JP4067151B2 - Rubber composition for tire - Google Patents

Rubber composition for tire Download PDF

Info

Publication number
JP4067151B2
JP4067151B2 JP19161097A JP19161097A JP4067151B2 JP 4067151 B2 JP4067151 B2 JP 4067151B2 JP 19161097 A JP19161097 A JP 19161097A JP 19161097 A JP19161097 A JP 19161097A JP 4067151 B2 JP4067151 B2 JP 4067151B2
Authority
JP
Japan
Prior art keywords
block
weight
rubber
polymer phase
incompatible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19161097A
Other languages
Japanese (ja)
Other versions
JPH1129660A (en
Inventor
哲司 川面
真幸 川添
昌生 中村
毅 唐渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Yokohama Rubber Co Ltd
Original Assignee
Zeon Corp
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp, Yokohama Rubber Co Ltd filed Critical Zeon Corp
Priority to JP19161097A priority Critical patent/JP4067151B2/en
Publication of JPH1129660A publication Critical patent/JPH1129660A/en
Application granted granted Critical
Publication of JP4067151B2 publication Critical patent/JP4067151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、タイヤ用ゴム組成物に関する。更に詳しくは、本発明は、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)及びスチレン−ブタジエン共重合体ゴム(SBR)から成る二つのポリマー相A及びBを形成している非相溶ポリマーブレンド系に、特定の関係を有するブロックa及びbから成るブロックコポリマーを配合して成る、ポリマーブレンド系の本質的な特性、例えば低燃費性、ウェット制動性能などを変えることなく、引張強さ、耐摩耗性などの破壊特性に優れたタイヤ用ゴム組成物に関する。
【0002】
【従来の技術】
近年、自動車などのタイヤ用ゴム組成物に対しては、各種性能の改善が求められており、そのためタイヤトレッド用ゴムその他において、複数のポリマーをブレンドして使用することが行われているが、これらのポリマー同士が非相溶性である場合、相分離界面が存在する。多くの場合、この界面が破壊の起点となり引張強さ、引裂強さ、耐摩耗性などに悪影響をあたえると考えられる。しかしながら、タイヤを始めとしたゴム製品においては加硫という特殊な工程を含むため、通常のゴム/樹脂系、樹脂/樹脂系で行われている様な相構造制御のためのブロックコポリマーの分子設計をそのまま適用することができない。したがってゴム/ゴムブレンドの相分離界面の問題は充分検討されておらず、この問題の解決方法も見い出されていなかった。
【0003】
従来、ブロックコポリマーを配合してポリマーブレンドの非相溶性に基づく破壊強度の低下は十分に検討されておらず、天然ゴム(NR)/ポリブタジエンゴム(BR)のブレンド系に、ポリブタジエン(BR)とポリイソプレン(IR)とのブロック共重合体を少量配合することが、J.Apply.Polym.Sci.,49(1993)及びRCT.66(1993)に僅かに記載されているに過ぎない。しかしながら、これらの文献に用いられているブロックコポリマーの組成は、BRとの相溶性が不充分であるため、使用するためには性能が満足できるものではない。またシス−BR/SBRの非相溶ポリマーブレンド系に耐摩耗性を良くするためにシス−BRを加えることが試みられているが、ウェット制動性能が低下するためシス−BRの添加量に限界があり、実用性に問題があった。
【0004】
前記したような状況に鑑み、本発明者らは先にA−B型ブロック共重合体を配合したタイヤトレッド用組成物を提案した(特開平7−188510号公報及び特開平8−134267号公報参照)。
【0005】
【発明が解決しようとする課題】
従って、本発明は前記した従来技術の問題点を排除して、低燃費性、ウェット制動性などの特性を損なうことなく、耐摩耗性及び耐チッピング性を改良することができるゴム組成物を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に従えば、以下の各態様に示すように、(1)天然ゴム(NR)、合成イソプレンゴム(IR)、ポリブタジエンゴム(BR)及びスチレンブタジエンゴム(SBR)から選ばれた少なくとも2種のゴムからなり、かつ2つのポリマー相A及びBを形成している非相溶ポリマーブレンド系に、(2)少なくとも2つのブロックを有し、その各ブロックa及びbが互いに非相溶性で、ブロックaはポリマー相Aと相溶性でポリマー相Bと非相溶性であり、ブロックbはポリマー相Bと相溶性でポリマー相Aと非相溶性であり、かつブロックa及びbに含まれる1,4結合量が重量平均分子量に換算した時に5万以上であり、かつブロックa及びbに含まれる1,4結合量の比a/bが0.67〜1.50であるイソプレン、ブタジエン及びスチレンから選ばれるモノマーからなるブロックコポリマーを、ブロックコポリマーを含む全ゴム成分100重量部当り0.1〜20重量部配合してなるタイヤ用ゴム組成物が提供される。
【0007】
【発明の実施の形態】
本発明者らは、相分離しているポリマーブレンド系の混練時に適当なブロックコポリマーを添加することによりブロックコポリマーが相溶化剤として働き相構造の微細化、相分離界面の補強がなされることを認めたが、加硫時にブロックコポリマーの各ブロックと各マトリックスを形成するポリマーとの架橋結合が有効に起こらないと加硫時の変形により微細化した相構造や補強された界面がもとに戻り、破壊強度の改良効果などが低下してしまうことを見出した。かかる破壊強度の改良効果の低下を防ぐことについて鋭意検討した結果、ブロックコポリマーの各ブロックに含まれる1,4結合量および比を特定して各ブロックと各マトリックスとの架橋反応がほぼ等しい速さで行われるようにすることで、前記問題を解決することができることを見い出した。
【0008】
本発明に係るタイヤ用ゴム組成物は、以下の各態様に示すように、(1)NR,IR,BR及びSBRの少なくとも2種の非相溶性ゴムからなる2つのポリマー相A及びB(好ましいA/B重量比は5/95〜95/5、更に好ましくは10/90〜90/10)の非相溶ポリマーブレンド系に、(2)イソプレン、ブタジエン、スチレンから選ばれるモノマーからなる少なくとも2つのブロックを有し、その各ブロックa及びbが互いに非相溶性で、ブロックaはポリマー相Aと相溶性でポリマー相Bと非相溶性であり、ブロックbはポリマー相Bと相溶性でポリマー相Aと非相溶性であり、かつブロックa及びbに含まれる1,4結合量が重量平均分子量に換算した時に5万以上であり、更にブロックa及びbに含まれる1,4結合量(分子量換算)の比a/bが0.67〜1.50であるブロックコポリマーをブロックコポリマーを含む全ゴム成分を100重量部とした時に0.1〜20重量部、好ましくは0.3〜18重量部配合してなる。
【0009】
本発明において用いられるブロックコポリマーの各ブロックa及びbは互いに非相溶でないとブロックコポリマー分子がマトリックス相A及びBに十分に侵入できないために、所望の破壊特性の改良効果が得られない。また本発明ではブロックaはポリマー相Aと相溶性でポリマー相Bと非相溶性であり、ブロックbはポリマー相Bと相溶性でポリマー相Aと非相溶性である必要がある。この関係が保たれない場合にはブロックコポリマーがA,B相分離界面に配位できないため相分離界面の補強がなされず、十分な破壊強度改良効果が得られないので好ましくない。
【0010】
本発明において用いられるブロックコポリマーのブロックa及びbに含まれる1,4結合量は重量平均分子量に換算した時に5万以上、好ましくは5.5万以上でないとマトリックスを形成するポリマー成分と十分な共架橋性が得られないため、前述の場合と同様に相分離界面の十分な補強がなされず所望の破壊強度の改良効果が得られないので好ましくない。
【0011】
本発明において用いられるブロックコポリマーのブロックa及びbに含まれる1,4結合量(分子量換算)の比a/bは0.67〜1.50、好ましくは0.70〜1.40である。比a/bがこの範囲を逸脱すると加硫反応時にブロックコポリマーの各ブロックa及びbと各マトリックス相A及びBとの共架橋の進行に差が生じ、混練過程で微細化した相分離構造が再凝集し肥大化してしまうために、所望の破壊強度の改良効果が得られないので好ましくない。
【0012】
また、1,4結合量(分子量換算)の計算方法を示すと、
ブロックコポリマー重合過程で測定したブロックのスチレン含量(重量%)をSt、共役ジエン重合体部分のビニル重合単位の含有量(1,2ビニル含量(モル%)と3,4ビニル含量(モル%)の合計量)をVn、ブロックコポリマー全体の重量平均分子量をMw、ブロックiの重量比をWiとするとブロックiの1,4結合量(分子量換算)は以下の式により計算される。
【0013】
【数1】

Figure 0004067151
【0014】
本発明のブロック共重合体(i)の製造方法は、格別限定されるものではないが、例えば、炭化水素系溶媒中で開始剤として有機活性金属を用い、イソプレン、ブタジエン、スチレン等のモノマーを重合して製造する方法によって行うことができる。
有機活性金属としては、例えば、有機アルカリ金属化合物、有機アルカリ土類金属化合物、有機ランタノイド系列希土類金属化合物などのアニオン重合可能な有機活性金属が挙げられる。これらの中でも、有機アルカリ金属化合物が特に好ましい。
【0015】
本発明に従えば、前記非相溶ポリマーブレンドおよびブロックコポリマーの合計量100重量部に対しブロックコポリマーを0.1〜20重量部、好ましくは0.3〜18重量部配合する。ブロックコポリマーの配合量が20重量部を超えるとブロックコポリマーの粘弾性特性が影響してしまうため、本来目的としたウェット制動性および転がり抵抗のバランスを変化させてしまうので好ましくない。
【0016】
本発明で用いるポリマー相A及びBからなる非相溶ポリマーブレンドは、以下の各態様に示すように、NR,IR,BR及びSBRから2種以上を選んで二つの非相溶ポリマー相A及びBを構成するようにする。また本発明で用いるブロックa及びbから成るブロックコポリマーは前記条件を具備した任意のポリマーとすることができ、例えばBRブロック、SBRブロック、IRブロック、SIR(スチレンイソプレンゴム)ブロック、BIR(ブタジエンイソプレン)ブロック、SBIR(スチレンブタジエンイソプレン)ブロックなどを、以下の各態様に示すように、組み合せて用いることができる。
【0017】
このような非相溶ポリマーとブロックコポリマーとの組み合せの具体例をあげれば以下の通りである。本発明の第一の態様では、ポリマー相Aがシス含量80重量%以上、好ましくは85〜100重量%のポリブタジエン(BR)、ポリマー相Bが天然ゴム(NR)及び/又は合成イソプレンゴム(IR)からなり、ブロックコポリマーの各ブロックa及びbが以下の組成:
a:St=0〜35重量%(好ましくは5〜35重量%)、Vn=5〜80モル%(好ましくは8〜80モル%)、かつVn≦2St+30
b:St=0〜30重量%(好ましくは5〜30重量%)、Vn>2St+30
(式中、Stはスチレン含量、Vnはブタジエン部のビニル含量を示す)を有するSBR又はBRである組成物。
【0018】
本発明の第二の態様では、ポリマー相Aがスチレンブタジエンゴム(SBR)及び/又はポリブタジエンゴム(BR)、ポリマー相Bが天然ゴム(NR)及び/又は合成イソプレンゴム(IR)からなり、ブロックコポリマーのブロックaが以下の組成を有するSBR又はBRであり、ブロックbが以下の組成のポリイソプレン(IR)であるゴム組成物。
a:St=0〜50重量%(好ましくは5〜50重量%)、Vn=5〜70モル%(好ましくは8〜70モル%)、かつVn≦2St+30
b:1,4結合量≧70重量%(好ましくは72〜100重量%)
(式中、Stはスチレン含量、Vnはビニル含量を示す。)
【0019】
本発明の第三の態様では、ポリマー相Aがシス含量80重量%以上(好ましくは85〜100重量%)のポリブタジエン(BR)、ポリマー相Bが天然ゴム(NR)及び/又は合成イソプレンゴム(IR)からなり、ブロックコポリマーのブロックaが以下の組成であるSBR又はBRであり、ブロックbが以下の組成のポリイソプレン(IR)である組成物。
a:St=0〜35重量%(好ましくは5〜35重量%)、Vn=5〜80モル%(好ましくは8〜80モル%)、かつVn≦2St+30
b:1,4結合量≧70重量%(好ましくは72〜100重量%)
(式中、Stはスチレン含量、Vnはビニル含量を示す。)
【0020】
本発明の第四の態様では、ポリマー相Aがシス含量80重量%以上のポリブタジエンゴム(BR)、ポリマー相BがSt=5〜60重量%かつVn=5〜35モル%、St=5〜60重量%かつVn=65〜85モル%、及びSt=35〜60重量%かつVn=35〜65モル%から選ばれた少なくとも一種のスチレンブタジエンゴム(SBR)であり、ブロックコポリマーのブロックaが以下の組成であるスチレンブタジエンゴム(SBR)又はポリブタジエンゴム(BR)であり、ブロックbが以下の組成のスチレンブタジエンゴム(SBR)である
a:St=0〜35重量%、Vn=5〜80モル%
b:St=5〜60重量%かつVn=5〜35モル%、St=5〜60重量%かつVn=65〜85モル%、及びSt=35〜60重量%かつVn=35〜65モル%から選ばれた少なくとも一種
(式中、St=スチレン含量、Vnはブタジエン部のビニル含量を示す。)
【0021】
本発明のタイヤ用ゴム組成物には、ゴム成分100重量部に対し、カーボンブラック及び/又はシリカなどの従来汎用されている補強性充填剤30重量部以上、好ましくは40〜150重量部を配合する。カーボンブラック及びシリカとも従来ゴム組成物に一般的に配合されている任意のものを用いることができる。
また、通常ゴム工業に使用される軟化剤、老化防止剤、加硫助剤、ワックス、樹脂、加硫系配合剤を適宜使用できる。
さらに、従来からスタッドレスタイヤなどに使用される発泡剤、低湿可塑剤や短繊維などを使用することができる。
【0022】
本発明に従ったタイヤ用ゴム組成物をブレンドするに当っては、先ずゴム(マトリックスゴムおよびブロックコポリマー)及び補強性充填剤および加硫系配合剤を除くその他の配合剤を常法に従って混合し、次に加硫系配合剤をブレンドすることが好ましい。勿論、これらの配合成分の一部を別途配合しても本発明の目的を損なわない限り本発明の技術的範囲内に入ることはいうまでもない。またブレンド手段も従来通りのものとすることができる。
【0023】
本発明のタイヤ用ゴム組成物にかかわる配合物は一般的な方法で加硫することができる。前述の添加剤の配合量も一般的な量とすることができる。例えば、硫黄の配合量はゴム成分100重量部当り0.5重量部以上、更に好ましくは1.0〜5.0重量部とするのが好ましい。本発明のタイヤ用ゴム組成物の加硫条件も一般的な条件とすることができる。
【0024】
【実施例】
以下、実施例並びに標準例及び比較例によって本発明を更に具体的に説明するが、本発明の範囲をこれらの実施例に限定するものでないことは言うまでもない。なお、以下の例における物性測定は下記方法で行った。
【0025】
粘弾性特性(tanδ):
東洋精機製作所製粘弾性スペクトロメータを用い、静的歪み=10%、動的歪み=±2%、周波数=20Hzで測定した(試料幅5mm、温度0℃及び60℃)。
耐摩耗性試験:
ランボーン摩耗試験機を用い、スリップ率25%、荷重5kgの条件で測定した。結果は標準例の配合を100とした指数(耐摩耗性指数)で示した。この数字の大きいものが耐摩耗性が優れていることを示す。
引っ張り試験
JIS K6301に準拠して行なった。
【0026】
非相溶性(ポリマー相を形成しているか否か)の判定
1)ポリマーブレンドのポリマー相A及びBの非相溶性はポリマーブレンドを加硫して、凍結法により超薄切片試料を作成後、四酸化オスミウムベンゼン溶液で室温で約15時間気相染色する。これを透過型電子顕微鏡で約5千から1万倍で観察することにより相分離構造の有無を観察する。
2)ブロックコポリマーのブロックa及びbの非相溶性はブロックコポリマーを未加硫状態で上記と同様な試料を作成後、透過型電子顕微鏡で約6万倍で観察することで相分離構造の有無を観察する。
3)ブロックコポリマーの各ブロックとポリマーブレンドの各ポリマー相との非相溶性は各ブロックを構成するポリマーに相当するポリマーを別々に重合作成し、各々のマトリックスポリマーと混練、加硫したものを上記と同様にして電子顕微鏡観察用試料を作成し、約5千〜1万倍で観察して相分離構造の有無を観察する。
その他、相溶、非相溶の判定にはtanδの温度分散曲線によりピークがバイモーダルであるか否かで判断する方法やDSC測定によりブレンドポリマーのガラス転移温度が複数観測されるか否かで判断する方法を用いてもよく、更に相分離構造が数十ミクロンに及べば光学顕微鏡によっても判定できる。この中でも前記の電子顕微鏡による直接観察が最も感度の高い方法であるが測定には手間がかかる。
【0027】
標準例1〜15、実施例1〜22及び比較例1〜21
表Iに示す特性のブロックコポリマー1〜16を用いて、表II〜表VIの配合(重量部)の各成分を下記混合方法で1.7リットルのバンバリミキサーで5分間混合した後、この混合物に加硫促進剤と硫黄とを8インチの試験用練りロール機で4分間混練し、ゴム組成物を得た。これらのゴム組成物を160℃で20分間プレス加硫して、目的とする試験片を調製し、各種試験を行い、その物性を測定した。得られた加硫物の物性は表II〜VIに示す通りであった。
【0028】
混合方法
実施例ならびに比較例はすべて以下の混合仕様に従って混合した。
・ローター回転数: 60rpm
・温度調整 : 50℃
・投入仕様:
0′…ゴム成分(マトリックスゴム、ブロックコポリマー)
1′…カーボンブラック半量、亜鉛華、ステアリン酸
2′30″…カーボンブラック半量、老化防止剤、ワックス、アロマオイル
3′30″…ラム上下(ラム部、そうじ)
4′00″…放出
【0029】
【表1】
Figure 0004067151
【0030】
【表2】
Figure 0004067151
【0031】
【表3】
Figure 0004067151
【0032】
【表4】
Figure 0004067151
【0033】
【表5】
Figure 0004067151
【0034】
【表6】
Figure 0004067151
【0035】
【表7】
Figure 0004067151
【0036】
【表8】
Figure 0004067151
【0037】
【表9】
Figure 0004067151
【0038】
【表10】
Figure 0004067151
【0039】
【発明の効果】
以上、説明したように、本発明に従えば、引張り特性、粘弾性特性、及び耐摩耗性に優れたタイヤ用ゴム組成物を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber composition for tires. More particularly, the present invention forms two polymer phases A and B consisting of natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR) and styrene-butadiene copolymer rubber (SBR). Incompatible polymer blend system is blended with block copolymer consisting of blocks a and b having a specific relationship, without changing the essential characteristics of polymer blend system such as low fuel consumption, wet braking performance, etc. Further, the present invention relates to a rubber composition for a tire excellent in fracture characteristics such as tensile strength and wear resistance.
[0002]
[Prior art]
In recent years, for rubber compositions for tires such as automobiles, various performance improvements have been demanded, and therefore, in tire tread rubber and the like, it has been carried out by blending a plurality of polymers. When these polymers are incompatible, a phase separation interface exists. In many cases, this interface is considered to be a starting point of fracture, and adversely affects the tensile strength, tear strength, wear resistance, and the like. However, since rubber products such as tires include a special process called vulcanization, molecular design of block copolymers for phase structure control as is done in ordinary rubber / resin systems and resin / resin systems. Cannot be applied as is. Therefore, the problem of the rubber / rubber blend phase separation interface has not been sufficiently studied, and no solution to this problem has been found.
[0003]
Conventionally, the reduction of the breaking strength based on the incompatibility of the polymer blend by blending a block copolymer has not been sufficiently studied, and a blend system of natural rubber (NR) / polybutadiene rubber (BR) is combined with polybutadiene (BR). Mixing a small amount of a block copolymer with polyisoprene (IR) is described in J. Org. Apply. Polym. Sci. , 49 (1993) and RCT. 66 (1993). However, the composition of the block copolymer used in these documents is insufficient in compatibility with BR, so that the performance is not satisfactory for use. In addition, attempts have been made to add cis-BR to an incompatible polymer blend system of cis-BR / SBR in order to improve wear resistance. However, the wet braking performance is reduced, so the amount of cis-BR added is limited. There was a problem in practicality.
[0004]
In view of the situation as described above, the present inventors previously proposed a tire tread composition containing an AB block copolymer (Japanese Patent Laid-Open Nos. 7-188510 and 8-134267). reference).
[0005]
[Problems to be solved by the invention]
Therefore, the present invention eliminates the problems of the prior art described above, and provides a rubber composition that can improve wear resistance and chipping resistance without impairing characteristics such as low fuel consumption and wet braking performance. The purpose is to do.
[0006]
[Means for Solving the Problems]
According to the present invention, as shown in the following embodiments, (1) at least two kinds selected from natural rubber (NR), synthetic isoprene rubber (IR), polybutadiene rubber (BR) and styrene butadiene rubber (SBR) (2) having at least two blocks, each block a and b being incompatible with each other, in an incompatible polymer blend system comprising two rubber phases and forming two polymer phases A and B; Block a is compatible with polymer phase A and incompatible with polymer phase B, block b is compatible with polymer phase B and incompatible with polymer phase A, and is contained in blocks a and b. Isoprene, butadiene, and butadiene having a 4-bond amount of 50,000 or more when converted to a weight average molecular weight, and a ratio a / b of 1,4-bond amounts contained in blocks a and b of 0.67 to 1.50. There is provided a rubber composition for tires comprising 0.1 to 20 parts by weight of a block copolymer comprising a monomer selected from styrene and 100 parts by weight of the total rubber component including the block copolymer.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have confirmed that by adding an appropriate block copolymer at the time of kneading the phase-separated polymer blend system, the block copolymer acts as a compatibilizing agent, and the phase structure is refined and the phase separation interface is reinforced. It was recognized that if the cross-linking between each block of the block copolymer and the polymer forming each matrix does not occur effectively during vulcanization, the refined phase structure and reinforced interface will return to the original state due to deformation during vulcanization. It has been found that the effect of improving the breaking strength is reduced. As a result of diligent investigations to prevent the reduction in the effect of improving the breaking strength, the amount of 1,4 bonds and ratio contained in each block of the block copolymer is specified, and the crosslinking reaction between each block and each matrix is almost equal. It was found that the above-mentioned problem can be solved by performing the above.
[0008]
The rubber composition for tires according to the present invention includes, as shown in the following embodiments, (1) two polymer phases A and B composed of at least two incompatible rubbers of NR, IR, BR and SBR (preferably (A / B weight ratio is 5/95 to 95/5, more preferably 10/90 to 90/10), and (2) at least 2 consisting of a monomer selected from isoprene, butadiene and styrene. Each block a and b is incompatible with each other, block a is compatible with polymer phase A and incompatible with polymer phase B, block b is compatible with polymer phase B and polymer The amount of 1,4 bonds that are incompatible with phase A and contained in blocks a and b is 50,000 or more when converted to weight average molecular weight, and the amount of 1,4 bonds contained in blocks a and b ( 0.1 to 20 parts by weight, preferably 0.3 to 18 parts by weight when the total rubber component including the block copolymer is 100 parts by weight of the block copolymer having a molecular weight ratio a / b of 0.67 to 1.50. It is formed by blending parts by weight.
[0009]
Since the blocks a and b of the block copolymer used in the present invention are not incompatible with each other, the block copolymer molecules cannot sufficiently penetrate into the matrix phases A and B, so that the desired effect of improving the fracture characteristics cannot be obtained. In the present invention, the block a needs to be compatible with the polymer phase A and incompatible with the polymer phase B, and the block b needs to be compatible with the polymer phase B and incompatible with the polymer phase A. If this relationship is not maintained, the block copolymer cannot be coordinated to the A and B phase separation interfaces, so that the phase separation interface is not reinforced and a sufficient effect of improving the fracture strength cannot be obtained.
[0010]
The amount of 1,4 bonds contained in the blocks a and b of the block copolymer used in the present invention is not less than 50,000, preferably not more than 55,000 when converted to a weight average molecular weight, and the polymer component that forms the matrix is sufficient. Since the co-crosslinking property cannot be obtained, the phase separation interface is not sufficiently reinforced as in the case described above, and the desired effect of improving the fracture strength cannot be obtained.
[0011]
In the block copolymer used in the present invention, the ratio a / b of the amount of 1,4 bonds (in terms of molecular weight) contained in the blocks a and b is 0.67 to 1.50, preferably 0.70 to 1.40. If the ratio a / b deviates from this range, a difference occurs in the progress of co-crosslinking of each block a and b of the block copolymer and each matrix phase A and B during the vulcanization reaction, and the phase separation structure refined in the kneading process Since it re-aggregates and enlarges, the desired effect of improving the breaking strength cannot be obtained.
[0012]
Moreover, when the calculation method of 1,4 bond amount (molecular weight conversion) is shown,
The styrene content (wt%) of the block measured in the block copolymer polymerization process is St, the content of vinyl polymer units in the conjugated diene polymer portion (1,2 vinyl content (mol%) and 3,4 vinyl content (mol%)) ) Is Vn, the weight average molecular weight of the entire block copolymer is Mw, and the weight ratio of block i is Wi, the 1,4 bond amount (molecular weight conversion) of block i is calculated by the following equation.
[0013]
[Expression 1]
Figure 0004067151
[0014]
The production method of the block copolymer (i) of the present invention is not particularly limited. For example, an organic active metal is used as an initiator in a hydrocarbon solvent, and monomers such as isoprene, butadiene, and styrene are used. It can carry out by the method of superposing | polymerizing and manufacturing.
Examples of the organic active metal include an organic active metal capable of anion polymerization such as an organic alkali metal compound, an organic alkaline earth metal compound, and an organic lanthanoid series rare earth metal compound. Among these, an organic alkali metal compound is particularly preferable.
[0015]
According to the present invention, 0.1 to 20 parts by weight, preferably 0.3 to 18 parts by weight of the block copolymer is blended with respect to 100 parts by weight of the total amount of the incompatible polymer blend and the block copolymer. When the blending amount of the block copolymer exceeds 20 parts by weight, the viscoelastic property of the block copolymer is affected, and therefore, the balance between the originally intended wet braking property and rolling resistance is changed, which is not preferable.
[0016]
The incompatible polymer blend composed of the polymer phases A and B used in the present invention has two incompatible polymer phases A and 2 selected from NR, IR, BR and SBR as shown in the following embodiments. B is configured . The block copolymer composed of blocks a and b used in the present invention can be any polymer having the above-mentioned conditions, for example, a BR block, SBR block, IR block, SIR (styrene isoprene rubber) block, BIR (butadiene isoprene). ) Block, SBIR (styrene butadiene isoprene) block, and the like can be used in combination as shown in the following embodiments .
[0017]
Specific examples of the combination of such an incompatible polymer and a block copolymer are as follows. In the first aspect of the present invention, the polymer phase A is polybutadiene (BR) having a cis content of 80% by weight or more, preferably 85 to 100% by weight, and the polymer phase B is natural rubber (NR) and / or synthetic isoprene rubber (IR And each block a and b of the block copolymer has the following composition:
a: St = 0 to 35% by weight (preferably 5 to 35% by weight), Vn = 5 to 80% by mole (preferably 8 to 80% by mole), and Vn ≦ 2St + 30
b: St = 0 to 30% by weight (preferably 5 to 30% by weight), Vn> 2St + 30
A composition that is SBR or BR having (wherein St is the styrene content and Vn is the vinyl content of the butadiene moiety).
[0018]
In the second aspect of the present invention, the polymer phase A comprises styrene butadiene rubber (SBR) and / or polybutadiene rubber (BR), the polymer phase B comprises natural rubber (NR) and / or synthetic isoprene rubber (IR), A rubber composition in which block a of the copolymer is SBR or BR having the following composition, and block b is polyisoprene (IR) having the following composition.
a: St = 0 to 50 wt% (preferably 5 to 50 wt%), Vn = 5 to 70 mol% (preferably 8 to 70 mol%), and Vn ≦ 2St + 30
b: 1,4 bond amount ≧ 70 wt% (preferably 72 to 100 wt%)
(In the formula, St represents the styrene content, and Vn represents the vinyl content.)
[0019]
In the third embodiment of the present invention, the polymer phase A is polybutadiene (BR) having a cis content of 80% by weight or more (preferably 85 to 100% by weight), the polymer phase B is natural rubber (NR) and / or synthetic isoprene rubber ( IR), wherein block a of the block copolymer is SBR or BR having the following composition, and block b is polyisoprene (IR) having the following composition.
a: St = 0 to 35% by weight (preferably 5 to 35% by weight), Vn = 5 to 80% by mole (preferably 8 to 80% by mole), and Vn ≦ 2St + 30
b: 1,4 bond amount ≧ 70 wt% (preferably 72 to 100 wt%)
(In the formula, St represents the styrene content, and Vn represents the vinyl content.)
[0020]
In the fourth aspect of the present invention, the polymer phase A is polybutadiene rubber (BR) having a cis content of 80% by weight or more, the polymer phase B is St = 5 to 60% by weight, Vn = 5 to 35% by mole, St = 5 to 5%. At least one styrene butadiene rubber (SBR) selected from 60% by weight and Vn = 65 to 85% by mole, and St = 35 to 60% by weight and Vn = 35 to 65% by mole. A styrene butadiene rubber (SBR) or a polybutadiene rubber (BR) having the following composition, wherein the block b is a styrene butadiene rubber (SBR) having the following composition: a: St = 0 to 35% by weight, Vn = 5 to 80 Mol%
b: St = 5-60 wt% and Vn = 5-35 mol%, St = 5-60 wt% and Vn = 65-85 mol%, and St = 35-60 wt% and Vn = 35-65 mol% (Wherein St = styrene content, Vn represents the vinyl content of the butadiene part)
[0021]
In the tire rubber composition of the present invention, 30 parts by weight or more, preferably 40 to 150 parts by weight of conventionally used reinforcing fillers such as carbon black and / or silica are blended with 100 parts by weight of the rubber component. To do. Any carbon black and silica that are generally blended in conventional rubber compositions can be used.
In addition, softeners, anti-aging agents, vulcanization aids, waxes, resins, and vulcanizing compounding agents that are usually used in the rubber industry can be used as appropriate.
Furthermore, a foaming agent, a low-humidity plasticizer, a short fiber, and the like conventionally used for studless tires can be used.
[0022]
In blending the tire rubber composition according to the present invention, first, rubber (matrix rubber and block copolymer) and other compounding agents excluding reinforcing fillers and vulcanizing compounding agents are mixed according to a conventional method. Then, it is preferable to blend a vulcanizing compound. Of course, it goes without saying that even if some of these blending components are blended separately, they fall within the technical scope of the present invention as long as the object of the present invention is not impaired. The blending means can also be conventional.
[0023]
The compound relating to the rubber composition for tires of the present invention can be vulcanized by a general method. The blending amount of the aforementioned additives can also be a general amount. For example, the amount of sulfur is preferably 0.5 parts by weight or more, more preferably 1.0 to 5.0 parts by weight, per 100 parts by weight of the rubber component. The vulcanization conditions of the rubber composition for tires of the present invention can also be general conditions.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example, a standard example, and a comparative example demonstrate this invention further more concretely, it cannot be overemphasized that the scope of the present invention is not limited to these Examples. The physical properties in the following examples were measured by the following methods.
[0025]
Viscoelastic properties (tan δ):
Using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho, measurement was performed with static strain = 10%, dynamic strain = ± 2%, and frequency = 20 Hz (sample width 5 mm, temperatures 0 ° C. and 60 ° C.).
Abrasion resistance test:
Using a Lambourn abrasion tester, measurement was performed under the conditions of a slip rate of 25% and a load of 5 kg. The results are shown as an index (abrasion resistance index) where the composition of the standard example is 100. Larger numbers indicate better wear resistance.
Tensile test was performed according to JIS K6301.
[0026]
Determination of incompatibility (whether or not a polymer phase is formed) 1) The incompatibility of polymer phases A and B of the polymer blend is obtained by vulcanizing the polymer blend and preparing an ultrathin section sample by a freezing method. Vapor phase dyeing with osmium tetroxide solution at room temperature for about 15 hours. The presence or absence of a phase separation structure is observed by observing this with a transmission electron microscope at about 5,000 to 10,000 times.
2) The incompatibility of blocks a and b of the block copolymer is the presence or absence of a phase-separated structure by observing at about 60,000 times with a transmission electron microscope after preparing the same sample as above with the block copolymer unvulcanized. Observe.
3) The incompatibility between each block of the block copolymer and each polymer phase of the polymer blend is obtained by separately polymerizing a polymer corresponding to the polymer constituting each block, kneading and vulcanizing with each matrix polymer. A sample for electron microscope observation is prepared in the same manner as described above, and observed at about 5,000 to 10,000 times to observe the presence or absence of a phase separation structure.
In addition, the determination of compatibility and incompatibility is based on a method of determining whether the peak is bimodal based on the temperature dispersion curve of tan δ, or whether multiple glass transition temperatures of the blend polymer are observed by DSC measurement. A determination method may be used, and if the phase separation structure reaches several tens of microns, it can also be determined by an optical microscope. Of these, direct observation with the electron microscope is the most sensitive method, but the measurement takes time.
[0027]
Standard Examples 1-15, Examples 1-22 and Comparative Examples 1-21
Using the block copolymers 1 to 16 having the characteristics shown in Table I, the components (parts by weight) shown in Tables II to VI were mixed for 5 minutes with a 1.7 liter Banbury mixer by the following mixing method, and then the mixture. The vulcanization accelerator and sulfur were kneaded for 4 minutes with an 8-inch test kneading roll machine to obtain a rubber composition. These rubber compositions were press vulcanized at 160 ° C. for 20 minutes to prepare target test pieces, subjected to various tests, and measured for physical properties. The physical properties of the obtained vulcanizates were as shown in Tables II to VI.
[0028]
Mixing method All examples and comparative examples were mixed according to the following mixing specifications.
・ Rotor speed: 60rpm
・ Temperature adjustment: 50 ℃
-Input specifications:
0 '... Rubber component (matrix rubber, block copolymer)
1 ′… Carbon black half, zinc white, stearic acid 2′30 ″… Carbon black half, anti-aging agent, wax, aroma oil 3′30 ″… Rum top and bottom (ram part, clean)
4'00 "... Release [0029]
[Table 1]
Figure 0004067151
[0030]
[Table 2]
Figure 0004067151
[0031]
[Table 3]
Figure 0004067151
[0032]
[Table 4]
Figure 0004067151
[0033]
[Table 5]
Figure 0004067151
[0034]
[Table 6]
Figure 0004067151
[0035]
[Table 7]
Figure 0004067151
[0036]
[Table 8]
Figure 0004067151
[0037]
[Table 9]
Figure 0004067151
[0038]
[Table 10]
Figure 0004067151
[0039]
【The invention's effect】
As described above, according to the present invention, a tire rubber composition having excellent tensile properties, viscoelastic properties, and wear resistance can be obtained.

Claims (5)

(1)ポリマー相Aがシス含量80重量%以上のポリブタジエン(BR)、ポリマー相Bが天然ゴム(NR)および合成イソプレンゴム(IR)の少なくとも一種からなる、ポリマー相A及びBの非相溶性ポリマーブレンド系に、(2)少なくとも2つのブロックを有し、その各ブロックa及びbが互いに非相溶性で、そのブロックコポリマーの各ブロックa及びbが以下の組成:
a:(St)=0〜35重量%、(Vn)=5〜80モル%、かつVn≦2St+30
b:St=0〜30重量%、Vn>2St+30
(式中、Stはスチレン含量、Vnはブタジエン部のビニル含量を示す)
を有するSBR又はBRである、ブロックaはポリマー相Aと相溶性でポリマー相Bと非相溶性であり、ブロックbはポリマー相Bと相溶性でポリマー相Aと非相溶性であり、かつブロックa及びbに含まれる1,4結合量が重量平均分子量に換算した時に5万以上であり、更にブロックa及びbに含まれる1,4結合量の比a/bが0.67〜1.50であるブロックコポリマーを、ブロックコポリマーを含む全ゴム成分100重量部当り0.1〜20重量部配合してなるタイヤ用ゴム組成物。
(1) Incompatibility of polymer phases A and B, wherein the polymer phase A comprises polybutadiene (BR) having a cis content of 80% by weight or more, and the polymer phase B comprises at least one of natural rubber (NR) and synthetic isoprene rubber (IR). In the polymer blend system, (2) having at least two blocks, each block a and b being incompatible with each other, and each block a and b of the block copolymer having the following composition:
a: (St) = 0-35 wt%, (Vn) = 5-80 mol%, and Vn ≦ 2St + 30
b: St = 0 to 30% by weight, Vn> 2St + 30
(In the formula, St represents the styrene content, and Vn represents the vinyl content of the butadiene part)
Block a is compatible with polymer phase A and incompatible with polymer phase B, block b is compatible with polymer phase B and incompatible with polymer phase A, and The amount of 1,4 bonds contained in a and b is 50,000 or more when converted to a weight average molecular weight, and the ratio a / b of 1,4 bonds contained in blocks a and b is 0.67 to 1. A rubber composition for tires, comprising 50 block copolymers in an amount of 0.1 to 20 parts by weight per 100 parts by weight of all rubber components including the block copolymer.
(1)ポリマー相Aがスチレンブタジエンゴム(SBR)およびポリブタジエンゴム(BR)の少なくとも一種、ポリマー相Bが天然ゴム(NR)および合成イソプレンゴム(IR)の少なくとも一種からなる、ポリマー相A及びBの非相溶性ポリマーブレンド系に、(2)少なくとも2つのブロックを有し、その各ブロックa及びbが互いに非相溶性で、そのブロックコポリマーのブロックaが以下の組成を有するSBR又はBRであり、ブロックbが以下の組成のポリイソプレン(IR)であり、
a:St=0〜50重量%、Vn=5〜70モル%、かつVn≦2St+30
b:シス1,4結合量≧70重量%
(式中、Stはスチレン含量、Vnはブタジエン部のビニル含量を示す)
ブロックaがポリマー相Aと相溶性でポリマー相Bと非相溶性であり、ブロックbがポリマー相Bと相溶性でポリマー相Aと非相溶性であり、かつブロックa及びbに含まれる1,4結合量が重量平均分子量に換算した時に5万以上であり、更にブロックa及びbに含まれる1,4結合量の比a/bが0.67〜1.50であるブロックコポリマーを、ブロックコポリマーを含む全ゴム成分100重量部当り0.1〜20重量部配合してなるタイヤ用ゴム組成物。
(1) Polymer phases A and B in which the polymer phase A is at least one of styrene butadiene rubber (SBR) and polybutadiene rubber (BR), and the polymer phase B is at least one of natural rubber (NR) and synthetic isoprene rubber (IR). (2) SBR or BR having at least two blocks, each block a and b being incompatible with each other and block a of the block copolymer having the following composition: , Block b is polyisoprene (IR) having the following composition:
a: St = 0 to 50 wt%, Vn = 5 to 70 mol%, and Vn ≦ 2St + 30
b: Amount of cis 1,4 bond ≧ 70% by weight
(In the formula, St represents the styrene content, and Vn represents the vinyl content of the butadiene part)
Block a is compatible with polymer phase A and incompatible with polymer phase B, block b is compatible with polymer phase B and incompatible with polymer phase A, and is contained in blocks a and b. A block copolymer in which the amount of 4 bonds is 50,000 or more when converted to a weight average molecular weight, and the ratio a / b of 1,4 bonds contained in the blocks a and b is 0.67 to 1.50. A tire rubber composition comprising 0.1 to 20 parts by weight per 100 parts by weight of all rubber components including a copolymer.
(1)ポリマー相Aがシス含量80重量%以上のポリブタジエン(BR)、ポリマー相Bが天然ゴム(NR)および合成イソプレンゴム(IR)の少なくとも一種からなる、ポリマー相A及びBの非相溶性ポリマーブレンド系に、(2)少なくとも2つのブロックを有し、その各ブロックa及びbが互いに非相溶性で、そのブロックコポリマーのブロックaが以下の組成であるSBR又はBRであり、ブロックbが以下の組成のポリイソプレン(IR)であり、
a:St=0〜35重量%、Vn=5〜80モル%、かつVn≦2St+30
b:シス1,4結合量≧70重量%
(式中、Stはスチレン含量、Vnはブタジエン部のビニル含量を示す)
ブロックaがポリマー相Aと相溶性でポリマー相Bと非相溶性であり、ブロックbがポリマー相Bと相溶性でポリマー相Aと非相溶性であり、かつブロックa及びbに含まれる1,4結合量が重量平均分子量に換算した時に5万以上であり、更にブロックa及びbに含まれる1,4結合量の比a/bが0.67〜1.50であるブロックコポリマーを、ブロックコポリマーを含む全ゴム成分100重量部当り0.1〜20重量部配合してなるタイヤ用ゴム組成物。
(1) at least one ing from non-phase polymer phase A and B of the polymer phase A is cis content of at least 80% by weight of polybutadiene (BR), natural rubber (NR) and synthetic isoprene rubber polymer phase B (IR) In the soluble polymer blend system, (2) at least two blocks, each block a and b being incompatible with each other, and block a of the block copolymer is SBR or BR having the following composition, block b Is polyisoprene (IR) having the following composition:
a: St = 0 to 35 wt%, Vn = 5 to 80 mol%, and Vn ≦ 2St + 30
b: Amount of cis 1,4 bond ≧ 70% by weight
(In the formula, St represents the styrene content, and Vn represents the vinyl content of the butadiene part)
Block a is compatible with polymer phase A and incompatible with polymer phase B, block b is compatible with polymer phase B and incompatible with polymer phase A, and is contained in blocks a and b. A block copolymer in which the amount of 4 bonds is 50,000 or more when converted to a weight average molecular weight, and the ratio a / b of 1,4 bonds contained in the blocks a and b is 0.67 to 1.50. A tire rubber composition comprising 0.1 to 20 parts by weight per 100 parts by weight of all rubber components including a copolymer.
(1)ポリマー相Aがシス含量80重量%以上のポリブタジエンゴム(BR)、ポリマー相BがSt=5〜60重量%かつVn=5〜35モル%、St=5〜60重量%かつVn=65〜85モル%、及びSt=35〜60重量%かつVn=35〜65モル%から選ばれた少なくとも一種のスチレンブタジエンゴム(SBR)である、ポリマー相A及びBの非相溶性ポリマーブレンド系に、(2)少なくとも2つのブロックを有し、その各ブロックa及びbが互いに非相溶性で、そのブロックコポリマーのブロックaが以下の組成であるスチレンブタジエンゴム(SBR)又はポリブタジエンゴム(BR)であり、ブロックbが以下の組成のスチレンブタジエンゴム(SBR)であり、
a:St=0〜35重量%、Vn=5〜80モル%
b:St=5〜60重量%かつVn=5〜35モル%、St=5〜60重量%かつVn=65〜85モル%、及びSt=35〜60重量%かつVn=35〜65モル%から選ばれた少なくとも一種
(式中、St=スチレン含量、Vnはブタジエン部のビニル含量を示す)
ブロックaがポリマー相Aと相溶性でポリマー相Bと非相溶性であり、ブロックbがポリマー相Bと相溶性でポリマー相Aと非相溶性であり、かつブロックa及びbに含まれる1,4結合量が重量平均分子量に換算した時に5万以上であり、更にブロックa及びbに含まれる1,4結合量の比a/bが0.67〜1.50であるブロックコポリマーを、ブロックコポリマーを含む全ゴム成分100重量部当り0.1〜20重量部配合してなるタイヤ用ゴム組成物。
(1) Polybutadiene rubber (BR) having a cis content of 80% by weight or more in the polymer phase A, St = 5 to 60% by weight and Vn = 5 to 35% by mole, St = 5 to 60% by weight and Vn = Incompatible polymer blend system of polymer phases A and B, which is at least one styrene butadiene rubber (SBR) selected from 65 to 85 mol% and St = 35 to 60 wt% and Vn = 35 to 65 mol% (2) Styrene butadiene rubber (SBR) or polybutadiene rubber (BR) having at least two blocks, each of the blocks a and b being incompatible with each other and the block a of the block copolymer having the following composition: And block b is styrene butadiene rubber (SBR) having the following composition:
a: St = 0-35 wt%, Vn = 5-80 mol%
b: St = 5-60 wt% and Vn = 5-35 mol%, St = 5-60 wt% and Vn = 65-85 mol%, and St = 35-60 wt% and Vn = 35-65 mol% At least one selected from (wherein St = styrene content, Vn represents the vinyl content of the butadiene part)
Block a is compatible with polymer phase A and incompatible with polymer phase B, block b is compatible with polymer phase B and incompatible with polymer phase A, and is contained in blocks a and b. A block copolymer in which the amount of 4 bonds is 50,000 or more when converted to a weight average molecular weight, and the ratio a / b of 1,4 bonds contained in the blocks a and b is 0.67 to 1.50. A tire rubber composition comprising 0.1 to 20 parts by weight per 100 parts by weight of all rubber components including a copolymer.
ポリマー相A5〜70重量部及びポリマー相B30〜95重量部並びにブロックコポリマーを含む全ゴム分100重量部に対してヨウ素吸着量65g/kg以上で、DBP吸油量70cm3 /100g以上のカーボンブラック40〜150重量部を配合してなる請求項4に記載のタイヤ用ゴム組成物。In the polymer phase A5~70 parts by weight polymer phase B30~95 parts and iodine adsorption 65 g / kg or more based on the total rubber content 100 parts by weight comprising a block copolymer, DBP oil absorption of 70cm 3/100 g or more carbon black 40 The rubber composition for a tire according to claim 4, wherein ˜150 parts by weight are blended.
JP19161097A 1996-07-19 1997-07-16 Rubber composition for tire Expired - Fee Related JP4067151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19161097A JP4067151B2 (en) 1996-07-19 1997-07-16 Rubber composition for tire

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP19067796 1996-07-19
JP8-190677 1997-05-14
JP12438397 1997-05-14
JP9-124383 1997-05-14
JP19161097A JP4067151B2 (en) 1996-07-19 1997-07-16 Rubber composition for tire

Publications (2)

Publication Number Publication Date
JPH1129660A JPH1129660A (en) 1999-02-02
JP4067151B2 true JP4067151B2 (en) 2008-03-26

Family

ID=27314919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19161097A Expired - Fee Related JP4067151B2 (en) 1996-07-19 1997-07-16 Rubber composition for tire

Country Status (1)

Country Link
JP (1) JP4067151B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133017A (en) * 2003-10-31 2005-05-26 Yokohama Rubber Co Ltd:The Rubber composition for sidewall
JP2007045273A (en) * 2005-08-09 2007-02-22 Honda Motor Co Ltd Pneumatic tire for summer
EP2289992B1 (en) 2008-06-11 2012-12-19 Bridgestone Corporation Rubber composition and tire using the same
JP5455759B2 (en) * 2009-04-22 2014-03-26 株式会社ブリヂストン Rubber composition and tire using the same
JP6240731B1 (en) 2016-09-30 2017-11-29 住友ゴム工業株式会社 Cap tread rubber composition for studless tires
JP6240732B1 (en) * 2016-09-30 2017-11-29 住友ゴム工業株式会社 studless tire
CN110325560B (en) * 2017-02-17 2022-11-01 株式会社普利司通 Conjugated diene polymer, rubber composition, crosslinked rubber, rubber product, and tire
JP6228335B1 (en) 2017-04-13 2017-11-08 住友ゴム工業株式会社 Cap tread rubber composition for studless tires
JP7285940B2 (en) * 2019-09-20 2023-06-02 株式会社クラレ Rubber composition, tire rubber composition and shoe sole rubber composition

Also Published As

Publication number Publication date
JPH1129660A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
US4321168A (en) Process for preparing rubber composition for tire treads
EP0919580B1 (en) Block copolymer and rubber composition comprising the same
JP3989372B2 (en) Rubber composition
JP3392249B2 (en) Rubber composition and method for producing the same
EP1277797B1 (en) Process for production of rubber composition
JPS6335668B2 (en)
JP4067151B2 (en) Rubber composition for tire
JPS63101440A (en) Rubber composition
JP4113847B2 (en) Rubber composition and tire using the same
JP3385123B2 (en) Rubber composition
JPH08217917A (en) Rubber composition and its production
JP3672382B2 (en) Pneumatic tire
JP4364963B2 (en) Rubber composition
JP3400887B2 (en) Rubber composition for tire tread
US8975324B2 (en) Tread rubber compounds having improved abrasion resistance using functionalized liquid polybutadiene
US20020165325A1 (en) Radical-modified polymer and polymer composition containing the same
CN113736149B (en) All-steel radial tire sidewall rubber material for truck tire and preparation method thereof
JP3349854B2 (en) Rubber composition
JP2529858B2 (en) Rubber composition for tire tread
US6114451A (en) Rubber composition
JP3240770B2 (en) Method for producing rubber composition
JP2003012863A (en) Rubber composition
US6927255B2 (en) Rubber composition
JP7422878B2 (en) A method for producing a rubber composition, a rubber composition produced by the method, and a tire produced using the same
JP2005213380A (en) Rubber composition for tire, and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees