JP4068679B2 - Polymetal oxide - Google Patents

Polymetal oxide Download PDF

Info

Publication number
JP4068679B2
JP4068679B2 JP30644296A JP30644296A JP4068679B2 JP 4068679 B2 JP4068679 B2 JP 4068679B2 JP 30644296 A JP30644296 A JP 30644296A JP 30644296 A JP30644296 A JP 30644296A JP 4068679 B2 JP4068679 B2 JP 4068679B2
Authority
JP
Japan
Prior art keywords
catalyst
acrolein
acrylic acid
gas phase
multimetal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30644296A
Other languages
Japanese (ja)
Other versions
JPH09194213A (en
Inventor
ヒプスト ハルトムート
テーンテン アンドレアス
マロジ ラシュロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JPH09194213A publication Critical patent/JPH09194213A/en
Application granted granted Critical
Publication of JP4068679B2 publication Critical patent/JP4068679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/55Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般式I:
Mo12-a-b-ca1 b2 cx (I)
[式中、
1=W及び/又はNb、
2=Ti,Zr,Hf,Ta,Cr,Si及び/又はGe、
a=0.1〜6、有利には0.5〜4.5、
b=0〜6、有利には0.1〜6、特に有利には0.5〜4、
c=0〜6、しばしば0.1〜6又は0.5〜4、
であり、但しa+b+c=0.1〜6、有利には0.5〜4.5であり、かつ
x=式I中の酸素とは異なる元素の原子価及び頻度により決まる数値
である]の多金属酸化物であって、該多金属酸化物は、その、Cu-Kα放射線(λ=1.54178Å)を使用して得られた三次元的原子配置が、5〜50゜の2θ範囲(面内の角度に関する単位で表される)内で少なくとも以下の特性特徴的回折線A1,A3,A5,A9及びA10、但し最大でも以下の回折線A1〜A10を含む、X線粉末回折スペクトル(2倍の回折角度(2θ)の関数としてプロットした回折したX線の強度A):
【0002】
【表5】

Figure 0004068679
【0003】
を生じることを特徴とする多金属酸化物に関する。
【0004】
この場合、回折のために使用されるX線の波長λと回折角度θは、互いにブラッグ(Bragg)の関係式:
2sinθ=λ/d
[式中、dはそれぞれの回折線に属する、三次元的原子配置の格子面距離である]によって関係付けられる。
【0005】
更に、本発明は、多金属酸化物Iの製造方法並びに該多金属酸化物を有機化合物の接触気相酸化のための活性材料として直接使用することに関する。
【0006】
本発明はまた、多金属酸化物Iを、有機化合物の接触気相酸化のための活性材料として適する、Mo及びVを含有する多金属酸化物材料を製造するための出発化合物として使用することに関する。
【0007】
Mo及びVを含有する多金属酸化物材料の製造方法並びに該多金属酸化物材料を有機化合物の接触気相酸化のための活性材料として使用することは公知である(例えば欧州特許出願公開第293859号明細書参照)。
【0008】
初期には、このようなMo及びVを含有する多金属酸化物材料は、その元素成分のそれぞれから適当なソース(出発化合物)を用意し、これらのソースの全量から可能な限り完全な、有利には微細な、所望の多金属酸化物材料の必要とされる化学量論的量に相当して組成された乾燥材料を製造し、この乾燥混合物を高温で数時間不活性ガス又は酸素を含有するガス(例えば空気)下で焼成する(単一容器法)ことにより製造された。この場合、多金属酸化物材料の元素成分ソースのために重要なことは、それらが既に酸化物であるか、又は少なくとも酸素の存在で加熱により酸化物に転化可能である化合物であることである(例えばドイツ国特許出願公開第4335937号明細書及び米国特許第4,035,262号明細書参照)。
【0009】
今や、まず所望の多金属酸化物材料の元素成分の全量の一部を含む多金属酸化物を別に前形成しかつこの別に前形成した一部分の多金属酸化物を引き続き所望の多金属酸化物材料を製造するための微粒子ソースとして使用することが場合により好ましいことも公知である(例えば欧州特許出願公開第835号明細書、ドイツ国特許第3338380号明細書、ドイツ国特許出願公開第4220859号明細書、ドイツ国特許出願公開第4307381号明細書、ドイツ国特許出願公開第4405059号明細書、ドイツ国特許出願公開第4405060号明細書、ドイツ国特許出願公開第4405514号明細書及びドイツ国特許出願公開第4440981号明細書参照)。
【0010】
この場合には、一般に、自体公知の方法に基づき製造された多金属酸化物材料よりも、有機化合物の接触気相酸化のためにより有利である多相構造を有する多金属酸化物材料が生じる。
【0011】
【発明が解決しようとする課題】
本発明の課題は、特にアクロレインのアクリル酸への気相接触酸化のための活性材料として好適である、多相のMo及びVを含有する多金属酸化物材料を製造するための出発化合物として使用可能である、 Mo及びVを含有する多金属酸化物材料の新規の部分量金属酸化物を提供することであった。
【0012】
【課題を解決するための手段】
従って、冒頭に定義した多金属酸化物Iが見出された。好ましい多金属酸化物Iは、就中x=15〜50を有するものである。有利には、xは25〜40、特に有利には30〜40である。更に、多金属酸化物Iの内では、就中c=0であるのが好適である。c=0及びM1=専らWである場合には、バナジウムの≧25%、又は≧50%、又は≧75%、又は≧95%、又は≧99%がV4+として存在するのが有利である。
【0013】
新規の多金属酸化物Iに関して典型的なことは、そのCu-Kα放射線を使用して得られたX線粉末回折スペクトルが、5〜50゜の2θ範囲内で特徴を示す指紋として少なくとも特性回折線A1,A3,A5,A9及びA10を含み、但し決して回折線A1,A2, A3, A4,A5,A6,A7,A8,A9及びA10より多くを含まないことである。
【0014】
注目すべきことは、回折線の若干のものが、比較的大きな半値幅FWHM[平面における角度で表される、回折線の最大振幅の半分の高さでの回折線の幅(2θの関数としてプロットした強度である]を有するものであることであり、このことは新規の多金属酸化物Iにおける近配置と遠配置の異常なパターンを反映している(実施例参照)。この近配置と遠配置特別の形態は、本発明者の見解によれば、就中本発明による多金属酸化物Iの特殊な触媒特性に起因すると見なされる。
【0015】
特殊な半値幅に基づき、本発明による多金属酸化物IのX線粉末回折スペクトルは、完全に互いに分解されていない形の回折線Aを含む。しかしながら、多数の回折線Aの存在は、(線形バックグラウンドの除去後に)視覚的に直接識別可能な形式で新規の多金属酸化物IのX線粉末回折スペクトルの外郭線における相対的最大として示され、この相対的最大を本明細書において特許請求の範囲に基づく回折線Aと定義する。
【0016】
線形バックグラウンド[A(2θ=5゜とA(2θ=65゜)との間の結合線]を除いた後、これらの回折線A1〜A10に、更に以下の、回折線A1〜A10の最大強度を基礎とした、相対的線強度(IA rel=(I/Io)×100%)を配属させることができ、その際強度尺度として、基線から相対的最大まで測定した振幅を使用する:
【0017】
【表6】
Figure 0004068679
【0018】
この線強度データに関しては、相対的線強は、線の位置とは異なり、種々の粉末調製において結晶形の異方性に基づき生じる個々の結晶配向により当業者に周知の形式で顕著に影響される、従って新規の多金属酸化物の同定のためにはあまり重要でないことに留意されるべきである。
【0019】
この関係において、本出願人の見解によれば、本発明による多金属酸化物IのCu-KαX線粉末回折スペクトルのもう1つの特徴は、一般にFWHS<0.25゜である回折線を含有しないことに現れることが確認されるべきである。
【0020】
全ての実施例において、X線粉末回折スペクトルの記録はジーメンス・ディフラクトメータ(Siemens Diffraktometer)D-5000を用いてCu-Kα放射線(40kV,30mA,λ=1.54178Å)を使用して行った。該ディフラクトメータは、自動一次及び二次コリメータ並びに黒鉛二次モノクロメータを備えていた。
【0021】
もちろん、多金属酸化物IのX線粉末回折スペクトルの分解、ひいては選択的特性決定は、線形バックグラウンドを除いた後、最小平均平方偏差の境界条件下で数学的関数によって実験的回折スペクトル(その包絡線)を記述しかつそれを分解して別々に分解した線A1*〜A10*の重ね合わせに展開することにより行うことができる。分解した線の最大は、それぞれそれらの線位置を定義する。
【0022】
既に述べたX線粉末回折スペクトルの数学的分解は、ジーメンス社から調達される1994年のバージョンのソフトウエア-パッケージDIFFRAC-AT V 3.2/PROFILEを使用した行った、この場合分解及び適合はペアーソンVII形(Pearson-VII-form)関数を基礎として行った。
【0023】
本発明による多金属酸化物IのCu-Kα粉末X線粉末回折スペクトルにあの回折線A2,A4及びA6〜A8の、それらの包絡線の専ら視覚的観察を基礎とした存在は部分的にある程度の不確実性と結び付いておりかつひいては場合により議論の余地があるが(実施例参照)、その上記のようにして得られた数学的分解は一般に疑いなく回折線A2*,A4*,A6*及びA7*を示す(実施例参照)、それに対して回折線A8*は不必要である。従って、両者の特性決定方法(情報)は一緒に、本発明による対象の特許請求の範囲に記載の定義を必要とする。それに対して、専ら数学的分解によれば、本発明による多金属酸化物IのCu-Kα粉末X線粉末回折スペクトルを一般に以下のように特性決定することができる:
【0024】
【表7】
Figure 0004068679
【0025】
この場合IF rel[%]は、回折線A1*〜A10*の最大強度に対する回折線強度のパーセントであり、その場合強度尺度としては回折線の下の面積を使用する。
【0026】
本発明による多金属酸化物Iは簡単に、その元素成分の適当なソースから、所望の化学量論的量に相当する可能な限り完全な、有利には微粒子の乾燥混合物を製造し、該混合物を300〜500℃の範囲内の温度で焼成することにより得られる。その際、本発明による多金属酸化物Iを得るためのキーは、高すぎる酸化性でも、また高すぎる還元性でもあってはならない焼成雰囲気のレドックス特性である。
【0027】
焼成雰囲気の必要なレドックス特性に関する一般的な妥当な定量的データを提供することは不可能である。一面では必要なレドックス特性は選択される化学量論的量で変動し、かつ他面では元素成分の選択されたソースの反対イオン(例えばNH4 +)も焼成中に分解すると、焼成雰囲気のレドックス特性に関与する。しかしながら、調査のための前実験により、当業者は焼成雰囲気の必要なレドックス特性を確認することができる。
【0028】
その際、焼成雰囲気のレドックス特性を制御するために、当業者は不活性ガスとして例えばN2及び/又は希ガスを、還元ガスとして例えばアンモニア、水素、低分子アルデヒド及び/又は炭化水素をかつ酸化ガスとして酸素(大抵は空気の形で)を利用することができる。
【0029】
元素ソースのために重要なことは単に、それらが既に酸化物であるか、又は少なくとも酸素の介在で、加熱により酸化物に転化可能である化合物であることである。従って、酸化物の他に、出発化合物として就中ハロゲン化物、硝酸塩、ギ酸塩、クエン酸塩、シュウ酸塩、酢酸塩、炭酸塩又は水酸化物が該当する。Mo,V,W及びNbの適当な出発化合物はまた、それらのオキソ化合物(モリブデン酸塩、バナジウム酸塩、タングステン酸塩及びニオブ酸塩)であり、該化合物は加熱すると還元作用するNH3を遊離するNH4 +を一般に反対イオンとして有する。もちろん、これらのオキソ化合物から誘導される酸も可能な出発化合物として該当する。更にしばしば、焼成中に気孔形成剤として作用しかつ同様に焼成雰囲気のレドックス特性に影響する化合物、例えば酢酸アンモニウム及び硝酸アンモニウムも添加される。
【0030】
本発明の範囲内での出発化合物の完全混合は、乾式又は湿式で行うことができる。乾式で行う場合には、出発化合物を好ましくは微細粉末として使用しかつ混合及び場合により圧縮後に、焼成処理する。しかしながら、完全混合は湿式で行うのが有利である。その際には通常、出発化合物を水溶液及び/又は懸濁液の形で相互に混合するのが有利である。引き続き、水性材料を乾燥しかつ乾燥後に焼成する。有利には、乾燥処理は、水性混合物の製造直後にかつ噴霧乾燥により行う(入口温度は一般に250〜350℃であつ出口温度は一般に100〜150℃である)。
【0031】
興味深くも、新規の多金属酸化物Iは既に、有機化合物の気相接触酸化、例えば3〜6個の炭素原子を有するアルカン、アルカノール、アルケン、アルカナール、アルケナール及びアルケノール(例えばプロピレン、メタクロレイン、t−ブタノール、 t−ブタノールのメチルエステル、イソ−ブタン、イソ−ブテン又はイソ−ブチルアルデヒド)をオレフィン系不飽和アルデヒド及び/又はカルボン酸、並びに相応するニトリルへの気相接触酸化(アンモ酸化、就中プロペンのアクリルニトリルへの及びイソ−ブテンもしくはt−ブタノールのメタクリルニトリルへの)のための触媒のための活性材料として好適である。例えば、アクロレイン、メタクロレイン及びメタクリル酸の製造が挙げられる。更に、オレフィン系化合物の酸化性脱水素のための触媒活性材料としても好適である。
【0032】
この場合、多金属酸化物Iは特に疑いなくアクロレインからアクリル酸への気相接触酸化のための触媒の活性材料として好適であり、しかもこの反応に関しては特にその高活性が顕著である。
【0033】
本発明による多金属酸化物材料を有機化合物の気相接触酸化、特にアクロレインのアクリル酸への気相接触酸化のための触媒の活性材料として使用する際には、所望の触媒形態への成形は有利には前成形した不活性触媒担体に施与することより行う。この場合、該施与は最終的焼成の前又は後に行うことができる。この場合には、常用な担体材料、例えば多孔性又は非多孔性酸化アルミニウム、二酸化珪素、二酸化トリウム、二酸化ジルコニウム、炭化珪素又は珪酸マグネシウムもしくは珪酸アルミニウムのような珪酸塩を使用することができる。担体は規則的に又は非規則的に成形されていてもよく、その際明らかに形成された表面荒さを有する規則的に成形された担体、球又は中空円筒体が有利である。これらの内でもまた球が特に有利である。直径が1〜6mm、有利には4〜5mmである、ステアタイトからなる実質的に非多孔性の、表面荒さを有する球状担体を使用するのが特に好ましい。活性材料の層厚さは、好ましくは50〜500μmの範囲内、有利には150〜250μmの範囲内にあるように選択すべきである。ここで更に言及すれば、このような被覆触媒を製造する際には担体を被覆するために施与すべき粉末材料を一般に湿潤しかつ施与後に例えば熱気を用いて再び乾燥する。
【0034】
被覆触媒を製造するためには、担体の被覆は一般に適当な回転可能な容器、例えばドイツ国特許出願公開第2909671号明細書又は欧州特許出願公開第293859号明細書から公知であるような容器で実施する。一般に、重要な材料は担体被覆前に焼成する。更に、触媒活性材料を被覆を実施する前に0より大であって300μm以下、有利には0.1〜200μm、特に有利には0.5〜50μmの範囲内の粒径に粉砕する。好ましくは、被覆工程及び焼成工程は、欧州特許出願公開第293859号明細書に基づき、生じる多金属酸化物I層が比表面積0.50〜150m2/g、比気孔容積0.10〜0.90cm3/g、及び気孔容積のそれぞれ少なくとも10%が直径範囲0.1〜<1μm、1.0〜<10μm及び10〜100μmに分配されるような気孔直径分布を有するように実施する。欧州特許出願公開第293859号明細書に有利であるとして挙げられた気孔直径分布に調整することもできる。
【0035】
もちろん、本発明による多金属酸化物Iは、担体無しの触媒として使用することもできる。この場合には、多金属酸化物Iの出発化合物からなる完全乾燥混合物を有利には直接所望の触媒形態に圧縮する(例えばペレット加工又は押出成形)。この際には、場合により常用の助剤、例えば黒鉛又はステアリン酸を滑剤及び/又は成形助剤として並びにガラス、アスベスト、炭化珪素又はチタン酸カリウムからなマイクロ繊維のような強化剤を加えることができる。前記圧縮に引き続き焼成する。この場合も、一般に成形前に焼成することもできる。
【0036】
有利な担体無しの触媒形態は、外径及び長さ2〜10mm並びに壁厚さ1〜3mmを有する中空円筒体である。
【0037】
触媒活性材料として新規の多金属酸化物Iを用いてアクロレインをアクリル酸に接触気相酸化するためには、一般に、プロペンの接触気相酸化により製造したアクロレインを使用する。一般に、このプロペン酸化から得られた中間精製していないアクロレインを含有する反応ガスをを使用する。通常、アクロレインの気相接触酸化は、管束式反応器内で不均一固床酸化として実施する。酸化剤としては、自体公知の形式で酸素を、有利には不活性ガスで希釈して(例えば空気の形で)使用する。適当な希釈剤は、例えばN2,CO2、炭化水素、例えばメタン、エタン、プロパン、ブタン及び/又はペンタン、再循環した反応ガス及び/又は水蒸気である。一般に、アクロレイン酸化の際にはアクロレイン:酸素:水蒸気:不活性ガスの容量比は1:(1〜3):(0〜20):(3〜30)、有利には1:(1〜3):(0.5〜10):(7〜18)に調整する。反応圧は、一般に1〜3バールでありかつ全空間速度は、有利には1000〜3500Nl/l/hである。典型的な多管式固床反応器は、例えば刊行物ドイツ国特許出願公開第2830765号明細書、ドイツ国特許出願公開第2201528号明細書又は米国特許第3,147,084号明細書に記載されている。反応温度は通常、アクロレイン転化率が1回の通過で90%以上、有利には98%以上であるように選択する。通常、このためには230〜330℃の反応温度が必要である。
【0038】
注目すべきことに、本発明による多金属酸化物Iはアクロレインからアクリル酸への接触気相酸化において、高い活性だけでなく、驚異的に短い成形時間を有する、即ち本発明による多金属酸化物Iを装填した管束式反応器を所定の条件下でアクロレインを含有するガス流を用いてアクリル酸の酸化形成のために運転した場合、アクリル酸形成の選択率は既に短い運転時間内でそのプラトー値に達する。このプラトー値に関して、本発明による多金属酸化物材料の製造は高い再現性を有する。
【0039】
しかしながら、多金属酸化物Iは、前記の利点を維持した上での、有機化合物、特にアクロレインのアクリル酸への接触気相酸化のための触媒活性材料としての能力は、次の場合初めて完全に発揮される。即ち、前記能力は、前記多金属酸化物Iを、一般式II:
3 12Cudey (II)
[式中、
3=Mo,W,V,Nb及び/又はTa、
d=4〜30、有利には6〜24、特に有利には9〜17、
e=0〜20、有利には0〜10及び
y=式II中の酸素とは異なる元素の原子価及び頻度により決まる数値
である]の微細多金属酸化物で希釈し、そうして一般式III:
[A]p[B]q (III)
[式中、
【0040】
【数3】
Figure 0004068679
【0041】
B=M3 12Cudey (プロモータ相)、
p,q=0とは異なる数値、その比p/qは160:1〜1:1、有利には20:1〜1:1、特に有利には15:1〜4:1である]を有し、
成分[A]pを三次元的に拡がり、その局所的周囲からその局所的周囲とは異なる化学的組成に基づき境界付けられる化学組成:
A Mo12-a-b-ca1 b2 cx
の領域Aの形で、かつ
成分[B]qを三次元的に拡がり、その局所的周囲からその局所的周囲とは異なる化学的組成に基づき境界付けられる化学組成:
B M3 12Cudey
の領域Bの形で含有し、その際、領域A,Bは互いに相対的に微粒子状Aと微粒子状Bからなる混合物におけように分配されている、少なくとも2相の多金属酸化物材料を製造する際に達成される。
【0042】
このような多金属酸化物材料IIIを製造するためには、特に簡単には、多金属酸化物I及びIIを予め別々に製造し、次いで少なくとも1種の微細な、別々に前製造した多金属酸化物I及び少なくとも1種の微細な、別々に前製造した多金属酸化物IIを所望の混合比で完全乾燥混合物を製造し(この場合、完全混合は湿式又は乾式で行うことができる;湿式、一般には水性で行う場合には、引き続いて乾燥する;該混合はニーダー又はミキサーで行うことができる)、次いで該完全乾燥混合物から、多金属酸化物Iに関してのみ記載したと同じ方法で成形により有機化合物の接触気相酸化、特にアクロレインのアクリル酸への接触気相酸化のために好適な触媒を製造することができる。しかしもちろん、多金属酸化物Iもまた多金属酸化物IIIも粉末の形で触媒として使用することができる。同様にもちろん、多金属酸化物材料IIIを、多金属酸化物Iも適用であると記載した全ての接触気相酸化のために使用することができる。活性材料として多金属酸化物材料IIIをベースとする触媒をアクロレインからアクリル酸への接触気相酸化のために使用する場合には、該酸化は一般に多金属酸化物I触媒の相応する単独の使用のために記載したと同じ操作条件下で行う。
【0043】
多金属酸化物IIは、当業者に周知の簡単な方法で以下のようにして製造することができる。多金属酸化物IIの元素成分の適当なソースから可能な限り完全な、有利には微細な乾燥混合物を製造し、該混合物を200〜1000℃、しばしば250〜600℃、大抵は300〜500℃の温度で焼成する。その際、焼成は、例えばドイツ国特許出願公開第4335973号明細書に記載されているように、不活性ガス(例えばN2)、不活性ガスと酸素の混合物(例えば空気)、還元作用ガス、例えば炭化水素(例えばメタン)、アルデヒド(例えばアクロレイン)又はアンモニア、更にまたO2と還元作用ガス(例えば前記の全てのもの)の混合物下で実施することができる。注目すべきことにも、この場合も焼成雰囲気は水蒸気を含有していてもよい。還元条件下で焼成を実施する場合には、金属成分が元素まで還元されないように注意すべきである。焼成温度が高くなるほど、一般に焼成時間は短くなる。
【0044】
多金属酸化物IIのソースに関しては、実質的に多金属酸化物Iの元素成分のソースに関すると同じことが当てはまる。この場合も重要なことは、該ソースが既に酸化物であるか、又は少なくとも酸素の存在下で、加熱により酸化物に転化可能である化合物であることのみである。多金属酸化物IIの有利な製造変更法では、使用出発化合物の完全混合物をオートクレーブ中で過圧を有する水蒸気の存在下に100より高く600℃以下の温度で行う。
【0045】
その都度選択した焼成条件に基づき、生成する多金属酸化物IIは種々の三次元的原子配置を有する。特に、本発明のためには、ドイツ国特許出願公開第4405514号明細書及びドイツ国特許出願公開第19528646号明細書に可能な基本的相もしくはプロモータ相として記載された全ての多金属酸化物IIが該当する。即ち、好ましい多金属酸化物IIは、就中、以下の表に列記したモリブデン酸銅の少なくとも1つの構造型(X線回折パターン)を有するものである(括弧内の表示は、所属のX線回折指紋のためのソースを表す):
【0046】
【表8】
Figure 0004068679
【0047】
アクロレインからアクリル酸への接触気相酸化のために特に適当な多金属酸化物材料IIIを製造するために推奨される多金属酸化物IIとしては、一般式IV:
CuMoABCNbDTaEY・(H2O)F (IV)
[式中、
1/(A+B+C+D+E)=0.7〜1.3、
F =0〜1、
B+C+D+E =0〜1及び
Y=式IV中の酸素とは異なる元素の原子価及び頻度により決まる数値
である]で示され、かつその三次元的原子配置が、Russian Jounal of Chmistry 36 (7) (1991), 921, 表1に定義されかつドイツ国特許出願公開第4405514号明細書並びにドイツ国特許出願公開第4440891号明細書にヴォルフラミット(Wolfamit)として記載されたものが挙げられる。
【0048】
多金属酸化物IVのうちではまた、化学量論的式V:
CuMoABCY (V)
[式中、
1/(A+B+C)=0.7〜1.3、
A,B,C =全て0より大、但しB+C≦1、
Y=式V中の酸素とは異なる元素の原子価及び頻度により決まる数値
である]で示されるもの、並びに化学量論的式VI:
CuMoABY (VI)
[式中、
1/(A+B )=0.7〜1.3、
A/B,C =0.01〜10、有利には0.01〜1及び
Y=式VI中の酸素とは異なる元素の原子価及び頻度により決まる数値
である]で示されるものが注目すべきである。多金属酸化物IV,V及びVIの製造方法は、ドイツ国特許出願公開第4405514号明細書及びドイツ国特許出願公開第4440891号明細書に示されている。
【0049】
更に特に好適である多金属酸化物IIとしては、一般式VII:
CuMoA B C NbD TaE Y (VII)
[式中、
1/(A′+B′+C′+D′+E′)=0.7〜1.3、有利には0.85〜1.15、特に有利には0.95〜1.05、全く特に有利には1、
(B′+C′+D′+E′)/A′ =0.01〜10、有利には0.05〜3、特に有利には0.075〜1.5及び
Y′=式VII中の酸素とは異なる元素の原子価及び頻度により決まる数値
である]で示され、かつその構造型がドイツ国特許出願公開第19528646号明細書に記載されたHT−Cuモリブデン酸塩型のものである。
【0050】
この場合、多金属酸化物VIIのうちでは、 C′+D′+E′=0であるものも有利である。多金属酸化物IIとして特に推奨されるVIIは、組成:
Mo10.81.2Cu1242-48
を有するものである。
【0051】
更に、可能な多金属酸化物IIとしては、ドイツ国特許出願公開第19528646号明細書に開示されているような多金属酸化物IVとVIIの混合物が挙げられる。このことは、特に多金属酸化物IVとVIIを連晶した形で含有するものに対して当てはまる。
【0052】
もちろん、別々に前製造した微細な多金属酸化物IとIIから製造した混合物をその使用前に多金属酸化物III触媒を製造するためにまず圧縮し、次いで粉砕し、かつその後初めて所望の触媒形に加工することもできる。この場合には、最大粒子直径のためには、別々に前製造した多金属酸化物I及びIIの場合と同様に、0より大で300μm以下、特に有利には0.5〜50μm、全く特に有利には1〜30μmの直径範囲が推奨される。
【0053】
本発明による多相多金属酸化物材料III触媒の特別の利点は、種々の相を得るために必要な焼成条件が一般に互いに異なっていることにある。別々の前製造の原理により、焼成条件をそれぞれ所望の相に最適に合わせることができる。
【0054】
多金属酸化物Iは、前記の用途を越えて全く一般的に、例えばドイツ国特許出願公開第4335973号明細書、米国特許第4,035,262号明細書、ドイツ国特許出願公開第4405058号明細書、ドイツ国特許出願公開第4405059号明細書、ドイツ国特許出願公開第4405060号明細書、ドイツ国特許出願公開第4405514号明細書、ドイツ国特許出願公開第4440891号明細書及びドイツ国特許出願公開第19528646号明細書に記載された触媒活性多金属酸化物材料の性能を改良するために好適である。
【0055】
この目的のためには簡単に、前記刊行物に記載の活性材料を微細な形で微細な多金属酸化物Iと混合しかつ多金属酸化物材料III触媒を製造するための完全出発混合物と同様に成形する。
【0056】
特に、多金属酸化物Iは、、ドイツ国特許出願公開第4405058号明細書、ドイツ国特許出願公開第4405059号明細書、ドイツ国特許出願公開第4405060号明細書、ドイツ国特許出願公開第4405514号明細書及びドイツ国特許出願公開第4440891号明細書に開示された多相多金属酸化物材料触媒の共相の成分として好適である。更に、多金属酸化物Iは、ドイツ国特許出願公開第19528646号明細書に記載された多相多金属酸化物材料触媒の活性相の成分として好適である。これらの全ての場合、微細な(0より大で300μm以下)の均一な分布の多金属酸化物Iからなる相を含有する多相の多金属酸化物材料触媒が生成する。これらは特に前記に引用したそれぞれの文献に記載された有機化合物の接触気相酸化ための触媒として好適である。
【0057】
最後に、本発明により初めて純粋な多金属酸化物Iの製造が可能になったことに注目されるべきである。
【0058】
【実施例】
1)本発明による多金属酸化物MI1〜MI9及び比較多金属酸化物VMI1及びVMI2の製造及び同定
一般的説明
以下に記載の本発明による多金属酸化物Iは元素成分Mo及びWを常に酸化状態+6で含有する。これに対して元素成分Vの酸化状態は一般にこの可能な酸化状態V3+、V4+及びV5+における分布である。この分布の測定は電位差滴定による最終点表示を用いた容量分析(組み合わせた白金電極及びポテンシオグラフ、Metrohm、9100 Herisau、スイス)により可能であり、その際不活性ガス雰囲気下で処理しなければならなかった。80℃で滴定を実施することにより最終点の検出が容易になった。そのほか、電位差滴定の容量分析はすべての場合に以下の通り実施した。
【0059】
酸化物試料物質それぞれ0.15gを加熱下で、濃縮した燐酸5ml(20℃の密度ρ=1.70g/cm3)及び水性硫酸10mlからなる混合物に溶かし(アルゴン雰囲気)、その際使用した硫酸水溶液は同じ量の水及び濃縮した硫酸(ρ20=1.52g/cm3)からなる混合物であった(容量表示は20℃に関する)。Vの可能な酸化状態が変動しないように溶剤を選択し、これを相当するV標準規格により検査した。
【0060】
5+含量を分析するために、新たに製造し、生じた溶液を0.1モルの硫酸鉄アンモニウム標準水溶液((NH42Fe(SO42)で滴定した。V3+及びV4+を分析するために、適当な方法で製造した新しい溶液を新たに製造した0.02モルの過マンガン酸カリウム標準水溶液(KMnO4)で滴定し、その際2つの電位の飛躍が生じた(V3+→V4+及びV4+→V5+)。前記のように測定したV3+含量、V4+含量及びV5+含量の合計は試料のV全含量に相当しなければならない。これは同様に電位差滴定の最終点表示を用いた容量分析により測定できた。
【0061】
そのために、酸化物試料物質0.15gを、加熱下で、前記の半濃縮した硫酸水溶液10ml及び濃縮した硝酸10ml(ρ20=1.52g/cm3)からなる混合物に溶かした(アルゴン雰囲気)。引き続き得られた溶液を加熱することにより硝酸及び使用した硫酸の一部を蒸発して残留容量約3mlに濃縮し、その際全部のV成分が酸化状態+5に移行した。冷却後残留容量を50mlに希釈し、存在するV5+を0.1モルの(NH42Fe(SO42標準水溶液で当量点(最終点)をこえて更に電位差滴定した。
【0062】
こうして得られた水溶液を新たに製造した0.02モル過マンガン酸カリウム標準水溶液で滴定し、その際2つの電位の飛躍が生じた。最初の電位の飛躍は使用した過剰のFe2+を生じ、第2の電位の飛躍はV4+からV5+に酸化するために必要な量のKMnO4を供給し、これは試料のV全含量に相当する。
【0063】
MI1:Mo8.542.470.9533.53
ヘプタモリブデン酸アンモニウム水和物33.746kg(MoO3含量:81.8重量%、理想組成:(NH46Mo724・4H2O)、メタバナジン酸アンモニウム6.576kg(V25含量:76.5重量%、理想組成:NH4VO3)、パラタングステン酸アンモニウム水和物5.764kg(WO3含量:89.0重量%、理想組成:(NH4101241・7H2O)及び酢酸アンモニウム7.033kg(CH3COONH4含量:97.0重量%、理想組成: CH3COONH4)を90℃の温度で、前記の順序で、順次水250lに撹拌して溶かした。生じた黄色からオレンジ色の溶液を80℃に冷却し、入口温度300℃及び出口温度110℃で噴霧乾燥した。
【0064】
得られた噴霧粉末800gを、有効容量2.5lを有する混練機(形式:LUK2.5、Werner und Pfleiderer、7000 Stuttgart、ドイツ)中で、水250gを添加して1時間混練した。その際水250gのうち180gを最初の10分以内で混練物に及び70gを残りの50分以内で混練物に添加した。生じた湿った塊状の混練生成物を110℃の温度で15時間乾燥し、その後メッシュ幅5mmのふるいにより圧縮した。
【0065】
引き続き、その際生じたグラニュール100gを、等温に加熱した石英球容量1lを有する水平の回転炉中で、回転速度12rpmで焼成した。その際以下のように焼成条件を形成した。
【0066】
第1段階:装入したグラニュールを50分以内で連続的に25℃から275℃に加熱する、
第2段階:装入したグラニュールを30分以内で連続的に275℃から325℃に加熱する、
第3段階:装入したグラニュールを325℃で4時間保持する、
第4段階:装入したグラニュールを30分以内で連続的に325℃から400℃に加熱する、
第5段階:装入したグラニュールを400℃で10分保持する。
【0067】
引き続き、回転炉の外部加熱を中断し、周囲空気を外部から吹き付けることにより炉を冷却した。その際装入したグラニュールは5時間以内で25℃に冷却した。
【0068】
個々の焼成段階の間に、回転炉の内部空間に、回転軸に平行に、以下の組成を有するガス混合物を貫流させた(標準温度及び圧力条件(N)=1気圧、25℃)。
【0069】
第1段階、第2段階及び第3段階:
空気3.6Nl/h、NH31.5Nl/h及びN44.9Nl/h
(全ガス流量:50Nl/h)。
【0070】
第4段階、第5段階及び冷却段階:
空気3.6Nl/h及びN44.9Nl/h
(全ガス流量:48.5Nl/h)。
【0071】
生じた粉末状の多金属酸化物MI1は黒い色及び比表面積15.0m2/g(DIN66131により、Brunauer−Emmet−Teller(BET)によるガス吸着(N2)により決定した)を有した。多金属酸化物MI1に含まれるバナジウムはV4+として99%より多く存在した(前記のように測定した)。従って多金属酸化物MI1はMo8.542.470.9933.53の化学量論を有した。
【0072】
実施例により測定した及び線形のバックグラウンドを除去した後に評価されるCu−Kα粉末X線回折スペクトルは重要な2θ範囲(5゜〜50゜)で以下の回折線を有した。
【0073】
【表9】
Figure 0004068679
【0074】
【表10】
Figure 0004068679
【0075】
多金属酸化物MI1の原子の空間配置を反映する実験により測定したCu−Kα粉末X線回折スペクトルを図1に示す(縦軸:強度、絶対数値として示される、横軸:2θ範囲5゜〜65゜)。
【0076】
更に図1は評価の枠内で減衰すべき線形のバックグラウンド(A(2θ=5゜)とA(2θ=65゜)の結線)及び個々の回折曲線Aの位置を示す。基準線とX線回折スペクトルの接点は回折スペクトルを自然な方法で2つの2θ範囲5゜〜43゜及び43゜〜65゜に配分する。
【0077】
図2は多金属酸化物MI1のCu−Kα粉末X線回折スペクトルの2θ範囲5゜〜43゜の拡大図である。更に図2は(バックグラウンド線を含めて)この範囲で実施した数学的適合及び解像の結果を示す(PROFILE、Pearson−VIIプロフィル関数、固定したバックグラウンド)。数学的に形成された回折線A *の重なりは実験による輪郭線に適合する。
【0078】
図3は相当する方法で拡大した2θ範囲43゜〜65゜及び線形のバックグラウンド線を含めたこの範囲で実施した解像を示す。
【0079】
図2及び図3の本来のX線回折スペクトルの上に見られる長方形の断面は、それぞれ粉末X線回折スペクトルの実験による輪郭線とその数学的適合の差の線を示す。この差は良好な適合の尺度である。
【0080】
MI2:Mo8.542.470.9933.53
MI1と同様にグラニュールを製造した。グラニュール400gをジェット反応器の原理により作動する焼成炉中で焼成した。その際装入したグラニュールは金網上で堆積高さ5cmで存在し、これに下からガス混合物を貫流した。炉の容量は3lであり、循環比(循環するガス混合物容量流と新たに供給されるガス混合物容量流の比)を20に選択した。装入したグラニュールを前記の炉中でまず1時間以内で連続的に25℃から325℃に加熱した。引き続き、装入したグラニュールを325℃で4時間保持した。焼成の開始時に、貫流するガス混合物はN2120Nl/h、空気10Nl/h及びNH33.3Nl/hからなる組成を有した。引き続き、装入したグラニュールを20分以内で325℃から400℃に加熱し、その後なお1時間400℃に保持した。この最終段階でN2120Nl/h及び空気10Nl/hからなるガス混合物を貫流した。熱供給を中断することにより、室温に冷却した。
【0081】
粉末状の多金属酸化物MI2が得られ、これはV5+分析、V4+分析、V3+分析に関して及びCu−Kα粉末のX線回折スペクトルに関して多金属酸化物MI1と同じであった。
【0082】
MI3:Mo8.352.601.0533.40
ヘプタモリブデン酸アンモニウム水和物852.78g(MoO3含量:81.0重量%、理想組成:(NH46Mo724・4H2O)、メタバナジン酸アンモニウム177.14g(V25含量:77.0重量%、理想組成:NH4VO3)及びパラタングステン酸アンモニウム水和物156.29g(WO3含量:89.0重量%、理想組成:(NH4101241・7H2O)を、95℃の温度で前記の順序で、順次水5lに溶かした。得られた黄色からオレンジ色の溶液を80℃に冷却し、入口温度300℃及び出口温度110℃で噴霧乾燥した。引き続き噴霧乾燥した粉末100gを、等温加熱した石英球容量1lを有する水平の回転炉中で、回転速度12rpmで、以下に定義された条件下で焼成した。第1段階で、装入した粉末を50分以内で連続的に25℃から275℃に加熱し、第1段階に直接続く第2段階で、装入した粉末を30分以内で連続的に275℃から325℃に加熱し、第2段階に直接続く第3段階で、装入した粉末を325℃で4時間保持し、第3段階に直接続く第4段階で、装入した粉末を3.5時間以内で325℃から400℃に加熱した。最初の3つの段階の間に、石英球に、空気9.6Nl/h、NH3Nl/h及びN87.4Nl/hからなるガス混合物(全ガス流量:100Nl/h)を貫流した。第4段階の間に、石英球に、空気9.6Nl/h及びN287.4Nlからなるガス混合物(全ガス流量:97Nl/h)を貫流した。第4段階終了後、回転炉の外部加熱を中断し、外部から空気を吹き付けることにより冷却した。その際装入した粉末を、変化せずに石英球を貫流する、空気9.6Nl/h及びN287.4Nl/hからなるガス混合物下で5時間以内で25℃に冷却した。
【0083】
生じた粉末状の多金属酸化物MI3は黒い色及び比表面積0.5m2/g(DIN66131)を有した。多金属酸化物MI3に含まれるバナジウムはV4+として99%より多く存在した。従って多金属酸化物MI3は、Mo8.352.601.0533.40の化学量論を有した。
【0084】
所属のCu−Kα粉末X線回折スペクトルを図4〜図6に示す。MI1と共通の原子の空間配置を示す。MI1と同様に実施した評価により重要な2θ範囲で以下の回折線が生じた。
【0085】
【表11】
Figure 0004068679
【0086】
【表12】
Figure 0004068679
【0087】
MI4:Mo8.352.601.0533.40
MI3と同様に噴霧乾燥した粉末を製造した。引き続き、噴霧乾燥した粉末60gを、等温加熱した石英球容量1lを有する水平の回転炉中で、回転速度12rpmで、以下に定義した条件下で焼成した。第1段階で、装入した粉末を50分以内で25℃から275℃に加熱し、第1段階に直接続く第2段階で、装入した粉末を30分以内で連続的に275℃から325℃に加熱し、第2段階に直接続く第3段階で、装入した粉末を325℃で3時間保持し、第3段階に直接続く第4段階で、装入した粉末を90分以内で325℃から400℃に加熱し、10分後に引き続き400℃に保持した。最初の3つの段階の間に、石英球に、空気4.8Nl/h、NH31.5Nl/h及びN243.7Nl/hからなるガス混合物(全ガス流量:50Nl/h)を貫流した。第4及び第5段階の間に、石英球に、空気4.8Nl/h及びN243.7(標準)l/hからなるガス混合物(全ガス流量:48.5Nl/h)を貫流した。第5段階終了後、回転炉の外部加熱を中断し、外部から空気を吹き付けることにより冷却した。その際装入した粉末は、変化せずに石英球を貫流する、空気4.8Nl/h及びN243.7Nl/hからなるガス混合物下で5時間以内で25℃に冷却した。
【0088】
粉末状の多金属酸化物MI4が得られ、これはV5+分析、V4+分析、V3+分析に関して及びCu−Kα粉末X線回折スペクトルに関して多金属酸化物MI3と同じであった。前記のように実施したX線回折スペクトル(図7〜図9に示される)の定量的評価により重要な2θ範囲で以下の回折線が生じた。
【0089】
【表13】
Figure 0004068679
【0090】
【表14】
Figure 0004068679
【0091】
MI5:Mo8.542.470.9933.01
MI1を製造するために形成された噴霧粉末800gを、有効容量2.5lを有する混練機(形式:LUK2.5、Werner und Pfleiderer、7000 Stuttgart、ドイツ)中で、酢酸80g(100%)及び水200gを添加して1時間混練した。その際最初の10分間に酢酸80g及び水80gを混練物に添加した。残りの50分間に残りの水120gを混練物に添加した。生じた湿った塊状の混練生成物を110℃の温度で15時間乾燥し、その後メッシュ幅5mmのふるいにより圧縮した。その際生じたグラニュール100gを引き続き水平の回転炉中でMI1に記載と同様に焼成した。
【0092】
生じた粉末状の多金属酸化物MI5は黒い色及び比表面積16.0m2/g(DIN66131)を有した。多金属酸化物MI5に含まれるバナジウムはV3+として42%及びV4+として58%の割合で存在した。従って多金属酸化物MI5は多金属酸化物MI1と異なり、Mo8.542.470.9933.01の化学量論を有した。それにもかかわらず、多金属酸化物MI1と同様に測定し、評価したCu−Kα粉末X線回折スペクトルは多金属酸化物MI5に関して多金属酸化物MI1と同じ原子の空間配置を反映した(図10〜12参照)。測定した回折線は重要な2θ範囲(5゜〜50゜)で以下の通りである。
【0093】
【表15】
Figure 0004068679
【0094】
【表16】
Figure 0004068679
【0095】
VMI1:Mo8.542.470.9934.18
MI5を製造するために、噴霧粉末を水及び酢酸と混練することにより得られたグラニュール100gを、例MI1に記載されたように水平の回転炉中で焼成した。ただし種々のガス混合物の代わりにそれぞれ相当する量の純粋な空気が回転炉を貫流した。
【0096】
生じた粉末状の多金属酸化物VMI1は黒い色及び比表面積16.2m2/g(DIN66131)を有した。多金属酸化物VMI1に含まれるバナジウムはV +として47%及びV +として53%の割合で存在した。従って多金属酸化物VMI1は多金属酸化物MI1及びMI5と異なり、Mo8.542.470.9934.18の化学量論を有した。所属のCu−Kα粉末X線回折スペクトルを図13に示す。これは明らかに多金属酸化物MI1のスペクトルと異なり、2θ範囲5゜〜50゜で、たとえば以下の(かなり低い半値幅を有する)強い回折線を有する。
【0097】
【表17】
Figure 0004068679
【0098】
すなわち、多金属酸化物VMI1の原子の空間配置は多金属酸化物MI1又はMI5の配置に相当しない。
【0099】
MI6:Mo9.62.434.37
80℃で、第1の容器中でシュウ酸二水和物239.74g(理想組成:H224・2H2O,H224含量:71.4重量%)を水4lに溶かした。引き続き生じた水溶液中で80℃に維持してポリバナジン酸アンモニウム90.22g(V25含量:88.2重量%、理想組成:(NH42616)を撹拌して溶かし、その際濃い青色の水溶液Aが生じた。その際、反応バッチの泡立ちを回避するために、ポリバナジン酸アンモニウムを15分以内で少量ずつ添加した。第2の容器中でヘプタモリブデン酸アンモニウム水和物619.60g(MoO3含量:81.3重量%、理想組成:(NH46Mo724・4H2O)を80℃の温水4lに撹拌して溶かした(溶液B)。引き続き80℃で溶液Bを15分以内で連続的に溶液Aに撹拌して入れた。その際生じた濃い青色の水溶液を80℃でなお15時間後撹拌し、引き続き噴霧乾燥した(入口温度:310℃、出口温度:110℃)。
【0100】
噴霧乾燥した粉末100gを、等温加熱した石英球容量1lを有する水平の回転炉中で、回転速度12rpmで、以下の条件下で焼成した。第1段階で、装入した粉末を50分以内で連続的に25℃から275℃に加熱し、第1段階に直接続く第2段階で、装入した粉末を35分以内で連続的に275℃から325℃に加熱し、これに直接続く第3段階で、325℃で4時間保持した。その後直ちに装入した粉末を第4段階で35分以内で325℃から400℃に加熱し、直接続く第5段階で400℃で10分間保持した。引き続き回転炉の外部加熱を中断し、空気を外部から吹き付けることにより石英球を冷却した。その際装入した粉末は5時間以内で室温(25℃)に冷却した。(冷却段階を含めて)全焼成時間の間、石英球に50Nlの空気流を貫流した。
【0101】
生じた粉末状の多金属酸化物MI6は黒い色及び比表面積6.6m2/g(DIN66131)を有した。多金属酸化物VMI6に含まれるバナジウムはV +として36%及びV +として64%の割合で存在した。従って多金属酸化物VMI6はMo9.62.434.37の化学量論を有した。
【0102】
所属のCu−Kα粉末X線回折スペクトルの視覚的現象パターンはMI1のパターンに相当し(図14参照)、MI1と共通の原子の空間配置を示す。MI1と同様に実施した評価により、重要な2θ範囲で以下の回折線を生じた。
【0103】
【表18】
Figure 0004068679
【0104】
【表19】
Figure 0004068679
【0105】
MI7:Mo9.62.434.13
MI6のために製造した、噴霧乾燥した粉末100gを、等温加熱した石英球容量1lを有する水平の回転炉中で、回転速度12rpmで、以下の条件下で焼成した。第1段階で、装入した粉末を50分以内で25℃から275℃に加熱し、第1段階に直接続く第2段階で、装入した粉末を25分以内で連続的に275℃から300℃に加熱し、直接続く第3段階で、装入した粉末を300℃でなお4時間保持した。引き続き回転炉の外部加熱を中断し、回転球に空気を吹き付けることにより冷却した。その際装入した粉末を3時間以内で室温(25℃)に冷却した。(冷却段階を含めた)全焼成時間の間、石英球に50Nl/hの空気流を貫流した。
【0106】
生じた粉末状の多金属酸化物MI7は黒い色及び比表面積5.7m2/g(DIN66131)を有した。多金属酸化物MI6に含まれるバナジウムはV4+として56%及びV5+として44%の割合で存在した。従って多金属酸化物MI7はMo9.62.434.13の化学量論を有した。
【0107】
所属のCu−Kα粉末X線回折スペクトルの視覚的現象パターンはMI1のパターンに相当し(図15参照)、従ってMI1と共通の原子の空間配置を示す。MI1と同様に実施した評価は、重要な2θ範囲で以下の回折線を生じた。
【0108】
【表20】
Figure 0004068679
【0109】
MI8:Mo9.03.033.72
80℃で、第1の容器中でシュウ酸二水和物306.86g(理想組成;H224・2H2O、H224含量:71.4重量%)を水4lに溶かした。引き続き透明な水溶液中で80℃に維持してポリバナジン酸アンモニウム115.48g(V25含量:88.2重量%、理想組成:(NH42616)を撹拌して溶かし、その際濃い青色の水溶液が生じた(溶液A)。その際、反応バッチの泡立ちを回避するために、ポリバナジン酸アンモニウムを15分以内で少量ずつ添加した。第2の容器中でヘプタモリブデン酸アンモニウム水和物594.82g(MoO3含量:81.3重量%、理想組成:(NH46Mo724・4H2O)を80℃の温水4lに撹拌して溶かした(溶液B)。引き続き80℃で溶液Bを15分以内で連続的に溶液Aに撹拌して入れた。その際生じた濃い青色の水溶液を80℃でなお15時間後撹拌し、引き続き噴霧乾燥した(入口温度:310℃、出口温度:110℃)。
【0110】
噴霧乾燥した粉末100gを、等温加熱した石英球容量1lを有する水平の回転炉中で、回転速度12rpmで、MI7に記載されたと同様に空気流中で焼成した。
【0111】
生じた粉末状の多金属酸化物MI8は黒い色及び比表面積5.3m2/g(DIN66131)を有した。多金属酸化物MI8に含まれるバナジウムはV4+として52%及びV5+として48%の割合で存在した。それとともに多金属酸化物MI8はMo9.03.033.72の化学量論を有した。所属のCu−Kα粉末X線回折スペクトルの視覚的現象パターンはMI1のパターンに相当し(図16参照)、従ってMI1と共通の原子の空間配置を示す。MI1と同様に実施した評価は、重要な2θ範囲で以下の回折線を生じた。
【0112】
【表21】
Figure 0004068679
【0113】
【表22】
Figure 0004068679
【0114】
MI9:Mo9.03.034.04
MI8のために製造した、噴霧乾燥した粉末100gを、等温加熱した石英球容量1lを有する水平の回転炉中で、回転速度12rpmで,MI6に記載されたと同様に空気流中で焼成した。生じた多金属酸化物MI9は黒い色及び比表面積5.7m2/g(DIN66131)を有した。
【0115】
多金属酸化物MI9に含まれるバナジウムはV4+として31%及びV5+として69%の割合で存在した。従って多金属酸化物MI9はMo9.03.034.04の化学量論を有した。所属のCu−Kα粉末X線回折スペクトルの視覚的現象パターンはMI1のパターンに相当し(図17参照)、MI1と共通の原子の空間配置を示す。MI1と同様に実施した評価は、重要な2θ範囲で以下の回折線を生じた。
【0116】
【表23】
Figure 0004068679
【0117】
VMI2:Mo9.03.032.90
MI8で製造した噴霧乾燥した粉末100gを、等温加熱した石英球容量1lを有する水平の回転炉中で、回転速度12rpmで、MI1に記載されたと同様に焼成した。
【0118】
生じた多金属酸化物VMI2は黒い色及び比表面積6.8m2/g(DIN66131)を有した。多金属酸化物VMI2に含まれるバナジウムはV4+として93%及びV3+として7%の割合で存在した。所属のCu−Kα粉末X線回折スペクトルの視覚的現象パターンは明らかに多金属酸化物MI1のパターンと異なり(図18参照)、2θ範囲5゜〜50゜で以下の強い回折線を生じた。
【0119】
【表24】
Figure 0004068679
【0120】
2)多金属酸化物IIの製造
MII1:ドイツ特許第4440891号明細書のM5の出発物質1(Cu12Mo1248)を後処理した。
【0121】
水500ml中に、酸化銅(II)55.3g(CuO、Merck,Darmstadt、純粋、最低96%、粉末状)及び酸化モリブデン(VI)100g(MoO3、Merck、Darmstadt、分析程度、最低99.5%、粉末状)を分散して入れた。全量の水性分散液をオートクレーブ(材料、Hastelloy C4、内部容量:2.5l)中で撹拌して(1000rpm)350℃に加熱し、この温度及び所属する過圧で撹拌して24時間保持した。引き続きオートクレーブを室温に冷却し、これに含まれる水性分散液を取り出し、分散した固形物を濾過し、引き続き乾燥棚中で80℃で乾燥した。生じた乾燥粉末は走査式電子顕微鏡分析により数平均粒子直径約8μmを有する結晶粒子を有した。結晶粒子の化学分析によりCu/Mo比約1が得られた。
【0122】
Cu−Kα放射線(Siemens-Diffraktometer D-5000,40kV,30mA、自動分散、散乱及び計数管コリメータ及びペルチエ検出器を有する)を使用して、結晶粉末CuMoOyは以下のX線回折パターンを示し、使用されるX線の波長に依存しない格子面間隔d[Å]及び関連する、最も強い強度(幅)の回折線に対する種々の回折線の相対強度(%)の形で示される。
【0123】
【表25】
Figure 0004068679
【0124】
【表26】
Figure 0004068679
【0125】
【表27】
Figure 0004068679
【0126】
格子面間隔dの表示の誤差は±0.20Åである(低い強度の線にはおそらくわずかな不純物に起因する線が含まれる)、このX線回折パターンは、Russian Journal of Inorganic Chemistry 36 (7),1991,927頁表1に記載のCuMoO4−IIIに関するパターンに相当する。
【0127】
MII2:ドイツ特許第19528646号明細書のM3の出発物質1(Cu12Mo6642 48)を後処理した。
【0128】
ヘプタモリブデン酸アンモニウム水和物223.05g(MoO3含量:81.3%、理想組成:(NH46Mo724・4H2O)及びパラタングステン酸アンモニウム水和物327.52g(WO3含量:89.2重量%、理想組成:(NH4101241・7H2O)を90℃で水5lに撹拌して溶かした(溶液A)。酢酸銅水和物492.64g(Cu含量:32.5重量%、理想組成:Cu(CH3COO)2・H2O)に水3l及び25重量%アンモニア水溶液197.88gを加え、25℃で15分撹拌し、その際薄い青色の懸濁液が得られた(懸濁液B)。引き続き懸濁液Bを90℃を有する溶液Aに撹拌して入れ、その際生じた懸濁液を80℃で更に3時間撹拌した。生じた懸濁液の水性懸濁媒体(懸濁液C)は25℃に冷却後、pH値5.3(ガラス電極)を有した。懸濁液Cは入口温度310℃及び出口温度110℃で噴霧乾燥した。
【0129】
その際得られた緑色の粉末を空気中で焼成し、その際第1段階で24時間以内で連続的に25℃から300℃に加熱し、これに続く第2段階で3時間以内で連続的に300℃から780℃に加熱し、第3段階でなお1時間780℃に温度を維持した。使用可能な容量1lを有する回転炉中で焼成を実施し、その際出発噴霧粉末それぞれ60gを使用し、空気流50Nl/hを使用した。
【0130】
生じた粉末は褐色及びDIN66131による比表面積0.3m2/g及びCu12Mo6642 48の組成を有した。走査式電子顕微鏡分析により粉末は数平均粒子直径約8μmを有する結晶粒子を有した。Cu−Kα放射線(Siemens-Diffraktometer D-5000,40kV,30mA、自動分散、散乱及び計数管コリメータ及びペルチエ検出器を有する)を使用して結晶粉末は粉末X線グラフを示し、これは鉄マンガン重石指紋とHT−銅モリブデン酸指紋との重なりを示し、すなわち二相構造を有していた。線の強度により2つの構造タイプは約60(鉄マンガン重石構造):40(HT−銅モリブデン酸タイプ)の頻度比で存在した。
【0131】
HT−銅モリブデン酸構造タイプは、 以下のX線回折グラフにより、Cu−Kα放射線(Siemens-Diffraktometer D-5000,48kV,30mA、自動分散、散乱及び計数管コリメータ及びペルチエ検出器を有する)を使用してCuMo0.90.13.5 4の組成の結晶粉末で表され、使用されるX線の波長に依存しない格子面間隔d[Å]及び関連する、最も強い強度(幅)の回折線に対する(減衰強度により示される)種々の回折線の相対強度(%)の形で示される。
【0132】
【表28】
Figure 0004068679
【0133】
【表29】
Figure 0004068679
【0134】
【表30】
Figure 0004068679
【0135】
格子面間隔dの表示の誤差は、2.9Å以上のd値に関しては、主に±0.3Åであり、2.9Åより小さいd値に関しては、±0.2Åである(低い強度の線にはおそらくわずかな不純物に起因する線が含まれる)。
【0136】
3)シェル型触媒S1〜S3及び比較シェル型触媒SV1〜SV3の製造
S1:1)で製造した多金属酸化物MI1(Mo8.542.470.9933.53)を0.1〜50μmの範囲の粒子直径に粉砕後、その際生じた活性物質粉末を回転ドラム中で、直径4〜5mm及び40〜200μmの範囲の表面粗面性Rz(DIN4768、1により、Hommelwerke社(ドイツ)のDIN/ISO表面積測定用Hommel テスターを用いて決定した)の非孔質の、表面が粗のステアタイト球に、ステアタイト球200g当たり粉末50gの量で、同時に水18gを添加してドイツ特許第4442346号明細書により被覆した。引き続き110℃の熱い空気で乾燥した。
【0137】
SV1:S1と同様に実施した、ただし活性物質として、同様にMo8.542.470.9933.53の組成を有する、1)で製造した、相当する方法で粉砕した多金属酸化物VMI1を使用した。
【0138】
S2:S1と同様に実施した、ただし活性物質として、1)で製造した、相当する方法で粉砕した多金属酸化物MI1( Mo123.471.3947.11)及び遠心分離粉砕器、Retsch社(ドイツ)を使用して1〜3μmの数平均最大粒子直径に粉砕した、2で製造した多金属酸化物粉末MII1(Cu12Mo1248)からなる混合物を使用した。MII1をMI1に、生じた混合粉末中の前記の化学量論単位のモル比が6.5(MI1):1(MII1)になるような量で撹拌して入れた。強力混合機、Gustav Eirich、Hardheim、ドイツ(形式RO2、MPM装置)中で混合することにより、2つの粉末の完全な混合物が得られた。容量10lを有し、64rpmで回転する槽及び槽に対して向流で900rpmで回転するStern羽根車を使用して、混合物600gを15分で混合した。
【0139】
生じた二相の活性物質は以下のものである。
【0140】
[Mo123.471.3947.116.5[Cu12Mo1248]≒Mo1231.2Cu1.647.23
S3:S2と同様に実施した、ただし2)で製造した多金属酸化物MII1の代わりに2)で製造した多金属酸化物MII2を使用した。
【0141】
生じた活性物質は以下のものである。
【0142】
[Mo123.471.3947.116.5[Cu12Mo6642 48
SV2:S1と同様に製造した、ただし活性物質として以下のように製造した微細分散した粉末を使用した。
【0143】
酢酸銅(II)一水和物127g(Cu32.4重量%)を水2700gに溶かし、溶液Iを製造した。ヘプタモリブデン酸アンモニウム四水和物860g(MoO381.3重量%)、メタバナジン酸アンモニウム143g(V2577.2重量%)及びパラタングステン酸アンモニウム七水和物126g(WO389.3重量%)を95℃で順次水5500gに溶かし、溶液IIを製造した。引き続き溶液Iを直ちに溶液IIに撹拌して入れ、80℃に加熱した水性混合物を出口温度110℃で噴霧乾燥した。
【0144】
噴霧粉末800gを混練し、MI1を製造する噴霧粉末800gと同様に焼成した。その後粉砕して、粒子直径0.1〜50μmを生じ、S1と同様のシェル型触媒が形成された。
【0145】
活性物質の化学量論:Mo1231.2Cu1.6 *
図19は、2θ=5゜〜50゜の範囲でA1〜A10と異なるX線回折線を有することにより、多金属酸化物MI1のCu−Kα粉末のX線回折スペクトルと著しく異なるCu−Kα粉末X線回折スペクトルを示す。
【0146】
SV3:SV2と同様に実施した、ただし全焼成時間中、空気3.6Nl/hのみが焼成炉を貫流した。
【0147】
活性物質の化学量論:Mo1231.2Cu1.6 **
4). 3)で製造したシェル型触媒の、アクロレインからアクリル酸を生じるための気相酸化用触媒としての使用
触媒を管型反応器(V2Aステンレス鋼、内径25mm、触媒床2000g、塩浴を用いて加熱した)に導入し、
アクロレイン5容量%、
酸素7容量%、
蒸気10容量%及び
窒素78容量%
からなる気体の混合物を、反応温度250〜270℃で、残留時間2.0秒を使用して供給した。すべての場合に、成形を終了後、1回の通過により均一のアクロレイン転化率99%を生じるように塩浴温度を調整した。反応器に生じる生成物ガス混合物をガスクロマトグラフィーにより分析した。種々の触媒を使用してアクリル酸形成の選択率の結果を以下の表に示した。
【0148】
【表31】
Figure 0004068679
【0149】
転化率、選択率及び残留時間を以下に示す。
【0150】
アクロレインの転化率C(%)=(転化したアクロレインのモル数/装入したアクロレインのモル数)×100
アクリル酸形成の選択率S(%)=(アクリル酸に転化したアクロレインのモル数/すべての転化したアクロレインのモル数)×100
滞留時間(秒)=(触媒を充填した反応器の空間容量(l)/装入した合成ガス量(Nl/h))×3600
【図面の簡単な説明】
【図1】多金属酸化物MI1の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図2】前記スペクトルの2θ範囲5〜43゜の拡大図である。
【図3】前記スペクトルの2θ範囲43〜65゜の拡大図である。
【図4】多金属酸化物MI3の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図5】前記スペクトルの2θ範囲5〜43゜の拡大図である。
【図6】前記スペクトルの2θ範囲43〜65゜の拡大図である。
【図7】多金属酸化物MI4の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図8】前記スペクトルの2θ範囲5〜43゜の拡大図である。
【図9】前記スペクトルの2θ範囲43〜65゜の拡大図である。
【図10】多金属酸化物MI5の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図11】前記スペクトルの2θ範囲5〜43゜の拡大図である。
【図12】前記スペクトルの2θ範囲43〜65゜の拡大図である。
【図13】比較多金属酸化物VMI1の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図14】多金属酸化物MI6の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図15】多金属酸化物MI7の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図16】多金属酸化物MI8の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図17】多金属酸化物MI9の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図18】比較多金属酸化物VMI2の空間配置を示すCuKα粉末X線回折スペクトルの図である。
【図19】製造したシェル型触媒の空間配置を示すCuKα粉末X線回折スペクトルの図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is directed to general formula I:
Mo12-abcVaM1 bM2 cOx            (I)
[Where:
M1= W and / or Nb,
M2= Ti, Zr, Hf, Ta, Cr, Si and / or Ge,
a = 0.1-6, preferably 0.5-4.5,
b = 0 to 6, preferably 0.1 to 6, particularly preferably 0.5 to 4,
c = 0-6, often 0.1-6 or 0.5-4,
Where a + b + c = 0.1-6, preferably 0.5-4.5, and
x = a numerical value determined by the valence and frequency of an element different from oxygen in Formula I
The multi-metal oxide has a three-dimensional atomic arrangement obtained by using Cu—Kα radiation (λ = 1.54178Å) of 5 to 50 °. In the 2θ range (expressed in units of in-plane angles), at least the following characteristic characteristic diffraction lines A1, AThree, AFive, A9And ATenHowever, at most the following diffraction line A1~ ATenX-ray powder diffraction spectrum (diffracted X-ray intensity A plotted as a function of double diffraction angle (2θ)):
[0002]
[Table 5]
Figure 0004068679
[0003]
It is related with the polymetal oxide characterized by producing.
[0004]
In this case, the wavelength λ and the diffraction angle θ of X-rays used for diffraction are Bragg's relational expressions:
2 sin θ = λ / d
[Where d is the lattice plane distance of a three-dimensional atomic arrangement belonging to each diffraction line].
[0005]
Furthermore, the present invention relates to a process for the production of multimetal oxide I and to the direct use of the multimetal oxide as an active material for the catalytic gas phase oxidation of organic compounds.
[0006]
The invention also relates to the use of multimetal oxide I as a starting compound for the production of multimetal oxide materials containing Mo and V, which are suitable as active materials for the catalytic gas phase oxidation of organic compounds. .
[0007]
It is known to produce a multi-metal oxide material containing Mo and V and to use the multi-metal oxide material as an active material for the catalytic gas phase oxidation of organic compounds (eg European Patent Application No. 293859). No. description).
[0008]
Initially, such multi-metal oxide materials containing Mo and V provide suitable sources (starting compounds) from each of their elemental components and are as complete as possible from the total amount of these sources, advantageously Produces a dry material composed corresponding to the required stoichiometric amount of the fine, desired multi-metal oxide material, and this dry mixture contains inert gas or oxygen for several hours at elevated temperature Produced by firing (single container method) under a gas (for example, air). In this case, what is important for the elemental source of the multi-metal oxide material is that they are already oxides or compounds that can be converted to oxides by heating in the presence of at least oxygen. (See, for example, German Offenlegungsschrift 4,335,937 and U.S. Pat. No. 4,035,262).
[0009]
Now, first, separately form a multimetal oxide containing a part of the total amount of elemental components of the desired multimetal oxide material, and then continue the desired pre-formed part of the multimetal oxide. It is also known that it is sometimes preferred to use it as a fine particle source for the production of (eg EP-A-835, DE-A-3338380, DE-A-4220659). , German Patent Application Publication No. 4307381, German Patent Application Publication No. 4405059, German Patent Application Publication No. 4405060, German Patent Application Publication No. 4405514 and German Patent Application. (See Publication No. 4440981).
[0010]
In this case, in general, a multimetal oxide material having a multiphase structure which is more advantageous for the catalytic gas phase oxidation of organic compounds than a multimetal oxide material produced by a method known per se is produced.
[0011]
[Problems to be solved by the invention]
The object of the present invention is to use as a starting compound for the production of multimetallic oxide materials containing multiphase Mo and V, which are particularly suitable as active materials for the gas phase catalytic oxidation of acrolein to acrylic acid It was possible to provide a new partial metal oxide of a multi-metal oxide material containing Mo and V.
[0012]
[Means for Solving the Problems]
Therefore, the multimetal oxide I defined at the beginning was found. Preferred multimetal oxides I are especially those having x = 15-50. X is preferably 25 to 40, particularly preferably 30 to 40. Further, among the multi-metal oxides I, it is particularly preferable that c = 0. c = 0 and M1= When W is exclusively W, ≧ 25%, or ≧ 50%, or ≧ 75%, or ≧ 95%, or ≧ 99% of vanadium is V4+Is advantageously present as
[0013]
What is typical for the novel multimetal oxide I is that the X-ray powder diffraction spectrum obtained using its Cu-Kα radiation is at least characteristic diffracted as a fingerprint characterized in the 2θ range of 5-50 °. Line A1, AThree, AFive, A9And ATen, But never diffraction line A1, A2, AThree, AFour, AFive, A6, A7, A8, A9And ATenIt does not contain more.
[0014]
It should be noted that some of the diffraction lines have a relatively large half-width FWHM [width of the diffraction line at a height half the maximum amplitude of the diffraction line, expressed as an angle in the plane (as a function of 2θ. Plotted intensity)This reflects the anomalous pattern of the near arrangement and the far arrangement in the novel multimetal oxide I (see Examples). This near and far placementofThe special form is considered, among other things, due to the special catalytic properties of the multi-metal oxide I according to the invention, according to the inventors' view.
[0015]
Based on the special half-width, the X-ray powder diffraction spectrum of the multi-metal oxide I according to the invention is a completely unresolved diffraction line Aiincluding. However, many diffraction lines AiIs present as a relative maximum in the contour of the X-ray powder diffraction spectrum of the novel multimetal oxide I in a form that is visually directly identifiable (after removal of the linear background). Diffraction line A according to the claims hereiniIt is defined as
[0016]
After removing the linear background [A (coupling line between 2θ = 5 ° and A (2θ = 65 °)], these diffraction lines A1~ ATenFurthermore, the following diffraction line A1~ ATenRelative line strength (IA rel= (I / Io) × 100%), using the amplitude measured from the baseline to the relative maximum as the intensity measure:
[0017]
[Table 6]
Figure 0004068679
[0018]
With respect to this line strength data, the relative line strength, unlike the position of the line, is significantly influenced in a manner well known to those skilled in the art by the individual crystal orientations that occur based on the crystal form anisotropy in the various powder preparations. It should therefore be noted that it is not very important for the identification of new multimetal oxides.
[0019]
In this connection, according to the applicant's view, another feature of the Cu-Kα X-ray powder diffraction spectrum of the multi-metal oxide I according to the invention does not contain a diffraction line which is generally FWHS <0.25 °. It should be confirmed that it appears.
[0020]
In all examples, X-ray powder diffraction spectra were recorded using a Siemens Diffraktometer D-5000 using Cu-Kα radiation (40 kV, 30 mA, λ = 1.54178Å). . The diffractometer was equipped with automatic primary and secondary collimators and a graphite secondary monochromator.
[0021]
Of course, the resolution of the X-ray powder diffraction spectrum of polymetal oxide I, and thus the selective characterization, can be achieved by removing the linear background and then calculating the experimental diffraction spectrum (with its mathematical function) under the boundary condition of the minimum mean square deviation. Line A which describes the envelope) and decomposes it separately1 *~ ATen*This can be done by developing the superposition. Each of the resolved line maxima defines their line position.
[0022]
The mathematical decomposition of the X-ray powder diffraction spectrum already described was carried out using the 1994 version of the software-package DIFFRAC-AT V 3.2 / PROFILE procured from Siemens, in which case the decomposition and fitting was Pearson VII. This was done based on the Pearson-VII-form function.
[0023]
Diffraction line A in Cu-Kα powder X-ray powder diffraction spectrum of multimetal oxide I according to the present invention2, AFourAnd A6~ A8The existence of these envelopes based solely on visual observation is partially linked to some degree of uncertainty and, in some cases, controversial (see the examples), as described above. The mathematical decomposition obtained is generally without question the diffraction line A2 *, AFour*, A6 *And A7 *(See Example), whereas diffraction line A8 *Is unnecessary. Thus, both characterization methods (information) together require the definitions set forth in the subject claims of the present invention. In contrast, exclusively by mathematical decomposition, the Cu-Kα powder X-ray powder diffraction spectrum of the multi-metal oxide I according to the present invention can generally be characterized as follows:
[0024]
[Table 7]
Figure 0004068679
[0025]
In this case IF rel[%] Is diffraction line A1 *~ ATen*Is the percentage of the intensity of the diffraction line relative to the maximum intensity of, where the area under the diffraction line is used as an intensity measure.
[0026]
The multimetal oxide I according to the invention simply produces from the appropriate source of its elemental components a dry mixture of the finest possible, preferably fine particles, corresponding to the desired stoichiometric amount, the mixture Can be obtained by firing at a temperature in the range of 300 to 500 ° C. The key to obtaining the multimetal oxide I according to the invention is then the redox properties of the firing atmosphere which must not be too high oxidizing or too high reducing.
[0027]
It is not possible to provide general reasonable quantitative data on the required redox properties of the firing atmosphere. On one side, the required redox properties vary with the stoichiometric amount selected, and on the other side the opposite ion (eg NH) of the selected source of the elemental component.Four +) Is also involved in the redox properties of the firing atmosphere when it decomposes during firing. However, through pre-experiment for investigation, those skilled in the art can confirm the required redox characteristics of the firing atmosphere.
[0028]
In this case, in order to control the redox characteristics of the firing atmosphere, those skilled in the art have used, for example, N2And / or a noble gas, for example ammonia, hydrogen, low molecular aldehydes and / or hydrocarbons as reducing gas and oxygen (usually in the form of air) as oxidizing gas.
[0029]
What is important for the elemental source is simply that they are already oxides or compounds that can be converted to oxides by heating, at least in the presence of oxygen. Therefore, in addition to oxides, halides, nitrates, formates, citrates, oxalates, acetates, carbonates or hydroxides are particularly suitable as starting compounds. Suitable starting compounds of Mo, V, W and Nb are also their oxo compounds (molybdates, vanadates, tungstates and niobates), which are reducing NHs when heated.ThreeLiberates NHFour +In general as an opposite ion. Of course, acids derived from these oxo compounds are also possible starting compounds. More often, compounds such as ammonium acetate and ammonium nitrate are also added that act as pore formers during firing and also affect the redox properties of the firing atmosphere.
[0030]
Complete mixing of the starting compounds within the scope of the invention can be carried out dry or wet. When dry, the starting compound is preferably used as a fine powder and calcined after mixing and optionally compression. However, it is advantageous to carry out thorough mixing in a wet manner. In this case, it is usually advantageous to mix the starting compounds with one another in the form of an aqueous solution and / or suspension. Subsequently, the aqueous material is dried and fired after drying. Advantageously, the drying process is carried out immediately after production of the aqueous mixture and by spray drying (inlet temperature is generally between 250 and 350 ° C.R,OrThe outlet temperature is generally 100-150 ° C).
[0031]
Interestingly, the new multimetal oxides I are already gas phase catalytic oxidation of organic compounds, such as alkanes, alkanols, alkenes, alkanals, alkenals and alkenols having 3 to 6 carbon atoms (eg propylene, methacrolein, gas phase catalytic oxidation (ammoxidation) of t-butanol, methyl ester of t-butanol, iso-butane, iso-butene or iso-butyraldehyde) to olefinically unsaturated aldehydes and / or carboxylic acids and the corresponding nitriles Particularly suitable as active material for catalysts for propene to acrylonitrile and to iso-butene or t-butanol to methacrylonitrile. Examples include the production of acrolein, methacrolein and methacrylic acid. Furthermore, it is also suitable as a catalytically active material for oxidative dehydrogenation of olefinic compounds.
[0032]
In this case, the multimetal oxide I is undoubtedly suitable as an active material of the catalyst for the gas phase catalytic oxidation of acrolein to acrylic acid, and its high activity is particularly remarkable for this reaction.
[0033]
When the multi-metal oxide material according to the present invention is used as the active material of a catalyst for the gas phase catalytic oxidation of organic compounds, especially the gas phase catalytic oxidation of acrolein to acrylic acid, it can be molded into the desired catalyst form. It is preferably carried out by applying to a preformed inert catalyst support. In this case, the application can take place before or after the final calcination. In this case, customary carrier materials such as porous or non-porous aluminum oxide, silicon dioxide, thorium dioxide, zirconium dioxide, silicon carbide or silicates such as magnesium silicate or aluminum silicate can be used. The support may be regularly or irregularly shaped, with preference given to regularly shaped supports, spheres or hollow cylinders with a clearly formed surface roughness. Of these, spheres are also particularly advantageous. Particular preference is given to using a substantially non-porous, surface-rough spherical support made of steatite having a diameter of 1 to 6 mm, preferably 4 to 5 mm. The layer thickness of the active material should preferably be chosen to be in the range of 50 to 500 μm, advantageously in the range of 150 to 250 μm. More specifically, in the production of such a coated catalyst, the powder material to be applied for coating the support is generally wetted and dried again after application, for example with hot air.
[0034]
In order to produce a coated catalyst, the coating of the support is generally carried out in a suitable rotatable container, for example a container as known from DE-A 29 09 671 or EP-A 29 3859. carry out. In general, important materials are fired before carrier coating. Furthermore, the catalytically active material is ground to a particle size in the range of more than 0 and not more than 300 μm, preferably 0.1 to 200 μm, particularly preferably 0.5 to 50 μm, before carrying out the coating. Preferably, the coating step and the firing step are based on European Patent Application No. 293859, and the resulting multimetal oxide I layer has a specific surface area of 0.50 to 150 m.2/ G, specific pore volume 0.10-0.90 cmThree/ G, and a pore diameter distribution such that at least 10% of the pore volume each is distributed in the diameter range 0.1- <1 μm, 1.0- <10 μm and 10-100 μm. It is also possible to adjust to the pore diameter distribution mentioned as advantageous in EP-A-2 93859.
[0035]
Of course, the multimetal oxide I according to the invention can also be used as a catalyst without support. In this case, a completely dry mixture consisting of the starting compound of the multimetal oxide I is advantageously compressed directly into the desired catalyst form (eg pelleting or extrusion). In this case, customary auxiliaries, for example graphite or stearic acid, may be used as lubricants and / or molding auxiliaries and from glass, asbestos, silicon carbide or potassium titanate.RuReinforcing agents such as microfibers can be added. Baking following the compression. In this case as well, it can generally be fired before molding.
[0036]
An advantageous support-free catalyst form is a hollow cylinder having an outer diameter and length of 2 to 10 mm and a wall thickness of 1 to 3 mm.
[0037]
In general, acrolein produced by catalytic gas phase oxidation of propene is used for catalytic gas phase oxidation of acrolein to acrylic acid using the novel multimetal oxide I as the catalytically active material. In general, a reaction gas containing acrolein obtained from this propene oxidation and not subjected to intermediate purification is used. Usually, the gas phase catalytic oxidation of acrolein is carried out as a heterogeneous solid bed oxidation in a tube bundle reactor. As oxidant, oxygen is used in a manner known per se, preferably diluted with an inert gas (for example in the form of air). Suitable diluents are for example N2, CO2Hydrocarbons such as methane, ethane, propane, butane and / or pentane, recycled reaction gases and / or steam. In general, during acrolein oxidation, the volume ratio of acrolein: oxygen: water vapor: inert gas is 1: (1-3) :( 0-20) :( 3-30), preferably 1: (1-3 ): (0.5 to 10): Adjust to (7 to 18). The reaction pressure is generally from 1 to 3 bar and the total space velocity is preferably from 1000 to 3500 Nl / l / h. Typical multitubular fixed bed reactors are described, for example, in the publications DE-A 2830765, DE-A 22015528 or U.S. Pat. No. 3,147,084. Has been. The reaction temperature is usually chosen such that the acrolein conversion is 90% or more, preferably 98% or more in a single pass. Usually, this requires a reaction temperature of 230-330 ° C.
[0038]
It should be noted that the multimetal oxide I according to the invention has not only high activity but also a surprisingly short forming time in the catalytic gas phase oxidation of acrolein to acrylic acid, ie the multimetal oxide according to the invention. When the tube bundle reactor loaded with I is operated for the oxidation formation of acrylic acid using a gas stream containing acrolein under the specified conditions, the selectivity of acrylic acid formation is already within its short operating time. Reach value. With respect to this plateau value, the production of the multi-metal oxide material according to the invention is highly reproducible.
[0039]
However, while maintaining the above advantages, the multimetal oxide I is not fully capable of being a catalytically active material for the catalytic gas phase oxidation of organic compounds, particularly acrolein to acrylic acid, for the first time in the following cases: Demonstrated. That is, the capability is that the multimetal oxide I is represented by the general formula
MThree 12CudHeOy                  (II)
[Where:
MThree= Mo, W, V, Nb and / or Ta,
d = 4-30, preferably 6-24, particularly preferably 9-17,
e = 0 to 20, preferably 0 to 10 and
y = a numerical value determined by the valence and frequency of an element different from oxygen in Formula II
Is diluted with a fine multi-metal oxide of formula III,
[A]p[B]q                  (III)
[Where:
[0040]
[Equation 3]
Figure 0004068679
[0041]
B = MThree 12CudHeOy                        (Promoter phase),
p, q = 0, a ratio p / q of 160: 1 to 1: 1, preferably 20: 1 to 1: 1, particularly preferably 15: 1 to 4: 1. Have
Ingredient [A]pA chemical composition that extends three-dimensionally and is bounded by a different chemical composition from its local surroundings:
A Mo12-abcVaM1 bM2 cOx
In the form of region A and
Ingredient [B]qA chemical composition that extends three-dimensionally and is bounded by a different chemical composition from its local surroundings:
B MThree 12CudHeOy
In this case, at least two-phase multi-metal oxide material is distributed in such a manner that the regions A and B are distributed in a mixture of the particulate A and the particulate B relative to each other. Achieved in manufacturing.
[0042]
In order to produce such a multi-metal oxide material III, it is particularly simple that the multi-metal oxides I and II are produced separately separately and then at least one fine, separately pre-manufactured multi-metal. A complete dry mixture of oxide I and at least one fine, separately pre-manufactured multimetal oxide II is produced in the desired mixing ratio (in this case, complete mixing can be carried out wet or dry; wet , Generally if carried out in aqueous form, followed by drying; the mixing can be carried out in a kneader or mixer), and then from the completely dry mixture by molding in the same way as described only for the multimetal oxide I Suitable catalysts can be prepared for the catalytic gas phase oxidation of organic compounds, in particular the catalytic gas phase oxidation of acrolein to acrylic acid. Of course, however, both the multimetal oxide I and the multimetal oxide III can be used as catalysts in the form of powders. Likewise, of course, the multimetal oxide material III can be used for all the catalytic gas phase oxidations described as also applying the multimetal oxide I. When a catalyst based on the multimetal oxide material III as active material is used for the catalytic gas phase oxidation of acrolein to acrylic acid, the oxidation is generally the corresponding single use of the multimetal oxide I catalyst. Perform under the same operating conditions as described for.
[0043]
The multimetal oxide II can be produced as follows by a simple method well known to those skilled in the art. A dry mixture as complete as possible, preferably as fine as possible, is produced from a suitable source of the elemental constituents of the multimetal oxide II, and the mixture is 200-1000 ° C., often 250-600 ° C., most often 300-500 ° C. Firing at a temperature of In this case, calcination is carried out, for example, as described in German Patent Application No. 4335973.2), Mixtures of inert gas and oxygen (eg air), reducing gases such as hydrocarbons (eg methane), aldehydes (eg acrolein) or ammonia, and also O2And a reducing gas (for example, all those mentioned above). It should be noted that in this case as well, the firing atmosphere may contain water vapor. When performing calcination under reducing conditions, care should be taken not to reduce the metal component to the element. In general, the higher the firing temperature, the shorter the firing time.
[0044]
With respect to the source of the multimetal oxide II, substantially the same applies as for the source of the elemental component of the multimetal oxide I. What is also important here is that the source is already an oxide or a compound that can be converted to an oxide by heating in the presence of at least oxygen. In a preferred process variant for the production of multimetal oxides II, the complete mixture of starting compounds used is carried out in an autoclave in the presence of water vapor with an overpressure at a temperature higher than 100 and below 600 ° C.
[0045]
Based on the firing conditions selected each time, the resulting multimetal oxide II has various three-dimensional atomic arrangements. In particular, for the purposes of the present invention, all the polymetallic oxides II described as possible basic phases or promoter phases in German Offenlegungsschrift 4405514 and German Offenlegungsschrift 19528646. Is applicable. That is, the preferred multimetal oxide II has, in particular, at least one structural type (X-ray diffraction pattern) of copper molybdate listed in the following table (indicated in parentheses is the associated X-ray). Represents a source for diffractive fingerprints):
[0046]
[Table 8]
Figure 0004068679
[0047]
The recommended multimetal oxide II for preparing a multimetal oxide material III particularly suitable for the catalytic gas phase oxidation of acrolein to acrylic acid is the general formula IV:
CuMoAWBVCNbDTaEOY・ (H2O)F        (IV)
[Where:
1 / (A + B + C + D + E) = 0.7 to 1.3
F = 0 to 1,
B + C + D + E = 0 to 1 and
Y = a numerical value determined by the valence and frequency of an element different from oxygen in formula IV
And its three-dimensional atomic arrangement is defined in Russian Jounal of Chmistry 36 (7) (1991), 921, Table 1 and German Patent Application Publication No. 4405514 and German Patent Examples thereof are those described in WO 4444091 as Wolframit.
[0048]
Of the multimetal oxides IV, the stoichiometric formula V:
CuMoAWBVCOY                    (V)
[Where:
1 / (A + B + C) = 0.7 to 1.3,
A, B, C = all greater than 0, provided that B + C ≦ 1,
Y = Numerical value determined by the valence and frequency of an element different from oxygen in Formula V
And the stoichiometric formula VI:
CuMoAWBOY                    (VI)
[Where:
1 / (A + B) = 0.7-1.3,
A / B, C = 0.01 to 10, preferably 0.01 to 1 and
Y = a numerical value determined by the valence and frequency of an element different from oxygen in Formula VI
What should be noted is. The production methods for multimetal oxides IV, V and VI are shown in German Offenlegungsschrift 4405514 and German Offenlegungsschrift 4440891.
[0049]
Further particularly preferred multimetal oxides II are those of the general formula VII:
CuMoA WB VC NbD TaE OY         (VII)
[Where:
1 / (A ′ + B ′ + C ′ + D ′ + E ′) = 0.7 to 1.3, preferably 0.85 to 1.15, particularly preferably 0.95 to 1.05, very particularly preferably Is 1,
(B ′ + C ′ + D ′ + E ′) / A ′ = 0.01 to 10, preferably 0.05 to 3, particularly preferably 0.075 to 1.5 and
Y ′ = a value determined by the valence and frequency of an element different from oxygen in formula VII
And the structural type is that of the HT-Cu molybdate type described in German Offenlegungsschrift DE 19528646.
[0050]
In this case, among the multi-metal oxides VII, C ′ + D ′ + E ′ = 0 is also advantageous. Particularly recommended VII as multimetal oxide II is the composition:
Mo10.8W1.2Cu12O42-48
It is what has.
[0051]
Furthermore, possible multimetal oxides II include mixtures of multimetal oxides IV and VII as disclosed in German Offenlegungsschrift DE 19528646. This is especially true for those containing multimetallic oxides IV and VII in intergrowth form.
[0052]
Of course, the mixture prepared from the separately prepared fine multimetal oxides I and II is first compressed, then ground to produce a multimetal oxide III catalyst before its use, and then the desired catalyst for the first time. It can also be processed into a shape. In this case, for the maximum particle diameter, as in the case of the separately prepared multimetal oxides I and II, more than 0 and not more than 300 μm, particularly preferably 0.5 to 50 μm, quite particularly A diameter range of 1 to 30 μm is preferably recommended.
[0053]
A particular advantage of the multiphase multimetal oxide material III catalyst according to the invention is that the calcination conditions necessary for obtaining the various phases are generally different from one another. Due to the separate pre-manufacturing principle, the respective firing conditions can be optimally adapted to the desired phase.
[0054]
Multi-metal oxides I are quite common beyond the above-mentioned applications, for example German Offenlegungsschrift 4,335,973, U.S. Pat. No. 4,035,262, German Offenlegungsschrift 4,405,058. Description, German Patent Application Publication No. 4405059, German Patent Application Publication No. 4405060, German Patent Application Publication No. 4405514, German Patent Application Publication No. 4440891 and German Patent It is suitable for improving the performance of the catalytically active multi-metal oxide material described in JP-A-19528646.
[0055]
For this purpose, simply the active material described in the above publication is mixed in fine form with the fine multimetal oxide I and similar to the complete starting mixture for producing the multimetal oxide material III catalyst. To form.
[0056]
In particular, the multimetal oxides I are described in German Patent Application Publication No. 4405558, German Patent Application Publication No. 4405059, German Patent Application Publication No. 4405060, German Patent Application Publication No. 4405514. And the co-phase component of the multiphase multimetal oxide material catalyst disclosed in German Patent Application No. 4440891. Furthermore, the multimetal oxide I is suitable as a component of the active phase of the multiphase multimetal oxide material catalyst described in German Offenlegungsschrift 19528646. In all of these cases, a multi-phase multi-metal oxide material catalyst containing a fine (more than 0 and not more than 300 μm) homogeneously distributed multi-metal oxide I phase is produced. These are particularly suitable as catalysts for the catalytic gas phase oxidation of organic compounds described in the respective references cited above.
[0057]
Finally, it should be noted that pure multimetal oxides I can be produced for the first time by the present invention.
[0058]
【Example】
1) Production and identification of multimetal oxides MI1-MI9 and comparative multimetal oxides VMI1 and VMI2 according to the invention
General explanation
The multimetallic oxide I according to the invention described below always contains the elemental components Mo and W in the oxidation state +6. On the other hand, the oxidation state of the element component V is generally this possible oxidation state V.3+, V4+And V5+Distribution. This distribution can be measured by volumetric analysis using a final point display by potentiometric titration (combined platinum electrode and potentiograph, Metrohm, 9100 Herisau, Switzerland) and must be processed in an inert gas atmosphere. did not become. By performing the titration at 80 ° C., the final point can be easily detected. In addition, volumetric analysis of potentiometric titration was performed as follows in all cases.
[0059]
Each 0.15 g of the oxide sample material is heated to 5 ml of concentrated phosphoric acid (density ρ = 1.70 g / cm at 20 ° C.Three) And 10 ml of aqueous sulfuric acid (argon atmosphere). The sulfuric acid aqueous solution used was the same amount of water and concentrated sulfuric acid (ρ20= 1.52 g / cmThree(Capacity indication relates to 20 ° C.). The solvent was selected so that the possible oxidation state of V did not fluctuate and this was tested according to the corresponding V standard.
[0060]
V5+To analyze the content, a freshly prepared and the resulting solution was added to 0.1 molar aqueous ammonium iron sulfate standard solution ((NHFour)2Fe (SOFour)2). V3+And V4+A new solution prepared by an appropriate method was newly prepared, and 0.02 molar potassium permanganate standard aqueous solution (KMnOFour) And two potential jumps occurred (V3+→ V4+And V4+→ V5+). V measured as above3+Content, V4+Content and V5+The total content must correspond to the total V content of the sample. This could also be measured by volumetric analysis using the final point display of potentiometric titration.
[0061]
For this purpose, 0.15 g of the oxide sample material is heated under heating with 10 ml of the semi-concentrated aqueous sulfuric acid solution and 10 ml of concentrated nitric acid (ρ20= 1.52 g / cmThree) Was dissolved in an argon atmosphere. Subsequently, the resulting solution was heated to evaporate part of the nitric acid and the sulfuric acid used and concentrated it to a residual volume of about 3 ml, at which time all V components were transferred to the oxidation state +5. After cooling, dilute the residual volume to 50 ml and5+0.1 mol of (NHFour)2Fe (SOFour)2Further potentiometric titration was performed over the equivalent point (final point) with a standard aqueous solution.
[0062]
The aqueous solution thus obtained was titrated with a newly prepared 0.02 molar potassium permanganate standard aqueous solution, and two potential jumps occurred. The first potential jump is the excess Fe used.2+And the second potential jump is V4+To V5+Amount of KMnO required to oxidize toFourWhich corresponds to the total V content of the sample.
[0063]
MI1: Mo8.54V2.47W0.95O33.53
Heptamolybdate hydrate 33.746 kg (MoOThreeContent: 81.8% by weight, ideal composition: (NHFour)6Mo7Otwenty four・ 4H2O), ammonium metavanadate 6.576 kg (V2OFiveContent: 76.5% by weight, ideal composition: NHFourVOThree), Ammonium paratungstate hydrate 5.764 kg (WOThreeContent: 89.0% by weight, ideal composition: (NHFour)TenW12O41・ 7H2O) and 7.033 kg of ammonium acetate (CHThreeCOONHFourContent: 97.0% by weight, ideal composition: CHThreeCOONHFour) Was dissolved in 250 l of water sequentially in the above order at a temperature of 90 ° C. The resulting yellow to orange solution was cooled to 80 ° C. and spray dried at an inlet temperature of 300 ° C. and an outlet temperature of 110 ° C.
[0064]
800 g of the resulting spray powder was kneaded for 1 hour with the addition of 250 g of water in a kneader having an effective volume of 2.5 l (form: LUK 2.5, Werner und Pfleiderer, 7000 Stuttgart, Germany). At that time, 180 g of 250 g of water was added to the kneaded material within the first 10 minutes and 70 g was added to the kneaded material within the remaining 50 minutes. The resulting wet mass kneaded product was dried for 15 hours at a temperature of 110 ° C. and then compressed with a sieve having a mesh width of 5 mm.
[0065]
Subsequently, 100 g of the granule produced at that time was fired at a rotational speed of 12 rpm in a horizontal rotary furnace having a volume of 1 liter of quartz sphere heated isothermally. At that time, firing conditions were formed as follows.
[0066]
1st stage: The charged granule is continuously heated from 25 ° C. to 275 ° C. within 50 minutes,
Second stage: The charged granules are continuously heated from 275 ° C. to 325 ° C. within 30 minutes,
Third stage: The charged granules are held at 325 ° C. for 4 hours.
4th stage: The charged granules are continuously heated from 325 ° C. to 400 ° C. within 30 minutes.
5th stage: The charged granule is held at 400 ° C. for 10 minutes.
[0067]
Subsequently, the external heating of the rotary furnace was interrupted, and the furnace was cooled by blowing ambient air from the outside. The granule charged at that time was cooled to 25 ° C. within 5 hours.
[0068]
During each firing step, a gas mixture having the following composition was allowed to flow through the internal space of the rotary furnace in parallel with the rotation axis (standard temperature and pressure condition (N) = 1 atm, 25 ° C.).
[0069]
Stage 1, stage 2 and stage 3:
Air 3.6 Nl / h, NHThree1.5 Nl / h and N244.9 Nl / h
(Total gas flow rate: 50 Nl / h).
[0070]
Fourth stage, fifth stage and cooling stage:
Air 3.6 Nl / h and N244.9 Nl / h
(Total gas flow rate: 48.5 Nl / h).
[0071]
The resulting powdery multimetal oxide MI1 has a black color and a specific surface area of 15.0 m.2/ G (according to DIN 66131, gas adsorption by Brunauer-Emmet-Teller (BET) (N2). Vanadium contained in the multimetal oxide MI1 is V.4+More than 99% (measured as above). Therefore, the multi-metal oxide MI1 is Mo8.54V2.47W0.99O33.53Of stoichiometry.
[0072]
The Cu-Kα powder X-ray diffraction spectrum measured by the examples and evaluated after removing the linear background had the following diffraction lines in the important 2θ range (5 ° -50 °).
[0073]
[Table 9]
Figure 0004068679
[0074]
[Table 10]
Figure 0004068679
[0075]
A Cu-Kα powder X-ray diffraction spectrum measured by an experiment reflecting the spatial arrangement of atoms of the multimetal oxide MI1 is shown in FIG. 1 (vertical axis: intensity, indicated as an absolute value, horizontal axis: 2θ range of 5 ° to 5 °). 65 °).
[0076]
Further, FIG. 1 shows a linear background (connection of A (2θ = 5 °) and A (2θ = 65 °)) and an individual diffraction curve A to be attenuated within the evaluation frame.iIndicates the position. The point of contact between the reference line and the X-ray diffraction spectrum distributes the diffraction spectrum in two natural ranges of 2θ ranges of 5 ° to 43 ° and 43 ° to 65 °.
[0077]
FIG. 2 is an enlarged view of the 2θ range 5 ° to 43 ° of the Cu-Kα powder X-ray diffraction spectrum of the multimetal oxide MI1. Furthermore, FIG. 2 shows the results of mathematical fitting and resolution performed in this range (including the background line) (PROFILE, Pearson-VII profile function, fixed background). Mathematically formed diffraction line Ai *This overlaps with the experimental outline.
[0078]
FIG. 3 shows the resolution performed in this range, including the 2θ range 43 ° -65 ° expanded in a corresponding manner and linear background lines.
[0079]
The rectangular cross section seen above the original X-ray diffraction spectrum of FIGS. 2 and 3 shows the experimental contour line of the powder X-ray diffraction spectrum and the difference line of its mathematical fit, respectively. This difference is a measure of good fit.
[0080]
MI2: Mo8.54V2.47W0.99O33.53
Granules were produced in the same manner as MI1. 400 g of granules were calcined in a calcining furnace operating on the principle of a jet reactor. The granule charged at that time was present on the wire mesh with a deposition height of 5 cm, and the gas mixture was allowed to flow through it from below. The furnace capacity was 3 l and the circulation ratio (ratio of the circulating gas mixture volumetric flow to the newly supplied gas mixture volumetric flow) was selected to be 20. The charged granules were first heated continuously from 25 ° C. to 325 ° C. within 1 hour in the furnace. Subsequently, the charged granules were held at 325 ° C. for 4 hours. At the start of firing, the gas mixture flowing through is N2120 Nl / h, air 10 Nl / h and NHThreeIt had a composition consisting of 3.3 Nl / h. Subsequently, the charged granule was heated from 325 ° C. to 400 ° C. within 20 minutes and then kept at 400 ° C. for 1 hour. N at this final stage2A gas mixture consisting of 120 Nl / h and air 10 Nl / h was flowed through. It was cooled to room temperature by interrupting the heat supply.
[0081]
A powdered multimetal oxide MI2 is obtained, which is represented by V5+Analysis, V4+Analysis, V3+The analysis and the X-ray diffraction spectrum of the Cu-Kα powder were the same as for the multimetal oxide MI1.
[0082]
MI3: Mo8.35V2.60W1.05O33.40
852.78 g ammonium heptamolybdate hydrate (MoOThreeContent: 81.0% by weight, ideal composition: (NHFour)6Mo7Otwenty four・ 4H2O), ammonium metavanadate 177.14 g (V2OFiveContent: 77.0% by weight, ideal composition: NHFourVOThree) And 156.29 g ammonium paratungstate hydrate (WOThreeContent: 89.0% by weight, ideal composition: (NHFour)TenW12O41・ 7H2O) was dissolved successively in 5 l of water in the above sequence at a temperature of 95 ° C. The resulting yellow to orange solution was cooled to 80 ° C. and spray dried at an inlet temperature of 300 ° C. and an outlet temperature of 110 ° C. Subsequently, 100 g of the spray-dried powder was calcined in a horizontal rotary furnace with a 1 l quartz-ball volume heated isothermally at a rotational speed of 12 rpm under the conditions defined below. In the first stage, the charged powder is continuously heated from 25 ° C. to 275 ° C. within 50 minutes, and in the second stage directly following the first stage, the charged powder is continuously heated to 275 within 30 minutes. In the third stage directly following the second stage, the charged powder is held at 325 ° C. for 4 hours, and in the fourth stage directly following the third stage, the charged powder is heated to 3.325 ° C. Heated from 325 ° C. to 400 ° C. within 5 hours. During the first three stages, quartz spheres are filled with air 9.6 Nl / h, NH33 Nl / h and N2A gas mixture consisting of 87.4 Nl / h (total gas flow rate: 100 Nl / h) was passed through. During the fourth stage, the quartz spheres are filled with air 9.6 Nl / h and N2A gas mixture consisting of 87.4 Nl (total gas flow rate: 97 Nl / h) was passed through. After completion of the fourth stage, external heating of the rotary furnace was interrupted, and cooling was performed by blowing air from the outside. In this case, the charged powder flows through the quartz sphere without change, air 9.6 Nl / h and N2It was cooled to 25 ° C. within 5 hours under a gas mixture consisting of 87.4 Nl / h.
[0083]
The resulting powdery multimetal oxide MI3 has a black color and a specific surface area of 0.5 m.2/ G (DIN 66131). Vanadium contained in the multimetal oxide MI3 is V4+More than 99%. Therefore, the multi-metal oxide MI3 is Mo8.35V2.60W1.05O33.40Of stoichiometry.
[0084]
The associated Cu-Kα powder X-ray diffraction spectra are shown in FIGS. The spatial arrangement of atoms in common with MI1 is shown. Evaluation performed in the same manner as MI1 produced the following diffraction lines in the important 2θ range.
[0085]
[Table 11]
Figure 0004068679
[0086]
[Table 12]
Figure 0004068679
[0087]
MI4: Mo8.35V2.60W1.05O33.40
A spray-dried powder was produced as in MI3. Subsequently, 60 g of the spray-dried powder were calcined in a horizontal rotary furnace with an isothermally heated quartz sphere capacity of 1 l at a rotational speed of 12 rpm and under the conditions defined below. In the first stage, the charged powder is heated from 25 ° C. to 275 ° C. within 50 minutes, and in the second stage directly following the first stage, the charged powder is continuously heated from 275 ° C. to 325 ° C. within 30 minutes. In the third stage directly following the second stage, the charged powder is held at 325 ° C. for 3 hours, and in the fourth stage directly following the third stage, the charged powder is 325 within 90 minutes. The mixture was heated from 400 ° C. to 400 ° C. and kept at 400 ° C. after 10 minutes. During the first three stages, quartz spheres are filled with air 4.8 Nl / h, NHThree1.5 Nl / h and N2A gas mixture consisting of 43.7 Nl / h (total gas flow rate: 50 Nl / h) was passed through. During the 4th and 5th stages, the quartz sphere has air 4.8 Nl / h and N2A gas mixture consisting of 43.7 (standard) l / h (total gas flow rate: 48.5 Nl / h) was passed through. After completion of the fifth stage, external heating of the rotary furnace was interrupted, and cooling was performed by blowing air from the outside. At this time, the charged powder flows through the quartz sphere without change, and the air is 4.8 Nl / h and N2It was cooled to 25 ° C. within 5 hours under a gas mixture consisting of 43.7 Nl / h.
[0088]
A powdered multimetal oxide MI4 is obtained, which is represented by V5+Analysis, V4+Analysis, V3+It was the same as the multimetal oxide MI3 in terms of analysis and in terms of Cu-Kα powder X-ray diffraction spectrum. The quantitative evaluation of the X-ray diffraction spectra (shown in FIGS. 7 to 9) carried out as described above produced the following diffraction lines in the important 2θ range.
[0089]
[Table 13]
Figure 0004068679
[0090]
[Table 14]
Figure 0004068679
[0091]
MI5: Mo8.54V2.47W0.99O33.01
800 g of spray powder formed to produce MI1 are mixed with 80 g of acetic acid (100%) and water in a kneader (type: LUK2.5, Werner und Pfleiderer, 7000 Stuttgart, Germany) with an effective volume of 2.5 l. 200 g was added and kneaded for 1 hour. At that time, 80 g of acetic acid and 80 g of water were added to the kneaded product in the first 10 minutes. The remaining 120 g of water was added to the kneaded mixture for the remaining 50 minutes. The resulting wet mass kneaded product was dried for 15 hours at a temperature of 110 ° C. and then compressed with a sieve having a mesh width of 5 mm. The granule 100 g produced at that time was subsequently fired in a horizontal rotary furnace as described in MI1.
[0092]
The resulting powdery multimetal oxide MI5 has a black color and a specific surface area of 16.0 m.2/ G (DIN 66131). Vanadium contained in the multimetal oxide MI5 is V3+As 42% and V4+As a proportion of 58%. Therefore, the multimetal oxide MI5 is different from the multimetal oxide MI1 and Mo8.54V2.47W0.99O33.01Of stoichiometry. Nevertheless, the Cu-Kα powder X-ray diffraction spectrum measured and evaluated in the same manner as for the multimetal oxide MI1 reflected the same spatial arrangement of atoms as the multimetal oxide MI1 with respect to the multimetal oxide MI5 (FIG. 10). ~ 12). The measured diffraction lines are as follows in the important 2θ range (5 ° -50 °).
[0093]
[Table 15]
Figure 0004068679
[0094]
[Table 16]
Figure 0004068679
[0095]
VMI1: Mo8.54V2.47W0.99O34.18
In order to produce MI5, 100 g of granules obtained by kneading the spray powder with water and acetic acid were calcined in a horizontal rotary furnace as described in Example MI1. However, instead of the various gas mixtures, a corresponding amount of pure air flowed through the rotary furnace.
[0096]
The resulting powdery multimetal oxide VMI1 has a black color and a specific surface area of 16.2 m.2/ G (DIN 66131). Vanadium contained in the multimetal oxide VMI1 is V4 +As 47% and V5 +As a proportion of 53%. Therefore, the multi-metal oxide VMI1 is different from the multi-metal oxides MI1 and MI5 and Mo8.54V2.47W0.99O34.18Of stoichiometry. The associated Cu-Kα powder X-ray diffraction spectrum is shown in FIG. This is clearly different from the spectrum of the multi-metal oxide MI1 and has a strong diffraction line in the 2θ range of 5 ° to 50 °, for example (with a much lower half-width):
[0097]
[Table 17]
Figure 0004068679
[0098]
That is, the spatial arrangement of atoms of the multimetal oxide VMI1 does not correspond to the arrangement of the multimetal oxide MI1 or MI5.
[0099]
MI6: Mo9.6V2.4O34.37
At 80 ° C., 239.74 g of oxalic acid dihydrate (ideal composition: H2C2OFour・ 2H2O, H2C2OFourContent: 71.4% by weight) was dissolved in 4 l of water. Subsequently, 90.22 g of ammonium polyvanadate (V2OFiveContent: 88.2% by weight, ideal composition: (NHFour)2V6O16) Was dissolved by stirring, whereby a deep blue aqueous solution A was formed. At that time, ammonium polyvanadate was added in small portions within 15 minutes to avoid bubbling of the reaction batch. 619.60 g ammonium heptamolybdate hydrate (MoOThreeContent: 81.3 wt%, ideal composition: (NHFour)6Mo7Otwenty four・ 4H2O) was dissolved by stirring in 4 l of warm water at 80 ° C. (solution B). Subsequently, at 80 ° C., solution B was continuously stirred into solution A within 15 minutes. The resulting dark blue aqueous solution was stirred at 80 ° C. for another 15 hours and then spray-dried (inlet temperature: 310 ° C., outlet temperature: 110 ° C.).
[0100]
100 g of the spray-dried powder was calcined in a horizontal rotary furnace having a quartz sphere capacity of 1 l heated isothermally at a rotational speed of 12 rpm under the following conditions. In the first stage, the charged powder is continuously heated from 25 ° C. to 275 ° C. within 50 minutes, and in the second stage directly following the first stage, the charged powder is continuously heated within 275 minutes within 35 minutes. C. to 325.degree. C., followed by a third step directly followed by holding at 325.degree. C. for 4 hours. Immediately thereafter, the charged powder was heated from 325 ° C. to 400 ° C. within 35 minutes in the fourth stage and held at 400 ° C. for 10 minutes in the subsequent fifth stage. Subsequently, the external heating of the rotary furnace was interrupted, and the quartz sphere was cooled by blowing air from the outside. At this time, the charged powder was cooled to room temperature (25 ° C.) within 5 hours. A 50 Nl air flow was passed through the quartz sphere during the entire firing time (including the cooling phase).
[0101]
The resulting powdery multimetal oxide MI6 has a black color and a specific surface area of 6.6 m.2/ G (DIN 66131). Vanadium contained in the multimetal oxide VMI6 is V4 +As 36% and V5 +As a proportion of 64%. Therefore, the multimetal oxide VMI6 is Mo9.6V2.4O34.37Of stoichiometry.
[0102]
The visual phenomenon pattern of the associated Cu-Kα powder X-ray diffraction spectrum corresponds to the MI1 pattern (see FIG. 14), and shows a spatial arrangement of atoms in common with MI1. Evaluation performed in the same manner as MI1 produced the following diffraction lines in the important 2θ range.
[0103]
[Table 18]
Figure 0004068679
[0104]
[Table 19]
Figure 0004068679
[0105]
MI7: Mo9.6V2.4O34.13
100 g of spray-dried powder produced for MI6 was calcined in a horizontal rotary furnace with an isothermally heated quartz sphere capacity of 1 l at a rotational speed of 12 rpm under the following conditions: In the first stage, the charged powder is heated from 25 ° C. to 275 ° C. within 50 minutes, and in the second stage directly following the first stage, the charged powder is continuously added from 275 ° C. to 300 ° C. within 25 minutes. In the third stage directly followed, the charged powder was kept at 300 ° C. for another 4 hours. Subsequently, external heating of the rotary furnace was interrupted, and cooling was performed by blowing air onto the rotating sphere. At this time, the charged powder was cooled to room temperature (25 ° C.) within 3 hours. A 50 Nl / h air stream was passed through the quartz sphere during the entire firing time (including the cooling step).
[0106]
The resulting powdery multimetal oxide MI7 has a black color and a specific surface area of 5.7 m.2/ G (DIN 66131). Vanadium contained in the multimetal oxide MI6 is V4+As 56% and V5+As a percentage of 44%. Therefore, the multimetal oxide MI7 is Mo9.6V2.4O34.13Of stoichiometry.
[0107]
The visual phenomenon pattern of the associated Cu-Kα powder X-ray diffraction spectrum corresponds to the pattern of MI1 (see FIG. 15), and thus shows a spatial arrangement of atoms in common with MI1. Evaluation performed in the same manner as MI1 produced the following diffraction lines in the important 2θ range.
[0108]
[Table 20]
Figure 0004068679
[0109]
MI8: Mo9.0V3.0O33.72
At 80 ° C., 306.86 g of oxalic acid dihydrate (ideal composition; H2C2OFour・ 2H2O, H2C2OFourContent: 71.4% by weight) was dissolved in 4 l of water. Subsequently, 115.48 g of ammonium polyvanadate (V2OFiveContent: 88.2% by weight, ideal composition: (NHFour)2V6O16) Was dissolved by stirring, resulting in a dark blue aqueous solution (solution A). At that time, ammonium polyvanadate was added in small portions within 15 minutes to avoid bubbling of the reaction batch. 594.82 g ammonium heptamolybdate hydrate (MoOThreeContent: 81.3 wt%, ideal composition: (NHFour)6Mo7Otwenty four・ 4H2O) was dissolved by stirring in 4 l of warm water at 80 ° C. (solution B). Subsequently, at 80 ° C., solution B was continuously stirred into solution A within 15 minutes. The resulting dark blue aqueous solution was stirred at 80 ° C. for another 15 hours and then spray-dried (inlet temperature: 310 ° C., outlet temperature: 110 ° C.).
[0110]
100 g of the spray-dried powder was calcined in an air stream as described in MI7 at a rotational speed of 12 rpm in a horizontal rotary furnace with an isothermally heated quartz sphere capacity of 1 l.
[0111]
The resulting powdery multimetal oxide MI8 has a black color and a specific surface area of 5.3 m.2/ G (DIN 66131). Vanadium contained in the multimetal oxide MI8 is V4+As 52% and V5+As a percentage of 48%. At the same time, the multi-metal oxide MI8 is Mo.9.0V3.0O33.72Of stoichiometry. The visual phenomenon pattern of the associated Cu-Kα powder X-ray diffraction spectrum corresponds to the pattern of MI1 (see FIG. 16), and thus shows a spatial arrangement of atoms in common with MI1. Evaluation performed in the same manner as MI1 produced the following diffraction lines in the important 2θ range.
[0112]
[Table 21]
Figure 0004068679
[0113]
[Table 22]
Figure 0004068679
[0114]
MI9: Mo9.0V3.0O34.04
100 g of spray-dried powder produced for MI8 was calcined in an air stream as described in MI6 at a rotational speed of 12 rpm in a horizontal rotary furnace with an isothermally heated quartz sphere volume of 1 l. The resulting multi-metal oxide MI9 has a black color and a specific surface area of 5.7 m.2/ G (DIN 66131).
[0115]
Vanadium contained in the multimetal oxide MI9 is V4+As 31% and V5+As a proportion of 69%. Therefore, the multi-metal oxide MI9 is Mo9.0V3.0O34.04Of stoichiometry. The visual phenomenon pattern of the associated Cu-Kα powder X-ray diffraction spectrum corresponds to the MI1 pattern (see FIG. 17), and shows a spatial arrangement of atoms in common with MI1. Evaluation performed in the same manner as MI1 produced the following diffraction lines in the important 2θ range.
[0116]
[Table 23]
Figure 0004068679
[0117]
VMI2: Mo9.0V3.0O32.90
100 g of spray-dried powder produced with MI8 was calcined as described in MI1 in a horizontal rotary furnace with isothermally heated quartz sphere capacity of 1 l at a rotational speed of 12 rpm.
[0118]
The resulting multi-metal oxide VMI2 has a black color and a specific surface area of 6.8 m.2/ G (DIN 66131). Vanadium contained in the multimetal oxide VMI2 is V4+As 93% and V3+As a percentage of 7%. The visual phenomenon pattern of the associated Cu-Kα powder X-ray diffraction spectrum was clearly different from that of the multimetal oxide MI1 (see FIG. 18), and the following strong diffraction lines were produced in the 2θ range of 5 ° to 50 °.
[0119]
[Table 24]
Figure 0004068679
[0120]
2) Production of multimetal oxide II
MII1: German Patent 4440891 M5 starting material 1 (Cu12Mo12O48) Was post-processed.
[0121]
In 500 ml of water, 55.3 g of copper (II) oxide (CuO, Merck, Darmstadt, pure, at least 96%, powdered) and 100 g of molybdenum (VI) oxide (MoO)ThreeMerck, Darmstadt, degree of analysis, minimum 99.5%, powder). The entire aqueous dispersion was stirred (1000 rpm) in an autoclave (material, Hastelloy C4, internal volume: 2.5 l), heated to 350 ° C., stirred at this temperature and the associated overpressure and held for 24 hours. Subsequently, the autoclave was cooled to room temperature, the aqueous dispersion contained therein was taken out, the dispersed solid was filtered, and subsequently dried at 80 ° C. in a drying shelf. The resulting dry powder had crystal particles having a number average particle diameter of about 8 μm by scanning electron microscope analysis. A Cu / Mo ratio of about 1 was obtained by chemical analysis of the crystal grains.
[0122]
Using Cu-Kα radiation (Siemens-Diffraktometer D-5000, 40 kV, 30 mA, with automatic dispersion, scattering and counter collimator and Peltier detector), the crystalline powder CuMoOy shows the following X-ray diffraction pattern and used It is shown in the form of the relative intensities (%) of the various diffraction lines relative to the diffraction line of the highest intensity (width) associated with the lattice spacing d [Å] independent of the X-ray wavelength.
[0123]
[Table 25]
Figure 0004068679
[0124]
[Table 26]
Figure 0004068679
[0125]
[Table 27]
Figure 0004068679
[0126]
The display error of the lattice spacing d is ± 0.20 mm (low intensity lines probably include lines due to slight impurities), and this X-ray diffraction pattern is shown in the Russian Journal of Inorganic Chemistry 36 (7 ), 1991, page 927, CuMoO described in Table 1FourCorresponds to the pattern for -III.
[0127]
MII2: starting material 1 (Cu) of M3 of German Patent 1952864612Mo6W6O42 ~ 48) Was post-processed.
[0128]
223.05 g of ammonium heptamolybdate hydrate (MoOThreeContent: 81.3%, ideal composition: (NHFour)6Mo7Otwenty four・ 4H2O) and ammonium paratungstate hydrate 327.52 g (WOThreeContent: 89.2% by weight, ideal composition: (NHFour)TenW12O41・ 7H2O) was dissolved by stirring in 5 l of water at 90 ° C. (solution A). 492.64 g of copper acetate hydrate (Cu content: 32.5% by weight, ideal composition: Cu (CHThreeCOO)2・ H2O) 3 l of water and 197.88 g of 25% by weight aqueous ammonia solution were added and stirred for 15 minutes at 25 ° C., at which time a pale blue suspension was obtained (suspension B). Suspension B was subsequently stirred into solution A having 90 ° C., and the resulting suspension was stirred at 80 ° C. for a further 3 hours. The resulting aqueous suspension medium (Suspension C) had a pH value of 5.3 (glass electrode) after cooling to 25 ° C. Suspension C was spray dried at an inlet temperature of 310 ° C and an outlet temperature of 110 ° C.
[0129]
The green powder obtained is calcined in the air, continuously heated from 25 ° C. to 300 ° C. within 24 hours in the first stage, and continuously within 3 hours in the subsequent second stage. In the third stage, the temperature was maintained at 780 ° C. for 1 hour. Firing was carried out in a rotary furnace with a usable volume of 1 l, using 60 g of each starting spray powder and an air flow of 50 Nl / h.
[0130]
The resulting powder is brown and has a specific surface area of 0.3 m according to DIN 661312/ G and Cu12Mo6W6O42 ~ 48The composition was By scanning electron microscope analysis, the powder had crystal particles having a number average particle diameter of about 8 μm. Using Cu-Kα radiation (Siemens-Diffraktometer D-5000, 40 kV, 30 mA, with automatic dispersion, scattering and counter collimator and Peltier detector), the crystalline powder shows a powder X-ray graph, which is ferromanganese barite It showed an overlap between the fingerprint and the HT-copper molybdate fingerprint, ie it had a two-phase structure. Depending on the line strength, two structural types existed at a frequency ratio of about 60 (ferromanganese barite structure): 40 (HT-copper molybdate type).
[0131]
HT-copper molybdate structure type uses Cu-Kα radiation (with Siemens-Diffraktometer D-5000,48kV, 30mA, automatic dispersion, scattering and counter collimator and Peltier detector) according to the following X-ray diffraction graph CuMo0.9W0.1O3.5 ~ FourOf various diffractions (indicated by the attenuation intensity) for the diffraction line of the highest intensity (width) associated with the lattice spacing d [Å] independent of the wavelength of the X-ray used and represented by a crystalline powder of the composition It is shown in the form of the relative intensity (%) of the line.
[0132]
[Table 28]
Figure 0004068679
[0133]
[Table 29]
Figure 0004068679
[0134]
[Table 30]
Figure 0004068679
[0135]
The display error of the lattice spacing d is mainly ± 0.3 mm for d values of 2.9 mm or more, and ± 0.2 mm for d values smaller than 2.9 mm (low intensity line Includes a line probably due to slight impurities).
[0136]
3) Production of shell-type catalysts S1 to S3 and comparative shell-type catalysts SV1 to SV3
S1: 1) multimetal oxide MI1 (Mo8.54V2.47W0.99O33.53) To a particle diameter in the range of 0.1 to 50 μm, and the resulting active substance powder in a rotating drum is subjected to surface roughness Rz (DIN 4768, 1 in the range of 4 to 5 mm and 40 to 200 μm). Non-porous, rough-surfaced steatite spheres (determined using a DIN / ISO surface area measuring Hommel tester from Hommelwerke, Germany) in an amount of 50 g of powder per 200 g of steatite spheres and simultaneously 18 g of water. And was coated according to DE 44 42 346. Subsequently, it was dried with 110 ° C. hot air.
[0137]
SV1: carried out in the same way as S1, except that as active substance8.54V2.47W0.99O33.53A multi-metal oxide VMI1 prepared in 1) and having a composition of
[0138]
S2: Performed in the same manner as S1, but the active material produced in 1) was pulverized in a corresponding manner to the multimetal oxide MI1 (Mo12V3.47W1.39O47.11) And a centrifuge grinder, Retsch (Germany), and pulverized to a number average maximum particle diameter of 1 to 3 μm, MII1 (Cu12Mo12O48) Was used. MII1 was stirred into MI1 in such an amount that the molar ratio of the stoichiometric units in the resulting mixed powder was 6.5 (MI1): 1 (MII1). Mixing in an intensive mixer, Gustav Erich, Hardheim, Germany (type RO2, MPM apparatus) resulted in a complete mixture of the two powders. 600 g of the mixture was mixed in 15 minutes using a tank with a capacity of 10 l and a Stern impeller rotating at 900 rpm countercurrent to the tank and rotating at 64 rpm.
[0139]
The resulting biphasic active substance is:
[0140]
[Mo12V3.47W1.39O47.11]6.5[Cu12Mo12O48] ≒ Mo12VThreeW1.2Cu1.6O47.23
S3: Performed in the same manner as S2, except that the multimetal oxide MII2 prepared in 2) was used instead of the multimetal oxide MII1 prepared in 2).
[0141]
The resulting active substances are:
[0142]
[Mo12V3.47W1.39O47.11]6.5[Cu12Mo6W6O42 ~ 48]
SV2: Produced in the same manner as S1, except that finely dispersed powder produced as follows was used as the active substance.
[0143]
127 g of copper (II) acetate monohydrate (Cu 32.4% by weight) was dissolved in 2700 g of water to prepare Solution I. 860 g ammonium heptamolybdate tetrahydrate (MoOThree81.3% by weight), ammonium metavanadate 143 g (V2OFive77.2% by weight) and 126 g ammonium paratungstate heptahydrate (WOThree89.3% by weight) was sequentially dissolved in 5500 g of water at 95 ° C. to prepare Solution II. Subsequently, Solution I was immediately stirred into Solution II and the aqueous mixture heated to 80 ° C. was spray dried at an outlet temperature of 110 ° C.
[0144]
800 g of spray powder was kneaded and fired in the same manner as 800 g of spray powder for producing MI1. Thereafter, pulverization was performed to produce a particle diameter of 0.1 to 50 μm, and a shell-type catalyst similar to S1 was formed.
[0145]
Active substance stoichiometry: Mo12VThreeW1.2Cu1.6Ox *
FIG. 19 shows A in the range of 2θ = 5 ° to 50 °.1~ ATenTherefore, a Cu-Kα powder X-ray diffraction spectrum significantly different from the X-ray diffraction spectrum of the Cu-Kα powder of the multimetal oxide MI1 is exhibited.
[0146]
SV3: Same as SV2, except that only 3.6 Nl / h of air flowed through the firing furnace during the entire firing time.
[0147]
Active substance stoichiometry: Mo12VThreeW1.2Cu1.6Ox **
4). Use of the shell-type catalyst produced in 3) as a catalyst for gas phase oxidation to produce acrylic acid from acrolein
The catalyst was introduced into a tubular reactor (V2A stainless steel, inner diameter 25 mm, catalyst bed 2000 g, heated using a salt bath),
Acrolein 5% by volume,
7% oxygen by volume,
10% by volume of steam and
Nitrogen 78% by volume
A gaseous mixture consisting of was fed at a reaction temperature of 250-270 ° C. using a residence time of 2.0 seconds. In all cases, the salt bath temperature was adjusted to give a uniform acrolein conversion of 99% after one pass after molding. The product gas mixture produced in the reactor was analyzed by gas chromatography. The selectivity results for acrylic acid formation using various catalysts are shown in the table below.
[0148]
[Table 31]
Figure 0004068679
[0149]
The conversion rate, selectivity and remaining time are shown below.
[0150]
Acrolein conversion C (%) = (moles of acrolein converted / moles of acrolein charged) × 100
Selectivity of acrylic acid formation S (%) = (number of moles of acrolein converted to acrylic acid / number of moles of all converted acrolein) × 100
Residence time (seconds) = (space capacity of reactor filled with catalyst (l) / amount of synthesis gas charged (Nl / h)) × 3600
[Brief description of the drawings]
FIG. 1 is a CuKα powder X-ray diffraction spectrum showing the spatial arrangement of a multimetal oxide MI1.
FIG. 2 is an enlarged view of the 2θ range of 5 to 43 ° of the spectrum.
FIG. 3 is an enlarged view of a 2θ range of 43 to 65 ° of the spectrum.
FIG. 4 is a CuKα powder X-ray diffraction spectrum showing the spatial arrangement of the multimetal oxide MI3.
FIG. 5 is an enlarged view of the 2θ range of 5 to 43 ° of the spectrum.
FIG. 6 is an enlarged view of the 2θ range of 43 to 65 ° of the spectrum.
FIG. 7 is a CuKα powder X-ray diffraction spectrum showing the spatial arrangement of a multimetal oxide MI4.
FIG. 8 is an enlarged view of a 2θ range of 5 to 43 ° of the spectrum.
FIG. 9 is an enlarged view of the 2θ range of 43 to 65 ° of the spectrum.
FIG. 10 is a CuKα powder X-ray diffraction spectrum showing the spatial arrangement of a multimetal oxide MI5.
FIG. 11 is an enlarged view of the 2θ range of 5 to 43 ° of the spectrum.
FIG. 12 is an enlarged view of the 2θ range of 43 to 65 ° of the spectrum.
FIG. 13 is a CuKα powder X-ray diffraction spectrum showing the spatial arrangement of a comparative multimetal oxide VMI1.
FIG. 14 is a CuKα powder X-ray diffraction spectrum showing the spatial arrangement of a multimetal oxide MI6.
FIG. 15 is a view of a CuKα powder X-ray diffraction spectrum showing a spatial arrangement of a multimetal oxide MI7.
FIG. 16 is a CuKα powder X-ray diffraction spectrum showing the spatial arrangement of a multimetal oxide MI8.
FIG. 17 is a view of a CuKα powder X-ray diffraction spectrum showing a spatial arrangement of a multimetal oxide MI9.
FIG. 18 is a CuKα powder X-ray diffraction spectrum showing the spatial arrangement of a comparative multimetal oxide VMI2.
FIG. 19 is a CuKα powder X-ray diffraction spectrum showing the spatial arrangement of the manufactured shell-type catalyst.

Claims (11)

一般式I:
Mo12-a-b-ca1 b2 cx (I)
[式中、
1
2=Ti,Zr,Hf,Ta,Cr,Si及び/又はGe、
a=0.1〜6、
b=0〜6、
c=
であり、但しa+b+c=0.1〜6であり、かつ
x=式I中の酸素とは異なる元素の原子価及び頻度により決まる数値
である]の多金属酸化物からなるアクロレインからアクリル酸への接触気相酸化用触媒において、該多金属酸化物の、Cu-Kα放射線(λ=1.54178Å)を使用して得られた三次元的原子配置が、5〜50゜の2θ範囲内で少なくとも以下の特性回折線A1,A3,A5,A9及びA10、但し最大でも以下の回折線A1〜A10を含む、X線粉末回折スペクトル(2倍の回折角度(2θ)の関数としてプロットした回折したX線の強度A):
Figure 0004068679
を生じることを特徴とする、アクロレインからアクリル酸への接触気相酸化用触媒
Formula I:
Mo 12-abc V a M 1 b M 2 c O x (I)
[Where:
M 1 = W
M 2 = Ti, Zr, Hf, Ta, Cr, Si and / or Ge,
a = 0.1-6,
b = 0 to 6,
c = 0
Wherein a + b + c = 0.1-6, and x = a value determined by the valence and frequency of an element different from oxygen in Formula I] . In the catalyst for catalytic gas phase oxidation, the three-dimensional atomic arrangement of the polymetal oxide obtained using Cu-Kα radiation (λ = 1.54178Å) is at least within a 2θ range of 5 to 50 °. The following characteristic diffraction lines A 1 , A 3 , A 5 , A 9 and A 10 , but including at most the following diffraction lines A 1 to A 10 , an X-ray powder diffraction spectrum (double diffraction angle (2θ)) Intensity of diffracted X-rays plotted as a function A):
Figure 0004068679
A catalyst for catalytic gas phase oxidation of acrolein to acrylic acid , characterized in that
回折線A1〜A10が以下の相対振幅(IA rel[%]):
Figure 0004068679
を有する、請求項1記載のアクロレインからアクリル酸への接触気相酸化用触媒
Diffraction lines A 1 to A 10 have the following relative amplitude (I A rel [%]):
Figure 0004068679
The catalyst for catalytic gas phase oxidation of acrolein to acrylic acid according to claim 1, comprising:
Cu-KαX線粉末回折スペクトルが高分解回折線を有しており、その半値幅(2θのスケールにおける)が<0.25゜である、請求項1又は2記載のアクロレインからアクリル酸への接触気相酸化用触媒 Contact from acrolein to acrylic acid according to claim 1 or 2, wherein the Cu-Kα X-ray powder diffraction spectrum has a high resolution diffraction line and its half-value width (on a 2θ scale) is <0.25 °. Catalyst for gas phase oxidation . 一般式I:
Mo12-a-b-ca1 b2 cx (I)
[式中、
1
2=Ti,Zr,Hf,Ta,Cr,Si又はGe、
a=0.1〜6、
b=0〜6、
c=
であり、但しa+b+c=0.1〜6であり、かつ
x=式I中の酸素は異なる元素の原子価及び頻度により決まる数値
である]の多金属酸化物からなるアクロレインからアクリル酸への接触気相酸化用触媒において、該多金属酸化物の三次元的原子配置が、以下のようにして得られた多金属酸化物Mo8.542.470.9933.35に相当する:
ヘプタモリブデン酸アンモニウム水和物(MoO3含量:81.8重量%、理想組成:(NH46Mo724×4H2O)33.746kg、メタバナジウム酸アンモニウム(V25含量:76.5重量%、理想組成:NH4VO3)6.576kg、パラタングステン酸アンモニウム水和物(WO3含量:89.0重量%、理想組成: (NH4101241×7H2O)5.764kg及び酢酸アンモニウム(CH3COONH4含量:97.0重量%、理想組成:CH3COONH4)7.033kgを、前記順序で順次に90℃の温度で水250 l中に撹拌下に溶かし、生じた黄〜オレンジ色の溶液を80℃に冷却しかつ300℃の入口温度及び110℃の出口温度で噴霧乾燥し;
得られた噴霧粉末800gを、2.5 lの有効容積を有するニーダ(Fa. Werner und Pfleiderer, 7000 Stuttgart, DEのTyp LUK)内で水250gを加えて1h混練し、その際水250gのうちの180gは初めの10分間以内でニーダに加えかつ70gは残りの50分間以内で加え、生じる湿った塊状の混練生成物を110℃の温度で15h乾燥させかつその後5mmのメッシュ幅を有するふるいを通して押出し;
その際生じるグラニュール100gを、引き続き1 lの等温加熱される石英球体積及び12rpmの回転速度を有する回転炉内で焼成する、その際焼成条件は以下のように構成する:
第1段階:装入したグラニュールを50分間以内で連続的に25℃から275℃に加熱する;
第2段階:装入したグラニュールを30分間以内で連続的に275℃から325℃に加熱する;
第3段階:装入したグラニュールを325℃で4時間保持する;
第4段階:装入したグラニュールを30分間以内で連続的に325℃から400℃に加熱する;
第5段階:装入したグラニュールを400℃で10分間保持する;
引き続き回転炉の外部加熱装置のスイッチを切り、回転炉を周囲空気を外部から吹き付けることにより冷却し、その際装入したグラニュールを5時間以内で25℃に冷却し;
個々の焼成段階中に、回転炉の内部に回転軸に対して平行に、以下の組成(標準条件(N)=1atm、25℃):
第1段階、第2段階及び第3段階:空気3.6Nl/h、NH3 1.5Nl/h及びN2 44.9Nl/h(全ガス流量:50Nl/h);
第4段階、第5段階及び冷却期間:空気3.6Nl/h及びN2 44.9Nl/h(全ガス流量:48.5Nl/h)
を有するガス混合物を貫流させる
ことを特徴とする、請求項1から3までのいずれかに記載の、アクロレインからアクリル酸への接触気相酸化用触媒
Formula I:
Mo 12-abc V a M 1 b M 2 c O x (I)
[Where:
M 1 = W
M 2 = Ti, Zr, Hf, Ta, Cr, Si or Ge,
a = 0.1-6,
b = 0 to 6,
c = 0
Where a + b + c = 0.1-6, and x = oxygen in formula I is a value determined by the valence and frequency of different elements] from acrolein consisting of a multimetallic oxide to acrylic acid In the gas phase oxidation catalyst , the three-dimensional atomic arrangement of the multimetal oxide corresponds to the multimetal oxide Mo 8.54 V 2.47 W 0.99 O 33.35 obtained as follows:
Heptamolybdate hydrate (MoO 3 content: 81.8% by weight, ideal composition: (NH 4 ) 6 Mo 7 O 24 × 4H 2 O) 33.746 kg, ammonium metavanadate (V 2 O 5 content: 76.5% by weight, ideal composition: NH 4 VO 3 ) 6.576 kg, ammonium paratungstate hydrate (WO 3 content: 89.0% by weight, ideal composition: (NH 4 ) 10 W 12 O 41 × 7H 2 O) 5.764 kg and ammonium acetate (CH 3 COONH 4 content: 97.0% by weight, ideal composition: CH 3 COONH 4 ) in the order of 9033 ° C. in 250 liters of water at the temperature of 90 ° C. Dissolved under stirring, the resulting yellow-orange solution is cooled to 80 ° C. and spray dried at an inlet temperature of 300 ° C. and an outlet temperature of 110 ° C .;
800 g of the resulting spray powder was kneaded for 1 h in a kneader (Typ LUK of Fa. Werner und Pfleiderer, 7000 Stuttgart, DE) having an effective volume of 2.5 l, with 250 g of water being mixed. 180 g of is added to the kneader within the first 10 minutes and 70 g is added within the remaining 50 minutes, and the resulting wet mass kneaded product is dried at a temperature of 110 ° C. for 15 h and then passed through a sieve having a mesh width of 5 mm. Extrusion;
The resulting granule 100 g is subsequently fired in a rotary furnace having a 1 l isothermally heated quartz sphere volume and a rotational speed of 12 rpm, the firing conditions being configured as follows:
1st stage: The charged granules are continuously heated from 25 ° C. to 275 ° C. within 50 minutes;
Second stage: the charged granules are continuously heated from 275 ° C. to 325 ° C. within 30 minutes;
Third stage: hold the charged granules at 325 ° C. for 4 hours;
4th stage: The charged granules are continuously heated from 325 ° C. to 400 ° C. within 30 minutes;
Stage 5: Hold the charged granules at 400 ° C. for 10 minutes;
Subsequently switch off the external heating device for a rotary furnace, and cooled by blowing rotary furnace ambient air from the outside, cooling the SaiSoIri the granules to 25 ° C. within 5 hours;
During the individual firing steps, the following composition (standard conditions (N) = 1 atm, 25 ° C.) parallel to the axis of rotation inside the rotary furnace:
First, second and third stages: air 3.6 Nl / h, NH 3 1.5 Nl / h and N 2 44.9 Nl / h (total gas flow: 50 Nl / h);
4th stage, 5th stage and cooling period: air 3.6 Nl / h and N 2 44.9 Nl / h (total gas flow rate: 48.5 Nl / h)
A catalyst for catalytic gas phase oxidation of acrolein to acrylic acid according to any one of claims 1 to 3, characterized in that a gas mixture comprising
請求項1から4までのいずれかに記載の微細な一般式(I)の多金属酸化物並びに一般式II:
3 12Cudey (II)
[式中、
3=Mo,W,V,Nb又はTa、
d=4〜30、
e=0〜20及び
y=式II中の酸素とは異なる元素の原子価及び頻度により決まる数値
である]の微細多金属酸化物を含有する微細物質混合物からなるアクロレインからアクリル酸への接触気相酸化用触媒
Fine multi-metal oxides of general formula (I) as defined in any of claims 1 to 4 and general formula II:
M 3 12 Cu d H e O y (II)
[Where:
M 3 = Mo, W, V, Nb or Ta,
d = 4-30,
e = 0 to 20 and y = a numerical value determined by the valence and frequency of an element different from oxygen in formula II] . The contact gas from acrolein to acrylic acid comprising a fine substance mixture containing a fine multimetal oxide Phase oxidation catalyst .
一般式III:
[A]p[B]q (III)
[式中、
Figure 0004068679
B=M3 12Cudey (プロモータ相)、
1
2=Ti,Zr,Hf,Ta,Cr,Si又はGe、
a=0.1〜6、
b=0〜6、
c=
であり、但しa+b+c=0.1〜6であり、
x=A中の酸素とは異なる元素の原子価及び頻度により決まる数値、
3=Mo,W,V,Nb又はTa、
d=4〜30、
e=0〜20、
y=B中の酸素とは異なる元素の原子価及び頻度により決まる数値、
p,q=0とは異なる数値、その比p/qは160:1〜1:1である]を有し、
成分[A]pを三次元的に拡がり、その局所的周囲からその局所的周囲とは異なる化学的組成に基づき境界付けられる化学組成:
A Mo12-a-b-ca1 b2 cx
の領域Aの形で、かつ
成分[B]qを三次元的に拡がり、その局所的周囲からその局所的周囲とは異なる化学的組成に基づき境界付けられる化学組成:
B M3 12Cudey
の領域Bの形で含有し、その際、領域A,Bは互いに相対的に微粒子状Aと微粒子状Bからなる混合物におけるように分配されており、かつ領域Aの、Cu-Kα放射線(λ=1.54178Å)を使用して得られた三次元的原子配置が、5〜50゜の2θ範囲内で少なくとも以下の特性回折線A1,A3,A5,A9及びA10、但し最大でも以下の回折線A1〜A10を含む、X線粉末回折スペクトル(2倍の回折角度(2θ)の関数としてプロットした回折したX線の強度):
Figure 0004068679
を生じることを特徴とする、少なくとも2相の多金属酸化物材料からなるアクロレインからアクリル酸への接触気相酸化用触媒
Formula III:
[A] p [B] q (III)
[Where:
Figure 0004068679
B = M 3 12 Cu d H e O y ( promoter phase),
M 1 = W
M 2 = Ti, Zr, Hf, Ta, Cr, Si or Ge,
a = 0.1-6,
b = 0 to 6,
c = 0
Where a + b + c = 0.1-6,
x = a numerical value determined by the valence and frequency of an element different from oxygen in A,
M 3 = Mo, W, V, Nb or Ta,
d = 4-30,
e = 0 to 20,
y = a numerical value determined by the valence and frequency of an element different from oxygen in B,
p, q = 0, a different numerical value, the ratio p / q is 160: 1 to 1: 1]
Chemical composition that extends component [A] p three-dimensionally and is bounded from its local surroundings based on a different chemical composition from its local surroundings:
A Mo 12-abc V a M 1 b M 2 c O x
In the form of areas A, and component [B] q spread in three-dimensional, chemical composition bounded on the basis of different chemical composition and their local surroundings from its local surroundings:
B M 3 12 Cu d H e O y
In this case, the regions A and B are distributed relative to each other as in the mixture of the fine particles A and the fine particles B, and the Cu-Kα radiation (λ = 1.54178 Å), the three-dimensional atomic arrangement obtained at least within the 2θ range of 5 to 50 ° is the following characteristic diffraction lines A 1 , A 3 , A 5 , A 9 and A 10 , X-ray powder diffraction spectrum (diffracted X-ray intensity plotted as a function of double diffraction angle (2θ)), including at most the following diffraction lines A 1 -A 10 :
Figure 0004068679
A catalyst for catalytic gas phase oxidation of acrolein to acrylic acid , which comprises at least two-phase multi-metal oxide material.
一般式III:
[A]p[B]q (III)
[式中、
Figure 0004068679
B=M3 12Cudey (プロモータ相)、
1
2=Ti,Zr,Hf,Ta,Cr,Si又はGe、
a=0.1〜6、
b=0〜6、
c=
であり、但しa+b+c=0.1〜6であり、
x=A中の酸素とは異なる元素の原子価及び頻度により決まる数値、
3=Mo,W,V,Nb又はTa、
d=4〜30、
e=0〜20、
y=B中の酸素とは異なる元素の原子価及び頻度により決まる数値、
p,q=0とは異なる数値、その比p/qは160:1〜1:1である]を有し、
成分[A]pを三次元的に拡がり、その局所的周囲からその局所的周囲とは異なる化学的組成に基づき境界付けられる化学組成:
A Mo12-a-b-ca1 b2 cx
の領域Aの形で、かつ
成分[B]qを三次元的に拡がり、その局所的周囲からその局所的周囲とは異なる化学的組成に基づき境界付けられる化学組成:
B M3 12Cudey
の領域Bの形で含有し、その際、領域A,Bは互いに相対的に微粒子状Aと微粒子状Bからなる混合物におけるように分配されており、かつ領域Aの三次元的原子配置が、請求項4記載の多金属酸化物の三次元的原子配置である、少なくとも2相の多金属酸化物材料からなるアクロレインからアクリル酸への接触気相酸化用触媒
Formula III:
[A] p [B] q (III)
[Where:
Figure 0004068679
B = M 3 12 Cu d H e O y ( promoter phase),
M 1 = W
M 2 = Ti, Zr, Hf, Ta, Cr, Si or Ge,
a = 0.1-6,
b = 0 to 6,
c = 0
Where a + b + c = 0.1-6,
x = a numerical value determined by the valence and frequency of an element different from oxygen in A,
M 3 = Mo, W, V, Nb or Ta,
d = 4-30,
e = 0 to 20,
y = a numerical value determined by the valence and frequency of an element different from oxygen in B,
p, q = 0, a different numerical value, the ratio p / q is 160: 1 to 1: 1]
Chemical composition that extends component [A] p three-dimensionally and is bounded from its local surroundings based on a different chemical composition from its local surroundings:
A Mo 12-abc V a M 1 b M 2 c O x
In the form of areas A, and component [B] q spread in three-dimensional, chemical composition bounded on the basis of different chemical composition and their local surroundings from its local surroundings:
B M 3 12 Cu d H e O y
In this case, the regions A and B are distributed relative to each other as in the mixture of the particulate A and the particulate B, and the three-dimensional atomic arrangement of the region A is A catalyst for catalytic gas phase oxidation of acrolein to acrylic acid, comprising a multimetal oxide material of at least two phases, which is a three-dimensional atomic arrangement of the multimetal oxide according to claim 4.
領域Bが以下の第1表(括弧内の表示は、関連したX線回折指紋の起源を示す):
Figure 0004068679
に列記したモリブデン酸銅の少なくとも1つの構造タイプを有する、請求項6又は7記載の多金属酸化物材料からなるアクロレインからアクリル酸への接触気相酸化用触媒
Region B is Table 1 below (indicated in parentheses indicates the origin of the associated X-ray diffraction fingerprint):
Figure 0004068679
A catalyst for catalytic gas phase oxidation of acrolein to acrylic acid comprising a multi-metal oxide material according to claim 6 or 7 , wherein the catalyst has at least one structural type of copper molybdate listed in the above.
活性材料として請求項記載の一般式(III)の多金属酸化物材料からなるアクロレインからアクリル酸への接触気相酸化用触媒を製造する方法において、請求項1から4までのいずれかに記載の少なくとも1種の微細な一般式(I)の多金属酸化物と、一般式II:
3 12Cudey (II)
[式中、
3=Mo,W,V,Nb又はTa、
d=4〜30、
e=0〜20及び
y=式II中の酸素とは異なる元素の原子価及び頻度により決まる数値
である]の微細な多金属酸化物を含有する微細物質混合物とをそれぞれ別々に前形成し、別々に前形成した微細な多金属酸化物IとIIとを混合して完全乾燥混合物とし、かつ完全乾燥混合物を成形することを特徴とする、アクロレインからアクリル酸を製造するための触媒の製造方法。
The method for producing a catalytic gas phase oxidation catalyst from acrolein to acrylic acid comprising the multi-metal oxide material of the general formula (III) according to claim 7 as an active material, according to any one of claims 1 to 4. At least one fine multimetal oxide of the general formula (I)
M 3 12 Cu d H e O y (II)
[Where:
M 3 = Mo, W, V, Nb or Ta,
d = 4-30,
e = 0 to 20 and y = a numerical value determined by the valence and frequency of an element different from oxygen in Formula II], and each separately forming a fine material mixture containing a fine multimetallic oxide, A process for producing a catalyst for the production of acrylic acid from acrolein, characterized in that it separately mixes the pre-formed fine multimetal oxides I and II into a completely dry mixture and forms the completely dry mixture .
触媒として、活性材料が請求項記載の触媒の製造方法によって得られた触媒を使用することを特徴とする、アクロレインからアクリル酸への接触気相酸化法。A catalytic gas phase oxidation method from acrolein to acrylic acid, wherein the active material is a catalyst obtained by the method for producing a catalyst according to claim 9 . 0よりも大であり300μm以下の範囲内の最大直径を有する微細な均質に分配された請求項1から4までのいずれかに記載の多金属酸化物Iからなる相を有する、多相の多金属酸化物材料からなるアクロレインからアクリル酸への接触気相酸化用触媒A multi-phase multi-phase having a phase consisting of a finely homogeneously distributed multi-metal oxide I according to any one of claims 1 to 4 having a maximum diameter in the range of greater than 0 and not more than 300 µm. Catalyst for catalytic gas phase oxidation of acrolein to acrylic acid made of metal oxide material.
JP30644296A 1995-11-16 1996-11-18 Polymetal oxide Expired - Fee Related JP4068679B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19542755A DE19542755A1 (en) 1995-11-16 1995-11-16 Multimetal oxides
DE19542755.6 1995-11-16

Publications (2)

Publication Number Publication Date
JPH09194213A JPH09194213A (en) 1997-07-29
JP4068679B2 true JP4068679B2 (en) 2008-03-26

Family

ID=7777640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30644296A Expired - Fee Related JP4068679B2 (en) 1995-11-16 1996-11-18 Polymetal oxide

Country Status (13)

Country Link
US (3) US5807531A (en)
EP (1) EP0774297B1 (en)
JP (1) JP4068679B2 (en)
KR (1) KR970025702A (en)
CN (2) CN1081486C (en)
CA (1) CA2190171A1 (en)
CZ (1) CZ336296A3 (en)
DE (2) DE19542755A1 (en)
ES (1) ES2143702T3 (en)
ID (1) ID16006A (en)
MX (1) MX9605566A (en)
MY (1) MY132599A (en)
SG (1) SG69990A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19542755A1 (en) * 1995-11-16 1997-05-22 Basf Ag Multimetal oxides
DE19712820A1 (en) * 1997-03-26 1998-10-01 Basf Ag Burning moderators for gas-generating mixtures
KR20010023081A (en) * 1997-08-20 2001-03-26 스타르크, 카르크 Method for Producing Multi-Metal Oxide Masses Containing Mo, V and Cu
US6383974B1 (en) * 1997-08-26 2002-05-07 Japan Energy Corporation Hydrorefining catalyst and method for manufacturing hydrorefining catalyst
DE19815278A1 (en) * 1998-04-06 1999-10-07 Basf Ag Multimetal oxide materials
US6428765B1 (en) 1999-05-10 2002-08-06 Uop Llc Crystalline tantalum containing multinary metal oxide compositions, processes for using the composition
US6171571B1 (en) 1999-05-10 2001-01-09 Uop Llc Crystalline multinary metal oxide compositions, process for preparing and processes for using the composition
EP1090684A1 (en) * 1999-10-01 2001-04-11 Rohm And Haas Company A catalyst useful for the gas phase oxidation of alkanes, alkenes or alcohols to unsaturated aldehydes or carboxylic acids
US6693059B2 (en) * 2000-02-09 2004-02-17 Rohm And Haas Company Process for preparing a catalyst and catalytic oxidation therewith
US6531631B1 (en) 2000-04-28 2003-03-11 Saudi Basic Industries Corporation Oxidation of ethane to acetic acid and ethylene using molybdenum and vanadium based catalysts
US6444845B1 (en) 2000-04-28 2002-09-03 Saudia Basic Industries Corporation Process for the oxidation of unsaturated aldehydes to produce carboxylic acids using Mo-V based catalysts
US6974566B2 (en) * 2000-09-05 2005-12-13 Altair Nanomaterials Inc. Method for producing mixed metal oxides and metal oxide compounds
DE10046928A1 (en) * 2000-09-21 2002-04-11 Basf Ag Process for the preparation of multimetal oxide materials
US6403525B1 (en) * 2000-09-28 2002-06-11 Rohm And Haas Company Promoted multi-metal oxide catalyst
US6407031B1 (en) * 2000-09-28 2002-06-18 Rohm And Haas Company Promoted multi-metal oxide catalyst
US6734136B2 (en) * 2000-09-28 2004-05-11 Rohm And Haas Company IR and/or SM promoted multi-metal oxide catalyst
CA2448865A1 (en) * 2001-05-31 2002-12-05 Australian Nuclear Science & Technology Organisation Inorganic ion exchangers for removing contaminant metal ions from liquid streams
US6919472B2 (en) * 2001-12-21 2005-07-19 Saudi Basic Industries Corporation Catalyst compositions for the selective conversion of alkanes to unsaturated carboxylic acids, methods of making and methods of using thereof
US7229946B2 (en) 2003-03-24 2007-06-12 Saudi Basic Industries Corporation Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
WO2004108267A1 (en) * 2003-06-04 2004-12-16 Basf Aktiengesellschaft Method for the thermal treatment of an active catalytic mass
US7589046B2 (en) * 2003-06-04 2009-09-15 Basf Aktiengesellschaft Thermal treatment of the precursor material of a catalytically active material
US7524792B2 (en) * 2003-06-04 2009-04-28 Basf Aktiengesellschaft Preparation of catalytically active multielement oxide materials which contain at least one of the elements Nb and W and the elements Mo, V and Cu
CN100345631C (en) * 2004-03-25 2007-10-31 株式会社日本触媒 Catalyst for production of acrylic acid and process for production of acrylic acid using this catalyst
US7378367B2 (en) * 2004-03-25 2008-05-27 Nippon Shokubai Co., Ltd. Catalyst for production of acrylic acid and process for production of acrylic acid using the catalyst
JP2005329362A (en) * 2004-05-21 2005-12-02 Mitsubishi Chemicals Corp Manufacturing method of catalyst for producing unsaturated carboxylic acid
EP1755779A1 (en) * 2004-06-09 2007-02-28 Basf Aktiengesellschaft Method for the production of multi-metal oxide masses
JP4951235B2 (en) * 2005-11-30 2012-06-13 三菱レイヨン株式会社 Palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid using the same
DE102005061897A1 (en) * 2005-12-23 2007-06-28 Degussa Gmbh Process for the preparation of powdered solids
DE102006027302A1 (en) * 2006-06-13 2008-01-10 Evonik Degussa Gmbh Process for the preparation of mixed oxide powders
CN100404426C (en) * 2006-06-14 2008-07-23 武汉理工大学 Precursor body of Nano tube of composite oxides of multielement vanadium, and preparation method
DE102007010422A1 (en) * 2007-03-01 2008-09-04 Basf Se Preparation of a catalyst, useful in the heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid, comprises attaching one of the active mass to the surface of the carrier body with the help of a binding agent
JP5420556B2 (en) * 2008-09-30 2014-02-19 株式会社日本触媒 Catalyst for producing acrolein and / or acrylic acid and method for producing acrolein and / or acrylic acid using the catalyst
EP2347823B1 (en) 2008-09-30 2016-08-31 Nippon Shokubai Co., Ltd. Catalyst for producing acrylic acid and process for producing acrylic acid using the catalyst
CN102040505B (en) * 2009-10-13 2014-04-23 中国石油化工股份有限公司 Method for preparing unsaturated acid by oxidation of unsaturated aldehyde
CN105510494B (en) * 2014-09-25 2017-03-15 中国科学院微生物研究所 A kind of method of chromium valence state and its content in quantitative determination material containing chromium
US10647589B2 (en) * 2015-03-31 2020-05-12 Jx Nippon Mining & Metals Corporation Polyoxometalate and method for producing polyoxometalate
CN106881098B (en) * 2015-12-15 2019-08-09 上海华谊新材料有限公司 Composite oxide catalysts and its preparation method and application
CN110586076A (en) * 2018-06-12 2019-12-20 中国石油化工股份有限公司 Catalyst for synthesizing acrylic acid
JP7186295B2 (en) * 2019-06-05 2022-12-08 株式会社日本触媒 Catalyst for producing acrylic acid, method for producing the same, and method for producing acrylic acid
EP4349787A1 (en) 2021-05-25 2024-04-10 Toshiba Materials Co., Ltd. Multicomponent system complex oxide powder, electrochemical device and catalyst using same, and multicomponent system complex oxide powder production method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147084A (en) 1962-03-08 1964-09-01 Shell Oil Co Tubular catalytic reactor with cooler
BE793928A (en) 1972-01-13 1973-05-02 Deggendorfer Werft Eisenbau APPARATUS FOR IMPLEMENTING EXOTHERMAL AND ENDOTHERMAL CHEMICAL PROCESSES
IT1001977B (en) * 1973-11-28 1976-04-30 Sir Soc Italiana Resine Spa PROCEDURE FOR THE PREPARATION OF METHYL ACRYLATE OR MIXTURES OF METHYL ACRYLATE AND ACRILIC ACID
US4035262A (en) 1976-04-19 1977-07-12 The Dow Chemical Company Acrolein oxidation catalyst
US4208306A (en) * 1976-04-19 1980-06-17 The Dow Chemical Company Catalyst for making acrylic acid from acrolein or propylene
AU529228B2 (en) 1977-07-13 1983-06-02 Nippon Shokubai Kagaku Kogyo Co. Ltd. Catalytic vapour phase oxidation
US4148757A (en) 1977-08-10 1979-04-10 The Standard Oil Company Process for forming multi-component oxide complex catalysts
DE2909671A1 (en) 1979-03-12 1980-10-02 Basf Ag METHOD FOR PRODUCING SHELL CATALYSTS
US4537874A (en) 1982-10-22 1985-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of unsaturated aldehydes
DE3867912D1 (en) * 1987-06-05 1992-03-05 Nippon Catalytic Chem Ind CATALYST FOR THE OXYDING OF ACROLEIN AND METHOD FOR THE PRODUCTION THEREOF.
US5270277A (en) * 1990-08-08 1993-12-14 Siemens Aktiengesellschaft Arsenic-resistant catalyst and method for producing the same
DE4220859A1 (en) 1992-06-25 1994-01-05 Basf Ag Multimetal oxide materials
DE4302991A1 (en) * 1993-02-03 1994-08-04 Basf Ag Multimetal oxide materials
US5390448A (en) 1993-04-22 1995-02-21 Sunnen Products Company Modular expandable honing tool
DE4335973A1 (en) 1993-10-21 1995-04-27 Basf Ag Process for the preparation of catalytically active multimetal oxide compositions containing as basic constituents the elements V and Mo in oxidic form
DE4405060A1 (en) 1994-02-17 1995-08-24 Basf Ag Multimetal oxide materials
DE4405059A1 (en) 1994-02-17 1995-08-24 Basf Ag Multimetal oxide materials
DE4405058A1 (en) * 1994-02-17 1995-08-24 Basf Ag Multimetal oxide materials
DE4405514A1 (en) 1994-02-22 1995-08-24 Basf Ag Multi:metal oxide useful as catalyst esp. in gas phase oxidn. of acrolein to acrylic acid
DE4440891A1 (en) 1994-11-17 1996-05-23 Basf Ag Multi:metal oxide useful as catalyst esp. in gas phase oxidn. of acrolein to acrylic acid
JP3786297B2 (en) * 1995-03-03 2006-06-14 日本化薬株式会社 Catalyst production method
DE19528646A1 (en) * 1995-08-04 1997-02-06 Basf Ag multimetal
DE19542755A1 (en) * 1995-11-16 1997-05-22 Basf Ag Multimetal oxides

Also Published As

Publication number Publication date
EP0774297B1 (en) 2000-02-09
KR970025702A (en) 1997-06-24
CA2190171A1 (en) 1997-05-17
CN1153079A (en) 1997-07-02
CN1177763C (en) 2004-12-01
ES2143702T3 (en) 2000-05-16
JPH09194213A (en) 1997-07-29
US6084126A (en) 2000-07-04
US5807531A (en) 1998-09-15
CZ336296A3 (en) 1997-08-13
MX9605566A (en) 1997-05-31
SG69990A1 (en) 2000-01-25
MY132599A (en) 2007-10-31
EP0774297A1 (en) 1997-05-21
DE19542755A1 (en) 1997-05-22
DE59604408D1 (en) 2000-03-16
CN1081486C (en) 2002-03-27
US6184173B1 (en) 2001-02-06
CN1394812A (en) 2003-02-05
ID16006A (en) 1997-08-28

Similar Documents

Publication Publication Date Title
JP4068679B2 (en) Polymetal oxide
US5885922A (en) Multimetal oxide materials
US5686373A (en) Polymetal oxide materials
US7214822B2 (en) Catalyst comprising a support and a catalytically active oxide material applied to the surface of the substrate
JP4465275B2 (en) Multi-metal oxide composition
JP5517407B2 (en) Method for producing multi-metal oxide material
JP2004504288A (en) Method for producing acrylic acid by gas phase oxidation of propane by heterogeneous catalysis
JP4204327B2 (en) Method for producing acrylic acid by vapor phase oxidation of propene with heterogeneous catalyst using molecular oxygen in reaction zone
JP2006502950A5 (en)
CA2142563A1 (en) Multimetal oxide compositions
US6921836B1 (en) Multimetal oxide materials
TW548133B (en) NOx treated mixed metal oxide catalyst
JP4247565B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the same
US6797839B1 (en) Multi-metal oxide materials with a two-phase structure
CA2142568A1 (en) Multimetal oxide compositions
US7495121B2 (en) Mo- and V-containing multimetal oxide materials
US6737545B1 (en) Multi-metal oxide compounds with a two-phase structure
JP2001515004A (en) Method for producing composite metal oxide material containing Mo, V and Cu
JP2007326036A (en) Oxide catalyst for oxidation or amm oxidation
US7253310B2 (en) Preparation of (meth)acrylic acid
WO2022145394A1 (en) Catalyst for vapor-phase catalytic ammoxidation reaction and method for producing catalyst for vapor-phase catalytic ammoxidation reaction
JP2007326034A (en) Catalyst for oxidation reaction or amm oxidation reaction

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees