JP4068438B2 - 光符号分割多重通信装置 - Google Patents
光符号分割多重通信装置 Download PDFInfo
- Publication number
- JP4068438B2 JP4068438B2 JP2002337245A JP2002337245A JP4068438B2 JP 4068438 B2 JP4068438 B2 JP 4068438B2 JP 2002337245 A JP2002337245 A JP 2002337245A JP 2002337245 A JP2002337245 A JP 2002337245A JP 4068438 B2 JP4068438 B2 JP 4068438B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- pulse signal
- grating
- optical code
- division multiplexing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Communication System (AREA)
Description
【発明の属する技術分野】
本発明は、光符号分割多重通信に用いられる光符号分割多重通信装置等に関する。
【0002】
【従来の技術】
近年、インターネットの普及等により通信需要が急速に増大している。光多重通信技術は、これまで光時分割多重(OTDM: Optical Time Domain Multiplexing)通信方式から波長多重(WDM: Wavelength Division Multiplexing)通信方式の開発を経て、その通信容量を増大させてきた。次の光多重通信方式として期待されているのが、光符号多重(OCDM: Optical Code Division Multiplexing)通信方式である。これは同一の時間スロット、同一の波長上に、複数の通信チャンネルを設定できることが特長とされている。
【0003】
しかしながら、これまで厳密に同一時間スロットに同一波長の符号化信号を多重した例は無かった。例えば、コヒーレントな光源を用いた符号化信号では、時間方向に拡散された信号同士をオーバーラップさせることができない、と明確に記述されている(例えば、非特許文献1参照)。また、SSFBG(Super Structure Fiber Bragg Grating)による位相符号化信号を用いた多重伝送について開示されている(非特許文献2参照)。但し、この文献においては、SSFBGの全長以外の構造および反射スペクトル以外の特性等については明らかにされていない。また、この文献ではWDM技術が併用されており、時間領域で波長の異なる複数の位相符号化信号が多重されているものの、符号化信号の拡散時間(duration time)はデータ周期と同一に設定されている。つまり、上記非特許文献1の記述のような、時間方向に拡散された同一波長の符号化信号同士のオーバーラップが行われているわけではない。
【0004】
従って、時間方向に拡散された信号同士がオーバーラップする場合には、光パルス間の干渉によって伝送特性が損ねられたり、データレートや伝送距離等が制限される等の問題が生じる。また、上記したように、同一時間スロットに同一波長の符号化信号を多重できないのであれば、光通信システムとして適用可能なデータレートの上限が符号器によって決定されてしまうことになり、光通信システムの自由度が符号器により制限されることになる。
【0005】
また、上記非特許文献2に開示されるSSFBGの場合においては、符号器の長さで決定される拡散時間以下のデータ周期を有するデータレート以上のシステムに適用することができないということになる。例えば、拡散時間が800psの場合では、1.25Gbps(Gbits per second)以上のデータレートに適用することができない。さらにはSSFBGで多重に有効な符号数を増加させるためにはチップ数を増やすことが有効であるが、単純なチップ数の増加はSSFBGの長さの増大につながり、より適用可能なデータレートを制限することになる。
【0006】
【非特許文献1】
「光CDMA:光ネットワークの寿命の延長("Optical CDMA: Extending the Life of Optical Networks")、H.ファザラー博士、APN社(Dr.H. Fathallah, APN Inc. )、ホームページhttp://www.stanford.edu/~supriyo/White.pdf」(第4頁)
【0007】
【非特許文献2】
「16チップ、4レベル位相コーディンググレーテングを用いた8チャネル双方向スペクトルインターリーブされたOCDM/DWDM実験("8-channel Bi-directional Spectrally Interleaved OCDM/DWDM experiment employing 16-chip, four-level phase coding gratings")、P.C.ティー他、OECC2002、テクニカルダイジェスト11A−1第384−385頁(P.C.Teh et.al, OECC2002 Technical Digest 11A-1, p384-38)」、(第384頁、図1)
【0008】
【非特許文献3】
「高密度WDMシステムのための多重位相シフト超構造ファイバ・ブラッググレーテング("Multiple-Phase-shift superstructure fiber Bragg gratings(MPS-SSFBG's) for dense WDM systems")、ナス他、OECC/IOOC2001、ポストデッドラインペーパ1(Nasu et al, OECC/IOOC2001, PDP1)」(第34頁、図1)
【0009】
【発明が解決しようとする課題】
本発明はかかる点に鑑みてなされたものであり、本発明の目的は、光符号化信号間の干渉が抑制された高性能な光符号多重通信装置を提供することにある。
【0010】
【課題を解決するための手段】
この発明の光符号分割多重装置は、2値位相光符号を用いて光符号分割多重化を行う光符号分割多重装置であって、 所定波長の光パルス信号を生成する複数の光パルス信号生成器と、上記光パルス信号を反射する、光符号チップ数と同数の均一ピッチグレーティングが光導波路の導波方向に形成され、各々が前記2値位相光符号の1符号に対応するとともに上記複数の光パルス信号生成器の1からの上記光パルス信号の符号化をなす複数のグレーティング導波路符号器と、を有している。
【0011】
ここで、当該光符号値の変化位置に対応する隣接均一ピッチグレーティングは、入力光信号に(2m+1)π/2の位相シフト(mは整数、m=0,1,2,・・・)を与える間隔で配され、その他の隣接均一ピッチグレーティングは、入力光信号にnπの位相シフト(nは整数、n=0,1,2,・・・)を与える間隔で配され、上記複数の光パルス信号生成器の少なくとも1つからの光パルス信号のパルス周期はグレーティング導波路符号器の拡散時間以下である。
【0012】
また、この発明の光符号分割多重通信装置は、2値位相光符号を用いて光符号分割多重化を行う光符号分割多重通信装置であって、所定波長の光パルス信号を生成する複数の光パルス信号生成器と、光パルス信号を反射する、光符号チップ数と同数の均一ピッチグレーティングが光導波路の導波方向に形成され、各々が2値位相光符号の1符号に対応するとともに光パルス信号生成器の1からの光パルス信号の符号化をなす複数のグレーティング導波路符号器と、上記複数のグレーティング導波路符号器からの符号化信号の各々を相対的に遅延せしめる遅延器と、を有している。
【0013】
ここで、当該光符号値の変化位置に対応する隣接均一ピッチグレーティングは、当該パルス信号光に(2m+1)π/2の位相シフト(mは整数、m=0,1,2,・・・)を与える間隔で配され、その他の隣接均一ピッチグレーティングは、当該パルス信号光にnπの位相シフト(nは整数、n=0,1,2,・・・)を与える間隔で配され、上記複数の光パルス信号生成器の少なくとも1つからの光パルス信号のパルス周期はグレーティング導波路符号器の拡散時間以下である。
【0014】
【発明の実施の形態】
本発明の実施例を図面を参照しつつ詳細に説明する。尚、以下に説明する図において、実質的に同等な部分には同一の参照符号を付している。
[第1の実施例]
図1は、本発明の第1の実施例である光符号化装置10の構成を示すブロック図である。
【0015】
ここでは、光符号器として多点位相シフトFBG(Multiple Phase Shifted Fiber Bragg Grating)が光サーキュレータと組み合わせて用いられている。すなわち、光符号化装置10は、光符号器(以下、単に符号器ともいう。)11及び光サーキュレータ15を有している。光符号化装置10の光入力端16Aに入力された光信号は光ファイバ19を介して光サーキュレータ15の第1ポートに導かれ、光サーキュレータ15の第2ポートを経て、光符号器11により反射される。また、光符号器11の終端側には−50dB程度の減衰量の光ターミネタ(光減衰器)12が接続されている。光符号器11からの反射光信号は光サーキュレータ15の第2ポート、第3ポートを経て光出力端16Bに導かれる。
【0016】
この光符号器(多点位相シフトFBG)11は、実質的に同一のブラッグ周波数又はブラッグ波長を有するp個の均一ピッチグレーティング(以下、単に均一グレーティングともいう)UG(i)(i=1,2,...,p)の各々が位相シフト部PS(i) (i=1,2,...,p-1)を介して直列に結合して形成された構成を有している。例えば、光ファイバのコアの屈折率を周期的に変化させることにより光ファイバ中に複数の均一ピッチブラッグ回折格子が形成された位相シフト・ファイバグレーティングとして構成されている。なお、光符号器11は、ファイバグレーティングとして構成されている場合に限らない。例えば、光符号器11は、光導波路及び当該光導波路に光学的に結合された多点位相シフト構造から構成されていればよい。例えば、光符号器11は、平面光導波路内に複数の均一ピッチブラッグ回折格子が形成されたプレーナ構造多点位相シフト・グレーティングとして構成されていてもよい。また、均一ピッチグレーティングUG(i)は、必ずしも同一のブラッグ波長を有する必要はない。すなわち、均一ピッチグレーティングUG(i)は入力信号光を反射するように構成されていればよく、反射光を得ることができれば光符号化をなすことができる。例えば、均一ピッチグレーティングUG(i)のブラッグ波長をλb、パルス信号光の波長をλp、符号化信号のチップ時間差(チップレート)の逆数に対応する波長をΔλとしたとき、均一ピッチグレーティングのブラッグ波長λbが、λp−Δλ≦λb≦λp+Δλの範囲内にあるのが好ましい。ここで、本実施例の場合、チップ時間差は24psであるから、チップ時間差の逆数(周波数)は約42GHzであり、1550nm帯においてこれに対応する波長(Δλ)は約0.34nmである。また、上記したように、均一ピッチグレーティングUG(i)が実質的に同一のブラッグ波長を有するのが更に好ましい。
【0017】
さらに、均一ピッチグレーティングUGのうち少なくとも1つをアポダイズされたグレーティング(アポダイズグレーティング)としてもよい。すなわち、均一ピッチグレーティングUGの屈折率変調度が光導波路の導波方向の両端又は一端において低減された構造を有するグレーティングとしてもよい。アポダイズグレーティングを用いることによって、後述するグレーティングによる反射パルスの時間拡がりを改善することができる。また、位相反転の関係にある隣接光パルスの打ち消し合いを防止し、パワーロスを低減させることができる。なお、均一ピッチグレーティングUGの全てをアポダイズグレーティングとしてもよい。あるいは、光符号値の変化位置に対応する隣接均一ピッチグレーティングの一方又は両方をアポダイズグレーティングとしてもよい。すなわち、後述するように、反射光間の位相差がπとなる位置の隣接均一ピッチグレーティングをアポダイズグレーティングとしてもよい。または、適当な位置の均一ピッチグレーティングUGをアポダイズグレーティングとしてもよい。
【0018】
以下においては、M系列15チップの2値位相符号化に用いられる符号器に適用した場合を例に説明する。
図2は、光符号器11の構成及び符号化動作を説明するための模式的な図である。光符号器11は、均一グレーティングUG(i)(i=1,2,...,15)の各々の間に位相シフト部PS(i) (i=1,2,...,14)がそれぞれ配されている。位相シフト部PS(i)の位相シフト量は、M系列符号の各チップに対応して定められる。すなわち、15チップのM系列符号としてMa(000111101011001)を用いた場合には、UG(1),UG(2),UG(3),UG(4),・・・,UG(14),UG(15)はそれぞれ0,0,0,1,・・・,0,1に対応する。また、「0」及び「1」(あるいは、「1」及び「0」)のチップが隣接する位置(すなわち、当該光符号値の変化位置)に対応する位相シフト部PS(i)は、その位相シフト量がπ/2となるように形成されている。すなわち、入射光の導波路内波長に対して位相差がπ/2(=λ/4)であり、伝播する光に往復でπの位相シフトを与えるように形成されている。一方、「0」及び「0」、又は「1」及び「1」が隣接する位置に対応する位相シフト部PS(i)の位相シフト量はπとなるように形成されている。すなわち、入射光の導波路内波長に対して位相差がπ(=λ/2)であり、伝播する光に往復で2πの位相シフト(すなわち、位相シフトが0)を与えるように形成されている。
【0019】
従って、位相シフト部PSを往復する光に対しては、位相シフト量がπ/2+mπ=(2m+1)π/2である(mは整数)ことは、位相シフト量がπ/2(往復での位相シフト量がπ)の場合と等価である。同様に、位相シフト量が0+nπ=nπのとき(nは整数)は、位相シフト量がπ(往復での位相シフト量が0)の場合と等価である。ここでは、位相シフト量が等価な場合をも含めて、これらの位相シフト量がそれぞれπ/2又はπであるとして説明する。
【0020】
具体的には、上記したM系列符号としてMaを用いた場合、「0」及び「1」が隣接するUG(3)及びUG(4)に対応する位置の位相シフト部PS(3) の位相シフト量がπ/2となるように形成されている。同様に、PS(7),PS(8),PS(9),PS(10),PS(12),PS(14) の位相シフト量がπ/2となるように形成されている。その他の位相シフト部PS(i)の位相シフト量は、π(=λ/2)である。
【0021】
図3は、光符号器11のファイバの軸方向、すなわち導波方向(z方向)における均一グレーティングUG及び位相シフト部PSの構成、及び屈折率n(z)の変化を模式的に示している。この図において、位相シフト量がπ/2である位相シフト部PS(j)及び当該位相シフト部の両側の均一グレーティングUG(j)、UG(j+1)について示されている。図に示すように、UG(j)はLU(j)の長さを有し、その屈折率n(z)は一定のピッチ又は周期Λ(グレーティング周期)で変化している。均一グレーティングUG(j)は、ブラッグ条件を満たす波長の光のみを選択的に反射する。また、均一グレーティングUG(j+1) は LU (j+1) の長さを有し、均一グレーティングUG(j)と同様にその屈折率n(z)は一定の周期Λ(グレーティング周期)で変化している。なお、本実施例においては、全ての均一グレーティングUG(i),(i=1,2,...,15)は実質的に同一の構造及び長さ(=LU)を有している。
【0022】
均一グレーティングUG(j)及びUG(j+1) は位相シフト部PS(j)によって所定の間隔をおいて配置されている。より具体的には、均一グレーティングUG(j)及びUG(j+1)の反射波長をλB(真空中における波長)とし、位相シフト部PS(j)が設けられたファイバ部分における実効屈折率をneffとしたとき、位相シフト部PS(j)の長さLPSは、次式で表される。
LPS=(2m+1)・λB/4neff (1)
ここで、mは0以上の整数(m=0,1,2,...)である。また、右辺のλB/neffは導波路内波長を表す。
【0023】
図3に示す場合において具体的に説明すると、位相シフト部PS(j)の長さLPSは均一グレーティングUG(j)及びUG(j+1)の最も近い同一位相位置(屈折率n(z)の「山」の位置A,A’)間の距離で与えられる。
かかる均一グレーティングUG(j)及びUG(j+1)の一方の端から光(真空中における波長λC)を入射させた場合、位相シフト部PS(j)の長さLPSを変えることにより均一グレーティングUG(j)及びUG(j+1)の各々からの反射光間の位相差を制御することが可能である。上記したように、位相シフト部PS(j)の長さLPSがλ/4位相シフト構造を構成するように定めた場合、位相シフト部PS(j)の位相シフト量はπ/2であり均一グレーティングUG(j)及びUG(j+1)の各々からの反射光間の位相差はπとなる。
【0024】
なお、均一グレーティングUG(j)及びUG(j+1)が1次のグレーティングの場合、λ/4の位相シフトはΛ/2(Λはグレーティング周期)に対応するが、1次のグレーティングに限らず、高次のグレーティングを用いることもできる。
他方、位相シフト量がπである位相シフト部PS(k),(k=1,2,4,5,6,11,13)の長さLPSは、次式で表される。
LPS=(2n+1)・λB/2neff (2)
ここで、nは0以上の整数(n=0,1,2,...)である。また、右辺のλB/neffは導波路内波長を表す。
【0025】
この条件を満足するように、位相シフト部PS(k)の長さLPSを定めた場合、位相シフト部PS(k)の位相シフト量はπであり、位相シフト部PS(k)の両側の均一グレーティングUG(k)及びUG(k+1)の各々からの反射光間の位相差は2πとなる。2πの位相差によってこれらの反射光の位相は一致するため、位相差が2πであることは、これらの反射光間に実質的な位相差が生じない(すなわち、位相差が0である)ことと等価である。
【0026】
なお、以下においては、説明の簡便さのため、反射光間にπの位相差を与える位相シフト部をPS1と総称し、0の位相差を与える位相シフト部をPS0と総称する。
図3においては、均一グレーティングUG(i)が正弦波状の屈折率分布プロファイルを有する場合について示したが、これに限らない。すなわち、均一グレーティングUG(i),(i=1,2,...,15)は、一定周期の屈折率変化を有し、均一ピッチブラッググレーティングとして機能するものであればよい。例えば、均一グレーティングUG(i)は、矩形波状、三角波状等の屈折率分布プロファイルを有していてもよい。
【0027】
本実施例においては、グレーティング周期(又はグレーティングピッチ)Λ=535.5nm(ナノメートル)とし、符号の1チップを構成する均一グレーティングUG(i)の長さLUはΛの4380倍の約2.346mm(ミリメートル)である。従って、全ての均一グレーティング長の合計は約35.19mm(=2.346mm×15)となり、これに全ての位相シフト部の長さを加えたものが多点位相シフトFBGの全長Lとなるため、選択する符号パターンにより多点位相シフトFBGの全長が変化する。本実施例においては、光信号に往復で位相差πを与えるλ/4位相シフト部PS1の長さをΛ/2(=535.5/2=267.75mm)、それ以外、すなわち光信号に往復で位相差0を与える位相シフト部PS0の長さは0である。
【0028】
このような多点位相シフトFBGである符号器11に光パルスを入射させると、図2に示すように、入射光パルスPinが多点位相シフトFBG内を伝播し、それぞれの均一グレーティングから光パルスが反射され互いに干渉することで、光パルス列Poutが生成される。なお、符号器11への光パルスの入射端をA端とし、他方の端をB端と称する。より詳細には、光パルスPinには位相シフト部の位相シフト量に応じた位相差に加えて伝播遅延が生じる。この伝播遅延時間は、均一グレーティング間の長さ及びそれらの間隔に応じて定まる。すなわち、光速をc、隣接する均一グレーティングの反射中心位置間隔をDとしたとき、隣接する均一グレーティングによって生じる往復の伝播遅延時間(以下、チップ時間ともいう)Tdは次式で表される。なお、チップ時間の逆数をチップレートという。
Td=2neff・D/c (3)
本実施例においては、入射光パルスPinの波長(真空中)をλB=1550nmとし、均一グレーティングUGのブラッグ波長も入射光波長と実質的に同一であるようにその周期(ピッチ)が定められている。すなわち、均一グレーティングUGのブラッグ波長λB=1550nm(真空中)としている。また、入射光パルスPinの光パルス幅(半値幅)は24ps(ピコ秒)であり、隣接する均一グレーティングによって生じる伝播遅延時間Tdは24psである。すなわち、各均一グレーティングUGの長さは、光パルス幅(24ps)に対応する光路長にほぼ等しくなるよう設定されている。しかしながら、後述するように光パルス幅は伝播遅延時間Tdと同一である必要はない。従って、符号器11により生成される光パルス列Poutは、各パルス間の時間間隔が24psで、位相シフト部の位相シフト量に応じた位相差(すなわち、0又はπ)を有する光パルスからなる。つまり、図2に示すように、M系列符号Ma(000111101011001)に対応して、各パルスが位相差(0,0,0, π, π, π, π,0, π,0, π, π,0,0,π)を有する周期24psの光パルス列が生成される。
【0029】
この符号器11にパルス半値幅が24psのRZ(Return-to-Zero)光パルス信号を入力した場合に生成される光パルス列についての波形シミュレーション結果を図4に示す。入力RZ光パルス信号は各チップを構成する均一グレーティングUGによって反射され、図4に示されるような約360psの時間範囲に拡散された光パルス列が得られる。この光パルス列が位相により2値符号化された状態である。図4に示す符号化波形において、各チップに対応する均一グレーティングUGからの反射パルスが連続して同相の場合は、光パルスが重なり合う部分の光出力が足し合わされて、波高値が高く幅の広いパルスになる。また、反射パルスが逆相の場合は位相が異なる光パルスが重なり合う部分の光出力が打ち消しあって、波高値は低いが分離された光パルスになる。このようにして、入力光パルス信号の符号化がなされ、符号化パルス列Peが得られる。
【0030】
次に、上記した符号化パルス信号の復号について説明する。図5は、光復号器21の構成及び復号動作を説明するための模式的な図である。光復号器21は、光符号器11のM系列符号Ma(000111101011001)の符号を反転させたM系列符号(100110101111000) に対応する構成を有している。換言すれば、光復号器21は、光符号器11の均一グレーティングUG及び位相シフト部PSの配列の順序を反転させた構造を有する多点位相シフトFBGである。すなわち、単に光符号器11を反転させ、光符号器11のB端を入力端とし、A端を終端としたものと等価である。また、光復号器21の終端側には−50dB程度の減衰量の光ターミネタ13が接続されている。尚、図5においては、理解の容易さのため、対応する光符号器11(図2)の各部分の参照符を括弧内に示している。
【0031】
光符号器11により符号化されたRZ光信号を復号器21に入力すると、図5に示すように、各チップから位相シフトの影響を受けて反射された各光パルスはチップ時間差(すなわち、伝播遅延時間)を伴って重畳され、それぞれの相対位相差で干渉することにより図6に示すような自己相関波形が得られる。なお、図6においては、当該自己相関波形を、ビット周期(ビットピリオド)を単位とする時間軸に対して、その大きさを任意単位(a.u.:arbitrary unit)によって表している。このようにして符号化(変換)された光パルス信号の復号(逆変換)がなされる。
【0032】
図7は、符号化/復号化装置30の構成を示す。符号化/復号化装置30は、上記した符号器11及び復号器21を有し、また光通信装置としても機能する。符号化/復号化装置30において、光パルス生成器31は、光パルス半値幅が24psで2.5Gpsのデータレートを有する光RZ信号を生成する。生成された光RZ信号は光サーキュレータ15Aを介して符号器(エンコーダ)E(Ma)11に入力される。符号器11は、M系列符号Maに応じて入力光RZ信号の符号化をなす。符号器11に入力された光信号波形Pi及び符号器11からの符号化信号波形Peをそれぞれ図8(a)及び(b)に示す。約360psの拡散時間、2.5Gpsの周期を有する符号化信号波形(光パルス列)Peが得られているのが分かる。
【0033】
符号化された光パルス列Peは、光増幅器18によって増幅された後、光サーキュレータ17を経て復号器(デコーダ)D(Ma)21に入力される。復号器21は、前述したように、M系列符号Maによる符号化信号の復号をなすように構成されている。復号器21からの復号光信号は受光器(光ディテクタ)32によって受光され、復号電気信号に変換される。復号器21からの復号信号波形Pdについての実験結果を図8(c)に示す。十分に実用可能な復号波形が得られることがわかる。
【0034】
以上説明したように、多点位相シフトFBGを符号器及び復号器に用いて、十分良好な符号化/復号化特性が得られることがわかる。
[第2の実施例]
図9は、本発明の第2の実施例である光符号分割多重(OCDM)通信装置35の構成を示すブロック図である。光符号分割多重通信装置35は、OCDM送信部36、光ファイバ37及びOCDM受信部38からなる。OCDM送信部36は、光パルス信号生成器31A,31B、光サーキュレータ15A,15B、光符号器11A,11B、光ターミネタ12A、12B、及び光カプラ33からなる。
【0035】
光パルス信号生成器31A、光サーキュレータ15A、光ターミネタ12A及び光符号器11Aは第1送信チャネルを構成し、光パルス信号生成器31B、光サーキュレータ15B、光ターミネタ12B及び光符号器11Bは第2送信チャネルを構成する。光パルス信号生成器31A、31Bは、実質的に同一波長で光パルス半値幅が24psで2.5Gpsのデータレートを有する光RZ信号を生成する。光パルス信号生成器31Aからの光パルス信号は、M系列符号Maに対応する光符号器E(Ma)11Aにより符号化され、光パルス信号生成器31Bからの光パルス信号は、M系列符号Ma(000111101011001)とは異なるM系列符号Mb(000100110101111)に対応する光符号器E(Mb)11Bにより符号化される。第1及び第2送信チャネルからの符号化信号は光カプラ33によって合波され、光ファイバ37を経て送信される。また、光サーキュレータ15A,15B、光符号器11A,11B、及び光カプラ33は、2系統の光信号の光符号分割多重化を行うマルチプレクサを構成する。
【0036】
OCDM受信部38において、光ファイバ37を経て受信されたOCDM信号は光増幅器18において所定の利得で増幅される。増幅されたOCDM信号は、光サーキュレータ17Aを経て光復号器21Aにより復号化される。なお、光復号器21の終端側には光ターミネタ13Aが接続されている。光復号器D(Ma)21Aは、光符号器E(Ma)11Aにより符号化された光信号の復号をなすように構成されている。すなわち、第1の実施例の場合と同様に、光符号器E(Ma)11Aの均一グレーティングUG及び位相シフト部PSの配列の順序を反転させた構造を有する多点位相シフトFBGからなる。なお、光符号器E(Mb)11Bにより符号化された光信号の復号をなす光復号器D(Mb)の構成を有していてもよい。復号化された光信号は光ディテクタ32によって受光され、電気信号に変換される。
【0037】
光符号分割多重化された信号波形のうち、M系列符号Maの(010)及びM系列符号Mbの(111)に対応する信号波形部分、及び復号信号波形(アイパターン)のシミュレーション結果をそれぞれ図10、図11に示す。これらの結果から、かかる光符号分割多重装置において、十分に実用的な符号化及び復号化が可能であることがわかる。
【0038】
なお、上記した実施例において示した光パルス幅、データレート等の光信号の諸数値、あるいはチップ数、グレーティング長、位相シフト長等の光符号器の諸数値は例示であって、適宜改変することが可能である。例えば、光パルス幅及び伝播遅延時間Tdを24psとした場合を例に説明したが、これに限らない。データレート、チップ数、均一グレーティング長等に応じて適宜選択することができる。あるいは、必要な伝送特性に応じて定めればよい。すなわち、上記した実施例においては、データレートが2.5Gpsでチップ数が15の場合に、光符号化波形の拡散時間が当該データレートのタイムスロット(400ps)と同程度、又はそれ以下となるように光パルス幅(24ps)を設定したが、これよりも狭いパルス幅の光信号を用いてもよい。また、24psよりも更に広いパルス幅の光信号を用いることもできる。また、伝播遅延時間Tdも光パルス幅と独立して設定することができる。
[第3の実施例]
上記した第1及び第2の実施例においては、光符号器によって符号化された光パルス信号の拡散時間がデータ伝送速度(データレート)を超えない場合について説明した。すなわち、前述のように光符号器の拡散時間は約360psであるから、データレートが2.5Gpsである場合には、図12に模式的に示すように、同一の符号で符号化された同一波長の光パルス列同士が重なり合うことはない。なお、図12は、符号化光信号波形を時間軸に対して示しており、各ビットの光波形を順次、第1ビット、第2ビット、第3ビット、・・・(bit-1, bit-2, bit-3, ・・・)のように表している。上記したように、各ビットの光波形は約360psの時間幅(拡散時間)を有し、2.5Gpsのデータレートのタイムスロットは400psであるから、各ビットの光波形は時間的に重なることはない。
【0039】
図13は、図12に示す光符号器を用い、データレートを5Gpsに高速化した場合の符号化光信号波形を時間軸に対して示している。奇数番目のビットは実線で、偶数番目のビットは破線で示されている。データレートが5Gpsの場合のタイムスロットは200psであるから、各ビットの光波形はその前後のビットの光波形と重なることになる。
【0040】
本実施例における符号化/復号化装置の構成は、光パルス生成器31が光パルス半値幅が24psで5Gpsのデータレートを有する光RZ信号を生成する点を除いて、図7に示す符号化/復号化装置30と同様である。
符号器11に入力された光信号波形Pi、符号器11からの符号化信号波形Pe、及び復号信号波形Pdの実験結果をそれぞれ図14(a)ないし(c)に示す。光信号波形Piは200psの周期を有し、符号化光波形Peには各ビットに対応する光波形が重なっていることが分かる。また、復号信号波形Pdから十分良好なアイ開口が得られることが分かる。
【0041】
図15は、この符号器11に5Gbpsのデータレートで連続した3つのパルス(bit−1,bit−2,bit−3)が入力された場合の群遅延時間特性の解析結果を反射特性と共に示す。なお、これら3つの光パルス(bit−1,bit−2,bit−3)の群遅延時間特性をそれぞれ実線、一点鎖線、破線で示している。図に示すように、符号器11に用いた多点位相シフトFBGの群遅延時間特性は波長に対して周期的に変化している。各パルスの群遅延時間幅(拡散時間)は、約360psであり、各パルス間の群遅延時間差はデータレートに対応する200psである。この図に示すように、符号化信号同士が時間的に重なり合っても、波長分解してみると同一時間に同一波長成分は重なり合っていないことがわかる。すなわち、第1及び第2の実施例において示した多点位相シフトFBGを符号器及び復号器として用いて、十分良好な符号化/復号化特性及び伝送特性が得られることが理解される。すなわち、符号化光パルス信号の拡散時間がデータレートを超える場合であっても、十分良好で実用的な符号化/復号化及び伝送が可能である。なお、符号化光パルス信号の拡散時間がデータレートを超える場合における符号化/復号化方式及び伝送方式をデータレート拡張(Data−rate Enhancement)方式と称する。なお、本実施例では、データレートが5Gpsの場合を例に説明したが、更に高速または低速のデータレートにも適用可能である。
[第4の実施例]
図16は、本発明の第4の実施例である光符号分割多重(OCDM)通信装置35の構成を示すブロック図である。光符号分割多重通信装置35は、OCDM送信部36、光ファイバ37A及びOCDM受信部38からなる。OCDM送信部36は、8つの送信チャネルを有している。例えば、第1送信チャネルは、データレートを調整可能な可変データレート光源である光パルス信号生成器31A、光サーキュレータ15A、光符号器11Aから構成されている。可変データレート光パルス信号生成器31Aからの光パルス信号は、光サーキュレータ15Aを経て光符号器11Aに入力され、M系列符号Maに対応する光符号器E(Ma)11Aにより符号化される。同様に、第2−8送信チャネルは、可変データレート光パルス信号生成器31B−31H、光サーキュレータ15B−15H、光符号器(E(Mb)−E(Mh))11B−11Hから構成されている。光パルス信号生成器31B−31Hからの光パルス信号は光符号器11B−11Hによりそれぞれ符号化され、光カプラ33によって合波される。尚、光パルス信号生成器31A−31Hは、実質的に同一波長の光パルス信号を生成する。また、光符号器11A−11Hは互いに異なるM系列符号を有する光符号器として構成されている。
【0042】
合波された光符号化信号(OCDM信号)は、長距離、例えば数10km程度の光ファイバ37Aを経てOCDM受信部38において受信される。OCDM信号は、OCDM受信部38において、光増幅器18により所定の利得で増幅される。増幅されたOCDM信号は、光カプラ39、光サーキュレータ17A−17Hを経て光復号器21A−21Hにより復号化される。光復号器(D(Ma)−D(Mh))21A−21Hは、それぞれ光符号器11A−11Hにより符号化された光信号の復号をなすように構成されている。復号化された光信号はそれぞれ光ディテクタ32A−32Hによって受光され、各送信チャネルにより送信されたデータが得られる。
【0043】
各送信チャネルのデータレートは、可変データレート光パルス信号生成器31A−31Hによって調整可能である。例えば、全ての送信チャネルのデータレートを2.5Gpsとして使用し、伝送容量等の増大に応じて、全て又は一部の送信チャネルのデータレートを増加、例えば5Gpsとしてもよい。この際、上記したように、本発明のデータレート拡張(Data-Rate Enhancement)方式によれば、光パルス幅を含むその他の条件を変更する必要はなく、単に光信号のデータレートを増加させることによって装置全体の容量(データレート)を増大させることができる。さらに、同様に、全て又は一部の送信チャネルのデータレートを低減、例えば1.25Gpsとしてもよい。
【0044】
なお、本実施例においては、8つの送信チャネル及び8つの受信チャネルを有する場合を例に示したが、符号数の範囲内で適宜設けることができる。また、受信チャネルの数は送信チャネルの数と同数である必要はない。
[第5の実施例]
図17は、本発明の第5の実施例である光符号分割多重(OCDM)通信装置40の構成を示すブロック図である。OCDM通信装置40は、一方の送信チャネルに遅延器が設けられている点を除いて、図9に示す第2の実施例と同様の構成を有している。
【0045】
より詳細には、第1及び第2送信チャネルからの符号化信号は光カプラ33によって合波され、光ファイバ37を経て送信される。より詳細には、光パルス信号生成器31A、光サーキュレータ15A及び光符号器E(Ma)11Aは第1送信チャネルを構成し、光パルス信号生成器31B、光サーキュレータ15B、光符号器E(Mb)11B及び可変遅延器41が第2送信チャネルを構成する。光パルス信号生成器31A、31Bの各々は、光パルス半値幅が24psで2.5Gpsのデータレートを有する擬似ランダム光RZ信号を生成する。光パルス信号生成器31Aからの光パルス信号は、M系列符号Maの光符号器E(Ma)11Aにより符号化され、光パルス信号生成器31Bからの光パルス信号は、M系列符号Mbの光符号器E(Mb)11Bにより符号化される。本実施例においては、光符号器E(Mb)11Bにより符号化された符号化信号は、可変遅延器41により遅延され、光符号器E(Ma)11Aからの符号化信号と光カプラ33によって合波される。なお、遅延器41を設ける位置は、光符号器E(Mb)11Bの後段に限らない。すなわち、他のチャネルに対して相対的に符号化信号を遅延させることができる位置に設けることができ、例えば光符号器E(Mb)11Bの前段であってもよい。
【0046】
図18は、M系列符号Ma(000111101011001)とMb(000100110101111)の符号器E(Ma)11A、E(Mb)11Bのそれぞれの群遅延時間特性を、符号器を構成する均一グレーティングのブラッグ波長で正規化した結果を示す。符号器に用いた多点位相シフトFBGの遅延時間特性は波長に対して周期的に変化しているが、符号が異なるとその波長に対して周期的に変化する遅延時間特性のパターンが異なり、同一時間に同一波長の信号成分が存在するのは、ごくわずかの部分(群遅延時間特性同士の交点)に過ぎない。この交点部分の光パワーはその相対位相の状態により干渉を起こすが、符号化信号全体の光パワーに対する影響はごくわずかである。従って、多重する光符号化信号間に適切な遅延時間を設定することで、その影響を最小にすることが可能であることがわかる。すなわち、たとえ同一波長の符号化信号であろうと、符号パターンが異なれば、同一時間スロットで符号化信号の多重を行っても、符号化信号間に遅延時間差を設けることで、その影響を最小にすることができる。
【0047】
本実施例においては、可変遅延器41の遅延時間は3チップに相当する72psである。図19にM系列符号Maの(010)及びM系列符号Mbの(111)に対応する信号波形のシミュレーション結果を示す。図に示すように、符号器E(Ma)11A、E(Mb)11Bにより符号化された同一波長の光符号化信号は時間的に重なり合った状態で伝送される。また、図20のシミュレーション結果に示すように復号信号波形(アイパターン)においても極めて良好なアイ開口が得られ、遅延時間を設けることによって伝送特性が改善されることがわかる。これらの結果から、かかる光符号分割多重装置において、良好な符号化/復号化及び伝送が可能であることがわかる。
[第6の実施例]
上記した第5の実施例においては、データレートが2.5Gpsの場合を例に説明した。本実施例においては、異なるデータレートのチャネルが混在する場合及びデータレート拡張方式に適用した場合について説明する。
【0048】
図21は、図17に示すOCDM通信装置40において、光パルス信号生成器31A及び31Bがそれぞれ5Gps及び2.5Gpsのデータレートを有する擬似ランダム光RZ信号を生成する場合の復号信号波形のシミュレーション結果を示している。尚、遅延器41の遅延時間は3チップに相当する72psである。また、横軸の1ビットピリオドは400psに対応する。図に示すように極めて良好なアイ開口が得られ、遅延時間を設けることによって伝送特性が改善されることがわかる。これらの結果から、かかる光符号分割多重装置において、良好な符号化/復号化及び伝送が可能であることがわかる。
【0049】
図22は、光パルス信号生成器31A及び31Bが共に5Gpsのデータレートを有する擬似ランダム光RZ信号を生成する場合の復号信号波形のシミュレーション結果の1例を示している。尚、遅延器41の遅延時間は3チップに相当する72psである。また、横軸の1ビットピリオドは400psに対応する。図に示すように極めて良好なアイ開口が得られ、遅延時間を設けることによって伝送特性が改善されることがわかる。さらに、遅延器41の遅延時間をチップ時間(24ps)の整数倍として変化させた場合であっても、良好なアイ開口が得られることがわかった。また、光信号のタイムスロット(データレートの逆数)の整数分の1とした場合においても良好なアイ開口が得られることがわかり、良好な符号化/復号化及び伝送が可能である。さらに、これらの場合に限らず、遅延器41の遅延時間を調整することによって良好な伝送が可能である。
【0050】
以上説明したように、本発明は異なるデータレートのチャネルが混在する場合に対しても適用可能である。さらに、データレート拡張方式と併用することも可能である。また、本発明はいかなるデータレートに対しても適用可能である。
[第7の実施例]
図23は、本発明の第7の実施例である光符号分割多重装置45の構成を示すブロック図である。符号分割多重装置45は、8つの送信チャネルを有している。第1送信チャネルは、可変データレート光パルス信号生成器31A、光サーキュレータ15A、光符号器11A及び光ターミネタ12Aから構成されている。第2−8送信チャネルは、第1送信チャネルと同様な構成を有するが、光符号器11B−11Hからの符号化信号を遅延させる可変遅延器41B−41Hがそれぞれ設けられている。可変遅延器41B−41Hを設けることによって、第1−第8送信チャネルからの符号化信号は互いに相対的に遅延された後、光カプラ33によって合波される。尚、光符号器11A−11Hは互いに異なるM系列符号の光符号器として構成されている。各チャネル間の遅延時間は、各チャネルに用いられる符号、チップ数、光パルス信号のデータレート、光パルス幅等に基づいて定められることができるが、実際の伝送特性に基づいて定めてもよい。すなわち、実際の伝送性能が最良となるように可変遅延器41B−41Hの各々の遅延時間を調整するようにしてもよい。この場合、当該伝送特性としては、ビットエラーレート、S/N比、C/N比等の一般に伝送特性の評価に利用される特性を用いることができる。あるいは、各チャネル間の相対的な遅延時間が一定となるようにしてもよい。例えば、可変遅延器41B−41Hはそれぞれ3,6,9・・・,21チップに対応する遅延時間であるようにすることができる。
【0051】
以上説明したように、重畳される符号化信号間に適切な遅延時間差を設けることにより、より良好なアイ開口を得ることができ、伝送特性を改善することが可能である。
なお、上記した実施例においては、多点位相シフトFBGを符号器及び復号器に用いた場合を例に説明したが、導波路は光ファイバに限らない。例えば、平面チャネル型光導波路として構成してもよい。
【0052】
以上説明したように、多点位相シフト・ブラッググレーティング導波路を符号器に用いた位相符号多重通信方式では、同一時間スロットで同一波長の異なる符号化信号を多重することが可能であり、光通信システムとして波長利用効率が飛躍的に改善する。すなわち、多点位相シフト・ブラッググレーティング導波路を符号器及び/又は復号器に用いた位相符号多重通信システムは、符号拡散時間よりも短い周期を持つデータレートにも適用可能であるばかりではなく、データレートをダイナミックに可変することも可能である。従って、フレキシブルに伝送速度を変更できるなど通信帯域制御が可能な高性能な光通信システムを構成することができる利点を有する。
【0053】
さらに、多点位相シフト・ブラッググレーティング導波路を用いた符号器/復号器は光学装置としても極めて簡便であり、低コスト、かつコンパクトであるという利点を有する。また、一般に、短パルス光源は光パルス幅が狭くなるほど複雑で高価になるが、上記したデータレート拡張方式によれば、より簡易かつ安価なパルス光源を用いることが可能である。従って、例えば、通信トラヒック需要の増大に合わせて容易に伝送容量を増加させることができる。また、かかる伝送容量の増加は、送信光源のデータレートを増加させることのみによって実現できるため、極めて低コストかつ短期間にシステムのグレードアップを図ることができる。また、WDM技術等を併用してさらに通信チャネルを増大させ、伝送容量を増加させることも可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施例である光符号化装置の構成を示すブロック図である。
【図2】光符号器の構成及び符号化動作を説明するための模式的な図である。
【図3】光符号器のファイバ軸方向、すなわち導波方向(z方向)における均一グレーティングUG及び位相シフト部PSの構成、及び屈折率(n)の変化を模式的に示す図である。
【図4】符号器にパルス半値幅がRZ光パルス信号を入力した場合に生成される光パルス列についての波形シミュレーション結果を示す図である。
【図5】光復号器の構成及び復号動作を説明するための模式的な図である。
【図6】復号器により得られる自己相関波形を示す図である。
【図7】符号化/復号化装置の構成を示すブロック図である。
【図8】符号器に入力された光信号波形Pi、符号器からの符号化信号波形Pe及び復号器からの復号信号波形Pdについての実験結果を示す図である。
【図9】本発明の第2の実施例である光符号分割多重(OCDM)通信装置の構成を示すブロック図である。
【図10】光符号分割多重化された信号波形のうち、M系列符号Maの(0,1,0)及びM系列符号Mbの(1,1,1)に対応する多重信号波形のシミュレーション結果を示す図である。
【図11】光符号分割多重化された信号から復号された復号信号波形(アイパターン)のシミュレーション結果を示す図である。
【図12】データレートが2.5Gpsのときの符号化光信号波形を時間軸に対して示す模式図である。
【図13】図12に示す光符号器を用い、データレートを5Gpsに高速化した場合の符号化光信号波形を時間軸に対して示す模式図である。
【図14】本発明の第3の実施例において、符号器に入力される5Gpsの光信号波形Pi、符号器からの符号化信号波形Pe、及び復号信号波形Pdの実験結果をそれぞれ示す図である。
【図15】符号器に5Gbpsのデータレートで連続した3つのパルス(bit-1,bit-2,bit-3)が入力された場合の群遅延時間特性の解析結果を反射特性と共に示す図である。
【図16】本発明の第4の実施例であるOCDM通信装置の構成を示すブロック図である。
【図17】本発明の第5の実施例であるOCDM通信装置の構成を示すブロック図である。
【図18】M系列符号Ma及びMbの符号器E(Ma)、E(Mb)のそれぞれの群遅延時間特性を解析した結果を示す図である。
【図19】M系列符号Maの(0,1,0)及びM系列符号Mbの(1,1,1)に対応する信号波形のシミュレーション結果を示す図である。
【図20】図19に示す光符号化多重信号の復号信号波形(アイパターン)を示す図である。
【図21】図17に示すOCDM通信装置において、5Gps及び2.5Gpsのデータレートを有する擬似ランダム光RZ信号を用いた場合の復号信号波形のシミュレーション結果を示す図である。
【図22】5Gpsのデータレートを有する2つの擬似ランダム光RZ信号を用いた場合の復号信号波形のシミュレーション結果を示す図である。
【図23】本発明の第7の実施例である光符号分割多重装置の構成を示すブロック図である。
【主要部分の符号の説明】
11,11A−11H 光符号器
12,12A−12H,13,13A−13H 光減衰器
15,15A−15H,17,17A−17H 光サーキュレータ
18 光増幅器
19,37,37A 光ファイバ
21,21A−21H 光復号器
31,31A−31H 光パルス生成器
32,32A−32H 光ディテクタ
33,39 光カプラ
41,41B−41H 遅延器
Claims (14)
- 2値位相光符号を用いて光符号分割多重化を行う光符号分割多重装置であって、
所定波長の光パルス信号を生成する複数の光パルス信号生成器と、
前記光パルス信号を反射する、光符号チップ数と同数の均一ピッチグレーティングが光導波路の導波方向に形成され、各々が前記2値位相光符号の1符号に対応するとともに前記複数の光パルス信号生成器の1からの前記光パルス信号の符号化をなす複数のグレーティング導波路符号器と、を有し、
当該光符号値の変化位置に対応する隣接均一ピッチグレーティングは、入力光信号に(2m+1)π/2の位相シフト(mは整数)を与える間隔で配され、その他の隣接均一ピッチグレーティングは、入力光信号にnπの位相シフト(nは整数)を与える間隔で配され、
前記複数の光パルス信号生成器の少なくとも1つからの光パルス信号のパルス周期は前記グレーティング導波路符号器の拡散時間以下であることを特徴とする光符号分割多重装置。 - 前記グレーティング導波路符号器は、光ファイバグレーティングであることを特徴とする請求項1記載の光符号分割多重装置。
- 前記複数のグレーティング導波路符号器からの符号化信号の各々を合波する光カプラを有することを特徴とする請求項1及び2のいずれか1に記載の光符号分割多重装置。
- 前記複数のグレーティング導波路符号器の各々は、終端部に光学的に結合された光減衰器を有することを特徴とする請求項1乃至3のいずれか1に記載の光符号分割多重装置。
- 前記均一ピッチグレーティングのブラッグ波長をλb、前記入力信号光の波長をλp、符号化信号のチップ時間差の逆数に対応する波長をΔλとしたとき、前記均一ピッチグレーティングのブラッグ波長λbは、λp−Δλ≦λb≦λp+Δλを満たすことを特徴とする請求項1に記載の光符号分割多重装置。
- 2値位相光符号を用いて光符号分割多重化を行う光符号分割多重通信装置であって、
所定波長の光パルス信号を生成する複数の光パルス信号生成器と、
前記光パルス信号を反射する、光符号チップ数と同数の均一ピッチグレーティングが光導波路の導波方向に形成され、各々が前記2値位相光符号の1符号に対応するとともに前記光パルス信号生成器の1からの光パルス信号の符号化をなす複数のグレーティング導波路符号器と、
前記複数のグレーティング導波路符号器からの符号化信号の各々を相対的に遅延せしめる遅延器と、を有し、
当該光符号値の変化位置に対応する隣接均一ピッチグレーティングは、当該パルス信号光に(2m+1)π/2の位相シフト(mは整数)を与える間隔で配され、その他の隣接均一ピッチグレーティングは、当該パルス信号光にnπの位相シフト(nは整数)を与える間隔で配され、
前記複数の光パルス信号生成器の少なくとも1つからの光パルス信号のパルス周期は前記グレーティング導波路符号器の拡散時間以下であることを特徴とする光符号分割多重通信装置。 - 前記遅延器は、前記複数のグレーティング導波路符号器からの符号化信号の各々を前記光符号のチップ時間の整数倍に対応する時間だけ相対的に遅延せしめることを特徴とする請求項6記載の光符号分割多重通信装置。
- 前記遅延器は、前記複数のグレーティング導波路符号器からの符号化信号の各々を前記入力光信号のデータレートの逆数の整数分の1に対応する時間だけ相対的に遅延せしめることを特徴とする請求項6記載の光符号分割多重通信装置。
- 2値位相光符号を用いて光符号分割多重化を行う光符号分割多重通信装置であって、
所定波長の光パルス信号を生成する複数の光パルス信号生成器と、
前記光パルス信号を反射する、光符号チップ数と同数の均一ピッチグレーティングが光導波路の導波方向に形成され、各々が前記2値位相光符号の1符号に対応するとともに前記光パルス信号生成器の1からの光パルス信号の符号化をなす複数のグレーティング導波路符号器と、
前記複数のグレーティング導波路符号器からの符号化信号の各々を相対的に遅延せしめる遅延器と、を有し、
当該光符号値の変化位置に対応する隣接均一ピッチグレーティングは、当該パルス信号光に(2m+1)π/2の位相シフト(mは整数)を与える間隔で配され、その他の隣接均一ピッチグレーティングは、当該パルス信号光にnπの位相シフト(nは整数)を与える間隔で配され、
前記遅延器は、前記複数のグレーティング導波路符号器からの符号化信号の各々を前記光符号のチップ時間の整数倍に対応する時間だけ相対的に遅延せしめることを特徴とする光符号分割多重通信装置。 - 2値位相光符号を用いて光符号分割多重化を行う光符号分割多重通信装置であって、
所定波長の光パルス信号を生成する複数の光パルス信号生成器と、
前記光パルス信号を反射する、光符号チップ数と同数の均一ピッチグレーティングが光導波路の導波方向に形成され、各々が前記2値位相光符号の1符号に対応するとともに前記光パルス信号生成器の1からの光パルス信号の符号化をなす複数のグレーティング導波路符号器と、
前記複数のグレーティング導波路符号器からの符号化信号の各々を相対的に遅延せしめる遅延器と、を有し、
当該光符号値の変化位置に対応する隣接均一ピッチグレーティングは、当該パルス信号光に(2m+1)π/2の位相シフト(mは整数)を与える間隔で配され、その他の隣接均一ピッチグレーティングは、当該パルス信号光にnπの位相シフト(nは整数)を与える間隔で配され、
前記遅延器は、前記複数のグレーティング導波路符号器からの符号化信号の各々を前記入力光信号のデータレートの逆数の整数分の1に対応する時間だけ相対的に遅延せしめることを特徴とする光符号分割多重通信装置。 - 前記グレーティング導波路符号器は、光ファイバグレーティングであることを特徴とする請求項6乃至10のいずれか1に記載の光符号分割多重通信装置。
- 当該遅延された符号化信号を合波する光カプラを有することを特徴とする請求項6乃至11のいずれか1に記載の光符号分割多重通信装置。
- 前記複数のグレーティング導波路符号器の各々は、終端部に光学的に結合された光減衰器を有することを特徴とする請求項6乃至12のいずれか1に記載の光符号分割多重通信装置。
- 前記均一ピッチグレーティングのブラッグ波長をλb、前記光パルス信号の波長をλp、符号化信号のチップ時間差の逆数に対応する波長をΔλとしたとき、前記均一ピッチグレーティングのブラッグ波長λbは、λp−Δλ≦λb≦λp+Δλを満たすことを特徴とする請求項6、9及び10のいずれか1に記載の光符号分割多重装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002337245A JP4068438B2 (ja) | 2002-11-20 | 2002-11-20 | 光符号分割多重通信装置 |
KR1020030081862A KR100848517B1 (ko) | 2002-11-20 | 2003-11-18 | 광 신호 변환기, 광 부호기, 광 복호기, 및 광 부호 분할다중화 통신 장치 |
CNB200310118015XA CN100490364C (zh) | 2002-11-20 | 2003-11-20 | 光信号转换器、光编码器、光解码器和光码分多路复用通信设备 |
US10/716,709 US7174103B2 (en) | 2002-11-20 | 2003-11-20 | Optical signal converter, optical encoder, optical decoder, and optical code division multiplexing communication apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002337245A JP4068438B2 (ja) | 2002-11-20 | 2002-11-20 | 光符号分割多重通信装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004170734A JP2004170734A (ja) | 2004-06-17 |
JP4068438B2 true JP4068438B2 (ja) | 2008-03-26 |
Family
ID=32700841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002337245A Expired - Fee Related JP4068438B2 (ja) | 2002-11-20 | 2002-11-20 | 光符号分割多重通信装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4068438B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007004338A1 (ja) * | 2005-07-01 | 2007-01-11 | University Of Yamanashi | 光信号からクロック信号を抽出する方法および装置 |
JP4649582B2 (ja) * | 2005-09-22 | 2011-03-09 | 独立行政法人情報通信研究機構 | 光符号分割多重パケット通信システム |
JP4929451B2 (ja) * | 2006-01-23 | 2012-05-09 | 国立大学法人山梨大学 | 所望の波形をもつ光パルス信号または電気パルス信号を生成する方法および装置 |
JP4876688B2 (ja) * | 2006-04-20 | 2012-02-15 | 沖電気工業株式会社 | 光パルス時間拡散器 |
JP5017643B2 (ja) * | 2006-09-08 | 2012-09-05 | 国立大学法人山梨大学 | 光信号ウェーブレット解析方法及び装置 |
JP4508278B2 (ja) * | 2008-09-16 | 2010-07-21 | 沖電気工業株式会社 | 光導波路装置の製造方法及び光導波路装置の製造装置 |
CN113204221B (zh) * | 2021-04-29 | 2022-07-29 | 中电科机器人有限公司 | 基于光通信的多关节电机驱控与通信系统 |
-
2002
- 2002-11-20 JP JP2002337245A patent/JP4068438B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004170734A (ja) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7174103B2 (en) | Optical signal converter, optical encoder, optical decoder, and optical code division multiplexing communication apparatus | |
JP2010114488A (ja) | 光符号分割多重信号生成装置 | |
JP4977899B2 (ja) | 光通信システム,光送信機,光受信機および方法ならびにこれらで用いる光相関器 | |
JP2010200244A (ja) | 符号復号化方法、光パルス時間拡散装置、光分岐挿入装置及び光通信システム | |
KR20070104482A (ko) | 광 펄스 시간 확산기 및 광 부호 분할 다중 전송 장치 | |
KR100840920B1 (ko) | 광부호 다중 통신 방법, 광부호 다중 통신 시스템, 부호화 장치 및 복호 장치 | |
JP4068438B2 (ja) | 光符号分割多重通信装置 | |
JP4893501B2 (ja) | 光パルス時間拡散装置 | |
US7310465B2 (en) | Optical pulse time spreading device | |
KR20120085944A (ko) | 광부호 분할 다중 액세스 시스템 | |
JP4140390B2 (ja) | 光符号化信号生成装置及び光符号分割多重装置 | |
JP2004170733A (ja) | 光信号変換器、光符号器、復号器及び光符号分割多重通信装置 | |
JP4277577B2 (ja) | 光符号器、及び光復号器及び光符号分割多重通信装置 | |
JP4556780B2 (ja) | 光導波路装置及び光符号分割多重通信システム | |
JP5141469B2 (ja) | 光パルス時間拡散装置及び光多重伝送システム | |
US20060120434A1 (en) | Enhanced optical fast frequency hopping-cdma by means of over spreading and interleaving | |
JP5228646B2 (ja) | 光パルス時間拡散器 | |
Minato et al. | Demonstration of 10 Gbit/s-based time-spreading and wavelength-hopping optical-code-division-multiplexing using fiber-Bragg-grating en/decoder | |
JP5071020B2 (ja) | 光符号分割多重送受信装置及び光符号分割多重送受信方法 | |
Cao et al. | Research on parametrical asymmetry of FBG encoder/decoder on the performance of grating-based FFH-OCDMA system | |
Xin et al. | Fiber Bragg grating array as en/de-coder in OCDMA system | |
Aljada et al. | Reconfigurable encoder-decoder structure for 2D OCDMA systems | |
KR100535312B1 (ko) | Pn 코드와 처핑된 광섬유 회절격자를 이용한 가변형 광인코더/디코더 및 이를 적용한 가변형 광 cdma 송수신기 | |
Kim et al. | Theoretical Analysis of Optical CDMA Encoder/Decoder using an Array of Superstructured Fiber Bragg Gragings. | |
JP2011205333A (ja) | 光信号チャンネル分割多重通信方法及び光信号チャンネル分割多重通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080110 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140118 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |