公報JP-A-7-67390

上記従来技術において、特許文献1に記載のものでは、圧縮機の吐出側と吸入側の差圧で始動を確実にしたり、定常運転中の失速を防止したりする点では良いが、電動機の同期、非同期(脱調)を直接的に検出するものでないので、信頼性が低下したり、脱調による減磁を引き起こす恐れがある。   In the above prior art, the one described in Patent Document 1 is good in that starting is ensured by the differential pressure between the discharge side and the suction side of the compressor and stalling during steady operation is prevented. Asynchronous (step-out) is not directly detected, there is a risk that reliability may be reduced or demagnetization may occur due to step-out.

また、特許文献2に記載のものでは、単に、電流の大きさによって過大となった場合、電流を遮断するだけなので、電流遮断に要する時間によっては減磁現象を避けられず、より信頼性を向上する必要があった。また、電流値だけでは、電動機の失速、コッキングによる振動、等による冷凍サイクルへの影響を防ぐことができず、冷凍サイクルの定常運転時、つまり同期状態の運転時に過負荷が生じ、埋込磁石同期電動機の回転子が大きく失速したり、電動機の巻線温度が上昇して最悪の場合、巻線の絶縁材料が劣化したり、巻線の絶縁破壊を生じたりして、装置の信頼性が著しく損なわることがあった。   Moreover, in the thing of patent document 2, when it becomes excessive by the magnitude | size of an electric current, since it only interrupts | blocks an electric current, depending on the time required for electric current interruption, a demagnetization phenomenon cannot be avoided, and reliability is improved. There was a need to improve. In addition, the current value alone cannot prevent the motor from being stalled, vibration due to cocking, etc., and the refrigeration cycle will not be affected. Overload will occur during steady operation of the refrigeration cycle, that is, synchronous operation. In the worst case, the rotor of the synchronous motor stalls greatly, the winding temperature of the motor rises, and the insulation material of the winding deteriorates or the insulation of the winding breaks down. It could be severely damaged.

本発明の目的は、上記従来技術の課題を解決し、より的確に負荷の大きさを判断し、脱調、減磁による冷凍サイクルへの不安定さを無くし、信頼性の高い埋込磁石同期電動機を用いた冷凍サイクル装置を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, more accurately determine the magnitude of the load, eliminate instability in the refrigeration cycle due to step-out and demagnetization, and provide highly reliable embedded magnet synchronization The object is to provide a refrigeration cycle apparatus using an electric motor.

上記目的を達成するため、本発明は、圧縮機、凝縮器、凝縮器用送風機、蒸発器、膨張弁を順次連結した冷凍サイクルを備えた冷凍サイクル装置において、前記圧縮機を駆動し、回転子の外周にかご型巻線が形成され、その内側に複数極に着磁された永久磁石が埋設された電動機と、前記電動機の運転電流を検出する運転電流検出手段とを備え、前記運転電流の歪を求め、前記電動機が同期電動機として作動中に前記歪の値が設定値以下になった場合、前記電動機への通電を遮断することを特徴とする。
ここで、前記運転電流の歪の値は、該運転電流に含まれる高調波電流成分に基づいて求めることもできる。
In order to achieve the above object, the present invention provides a refrigeration cycle apparatus having a refrigeration cycle in which a compressor, a condenser, a condenser blower, an evaporator, and an expansion valve are sequentially connected. outer peripheral cage winding is formed, an electric motor in which a permanent magnet is embedded which is magnetized in multipolar on the inside, and a driving current detecting means for detecting an operating current of the motor, the distortion of the driving current When the value of the distortion becomes a set value or less while the motor is operating as a synchronous motor , the power supply to the motor is cut off .
Here, the value of the distortion of the operating current can also be obtained based on the harmonic current component included in the operating current.

また、上記のものにおいて、前記永久磁石は2極に着磁されていることが望ましい。
さらに、上記のものにおいて、前記運転電流の歪値に応じて前記凝縮器用送風機の風量を制御することが望ましい。
Moreover, in the above, it is desirable that the permanent magnet is magnetized in two poles.
Furthermore, in those described above, it is desirable to control the air volume of the condenser blower in accordance with the distortion value of the operating current.

さらに、上記のものにおいて、前記運転電流の歪値に応じて前記膨張弁の開度を制御することが望ましい。
さらに、上記のものにおいて、前記圧縮機の表面温度を検出する温度センサを設け、前記表面温度が高くなった場合、前記設定値を小さくすることが望ましい。
Furthermore, in the above, it is desirable to control the opening degree of the expansion valve in accordance with the value of distortion of the operating current.
Furthermore, in the above, it is desirable to provide a temperature sensor for detecting the surface temperature of the compressor, and to reduce the set value when the surface temperature becomes high.

さらに、上記のものにおいて、前記永久磁石は2極に着磁され、前記圧縮機はスクロール圧縮機であることが望ましい。
さらに、上記のものにおいて、前記運転電流の歪値と前記圧縮機の温度とに関連して前記凝縮器用送風機の風量を制御することが望ましい。
Furthermore, in the above, it is preferable that the permanent magnet is magnetized in two poles and the compressor is a scroll compressor.
Furthermore, in those described above, it is desirable to control the air volume of the condenser blower in relation to the temperature of the compressor and strain values of the operating current.

さらに、上記のものにおいて、前記運転電流の歪値と前記圧縮機の温度とに関連して前記膨張弁の開度を制御することが望ましい。
さらに、上記のものにおいて、前記永久磁石は2極に着磁され、前記圧縮機はスクロール圧縮機であり、前記電動機はパワートランジスタで構成されるインバータ装置で駆動され、前記電動機への通電は前記パワートランジスタで行なわれ、前記電流の歪の値が設定値以下になった場合、前記インバータ装置のパワートランジスタを遮断することで行われることが望ましい。
Furthermore, in those described above, it is desirable to control the opening degree of the expansion valve in relation to the temperature of the strain value and the compressor of the driving current.
Further, in the above, the permanent magnet is magnetized in two poles, the compressor is a scroll compressor, the electric motor is driven by an inverter device composed of a power transistor, It is preferably performed by shutting off the power transistor of the inverter device when the current distortion value is equal to or lower than a set value .

また、本発明は、圧縮機、凝縮器、凝縮器用送風機、蒸発器、膨張弁を順次連結した冷凍サイクルを備えた冷凍サイクル装置において、前記圧縮機を駆動し、回転子の外周にかご型巻線が形成され、その内側に複数極に着磁された永久磁石が埋設された電動機と、前記電動機の運転電流を検出する運転電流検出手段と、を備え、前記運転電流の歪率と少なくとも前記凝縮器用送風機の風量及び前記膨張弁の開度のいずれかとを関連させて制御するものである。   Further, the present invention provides a refrigeration cycle apparatus having a refrigeration cycle in which a compressor, a condenser, a condenser blower, an evaporator, and an expansion valve are sequentially connected. An electric motor in which a permanent magnet magnetized with a plurality of poles is embedded, and an operating current detection means for detecting an operating current of the electric motor, and a distortion factor of the operating current and at least the Control is performed in association with either the air volume of the condenser blower or the opening of the expansion valve.

本発明によれば、電動機の運転電流の歪成分で負荷を判断するので、埋込磁石同期電動機を用いた圧縮機に対して、より的確に負荷の大きさを判断し、脱調、減磁による冷凍サイクルへの不安定さを無くし、信頼性の高いものとすることができる。   According to the present invention, since the load is determined by the distortion component of the operating current of the motor, the magnitude of the load is more accurately determined for the compressor using the embedded magnet synchronous motor, and the step-out, demagnetization is performed. It is possible to eliminate the instability of the refrigeration cycle due to the high reliability.

以下、図を参照して本発明の実施の形態を詳細に説明する。
図1は、冷凍サイクルを用いた装置、例えば空気調和機を示している。蒸気圧縮冷凍サイクルを用いる空気調和機の効率向上のためには、冷凍サイクルを構成する部品の中で最も消費電力が大きい冷媒圧縮機に用いる電動機の効率を向上することが効果的であり、効率の高い電動機としては、回転子鉄心内に永久磁石を埋設した同期電動機が知られている。同期電動機は、電動機の回転子に埋設された永久磁石と固定子より発生した回転磁場の引き合いを利用して回転することから、誘導電動機では発生する電動機の回転子に流れる2次電流が発生せず、これによるエネルギー損失がないことから効率が高くなる。しかし、冷媒圧縮機に用いる電動機として同期電動機を使用する場合、その回転子は、冷媒圧縮機の回転部品と一体化されているため慣性力が大きい。そのため、始動時において、回転子は固定子より発生する回転磁界の回転速度に追従できず、冷凍サイクルは始動できない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an apparatus using a refrigeration cycle, for example, an air conditioner. In order to improve the efficiency of air conditioners that use a vapor compression refrigeration cycle, it is effective to improve the efficiency of the motor used in the refrigerant compressor that consumes the largest amount of power among the components that make up the refrigeration cycle. As a high motor, a synchronous motor in which a permanent magnet is embedded in a rotor core is known. Since the synchronous motor rotates by using the magnetic field generated by the permanent magnet embedded in the rotor of the motor and the stator, the induction motor generates a secondary current that flows to the motor rotor. Therefore, the efficiency is increased because there is no energy loss. However, when a synchronous motor is used as an electric motor used for a refrigerant compressor, the rotor has a large inertial force because it is integrated with a rotating component of the refrigerant compressor. Therefore, at the time of starting, the rotor cannot follow the rotation speed of the rotating magnetic field generated from the stator, and the refrigeration cycle cannot be started.

そこで、埋込磁石同期電動機を用いた冷凍サイクルでは、その圧縮機に用いられる電動機の回転子鉄心が同期速度以下では、誘導電動機として作用するかご型巻線110を内蔵し、さらに回転子鉄心内に2極に着磁された永久磁石100を埋設している。   Therefore, in a refrigeration cycle using an embedded magnet synchronous motor, a squirrel-cage winding 110 that acts as an induction motor is incorporated when the rotor core of the motor used in the compressor is below the synchronous speed, and further inside the rotor core. A permanent magnet 100 magnetized in two poles is embedded.

図1に示す空気調和機は、圧縮機130、凝縮器140、凝縮器用送風機145、蒸発器150、膨張弁160を順次連結した冷凍サイクルを構成している。圧縮機130に使用する電動機は、回転子の外周近傍に周方向に沿ってかご型巻線(導体)110を形成し、かつ回転子に永久磁石100が埋設されることで、回転子の回転速度が同期速度になるまでは誘導電動機として作用し、回転子の回転速度が同期速度となると同期電動機として働く。そのため、インバータを用いなくても始動が可能であると共に、同期速度での運転時、つまり商用電源の電源周波数(50/60Hz)と極数で決まる回転数(3000r/min、3600r/min)での定常運転時において、電動機の回転子に2次電流が発生しないので効率を向上できる。   The air conditioner shown in FIG. 1 constitutes a refrigeration cycle in which a compressor 130, a condenser 140, a condenser blower 145, an evaporator 150, and an expansion valve 160 are sequentially connected. The electric motor used for the compressor 130 forms a squirrel-cage winding (conductor) 110 in the circumferential direction in the vicinity of the outer periphery of the rotor, and the permanent magnet 100 is embedded in the rotor, thereby rotating the rotor. It acts as an induction motor until the speed reaches the synchronous speed, and works as a synchronous motor when the rotational speed of the rotor reaches the synchronous speed. Therefore, it is possible to start without using an inverter, and at the time of operation at a synchronous speed, that is, at a rotational speed (3000 r / min, 3600 r / min) determined by the power frequency (50/60 Hz) of the commercial power source and the number of poles. During the steady operation, the secondary current is not generated in the rotor of the electric motor, so that the efficiency can be improved.

つまり、同期電動機は誘導電動機にあった固定子と回転子間の滑り(スリップ)が発生しないため、誘導電動機に比べ、回転子の回転速度の負荷変動が小さく、同じ負荷ならば圧縮機130の回転数が速くなるので、圧縮機130の冷媒圧縮機構部により圧縮される冷媒量も増加し、圧縮機130の冷媒吐出量が増加し、冷凍サイクルの通常の負荷範囲ではその能力を向上することができる。   In other words, since the synchronous motor does not cause slippage between the stator and the rotor that were in the induction motor, the load fluctuation in the rotational speed of the rotor is small compared to the induction motor. Since the rotational speed becomes faster, the amount of refrigerant compressed by the refrigerant compression mechanism of the compressor 130 also increases, the refrigerant discharge amount of the compressor 130 increases, and the capacity is improved in the normal load range of the refrigeration cycle. Can do.

特に、冷凍サイクルが過負荷となる運転時においても、同期状態で滑りが0となり、かご形巻線110に電流が流れないので、誘導電動機が過負荷では滑りが大きいことと比較して、能力が向上する効果は非常に大きくなる。さらに、圧縮機130をスクロール圧縮機とすれば圧縮トルクの変動が小さいことから、電動機に対する負荷変動が小さいのでより一層効率向上を図ることができる。   In particular, even during operation when the refrigeration cycle is overloaded, slip is zero in the synchronized state, and no current flows through the squirrel-cage winding 110. The effect of improving becomes very large. Furthermore, if the compressor 130 is a scroll compressor, the variation in the compression torque is small, and therefore the load variation on the motor is small, so that the efficiency can be further improved.

また、圧縮機130の運転電流を検出する運転電流検出手段180、圧縮機130の表面温度を検出する温度センサ190、波形歪み判定手段200が空気調和機170の制御装置171に搭載され、電動機は抵抗等で構成される運転電流検出手段180、電源開閉器205を介して電源に接続されている。   An operating current detecting means 180 for detecting the operating current of the compressor 130, a temperature sensor 190 for detecting the surface temperature of the compressor 130, and a waveform distortion determining means 200 are mounted on the control device 171 of the air conditioner 170, and the electric motor is It is connected to a power source via an operating current detecting means 180 composed of a resistor or the like and a power switch 205.

永久磁石100は圧縮機130のかご形巻線110に通常圧縮機が運転する際に流れる電流より大きな電流を流すことにより、磁界を生成することにより着磁される。また、一度着磁した後は、かご形巻線110に過大な電流が流れると、永久磁石100の磁力が喪失する減磁減少が発生する。このときの電流値は、着磁の電流も少ない値であり、また、永久磁石100の温度が高いと減磁にいたる電流値は小さくなる。つまり、永久磁石100とかご型巻線110からなる回転子120を内蔵した圧縮機130の電動機は、同期電動機として運転されるため、負荷が著しく大きくなった場合は、過大な電流が流れ、永久磁石100の減磁現象が発生する可能性があった。   The permanent magnet 100 is magnetized by generating a magnetic field by causing a current larger than the current that flows when the compressor is operated to the cage winding 110 of the compressor 130. Further, once magnetized, if an excessive current flows through the squirrel-cage winding 110, a demagnetization decrease in which the magnetic force of the permanent magnet 100 is lost occurs. The current value at this time is a value at which the magnetizing current is also small, and when the temperature of the permanent magnet 100 is high, the current value leading to demagnetization becomes small. That is, the motor of the compressor 130 including the rotor 120 composed of the permanent magnet 100 and the squirrel-cage winding 110 is operated as a synchronous motor. There was a possibility that a demagnetization phenomenon of the magnet 100 occurred.

永久磁石100とかご型巻線110からなる回転子120を内蔵した圧縮機130は、起動時はかご型巻線の誘導電動機として起動し、同期速度付近では永久磁石の回転子による同期電動機として駆動し、かご型巻線110の運転電流波形は誘導電動機としては正弦波であり、同期電動機として動作する場合は永久磁石100による電機子反作用が発生し、界磁主磁束に影響をあたえるため、正弦波に対し、歪を生じた形となる。   The compressor 130 including the rotor 120 composed of the permanent magnet 100 and the squirrel-cage winding 110 starts up as an induction motor with a squirrel-cage winding at the time of startup and is driven as a synchronous motor with a rotor of a permanent magnet near the synchronous speed. However, the operating current waveform of the squirrel-cage winding 110 is a sine wave as an induction motor, and when operated as a synchronous motor, an armature reaction occurs due to the permanent magnet 100 and affects the field main magnetic flux. The wave is distorted.

したがって、主巻線に流れる運転電流の大部分が誘導電動機の界磁電流として使用される場合は、運転電流波形の歪が少なく、同期電動機の界磁電流として使用される場合は、歪が大きくなる。さらに、圧縮機130は、定格負荷以下では運転電流に歪を生じていて、負荷が増加しトルクが不足するにつれて、かご型巻線励磁電流を供給するために電流が増え、歪が小さくなる。   Therefore, when most of the operating current flowing through the main winding is used as the field current of the induction motor, the distortion of the operating current waveform is small, and when used as the field current of the synchronous motor, the distortion is large. Become. Further, the compressor 130 has a distortion in the operating current below the rated load, and as the load increases and the torque becomes insufficient, the current increases to supply the squirrel-cage winding excitation current, and the distortion decreases.

図3上図は、定格負荷での運転電流波形(横軸:時間、縦軸:電流)であり、下図は、その周波数分析図(横軸:次数、縦軸:1次を100としたときの比率)を示している。同様に、図4上図が過負荷での運転電流波形、下図はその周波数分析図である。図に示すように、圧縮機の運転電流は、定格出力以下では4次から10次の高調波電流成分が1次成分に比べ多く、歪率では10.7%であり、負荷を増大した場合は、10次の高調波電流成分が少なくなり、全体の歪率は7.7%となる。   The upper diagram of FIG. 3 shows the operating current waveform at the rated load (horizontal axis: time, vertical axis: current), and the lower diagram shows the frequency analysis diagram (horizontal axis: order, vertical axis: primary: 100) Ratio). Similarly, the upper diagram of FIG. 4 is an operating current waveform at an overload, and the lower diagram is a frequency analysis diagram thereof. As shown in the figure, when the operating current of the compressor is below the rated output, the 4th to 10th harmonic current components are larger than the primary components, the distortion is 10.7%, and the load is increased. The 10th harmonic current component is reduced, and the overall distortion is 7.7%.

また、図5、6は、同一負荷条件で電圧を変えたもので、定格電圧200Vに対して図5は180V、図6は220Vとしたときの運転電流波形(上図)、周波数分析図(下図)である。そして、定格電圧200Vでは歪率は6%であるが、220Vでは6.9%となり、180Vでは5%となる。これは、低電圧時は界磁電流の減少により永久磁石100による同期電動機では出力不足となり電流が増加し、かご型巻線110に励磁電流を流し誘導電動機として動作するためである。   In addition, FIGS. 5 and 6 are obtained by changing the voltage under the same load condition. FIG. 5 shows an operating current waveform when the rated voltage is 200 V, FIG. 5 is 180 V, and FIG. (Figure below). The distortion is 6% at a rated voltage of 200V, but is 6.9% at 220V and 5% at 180V. This is because when the voltage is low, the output of the synchronous motor using the permanent magnet 100 becomes insufficient due to a decrease in the field current, and the current increases, and an exciting current is passed through the cage winding 110 to operate as an induction motor.

そこで運転電流検出手段180で検出した電流をAD変換器でデジタルデータに変換し、演算を行う波形歪み判定手段200で歪率が設定値、例えば6〜11%、望ましくは7%以下、となった場合、あるいは10次高調波の含有率が4〜7%以下、望ましくは5%以下となった場合、圧縮機用電源開閉器205を遮断する。そして、トルク不足から脱調を生じ、過電流となり永久磁石100が減磁すること、非同期状態となり冷凍サイクルが不安定になること、を防止する。   Therefore, the current detected by the operating current detection means 180 is converted into digital data by an AD converter, and the distortion rate is set to a set value, for example, 6 to 11%, preferably 7% or less, by the waveform distortion determination means 200 that performs the calculation. Or when the content of the 10th harmonic is 4-7% or less, preferably 5% or less, the compressor power switch 205 is shut off. Then, step-out occurs due to insufficient torque, preventing overcurrent and demagnetizing the permanent magnet 100, and preventing the refrigeration cycle from becoming unsynchronized and becoming unstable.

波形歪み判定手段200で歪率を演算するとしたが、運転電流の歪に関連した値を求めれば良く、この値が設定値以下になった場合、電動機への通電を遮断すれば良い。さらに、歪率又は歪成分、歪に関連した値を検出する方法として、運転電流の変化の有無に応じたパルス信号を生成し、例えば電流をAD変換するときに、変換された値をAD変換する毎に比較して、変化が一定値以上あるときにはハイレベルの信号を出力し、そでないときにはローレベルの信号を出力する。そして、このパルス信号のデューテイ比の大きさを歪率又は歪成分、歪に関連した値とすれば良い。さらに、パルス信号を計数したり、積分して平均値を算出したり、出力されたパルス信号を抵抗とコンデンサから構成される積分回路を通して、その電圧レベルで運転電流の歪に関連した値とすれば演算がより簡単となる。   Although the distortion rate is calculated by the waveform distortion determination means 200, a value related to the distortion of the operating current may be obtained, and if this value becomes equal to or less than the set value, the energization to the motor may be cut off. Furthermore, as a method of detecting the distortion rate or distortion component and the value related to the distortion, a pulse signal corresponding to the presence or absence of a change in the operating current is generated. For example, when the current is AD converted, the converted value is AD converted Whenever the change is greater than a certain value, a high level signal is output, and otherwise a low level signal is output. The magnitude of the duty ratio of the pulse signal may be a distortion rate, a distortion component, or a value related to distortion. In addition, the pulse signal is counted, integrated to calculate the average value, and the output pulse signal is passed through an integration circuit consisting of a resistor and a capacitor to obtain a value related to the operating current distortion at that voltage level. This makes the calculation easier.

また、各高調波次数を算出するには、検出した電流波形のフーリエ解析を行い高調波次数に展開する方法が一般的であるが、これには高速の演算素子が必要であり冷凍サイクルを内蔵する機器の組込み素子としては不適である。   In order to calculate each harmonic order, it is common to perform a Fourier analysis of the detected current waveform and expand it to the harmonic order. However, this requires a high-speed arithmetic element and a built-in refrigeration cycle. It is not suitable as a built-in element of the equipment.

そこで、図3において、電流の歪を測定する方法としては、次の方法でも良い。つまり、電流波形の歪率あるいは構成する周波数成分を検出するのでなく、8〜11次のように必要な周波数成分についてのみ着目する。8〜11次の波形は全体の電流波形の歪として現れやすいため、波形の形状から推定をする。例えば、運転電流検出手段で検出した電動機の運転電流波形の周波数とピーク電流から、理想的な正弦波形を算出する。その理想的な波形と運転電流との差分を算出し、その差分が正と負の双方の値を1周期以内にとった場合は、歪が発生したと判定する。   Therefore, in FIG. 3, the following method may be used as a method of measuring the distortion of the current. In other words, instead of detecting the distortion factor of the current waveform or the frequency component that constitutes it, attention is paid only to the necessary frequency component such as the 8th to 11th orders. Since the 8th to 11th order waveforms are likely to appear as distortion of the entire current waveform, the waveform is estimated from the waveform shape. For example, an ideal sine waveform is calculated from the frequency and peak current of the motor operating current waveform detected by the operating current detecting means. The difference between the ideal waveform and the operating current is calculated, and if the difference takes both positive and negative values within one cycle, it is determined that distortion has occurred.

また、電動機の運転電流を検出する運転電流検出手段の出力を、運転電流の基本周波数の11次以上を減衰させるローパスフィルタと、7次以下を減衰させるハイパスフィルタとを通過させ、通過したあとの運転電流に占める8〜11次の電流の含有率が、全体の実効値電流に対して、10%以下となった場合に、歪が発生したと判定すれば良い。   The output of the operating current detecting means for detecting the operating current of the electric motor is passed through a low-pass filter that attenuates the 11th order and higher of the fundamental frequency of the operating current and a high-pass filter that attenuates the 7th order and lower. What is necessary is just to determine with distortion, when the content rate of the 8th-11th order electric current which occupies for an operating current becomes 10% or less with respect to the whole effective value electric current.

また、圧縮機130負荷を決定するのは冷凍サイクル負荷であり、負荷が増大すると運転電流波形の歪が大きくなるので、波形歪み判定手段200で歪率を演算し、歪率に関連して、例えば歪率が所定値となった場合は、負荷軽減手段210により、凝縮器用送風機145の風量を増大したり、膨張弁160の開度を大きくしたりして圧縮機130の吐出圧力を下げて負荷を軽減する。これにより、圧縮機130の異常停止を防ぐと共に、減磁現象を防止することができる。   Further, it is the refrigeration cycle load that determines the load of the compressor 130, and since the distortion of the operating current waveform increases as the load increases, the distortion factor is calculated by the waveform distortion determination means 200, For example, when the distortion rate reaches a predetermined value, the load reducing means 210 decreases the discharge pressure of the compressor 130 by increasing the air volume of the condenser blower 145 or increasing the opening of the expansion valve 160. Reduce the load. Thereby, the abnormal stop of the compressor 130 can be prevented and the demagnetization phenomenon can be prevented.

さらに、永久磁石を減磁する巻線電流の値は図2に示すように、永久磁石の温度が高い方が小さくなる。そこで、圧縮機130の表面温度を検出する温度センサ190を設け、この信号を波形歪み判定手段200に伝達し、表面温度に関連して、例えば表面温度が所定値まで高くなった場合、圧縮機用電源開閉器205を遮断する運転電流の判定値を小さくする。これによって、温度に関する圧縮機130の信頼性をより向上することができる。   Further, as shown in FIG. 2, the value of the winding current for demagnetizing the permanent magnet decreases as the temperature of the permanent magnet increases. Therefore, a temperature sensor 190 for detecting the surface temperature of the compressor 130 is provided, and this signal is transmitted to the waveform distortion determination means 200. When the surface temperature increases to a predetermined value in relation to the surface temperature, for example, the compressor The judgment value of the operating current for shutting off the power switch 205 is reduced. Thereby, the reliability of the compressor 130 regarding temperature can be improved more.

さらに、圧縮機130の電動機をインバータ装置で駆動している場合、電流が過大となった場合の電流の遮断は、インバータ装置のパワートランジスタで行うため、電流が上昇を始めてから数μsecで遮断することが可能であり、本来は電流が増加してからでも減磁に至る前に電流を遮断することができる。しかし、その場合であっても運転電流波形の歪を演算し、歪率に関連して、例えば歪率が所定値となった場合、インバータ装置のパワートランジスタで電流の遮断を行うことを併用すればより信頼性の高いものとすることができる。また、歪率に関連して凝縮器用送風機145の風量を制御したり、膨張弁160の開度を制御すれば、より信頼性を向上できる。   Furthermore, when the motor of the compressor 130 is driven by an inverter device, the current is cut off when the current becomes excessive, and is cut off by a few μsec after the current starts to rise because the power transistor of the inverter device is used. It is possible to cut off the current before the demagnetization even after the current increases. However, even in that case, the distortion of the operating current waveform is calculated, and in conjunction with the distortion rate, for example, when the distortion rate becomes a predetermined value, it is also used to cut off the current with the power transistor of the inverter device. More reliable. Further, if the air volume of the condenser blower 145 is controlled in relation to the distortion rate or the opening degree of the expansion valve 160 is controlled, the reliability can be further improved.

さらに、圧縮機用電源開閉器200を使用している場合は、開閉するのに数msecの時間がかかるので、このままでは減磁現象はさけられず、減磁現象に対して事前に負荷の大きさを運転電流波形の歪で判定することが有効である。   Further, when the compressor power switch 200 is used, since it takes several milliseconds to open and close, the demagnetization phenomenon cannot be avoided as it is, and the load is increased in advance against the demagnetization phenomenon. It is effective to determine the length by the distortion of the operating current waveform.

さらに、圧縮機130をスクロール圧縮機とすれば圧縮トルクの変動が小さいことから、電動機に対する負荷変動が小さいので、歪率に関連して、例えば歪率が所定値となった場合、インバータ装置のパワートランジスタで電流の遮断を行ったり、凝縮器用送風機145の風量を制御したり、膨張弁160の開度を制御すれば、より信頼性の高いものとすることができる。   Furthermore, if the compressor 130 is a scroll compressor, the fluctuation of the compression torque is small, so that the load fluctuation on the motor is small. Therefore, when the distortion becomes a predetermined value, for example, in relation to the distortion, If the current is interrupted by the power transistor, the air volume of the condenser blower 145 is controlled, or the opening degree of the expansion valve 160 is controlled, the reliability can be improved.

本発明の一実施の形態を示すブロック図。The block diagram which shows one embodiment of this invention. 温度と減磁電流の関係を説明するグラフ。The graph explaining the relationship between temperature and a demagnetizing current. 一実施の形態による定格負荷での運転電流波形とその周波数分析結果を示すグラフ。The graph which shows the operating current waveform and rated frequency analysis result in the rated load by one Embodiment. 一実施の形態による過負荷での運転電流波形とその周波数分析結果を示すグラフ。The graph which shows the operating current waveform in the overload by one embodiment, and its frequency analysis result. 定格電圧(200V)に対して低電圧(180V)時の運転電流波形と周波数分析図を示すグラフ。The graph which shows the operating current waveform and frequency analysis figure at the time of a low voltage (180V) with respect to a rated voltage (200V). 定格電圧に対して高電圧(220V)時の運転電流波形と周波数分析図を示すグラフ。The graph which shows the operating current waveform and frequency analysis figure at the time of a high voltage (220V) with respect to a rated voltage.

符号の説明Explanation of symbols

100…永久磁石、110…かご型巻線、120…回転子、130…圧縮機、140…凝縮器、145…凝縮器用送風機、150…蒸発器、160…膨張弁、170…空気調和機、180…運転電流検出手段、190…温度センサ、200…波形歪み判定手段、210…圧縮機用電源開閉器。
DESCRIPTION OF SYMBOLS 100 ... Permanent magnet, 110 ... Cage type | mold winding, 120 ... Rotor, 130 ... Compressor, 140 ... Condenser, 145 ... Condenser fan, 150 ... Evaporator, 160 ... Expansion valve, 170 ... Air conditioner, 180 ... Operating current detection means, 190 ... Temperature sensor, 200 ... Waveform distortion determination means, 210 ... Power supply switch for compressor.

Claims (10)

圧縮機、凝縮器、凝縮器用送風機、蒸発器、膨張弁を順次連結した冷凍サイクルを備えた冷凍サイクル装置において、
前記圧縮機を駆動し、回転子の外周にかご型巻線が形成され、その内側に複数極に着磁された永久磁石が埋設された電動機と、
前記電動機の運転電流を検出する運転電流検出手段とを備え、
前記運転電流の歪を求め、前記電動機が同期電動機として作動中に前記歪の値が設定値以下になった場合、前記電動機への通電を遮断することを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus having a refrigeration cycle in which a compressor, a condenser, a condenser fan, an evaporator, and an expansion valve are sequentially connected,
An electric motor that drives the compressor, a squirrel-cage winding is formed on the outer periphery of the rotor, and permanent magnets magnetized on a plurality of poles are embedded inside the rotor;
A driving current detecting means for detecting an operating current of the motor,
The calculated distortion of driving current, when the value of the strain during operation the motor is a synchronous motor falls below a set value, the refrigeration cycle apparatus characterized by interrupting the power supply to the motor.
請求項1に記載のものにおいて、前記運転電流の歪の値は、該運転電流に含まれる高調波電流成分に基づく値であることを特徴とする冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the value of distortion of the operating current is a value based on a harmonic current component included in the operating current . 請求項1に記載のものにおいて、前記運転電流の歪値に応じて前記凝縮器用送風機の風量を制御することを特徴とする冷凍サイクル装置。 In those described in claim 1, the refrigeration cycle apparatus characterized by controlling the air volume of the condenser blower in accordance with the distortion value of the operating current. 請求項1に記載のものにおいて、前記運転電流の歪値に応じて前記膨張弁の開度を制御することを特徴とする冷凍サイクル装置。 In those described in claim 1, the refrigeration cycle apparatus characterized by controlling the opening of the expansion valve according to the distortion value of the operating current. 請求項1に記載のものにおいて、前記圧縮機の表面温度を検出する温度センサを設け、前記表面温度が高くなった場合、前記設定値を小さくすることを特徴とする冷凍サイクル装置。   2. The refrigeration cycle apparatus according to claim 1, wherein a temperature sensor for detecting a surface temperature of the compressor is provided, and the set value is decreased when the surface temperature becomes high. 請求項1に記載のものにおいて、前記永久磁石は2極に着磁され、前記圧縮機はスクロール圧縮機であることを特徴とする冷凍サイクル装置。   2. The refrigeration cycle apparatus according to claim 1, wherein the permanent magnet is magnetized in two poles, and the compressor is a scroll compressor. 請求項1に記載のものにおいて、前記運転電流の歪値と前記圧縮機の温度とに関連して前記凝縮器用送風機の風量または前記膨張弁の開度を制御することを特徴とする冷凍サイクル装置。 In those described in claim 1, in relation to the temperature of the strain value and the compressor of the driving current, and controlling the opening degree of the air volume or the expansion valve of the condenser blower refrigeration Cycle equipment. 請求項1に記載のものにおいて、前記永久磁石は2極に着磁され、前記圧縮機はスクロール圧縮機であり、前記電動機はパワートランジスタで構成されるインバータ装置で駆動され、前記電動機への通電は前記パワートランジスタで行なわれ、前記電流の歪の値が設定値以下になった場合、前記インバータ装置のパワートランジスタを遮断することを特徴とする冷凍サイクル装置。 The said permanent magnet is magnetized to 2 poles, The said compressor is a scroll compressor, The said motor is driven with the inverter apparatus comprised by a power transistor, The electricity supply to the said motor is given Is performed by the power transistor, and the power transistor of the inverter device is cut off when the value of the distortion of the current becomes a set value or less . 圧縮機、凝縮器、凝縮器用送風機、蒸発器、膨張弁を順次連結した冷凍サイクルを備えた冷凍サイクル装置において、
前記圧縮機を駆動し、回転子の外周にかご型巻線が形成され、その内側に複数極に着磁された永久磁石が埋設された電動機と、
前記電動機の運転電流を検出する運転電流検出手段とを備え、
前記運転電流の変化の有無に応じたパルス信号を生成し、このパルス信号に基づいて前記運転電流の歪に関連した値を求め、前記電動機が同期電動機として作動中に前記歪に関連した値が設定値以下になった場合、前記電動機への通電を遮断することを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus having a refrigeration cycle in which a compressor, a condenser, a condenser fan, an evaporator, and an expansion valve are sequentially connected,
An electric motor that drives the compressor, a squirrel-cage winding is formed on the outer periphery of the rotor, and permanent magnets magnetized on a plurality of poles are embedded inside the rotor;
An operating current detecting means for detecting an operating current of the electric motor,
A pulse signal corresponding to the presence or absence of a change in the operating current is generated, a value related to the distortion of the operating current is obtained based on the pulse signal, and a value related to the distortion is obtained while the motor is operating as a synchronous motor. A refrigeration cycle apparatus that cuts off the power supply to the electric motor when it becomes a set value or less .
圧縮機、凝縮器、凝縮器用送風機、蒸発器、膨張弁を順次連結した冷凍サイクルを備えた冷凍サイクル装置において、
前記圧縮機を駆動し、回転子の外周にかご型巻線が形成され、その内側に複数極に着磁された永久磁石が埋設された電動機と、
前記電動機の運転電流を検出する運転電流検出手段とを備え、
前記運転電流の歪率と、少なくとも前記凝縮器用送風機の風量及び前記膨張弁の開度のいずれかとを関連させて制御することを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus having a refrigeration cycle in which a compressor, a condenser, a condenser fan, an evaporator, and an expansion valve are sequentially connected,
An electric motor that drives the compressor, a squirrel-cage winding is formed on the outer periphery of the rotor, and permanent magnets magnetized on a plurality of poles are embedded inside the rotor;
A driving current detecting means for detecting an operating current of the motor,
A refrigeration cycle apparatus that controls the distortion of the operating current in association with at least one of the air volume of the condenser blower and the opening of the expansion valve.
JP2005174478A 2005-06-15 2005-06-15 Refrigeration cycle equipment Expired - Fee Related JP4069328B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005174478A JP4069328B2 (en) 2005-06-15 2005-06-15 Refrigeration cycle equipment
CN2006100842310A CN1880888B (en) 2005-06-15 2006-05-29 Refrigerating circulation device
CN 201010227684 CN101893359B (en) 2005-06-15 2006-05-29 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174478A JP4069328B2 (en) 2005-06-15 2005-06-15 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2006352982A JP2006352982A (en) 2006-12-28
JP4069328B2 true JP4069328B2 (en) 2008-04-02

Family

ID=37519175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174478A Expired - Fee Related JP4069328B2 (en) 2005-06-15 2005-06-15 Refrigeration cycle equipment

Country Status (2)

Country Link
JP (1) JP4069328B2 (en)
CN (2) CN101893359B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971515A (en) * 2018-04-25 2020-11-20 三菱电机株式会社 Refrigeration cycle device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630361B (en) * 2015-02-13 2018-07-21 旺矽科技股份有限公司 Adaptive temperature control system for cooling working fluid
WO2017208429A1 (en) * 2016-06-03 2017-12-07 株式会社日立産機システム Air compressor operation method
JP6729650B2 (en) * 2018-09-14 2020-07-22 ダイキン工業株式会社 Inverter control method, AC load power supply system, refrigeration circuit
CN111412682A (en) * 2020-03-31 2020-07-14 南京天加环境科技有限公司 High-temperature heating control method for air conditioner
CN112594884B (en) * 2020-12-10 2022-02-18 珠海格力电器股份有限公司 Air conditioning unit and condenser fan control method and device thereof and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290481B2 (en) * 1992-12-03 2002-06-10 東芝キヤリア株式会社 Refrigeration cycle control device
JP3599846B2 (en) * 1995-08-16 2004-12-08 三洋電機株式会社 Air conditioner power supply
JPH1114124A (en) * 1997-06-20 1999-01-22 Sharp Corp Air conditioner
JP3629587B2 (en) * 2000-02-14 2005-03-16 株式会社日立製作所 Air conditioner, outdoor unit and refrigeration system
JP4196804B2 (en) * 2003-10-17 2008-12-17 日立アプライアンス株式会社 Inverter air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971515A (en) * 2018-04-25 2020-11-20 三菱电机株式会社 Refrigeration cycle device
CN111971515B (en) * 2018-04-25 2022-03-01 三菱电机株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
CN1880888A (en) 2006-12-20
CN1880888B (en) 2010-08-25
JP2006352982A (en) 2006-12-28
CN101893359B (en) 2013-05-29
CN101893359A (en) 2010-11-24

Similar Documents

Publication Publication Date Title
CN109863691B (en) Air conditioner and control method for air conditioner
CN109863686B (en) Driving device, air conditioner, and method for driving motor
JP4069328B2 (en) Refrigeration cycle equipment
JP3555549B2 (en) High pressure dome type compressor
JP3837986B2 (en) Permanent magnet type motor, control method for permanent magnet type motor, control device for permanent magnet type motor, compressor, refrigeration / air conditioner.
KR101550751B1 (en) Motor control device, motor drive device using the same, compressor, refrigeration device, air conditioner, and motor control method
CN109863688B (en) Drive device, air conditioner, and compressor control method
JP2006223097A (en) Permanent magnet motor, control method for permanent magnet motor, control device for permanent magnet motor, compressor, and refrigeration/air-conditioning device
CN110892634A (en) Driving device, air conditioner and driving method
CN110651158B (en) Air conditioner and operation control method for air conditioner
JP2003274694A (en) Controller and refrigeration air conditioner
CN110892636B (en) Driving device, compressor, air conditioner, and method for driving permanent magnet motor
JP2015171203A (en) compressor
JP5325922B2 (en) Air conditioner and inverter device used for air conditioner
JPH11103585A (en) Inverter protector
JP4436651B2 (en) Refrigeration cycle equipment
JP4134899B2 (en) Refrigeration air conditioner
JP2005207362A (en) Driving device for electric compressor
JP3454691B2 (en) DC brushless motor drive circuit
JP2011072091A (en) Driving device for permanent-magnet motors, hermetic-type compressor, and refrigeration cycle device
KR100848157B1 (en) Controlling method of bldc motor and air conditioner useing the same of
WO2021009862A1 (en) Stator, motor, compressor, and air conditioner
KR20080075432A (en) Air conditioner and control method therof
JP3637368B2 (en) Refrigeration equipment
KR100804958B1 (en) Method for controlling motor of compressor for a refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees