JP4069225B2 - Building structural design support method - Google Patents

Building structural design support method Download PDF

Info

Publication number
JP4069225B2
JP4069225B2 JP24659498A JP24659498A JP4069225B2 JP 4069225 B2 JP4069225 B2 JP 4069225B2 JP 24659498 A JP24659498 A JP 24659498A JP 24659498 A JP24659498 A JP 24659498A JP 4069225 B2 JP4069225 B2 JP 4069225B2
Authority
JP
Japan
Prior art keywords
building
load
floor
computer
bearing wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24659498A
Other languages
Japanese (ja)
Other versions
JP2000073442A (en
Inventor
力 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP24659498A priority Critical patent/JP4069225B2/en
Publication of JP2000073442A publication Critical patent/JP2000073442A/en
Application granted granted Critical
Publication of JP4069225B2 publication Critical patent/JP4069225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、コンピュータを利用して建物の構造設計を支援する方法に関し、特に、建物の外壁及び間仕切り壁を含んで耐力壁を適正に配置し得るようにした建物の構造設計支援方法に関するものである。
【0002】
【従来の技術】
一般的な建物の構造を設計する段階では、耐力壁を建物内部の任意の位置(外壁線に限定されることなく、内壁部位を含む任意の位置)に配置した上で強度の判定を行うことが行われている。
【0003】
また建物の構造設計を行う場合、建物に作用する地震や風等の水平力を想定すると共に屋根や壁或いは床等の構造要素の重量や重心点を計算し、この計算結果に基づいて各方向の壁に耐力壁を適数配置することが行われている。この計算は煩雑であり、コンピュータを利用して部分的な演算を実行し得るものの、耐力壁の配置等は設計者が適宜割り付けている。
【0004】
最近では、コンピュータを用いて耐力壁の割り付けを含めた構造設計の支援を行うことが提案されている。例えば、特開平9-302765号公報に開示された技術は、コンピュータの画面上で住宅の外壁ラインと屋根等の仕様に関するデータを入力することにより、コンピュータに横,縦方向の耐力壁の目安数と重心の位置を算出させてこの結果を画面上に表示させ、この表示を参照しながら外壁ラインに沿って耐力壁を入力した後、入力した耐力壁によって必要強度を付与できるか否かを判定させて結果を画面に表示させ、判定により必要強度を付与できないと判明したとき、耐力壁の配置の修正を行って再度強度判定を行うものである。この技術では、目的の住宅に於ける外壁に耐力壁を配置して強度の判定を行うことが出来るため、構造計画の支援方法として有利である。
【0005】
【発明が解決しようとする課題】
しかし上記技術では、耐力壁の入力位置(配置位置)が住宅の外壁に限定されている。このため、必然的に耐力壁を外壁に集中配置せざるを得ず、外壁に設ける開口部の位置や大きさに制約が生じる場合がある。また住宅全体としての耐力壁の不足や配置の偏りが生じて構造計画上の必要強度が得られず、目的の平面計画を断念せざるを得ない場合も発生し得る。
【0006】
本発明の目的は、コンピュータを利用して建物の構造設計を支援するに際し、建物の内部に構成される間仕切り壁も含めて耐力壁を配置することで、建物に設ける開口部の位置や大きさの自由度、及び平面形状の自由度を向上させることが出来る建物の構造設計支援方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明に係る建物の構造設計支援方法は、コンピュータの表示画面上に耐力壁の配置を表示するようにした建物の構造設計支援方法に於いて、前記コンピュータの記憶部に記憶した建物の構造計算に必要なデータである建物の仕様、建物形状、及び屋根形状の各データをコンピュータで入力し、前記入力データを使用して、建物の階毎の垂直荷重をコンピュータで算出し、前記建物の階毎の垂直荷重と予め記憶部に記憶されている風又は地震に対応した係数によって、風又は地震により建物に作用する階毎及び方向毎の水平力をコンピュータで算出し、建物の階毎及び方向毎に作用する水平力と、予め記憶されている標準的な耐力壁の許容荷重とに基づいて、建物の階毎及び方向毎に必要な耐力壁数をコンピュータに計算させて、該建物の階毎及び方向毎に必要な耐力壁数をコンピュータで表示させ、次に建物外壁部及び建物内部に複数の耐力壁線を建物の階毎及び方向毎にコンピュータで入力して、前記建物の階毎及び方向毎の耐力壁線をコンピュータで表示させ、更に、各耐力壁線の負担面積及び上階の耐力壁線との位置関係と床に作用する剪断力に基づいて、建物の階毎及び方向毎の各耐力壁線に配分すべき必要な耐力壁数をコンピュータで算出させて、前記各耐力壁線に配分すべき必要な耐力壁数が割り振られてコンピュータに表示させ、前記各耐力壁線に必要とする耐力壁の配置をコンピュータに入力して、該耐力壁の配置と、建物の部材の生成、モデル化、荷重生成に基づいて応力の解析、部材の断面検定である構造計算をコンピュータの演算過程で一貫処理させ、建物が必要とする強度である個々の耐力壁の許容荷重と該耐力壁に作用する水平力との関係を過度の水平力が作用する場合又は極端に少ない場合に否と判定する合否判定をコンピュータで行わせてその結果を表示させ、判定が否である場合は耐力壁を追加して又は移動させるべくコンピュータで再入力を行うようにしたことを特徴とするものである。
【0008】
上記構造設計支援方法では、建物の構造を設計するに際し、コンピュータを利用して予め設定された手順に従って建物の構造設計に必要なデータを入力して所定の演算を実行させることで、構造計画の検討時間の短縮化をはかることが出来、且つ構造計算に関する知識がなくとも計画を検討することが出来る。
【0009】
即ち、コンピュータに建物の構造計算を実行するのに必要なデータを入力して建物の階毎及び方向毎に必要な耐力壁数を計算させて表示し、建物の外壁部及び内部の間仕切り壁に対応させて複数の耐力壁線を設定して表示させ、各耐力壁線毎に必要な耐力壁の配置を入力し、この配置に基づく強度を計算して合否の判定を行ってその結果を表示させ、判定結果が否である場合には、耐力壁の配置を再入力して再度判定を行わせることで、構造設計を支援することが出来る。
【0010】
このとき、耐力壁を配置する部位が各方向毎に、外壁部と内部との複数の耐力壁線を設定し、この設定された耐力壁線に割り振られるため、耐力壁が外壁にのみ配置されることがなく、外壁に形成する開口部の位置や大きさ、平面形状等の設計に大きな自由度を付与することが出来る。
【0011】
【発明の実施の形態】
以下、上記建物の構造設計支援方法の好ましい実施形態について図を用いて説明する。図1は本実施例に係る建物の構造設計を支援する方法の手順を説明するフローチャート、図2は1階の平面図を示すと共に外壁線,躯体輪郭線,床面外周線を示す図、図3は2階の平面図を示すと共に外壁線,躯体輪郭線,床面外周線を示す図、図4は屋根伏図、図5は1階の各方向毎に必要な耐力壁数の目安を示すと共に耐力壁線を指定した状態を示す図、図6は1階の各耐力壁線に耐力壁を割り付けた状態を示す図、図7は1階の各耐力壁線に割り付けた耐力壁の位置と負担剪断力との関係を示す図、図8は目的の建物の1階及び2階のレイアウトを示す図である。
【0012】
図1に示すフローチャートに従って本実施例に係る建物の構造設計支援方法を説明し、合わせて各ステップに対応して外壁或いは間仕切り壁に対して耐力壁を割り付けた建物の構成について図2〜図7により説明する。
【0013】
本実施例の建物の構造設計支援方法の説明に先立って、図8により建物の例を説明する。図に於いて、目的の建物は1階Aと2階Bとからなる2階建て住宅として構成されている。各階A,Bには、建物の外部を構成する外壁1、及び建物の内部に設けた間仕切り壁2が構成されており、これらの壁1,2によって建物内部の間取りが形成されている。また1階Aには床面を構成する玄関ポーチ3が構成され、2階Bには同様に床面を構成するベランダ4が構成されている。
【0014】
建物の構造を設計する場合、該建物の重量が大きな影響を与える。このため、構造設計を実行する際には、先ず建物の重量を算出することが必要である。そして算出された建物の重量(垂直荷重)に応じて地震時に作用する水平力が算出される。
【0015】
建物に作用する水平力に対抗するための耐力壁5(図7参照)は、予め設定された構造を有しており、建物に設定されたモジュール寸法(例えば915mm )に応じて、幅寸法がモジュールの0.5 倍,1.0 倍,1.5 倍,2倍等、複数設定されている。そして予め幅寸法に応じて許容し得る水平荷重が設定されており、構造を設計する段階で選択的に採用される。
【0016】
コンピュータには上記複数の耐力壁の全ての許容荷重のデータ及び他の構造設計に必要なデータを記憶させ、構造設計に際し、作用する水平力に対し最適な耐力壁を選択するように構成することが可能である。また予め複数の耐力壁の中から標準となる耐力壁5を設定し、この耐力壁5の許容荷重のデータ等をコンピュータに記憶させ、構造設計に際し、作用する水平力に対して必要な耐力壁を前記耐力壁5の数に換算して表示するように構成することも可能である。
【0017】
本実施例では、標準的な耐力壁5を設定し、この耐力壁5の水平力に対する許容荷重や他の構造設計に必要なデータを設計支援コンピュータの記憶部に記憶させており、演算過程では、必要な耐力壁を前記標準的な耐力壁5の数として表示している。このため、表示された目安となる耐力壁の数は必ずしも整数ではなく、小数点を含む数値となる。
【0018】
建物の構造設計を実行する場合、前述したように先ず建物の重量を算出する。このため、支援システムをスタートさせると、ステップS1では、建物の重量を計算する上で必要となる、床の仕様(例えば目的の建物が建住宅である場合の一般床か集合住宅である場合の重量床か、更に床を構成する材料や厚さ等),屋根の仕様(例えば屋根材が瓦か石綿セメント板か、等),耐火被覆の有無、及び他の条件を入力する。
【0019】
次いで、ステップS2では、建物の形状を入力する。即ち、図2に示す1階Aの外壁1(外壁線1),躯体の輪郭線6,玄関ポーチ3を含む床面外周線7を入力し、同様に図3に示す2階Bの外壁線1,躯体の輪郭線6,ベランダ4を含む床面外周線7を入力する。更に、図4に示す屋根Cの形状を入力する。
【0020】
上記の如くして建物の仕様及び建物の形状を入力することにより、各階毎の荷重及び単位面積当たりの荷重を算出することが可能である。そして算出された各階毎の荷重と、予め記憶されている風或いは地震に対応した係数とによって、風或いは地震時に各階に作用する水平力を外壁線1の各方向(一般的にX−Y直交座標系に於ける直交二方向)毎に算出することが可能である。上記の如くして算出された垂直力及び各方向に対応した水平力はコンピュータの記憶部に記憶される。
【0021】
次に、ステップS3では、上記の如くして算出された各階毎、及び各方向毎に作用する水平力と、予め記憶されている標準的な耐力壁5の許容荷重とに基づいて、各階毎及び各方向毎に必要な耐力壁5の目安枚数(Nx,Ny)を算出する。尚、ステップS3で算出された耐力壁5の目安枚数は、あくまでも各階のX,Y方向に必要な総数であり、この数を如何に配分するかは以下の手順に従う。そして算出された耐力壁5の目安枚数を各階毎に配分する手法が本発明の特徴となる点である。
【0022】
前述したように、耐力壁5の目安枚数は必ずしも整数ではなく、小数点以下の数値が算出されることがある。本実施例では、小数点第一位の数値で算出している。
【0023】
そしてステップS4では、ステップS3で算出した耐力壁5の目安枚数Nx,Nyを画面上に表示する。例えば、図5は1階Aの平面形状と、1階のX方向に必要な耐力壁5の目安枚数がNx=4.1枚であり、Y方向に必要な耐力壁5の目安枚数がNy=4.1枚である場合の画面の表示例を示している。
【0024】
尚、各方向に必要な耐力壁5の目安数は各階毎に算出される。従って、2階Bに対応して図5と同様の機能を持った画面が表示されるが、便宜上、以下の説明では1階Aに対する画面表示を説明して2階Bに対する説明を省略する。
【0025】
ステップS5では、ステップS4で表示された画面を参考にして、該画面上で耐力壁線X8(X8a〜X8d),Y8(Y8a〜Y8c)を指定して入力する。前記耐力壁線X8,Y8は外壁線1にのみ指定するものではなく、内部に構成される間仕切り壁2(図8参照)も指定することが可能である。このとき、指定された耐力壁線X8,Y8には、図に示すように矢印を表示することが好ましい。
【0026】
そして、間仕切り壁2を含んで耐力壁X8,Y8を指定することで、耐力壁5を各階毎に配置位置を分散することが可能となり、外壁1に形成される開口部の大きさや位置の自由度を向上させることが可能となる。
【0027】
次に、ステップS6では、指定された耐力壁線X8a〜X8d,Y8a〜Y8c毎に耐力壁5の目安数を算出する。このとき、例えば、指定された各耐力壁線X8a〜X8d,Y8a〜Y8cの負担面積及び上階の耐力壁線との位置関係、更に、床面に作用する剪断力等を考慮する。
【0028】
ステップS7では、図6に示すように、ステップS6で各耐力壁線X8a〜X8d,Y8a〜Y8c毎に算出された耐力壁5の目安数を対応する耐力壁線X8a〜X8d,Y8a〜Y8cに対応させて表示する。
【0029】
次いで、ステップS8では、図6に示す表示画面を参考にしつつ、指定された各耐力壁線X8a〜X8d,Y8a〜Y8cに耐力壁5を配分して入力する。このとき、耐力壁5を配置する位置は設計者が適宜判断して設定することが可能である。
【0030】
上記の如くして構造上必要な耐力壁5の目安枚数を算出すると共に、算出された耐力壁を外壁1及び間仕切り壁2に配分することが可能である。そして各耐力壁線X8a〜X8d,Y8a〜Y8cに配置された耐力壁5は画面上に表示される(図7参照)。
【0031】
次に、ステップS9に於いて一貫構造計算を実行する。即ち、目的の建物の構造設計を実施する際に必要である耐力壁5以外の部材の生成し、モデル化、荷重生成、これに伴う応力の解析、前記部材の断面検定等の一貫処理を行う。このステップS9までの手順を実行することで、一応の構造設計が終了し、次いで、終了した構造設計の判定を実行する。
【0032】
ステップS9に於ける一貫処理を行った結果、図7に示すように、各方向の総負担剪断力の値(トン,t)と、各耐力壁線X8a〜X8d,Y8a〜Y8c毎の負担剪断力の値(t)を表示することが可能である。
【0033】
ステップS10では、ステップS9の一貫処理結果に基づいて耐力壁5の配置に関する判定を行う。この判定は、耐力壁5に対して作用する水平力と許容荷重との関係を個々の耐力壁5毎に行われる。そして過度の水平力が作用し、或いは作用する水平力が極端に少ないような耐力壁5が存在する場合、現在の耐力壁5の配置が否定され、ステップS8に戻って、個々の耐力壁5が略均等な水平力を負担し得るように耐力壁5を追加し或いは移動させて、該耐力壁5の再配置を行う。
【0034】
ステップS10に於ける判定の結果、耐力壁5が合理的に配置されているとして判定された場合、ステップS11に進行して耐力壁5以外の部材に対する判定を行う。
【0035】
ステップS11では、例えば各耐力壁線X8a〜X8d,Y8a〜Y8cに配置された耐力壁5に水平力が作用したとき、各耐力壁線X8a〜X8d,Y8a〜Y8cを構成する個々の梁に作用する応力を判定し、過度の応力が作用する梁が存在する場合、部材の配置が否定され、ステップS9に戻って耐力壁5以外の部材の再配置を行う。この作業は、ステップS9で配置された全ての部材に対して行われる。
【0036】
ステップS11に於いて、耐力壁5以外の全ての部材に対する判定の結果、これらの部材が合理的に配置されているとして判定されると、目的の建物に対する構造設計が終了し、システムがエンドとなる。
【0037】
【発明の効果】
以上詳細に説明したように本発明に係る建物の構造設計支援方法では、コンピュータを利用して各階毎に、且つ各方向毎に必要な耐力壁の目安枚数を算出することが出来、且つ外壁線及び間仕切り壁を耐力壁線として指定することで耐力壁を外壁に限定することなく、間仕切り壁を含んで適正に配置することが出来る。このため、外壁に形成する開口部の大きさや位置の自由度を向上することが出来る。
【0038】
特に、耐力壁の配置位置を外壁のみならず、間仕切り壁を含んで配置しなければ設計し得ないような建物、例えばアパート等の規模が大きい建物,店舗等の採光上或いは用途上外壁部に充分な量の耐力壁を配置し得ないような建物への対応及び検討が可能であり、支援対象を極めて広くすることが出来る。
【0039】
また耐力壁の配置部位として間仕切り壁を対象とすることは一般的であり、耐力壁の入力部位を外壁線のみに限定して間仕切り壁に対する配置を考慮し得ないシステムは実用的ではない。この点、本発明に係る建物の構造設計支援方法では、耐力壁の配置部位を外壁線にのみ限定することなく、外壁及び間仕切り壁、更には前記各壁以外の部位に配置した場合であっても容易に対応することが出来、目的の建物の構造設計を支援することが出来る。
【図面の簡単な説明】
【図1】本実施例に係る建物の構造設計を支援する方法の手順を説明するフローチャートである。
【図2】1階の平面図を示すと共に外壁線,躯体輪郭線,床面外周線を示す図である。
【図3】2階の平面図を示すと共に外壁線,躯体輪郭線,床面外周線を示す図である。
【図4】屋根伏図である。
【図5】1階の各方向毎に必要な耐力壁数の目安を示すと共に耐力壁線を指定した状態を示す図である。
【図6】1階の各耐力壁線に耐力壁を割り付けた状態を示す図である。
【図7】1階の各耐力壁線に割り付けた耐力壁の位置と負担剪断力との関係を示す図である。
【図8】目的の建物の1階及び2階のレイアウトを示す図である。
【符号の説明】
A 1階
B 2階
1 外壁,外壁線
2 間仕切り壁
3 玄関ポーチ
4 ベランダ
5 耐力壁
6 躯体の輪郭線
7 床面外周線
X8(X8a〜X8d),Y8(Y8a〜Y8c) 耐力壁線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for supporting structural design of a building using a computer, and more particularly, to a structural design supporting method for a building in which a load bearing wall can be appropriately arranged including an outer wall and a partition wall of the building. is there.
[0002]
[Prior art]
At the stage of designing the general structure of a building, the strength is determined after placing the load-bearing wall at any position inside the building (not limited to the outer wall line, but at any position including the inner wall part). Has been done.
[0003]
In addition, when designing the structure of a building, we assume horizontal forces such as earthquakes and winds acting on the building and calculate the weight and center of gravity of the structural elements such as roofs, walls and floors. An appropriate number of load-bearing walls are arranged on the walls. Although this calculation is complicated and a partial calculation can be executed using a computer, the layout of the bearing walls is appropriately assigned by the designer.
[0004]
Recently, it has been proposed to support structural design including assignment of bearing walls using a computer. For example, in the technique disclosed in Japanese Patent Laid-Open No. 9-302765, the standard number of load-bearing walls in the horizontal and vertical directions is input to the computer by inputting data related to the specifications of the outer wall line and the roof of the house on the computer screen. After calculating the position of the center of gravity and displaying the result on the screen, referring to this display and inputting the bearing wall along the outer wall line, determine whether the input bearing wall can provide the required strength The result is displayed on the screen, and when it is determined that the required strength cannot be given by the determination, the arrangement of the bearing walls is corrected and the strength is determined again. This technique is advantageous as a structural planning support method because strength can be determined by placing a bearing wall on the outer wall of the target house.
[0005]
[Problems to be solved by the invention]
However, in the above technique, the input position (arrangement position) of the bearing wall is limited to the outer wall of the house. For this reason, the bearing walls are inevitably concentrated on the outer wall, and the position and size of the opening provided in the outer wall may be limited. In addition, there may be a case where the strength of the structural plan cannot be obtained due to the lack of bearing walls and the layout of the entire house, and the target plan plan must be abandoned.
[0006]
An object of the present invention is to arrange a bearing wall including a partition wall configured inside a building when supporting the structural design of the building using a computer, and thereby position and size of an opening provided in the building. It is an object of the present invention to provide a building structural design support method capable of improving the degree of freedom and the degree of freedom of a planar shape.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a structural design support method for a building according to the present invention is the structural design support method for a building which displays the arrangement of the bearing walls on the display screen of the computer. The building specifications, building shape, and roof shape data, which are data necessary for the structural calculation of the building, are input by a computer, and the vertical load for each floor of the building is input by the computer using the input data. The computer calculates the horizontal force for each floor and each direction acting on the building by the wind or earthquake based on the vertical load for each floor of the building and the coefficient corresponding to the wind or earthquake stored in the storage unit in advance. Based on the horizontal force acting on each floor and direction of the building and the standard load-bearing allowable load stored in advance, the computer calculates the number of bearing walls required for each floor and direction of the building. Calculate and display the number of bearing walls required for each floor and direction of the building on a computer, and then input a plurality of bearing walls on the exterior wall of the building and inside the building for each floor and direction of the building The load-bearing wall line for each floor and direction of the building is displayed on a computer, and further, based on the load area of each load-bearing wall line and the positional relationship with the load-bearing wall line on the upper floor and the shearing force acting on the floor Te, the bearing walls required number to be allocated to each bearing wall lines per each floor and direction of the building by calculation in a computer, said bearing wall necessary number to be allocated is allocated to each bearing wall lines to the computer The load-bearing wall layout required for each load-bearing wall line is input to a computer, the load-bearing wall layout, building member generation, modeling, stress analysis based on load generation, Computer-based structural calculation, which is a cross-section verification In the case where excessive horizontal force is applied or extremely small, the relationship between the allowable load of each bearing wall, which is the strength required by the building, and the horizontal force acting on the bearing wall is determined. It is characterized in that the determination of pass / fail is made by a computer and the result is displayed, and if the determination is negative, the computer is re-input to add or move the bearing wall. .
[0008]
In the above structural design support method, when designing the structure of a building, data necessary for the structural design of the building is input according to a predetermined procedure using a computer and a predetermined calculation is executed, so that the structural planning can be performed. The study time can be shortened, and the plan can be examined without knowledge of structural calculation.
[0009]
In other words, the data necessary to execute the structural calculation of the building is input to the computer, the number of bearing walls required for each floor and direction of the building is calculated and displayed, and displayed on the outer wall of the building and the internal partition wall. Correspondingly set and display multiple load-bearing wall lines, enter the required load-bearing wall layout for each load-bearing wall line, calculate the strength based on this layout, determine pass / fail, and display the results If the determination result is negative, the structural design can be supported by re-inputting the arrangement of the bearing walls and performing the determination again.
[0010]
At this time, since the part where the bearing wall is arranged sets a plurality of bearing wall lines between the outer wall portion and the inside for each direction and is allocated to the set bearing wall line, the bearing wall is arranged only on the outer wall. Therefore, a large degree of freedom can be given to the design of the position and size of the opening formed in the outer wall, the planar shape, and the like.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the building structural design support method will be described below with reference to the drawings. FIG. 1 is a flowchart for explaining a procedure of a method for supporting the structural design of a building according to the present embodiment. FIG. 2 is a diagram showing a plan view of the first floor and an outer wall line, a frame outline, and a floor outer peripheral line. 3 is a plan view of the second floor and a diagram showing an outer wall line, a frame outline, and a floor outer peripheral line, FIG. 4 is a roof plan, and FIG. 5 is a guideline of the number of bearing walls required for each direction of the first floor. FIG. 6 is a diagram showing a state in which a bearing wall is designated, FIG. 6 is a diagram showing a state in which a bearing wall is assigned to each bearing wall on the first floor, and FIG. 7 is a diagram of a bearing wall assigned to each bearing wall on the first floor. FIG. 8 is a diagram showing the layout of the first floor and the second floor of the target building.
[0012]
A structure design support method for a building according to the present embodiment will be described with reference to the flowchart shown in FIG. 1, and a structure of a building in which a bearing wall is assigned to an outer wall or a partition wall corresponding to each step will be described with reference to FIGS. Will be described.
[0013]
Prior to the description of the building structural design support method of this embodiment, an example of a building will be described with reference to FIG. In the figure, the target building is configured as a two-story house consisting of a first floor A and a second floor B. On each floor A and B, an outer wall 1 constituting the outside of the building and a partition wall 2 provided inside the building are constituted, and a floor layout inside the building is formed by these walls 1 and 2. Further, the entrance porch 3 constituting the floor surface is configured on the first floor A, and the veranda 4 configuring the floor surface is similarly configured on the second floor B.
[0014]
When designing the structure of a building, the weight of the building has a great influence. For this reason, when the structural design is executed, it is necessary to first calculate the weight of the building. Then, the horizontal force acting during the earthquake is calculated according to the calculated building weight (vertical load).
[0015]
The load-bearing wall 5 (see FIG. 7) for resisting the horizontal force acting on the building has a preset structure, and the width dimension depends on the module dimension (for example, 915 mm) set on the building. Multiple settings such as 0.5 times, 1.0 times, 1.5 times, and 2 times the module are set. An allowable horizontal load is set in advance according to the width dimension, and is selectively adopted at the stage of designing the structure.
[0016]
The computer stores all the allowable load data of the multiple load bearing walls and other data necessary for structural design, and is configured to select the optimum load bearing wall for the horizontal force acting on the structural design. Is possible. In addition, a standard load bearing wall 5 is set from a plurality of load bearing walls, data of allowable load of the load bearing wall 5 is stored in a computer, and the load bearing wall necessary for the horizontal force acting on the structural design is stored. It is also possible to configure so that is converted into the number of the load-bearing walls 5 and displayed.
[0017]
In this embodiment, a standard load-bearing wall 5 is set, and an allowable load for the horizontal force of the load-bearing wall 5 and other structural design data are stored in the storage unit of the design support computer. The necessary bearing walls are displayed as the number of the standard bearing walls 5. For this reason, the number of bearing walls that are displayed as a guide is not necessarily an integer, but a numerical value including a decimal point.
[0018]
When building structural design is executed, the weight of the building is first calculated as described above. Therefore, when the start assistance system, in step S1, required in calculating the weight of the building, if the floor of the specification (e.g., the purpose of a building is generally floor or apartment when it is Detached houses The material and thickness of the floor, the roof specifications (for example, whether the roofing material is tile or asbestos cement board, etc.), the presence or absence of fireproof coating, and other conditions.
[0019]
Next, in step S2, the shape of the building is input. That is, the outer wall 1 of the first floor A shown in FIG. 2 (outer wall line 1), the contour line 6 of the frame, and the floor outer peripheral line 7 including the entrance porch 3 are inputted, and the outer wall line of the second floor B shown in FIG. 1. Enter the floor outline 7 including the frame outline 6 and the veranda 4 of the frame. Furthermore, the shape of the roof C shown in FIG. 4 is input.
[0020]
By inputting the building specifications and building shape as described above, it is possible to calculate the load for each floor and the load per unit area. The horizontal force acting on each floor at the time of the wind or earthquake is determined in each direction of the outer wall line 1 (generally XY orthogonal) by the calculated load for each floor and the coefficient corresponding to the wind or earthquake stored in advance. It is possible to calculate every two orthogonal directions in the coordinate system. The vertical force calculated as described above and the horizontal force corresponding to each direction are stored in the storage unit of the computer.
[0021]
Next, in step S3, each floor is calculated based on the horizontal force acting for each floor and each direction calculated as described above and the allowable load of the standard bearing wall 5 stored in advance. In addition, the required number of bearing walls 5 (Nx, Ny) required for each direction is calculated. In addition, the reference number of bearing walls 5 calculated in step S3 is the total number required in the X and Y directions of each floor to the last, and how to distribute this number is according to the following procedure. The technique of allocating the calculated reference number of bearing walls 5 for each floor is a feature of the present invention.
[0022]
As described above, the reference number of bearing walls 5 is not necessarily an integer, and a numerical value after the decimal point may be calculated. In the present embodiment, calculation is performed using a numerical value with the first decimal place.
[0023]
In step S4, the reference number Nx, Ny of the bearing walls 5 calculated in step S3 is displayed on the screen. For example, FIG. 5 shows a plan shape of the first floor A and the required number of bearing walls 5 in the X direction on the first floor is Nx = 4.1, and the estimated number of bearing walls 5 in the Y direction is Ny. = Display example of screen in case of 4.1 sheets is shown.
[0024]
In addition, the reference | standard number of the bearing walls 5 required for each direction is calculated for every floor. Accordingly, a screen having the same function as that of FIG. 5 is displayed corresponding to the second floor B. However, for convenience, in the following description, the screen display for the first floor A will be described and the description for the second floor B will be omitted.
[0025]
In step S5, referring to the screen displayed in step S4, the bearing wall lines X8 (X8a to X8d) and Y8 (Y8a to Y8c) are designated and input on the screen. The load-bearing wall lines X8 and Y8 are not only specified for the outer wall line 1, but can also be specified for the partition wall 2 (see FIG. 8) formed inside. At this time, it is preferable to display an arrow on the designated bearing wall lines X8 and Y8 as shown in the figure.
[0026]
By specifying the bearing walls X8 and Y8 including the partition wall 2, it is possible to disperse the positions of the bearing walls 5 for each floor, and the size and position of the opening formed in the outer wall 1 can be freely set. The degree can be improved.
[0027]
Next, in step S6, the reference number of the bearing walls 5 is calculated for each of the specified bearing walls X8a to X8d, Y8a to Y8c. At this time, for example, the load area of each specified bearing wall line X8a to X8d, Y8a to Y8c and the positional relationship with the bearing wall line on the upper floor, and the shearing force acting on the floor surface are considered.
[0028]
In step S7, as shown in FIG. 6, the reference number of bearing walls 5 calculated for each bearing wall line X8a to X8d, Y8a to Y8c in step S6 is applied to the corresponding bearing wall lines X8a to X8d and Y8a to Y8c. Display in correspondence.
[0029]
Next, in step S8, the load bearing wall 5 is distributed and inputted to each of the designated load bearing wall lines X8a to X8d and Y8a to Y8c while referring to the display screen shown in FIG. At this time, the position where the bearing wall 5 is arranged can be determined and set by the designer as appropriate.
[0030]
As described above, it is possible to calculate the reference number of bearing walls 5 necessary for the structure and distribute the calculated bearing walls to the outer wall 1 and the partition wall 2. The load bearing walls 5 arranged on the load bearing wall lines X8a to X8d and Y8a to Y8c are displayed on the screen (see FIG. 7).
[0031]
Next, in step S9, a consistent structure calculation is executed. That is, members other than the load-bearing wall 5 necessary for carrying out the structural design of the target building are generated, and integrated processing such as modeling, load generation, analysis of stress associated therewith, cross-sectional verification of the members, etc. is performed. . By executing the procedure up to step S9, the temporary structural design is completed, and then the determination of the completed structural design is performed.
[0032]
As a result of the consistent processing in step S9, as shown in FIG. 7, the total shearing force value (tons, t) in each direction and the shearing load for each of the load bearing wall lines X8a to X8d and Y8a to Y8c. The force value (t) can be displayed.
[0033]
In step S10, determination regarding the arrangement of the bearing walls 5 is performed based on the consistent processing result of step S9. In this determination, the relationship between the horizontal force acting on the bearing wall 5 and the allowable load is performed for each bearing wall 5. If there is a load bearing wall 5 in which an excessive horizontal force is applied or the applied horizontal force is extremely small, the current placement of the load bearing wall 5 is denied, and the process returns to step S8 to return to each load bearing wall 5. However, the load bearing wall 5 is added or moved so that a substantially uniform horizontal force can be borne, and the load bearing wall 5 is rearranged.
[0034]
As a result of the determination in step S10, if it is determined that the bearing wall 5 is reasonably arranged, the process proceeds to step S11, and a determination is made on members other than the bearing wall 5.
[0035]
In step S11, for example, when a horizontal force is applied to the load-bearing walls 5 arranged in the load-bearing wall lines X8a to X8d and Y8a to Y8c, it acts on the individual beams constituting the load-bearing wall lines X8a to X8d and Y8a to Y8c. If there is a beam to which excessive stress is applied, the arrangement of the members is denied, and the process returns to step S9 to re-arrange the members other than the bearing wall 5. This operation is performed for all members arranged in step S9.
[0036]
If it is determined in step S11 that all the members other than the load bearing wall 5 are reasonably arranged, the structural design for the target building is completed, and the system is ended. Become.
[0037]
【The invention's effect】
As described above in detail, in the building structural design support method according to the present invention, the required number of bearing walls can be calculated for each floor and for each direction using a computer, and the outer wall line And by designating a partition wall as a load-bearing wall line, it can arrange | position appropriately including a partition wall, without limiting a load-bearing wall to an outer wall. For this reason, the freedom degree of the magnitude | size and position of the opening part formed in an outer wall can be improved.
[0038]
Especially for buildings that cannot be designed unless the layout position of the bearing wall is not limited to the outer wall, including the partition wall, for example, large buildings such as apartments, lighting, etc. It is possible to deal with and study buildings where a sufficient amount of bearing walls cannot be arranged, and the support target can be made extremely wide.
[0039]
Moreover, it is common to target a partition wall as a load-bearing wall arrangement site, and a system in which the input site of the load-bearing wall is limited to only the outer wall line and the arrangement with respect to the partition wall cannot be considered is not practical. In this regard, in the structural design support method for a building according to the present invention, the arrangement of the bearing wall is not limited to the outer wall line, and the outer wall and the partition wall are arranged on a portion other than the walls. Can be easily handled, and the structural design of the target building can be supported.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining a procedure of a method for supporting structural design of a building according to an embodiment.
FIG. 2 is a diagram showing a plan view of the first floor and showing an outer wall line, a frame outline, and a floor outer peripheral line.
FIG. 3 is a diagram showing a plan view of the second floor and an outer wall line, a frame outline, and a floor outer peripheral line.
FIG. 4 is a roof plan view.
FIG. 5 is a diagram showing a guideline of the number of bearing walls required for each direction on the first floor and a state in which bearing walls are designated.
FIG. 6 is a diagram showing a state in which a bearing wall is assigned to each bearing wall line on the first floor.
FIG. 7 is a diagram showing a relationship between a position of a load bearing wall assigned to each load bearing wall line on the first floor and a burden shearing force.
FIG. 8 is a diagram showing a layout of the first floor and the second floor of a target building.
[Explanation of symbols]
A 1st floor B 2nd floor 1 Outer wall, outer wall line 2 Partition wall 3 Entrance porch 4 Veranda 5 Bearing wall 6 Frame outline 7 Floor surface perimeter line X8 (X8a to X8d), Y8 (Y8a to Y8c) Bearing wall

Claims (1)

コンピュータの表示画面上に耐力壁の配置を表示するようにした建物の構造設計支援方法に於いて、
前記コンピュータの記憶部に記憶した建物の構造計算に必要なデータである建物の仕様、及び建物形状、及び屋根形状の各データをコンピュータで入力し、
前記入力データを使用して、建物の階毎の垂直荷重をコンピュータで算出し、
前記建物の階毎の垂直荷重と予め記憶部に記憶されている風又は地震に対応した係数によって、風又は地震により建物に作用する階毎及び方向毎の水平力をコンピュータで算出し、
建物の階毎及び方向毎に作用する水平力と、予め記憶されている標準的な耐力壁の許容荷重とに基づいて、建物の階毎及び方向毎に必要な耐力壁数をコンピュータに計算させて、
該建物の階毎及び方向毎に必要な耐力壁数をコンピュータで表示させ、
次に建物外壁部及び建物内部に複数の耐力壁線を建物の階毎及び方向毎にコンピュータで入力して、前記建物の階毎及び方向毎の耐力壁線をコンピュータで表示させ、
更に、各耐力壁線の負担面積及び上階の耐力壁線との位置関係と床に作用する剪断力に基づいて、建物の階毎及び方向毎の各耐力壁線に配分すべき必要な耐力壁数をコンピュータで算出させて、前記各耐力壁線に配分すべき必要な耐力壁数が割り振られてコンピュータに表示させ、
前記各耐力壁線に必要とする耐力壁の配置をコンピュータに入力して、該耐力壁の配置と、建物の部材の生成、モデル化、荷重生成に基づいて応力の解析、部材の断面検定である構造計算をコンピュータの演算過程で一貫処理させ、
建物が必要とする強度である個々の耐力壁の許容荷重と該耐力壁に作用する水平力との関係を過度の水平力が作用する場合又は極端に少ない場合に否と判定する合否判定をコンピュータで行わせてその結果を表示させ、
判定が否である場合は耐力壁を追加して又は移動させるべくコンピュータで再入力を行うようにしたことを特徴とする建物の構造設計支援方法。
In the structural design support method of a building which displays the arrangement of bearing walls on the display screen of a computer,
The building specifications and the building shape and the roof shape data that are necessary for the structural calculation of the building stored in the storage unit of the computer are input by a computer.
Using the input data, the computer calculates the vertical load for each floor of the building,
With the vertical load for each floor of the building and the coefficient corresponding to the wind or earthquake stored in the storage unit in advance, the horizontal force for each floor and direction acting on the building by the wind or earthquake is calculated by a computer,
Based on the horizontal force acting on each floor and direction of the building and the standard load-bearing allowable load of the standard load-bearing wall, the computer calculates the number of bearing walls required for each floor and direction of the building. And
Display the number of bearing walls required for each floor and direction of the building on a computer,
Next, a plurality of load-bearing wall lines inside the building outer wall and inside the building are input by a computer for each floor and direction of the building, and the load-bearing wall lines for each floor and direction of the building are displayed by a computer,
Furthermore, based on the load area of each load-bearing wall line and the positional relationship with the load-bearing wall line on the upper floor and the shearing force acting on the floor, the necessary load-bearing capacity to be distributed to each load-bearing wall line for each floor and direction of the building by calculating the wall number in the computer, said bearing wall necessary number to be allocated is allocated to each bearing wall lines to be displayed on the computer,
The load-bearing wall layout required for each load-bearing wall line is input to a computer, and the analysis of stress based on the load-bearing wall layout, building member generation, modeling, and load generation is performed. A certain structural calculation is processed consistently in the calculation process of the computer,
Pass / fail judgment that determines whether the relationship between the allowable load of each bearing wall, which is the strength required by the building, and the horizontal force acting on the bearing wall is negative when excessive horizontal force is applied or extremely low To display the result,
A structural design support method for a building, characterized in that if the determination is negative, the computer is re-inputted to add or move a bearing wall.
JP24659498A 1998-09-01 1998-09-01 Building structural design support method Expired - Lifetime JP4069225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24659498A JP4069225B2 (en) 1998-09-01 1998-09-01 Building structural design support method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24659498A JP4069225B2 (en) 1998-09-01 1998-09-01 Building structural design support method

Publications (2)

Publication Number Publication Date
JP2000073442A JP2000073442A (en) 2000-03-07
JP4069225B2 true JP4069225B2 (en) 2008-04-02

Family

ID=17150746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24659498A Expired - Lifetime JP4069225B2 (en) 1998-09-01 1998-09-01 Building structural design support method

Country Status (1)

Country Link
JP (1) JP4069225B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179084B2 (en) * 2007-03-30 2013-04-10 旭化成ホームズ株式会社 Building structural margin setting support system

Also Published As

Publication number Publication date
JP2000073442A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP3827431B2 (en) Construction method of clean room building
JP4712075B2 (en) Load-bearing wall placement method used for computer-based building structural calculations
JP4069225B2 (en) Building structural design support method
JP4453007B2 (en) Pile arrangement device, pile arrangement method, pile arrangement program, and recording medium
JP4301705B2 (en) Housing structure design method and structure design apparatus
JP4940324B2 (en) Server room floor load resistance diagnosis system
JP2015055123A (en) Design method for unit type building, and manufacturing method for building unit
JP4215350B2 (en) Load-bearing wall placement method used for computer-based building structural calculations
JP3135951B2 (en) Structural design system of building frame
JP5347557B2 (en) Column beam frame
JP7107781B2 (en) Design support system
JP4598312B2 (en) CAD system for unit building
JPH10320435A (en) Cad system for generating plan of unit type building
JP2003155827A (en) Future-extension residence
JP5963527B2 (en) Building design method
JP2000192538A (en) Design method and design device for house expected to be enlarged
JPH07269138A (en) Multiple dwelling house
JP2002157283A (en) Method for estimating extension and reconstruction of house
JPH0882010A (en) Unit building with balcony and its work execution method
JPS61112504A (en) Module control chamber
JP2879652B2 (en) Box type building structure and its construction method
JP2618111B2 (en) Dwelling unit
JPH04312637A (en) House unit for setback of unit house
JP2008223226A (en) Framework skeleton structure and framework skeleton arrangement method
JP2005316864A (en) Automatic plan preparing processor and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

EXPY Cancellation because of completion of term