JP4066907B2 - Method for removing moisture contained in activated carbon - Google Patents
Method for removing moisture contained in activated carbon Download PDFInfo
- Publication number
- JP4066907B2 JP4066907B2 JP2003209673A JP2003209673A JP4066907B2 JP 4066907 B2 JP4066907 B2 JP 4066907B2 JP 2003209673 A JP2003209673 A JP 2003209673A JP 2003209673 A JP2003209673 A JP 2003209673A JP 4066907 B2 JP4066907 B2 JP 4066907B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- gas
- hydrogen chloride
- dry
- filling container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、活性炭に含まれる水分の除去方法に関する。
【0002】
【従来の技術】
活性炭は、例えばガスに含まれる不純物成分を除去するために多用されている。通常用いられている活性炭には水分が含まれている。かかる水分を除去する方法としては、例えば乾燥させた窒素ガスなどのような乾燥不活性ガスと活性炭を加熱下に接触させる方法、活性炭を減圧下に加熱する方法などが挙げられる〔非特許文献1〕。
【0003】
【非特許文献1】
「第4版 実験化学講座1 基本操作I」(丸善株式会社、平成2年11月5日発行)、第198頁〜第199頁
【0004】
【発明が解決しようとする課題】
しかし、かかる従来の除去方法では、水分を十分に除去できず、残留することがあるという問題があった。
【0005】
そこで本発明者は、活性炭に含まれる水分を十分に除去できる方法を開発するべく鋭意検討した結果、活性炭を乾燥塩化水素ガスと接触させることで、活性炭に含まれる水分をより十分に除去できることを見出し、本発明に至った。
【0006】
【課題を解決するための手段】
すなわち本発明は、活性炭(A)を乾燥塩化水素ガス(B)と接触させることを特徴とする前記活性炭(A)に含まれる水分の除去方法を提供するものである。
【0007】
【発明の実施の形態】
本発明の除去方法で水分を除去する活性炭(A)は、主として炭素からなるものであり、例えば木質材、椰子殻、石炭などのような天然材料を焼成することで得られるものであってもよいし、合成有機高分子化合物などのような人工材料を焼成して得られるものであってもよい。かかる活性炭は市販のものであってもよく、例えば日本エンバイロケミカル(株)から「白鷺G2c」、「白鷺GM2x」、「白鷺GH2x」、「白鷺WH2C」などの商品名で市販されているものが挙げられる。かかる活性炭は多孔質であるため、大気中の水分が吸着するなどして含まれており、その含有量は保管状態によって様々であるが、例えば2〜3質量%程度で含まれることもある。
【0008】
活性炭(A)は、そのまま乾燥塩化水素ガス(B)と接触させて水分を除去してもよいが、乾燥塩化水素ガス(B)の使用量が削減できる点で、あらかじめ乾燥不活性ガス(C)と接触させたり、減圧下に加熱した後に、乾燥塩化水素ガス(B)と接触させることが好ましい。
【0009】
乾燥不活性ガス(C)としては、実質的に水分を含まず、乾燥状態にあり、活性炭に対して非反応性のガスが用いられ、例えば窒素ガス、アルゴンガス、空気などが挙げられる。乾燥不活性ガスと接触させる温度は通常50℃以上であり、200℃以下である。減圧下に加熱する方法では、通常絶対圧力で0.05MPa(0.5気圧)程度以下に減圧した状態で加熱する。加熱温度は通常50℃〜200℃程度である。
【0010】
本発明の除去方法では、かかる活性炭(A)を乾燥塩化水素ガス(B)と接触させる。乾燥塩化水素ガス(B)とは、水分をほとんど含まず、例えば水分含有量が100ppm程度以下、理想的には0の乾燥状態で、ガス状の塩化水素(HCl)であって、例えば市販の塩化水素ガスボンベなどから供給される。
【0011】
乾燥塩化水素ガス(B)は、塩化水素含有量が通常10容量%以上、好ましくは25容量%以上であればよく、乾燥窒素ガス、乾燥アルゴンガスなどの乾燥不活性ガスや乾燥空気などような、活性炭や塩化水素などと反応することがなく、乾燥状態にある非反応性ガスで希釈されていてもよいし、実質的に塩化水素含有量100容積%の純乾燥塩化水素ガスであってもよい。
【0012】
活性炭を乾燥塩化水素ガスと接触させる温度は、活性炭が変質しない温度であれば特に限定されないが、実用的には0℃〜200℃程度ある。なお、活性炭を乾燥塩化水素ガスと接触させることで、発熱することもあるので、かかる温度を超えないよう、冷却しながら接触させてもよい。
【0013】
図1には、本発明の除去方法で活性炭(A)に含まれる水分を除去するための水分除去装置(1)の一例を示す。この装置(1)は、活性炭充填容器(2)と、ガス導入管(3)と、ガス導出管(4)とを備えている。活性炭充填容器(2)は、内部に活性炭(A)を充填する。ガス導入管(3)は、この活性炭充填容器(2)に外部からガス成分を導入する。ガス導出管(4)は、この活性炭充填容器(2)から外部へガスを導き出す。活性炭充填容器(2)の中は、金網などのセパレーター(21)で仕切られた充填領域(2A)に活性炭(A)が充填されている。活性炭充填容器(2)には、例えばジャケット(5)が設けられていて、充填された活性炭(A)を加熱、冷却できるように構成されている。
【0014】
かかる除去装置(1)は、乾燥塩化水素ガス(B)と接触する面が、乾燥塩化水素ガスに対して不活性な材質、例えばステンレス鋼、炭素鋼などの金属材料、塩化ビニル樹脂、フッ素樹脂などの樹脂材料、無機ガラスなどで構成されていることが好ましい。
【0015】
かかる除去装置(1)は、化学プラントなどでガス状の原料、中間体、生成物などに含まれる不純物成分を除去するために、内部に活性炭(A)を充填して用いられる活性炭充填容器(2)に、乾燥塩化水素ガス(B)や乾燥不活性ガス(C)を導入するためのガス導入管(3)を接続したものであってもよく、これにより、本発明の方法によって水分を完全に除去した後の活性炭(A)を活性炭充填容器(2)に充填したまま、不純物除去などに用いることができる。
【0016】
かかる除去装置(1)を用いて活性炭(A)に含まれる水分を除去するには、例えば、先ず、ジャケット(5)によって活性炭充填容器(2)を加熱し、乾燥不活性ガス(C)をガス導入管(3)から活性炭充填容器(2)へ導入すると共に、ガス導出管(4)から外部へ導き出すことで、通気させて、活性炭(A)と接触させる。
【0017】
その後、乾燥不活性ガス(C)の導入を止め、乾燥塩化水素ガス(B)をガス導入管(3)から活性炭充填容器(2)へ導入すると共に、ガス導出管(4)から外部へ導き出すことで、活性炭充填容器(2)に乾燥塩化水素ガス(B)を通気させて、活性炭充填容器(2)に充填された活性炭(A)と接触させればよい。
【0018】
ガス導出管(4)から導き出された塩化水素ガス(B')には、活性炭(A)から除去された水分が含まれているが、かかる水分は、活性炭と接触した後の塩化水素ガス(B)から冷却トラップ(6)などを用いて回収することもできる。
【0019】
乾燥塩化水素ガス(B)は、活性炭が充填された充填領域(2A)の容積に対する1時間あたりの大気圧(0.1MPa)換算の容積で示される空間速度で、通常は1/h〜1000/h程度、好ましくは1/h〜100/h程度で通気させる。
【0020】
なお、通気開始後、活性炭への塩化水素の吸着熱によると思われる発熱を生ずることもあるが、乾燥塩化水素ガス(B)によって水分が除去されると共に発熱は次第に少なくなるので、発熱の有無を水分除去の目安とすることもできる。
【0021】
本発明の方法で水分が除去された活性炭は、水分が十分に除去されているので、例えば水素ガス、窒素ガス、酸素ガス、アルゴンガス、空気、塩化水素ガス、塩素ガス、臭化水素ガス、臭素ガスなどのガス成分に水分を混入させるおそれなく、これらのガス成分に含まれる不純物を吸着除去するために好適に用いることができる。
【0022】
【発明の効果】
本発明の方法によれば、活性炭に含まれる水分を十分に除去することができる。
【0023】
【実施例】
以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。
【0024】
比較例1
大気中で保管された活性炭〔日本エンバイロケミカル(株)製、「白鷺WH2C 8/32」〕4.5kgを図1に示す水分除去装置(1)の活性炭充填容器〔SUS304製、内径200mm、高さ400mmの円筒状〕(2)の活性炭充填領域(2A)に充填した。この充填領域(2A)の容積は10L(10dm3)であった。
【0025】
この活性炭充填容器(2)に、ガス導入管(3)から170℃の乾燥窒素ガス(C)を大気圧換算で1m3/hの導入量で導入しつつ、ガス導出管(4)から外部に導き出して通気しながら、ジャケット(5)にスチームを供給してジャケット温度を170℃とした。ガス導出管(4)には−30℃のコールドトラップ(6)を取り付け、通気後の窒素ガスに含まれる水分を回収した。乾燥窒素ガス(C)の導入開始後1時間経過した時点で、ガス導出管(4)からの窒素ガス温度は110℃になっていた。導入開始後10時間を経過したところで、スチームの供給と乾燥窒素ガス(C)の導入を止め、活性炭充填容器(2)を密閉した。このとき、コールドトラップ(6)に回収された水分は82gになっていた。
【0026】
実施例1
比較例1でスチームの供給と乾燥窒素ガス(C)の導入を止めたのち、活性炭充填容器(2)を密閉したまま、自然冷却により30℃になるまで放冷した。スチームの供給は止めたままで、ガス導入管(3)から乾燥塩化水素ガス〔水分含有量は10ppm以下〕(B)を導入しつつ、ガス導出管(4)から導出して通気を開始したところ、30分後には活性炭充填容器(2)の内温は110℃となった。また、ガス導出管に(4)に取り付けたコールドトラップ(6)に再び水分が回収され始めた。その後、内温は徐々に下がり、乾燥塩化水素ガスの通気開始後6時間経過したところでは30℃となった。このとき、乾燥塩化水素ガス(B)の通気を開始してからの水分回収量は2.9gであった。
【0027】
比較例2
比較例1と同様に操作したところ、乾燥窒素ガス(C)の導入開始後10時間を経過したところコールドトラップ(6)に回収された水分は82gになっていた。
【0028】
その後もスチームの供給を止めることなく、ジャケット温度を170℃に保ったまま、170℃の乾燥窒素ガス(C)を10時間、通気し続けたが、コールドトラップ(6)には新たな水は回収されなかった。
【0029】
その後、ジャケット温度を170℃に維持したまま、活性炭充填容器(5)内からコールドトラップ(6)までを締め切り、絶対圧力で5Torr(660Pa)まで減圧して10時間放置したが、コールドトラップ(6)には新たな水は回収されなかった。
【図面の簡単な説明】
【図1】本発明の除去方法により活性炭に含まれる水分を除去するための水分除去装置の一例を示す断面模式図である。
【符号の説明】
A:活性炭 B:乾燥塩化水素ガス
C:乾燥窒素ガス(乾燥不活性ガス)
1:水分除去装置
2:活性炭充填容器 21:セパレーター 2A:充填領域
3:ガス導入管 4:ガス導出管 5:ジャケット
6:コールドトラップ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing moisture contained in activated carbon.
[0002]
[Prior art]
Activated carbon is frequently used, for example, to remove impurity components contained in gas. Normally used activated carbon contains water. Examples of the method for removing the water include a method in which a dry inert gas such as dried nitrogen gas and activated carbon are brought into contact with heating, and a method in which activated carbon is heated under reduced pressure [Non-patent Document 1]. ].
[0003]
[Non-Patent Document 1]
"Fourth Edition Experimental Chemistry
[Problems to be solved by the invention]
However, such a conventional removal method has a problem that moisture cannot be sufficiently removed and may remain.
[0005]
Therefore, the present inventor has intensively studied to develop a method capable of sufficiently removing the water contained in the activated carbon, and as a result, by contacting the activated carbon with dry hydrogen chloride gas, the water contained in the activated carbon can be more sufficiently removed. The headline, the present invention has been reached.
[0006]
[Means for Solving the Problems]
That is, the present invention provides a method for removing moisture contained in the activated carbon (A), wherein the activated carbon (A) is brought into contact with dry hydrogen chloride gas (B).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Activated carbon (A) that removes moisture by the removal method of the present invention is mainly composed of carbon, and may be obtained by firing natural materials such as wood, coconut shell, and coal. Alternatively, it may be obtained by firing an artificial material such as a synthetic organic polymer compound. Such activated carbon may be commercially available, such as those marketed by Nippon Enviro Chemical Co., Ltd. under the trade names such as “Shirakaba G2c”, “Shirakaba GM2x”, “Shirakaba GH2x”, “Shirakaba WH2C”. Can be mentioned. Since such activated carbon is porous, it is contained by adsorbing moisture in the atmosphere, and its content varies depending on the storage state, but it may be contained, for example, at about 2 to 3% by mass.
[0008]
Activated carbon (A) may be directly contacted with dry hydrogen chloride gas (B) to remove moisture, but in order to reduce the amount of dry hydrogen chloride gas (B) used, dry inert gas (C ), Or after heating under reduced pressure, it is preferably contacted with dry hydrogen chloride gas (B).
[0009]
As the dry inert gas (C), a gas that does not substantially contain moisture, is in a dry state, and is non-reactive with activated carbon is used, and examples thereof include nitrogen gas, argon gas, and air. The temperature for contact with the dry inert gas is usually 50 ° C. or higher and 200 ° C. or lower. In the method of heating under reduced pressure, heating is usually performed in a state where the absolute pressure is reduced to about 0.05 MPa (0.5 atm) or less. The heating temperature is usually about 50 ° C to 200 ° C.
[0010]
In the removal method of the present invention, the activated carbon (A) is brought into contact with dry hydrogen chloride gas (B). Dry hydrogen chloride gas (B) contains almost no moisture, for example, a moisture content of about 100 ppm or less, ideally in a dry state of 0, gaseous hydrogen chloride (HCl), for example, commercially available It is supplied from a hydrogen chloride gas cylinder.
[0011]
The dry hydrogen chloride gas (B) has a hydrogen chloride content of usually 10% by volume or more, preferably 25% by volume or more, such as dry inert gas such as dry nitrogen gas and dry argon gas, and dry air. In addition, it may be diluted with a non-reactive gas in a dry state without reacting with activated carbon, hydrogen chloride or the like, or it may be a pure dry hydrogen chloride gas having a hydrogen chloride content of 100% by volume. Good.
[0012]
The temperature at which the activated carbon is brought into contact with the dry hydrogen chloride gas is not particularly limited as long as the activated carbon does not change in quality, but is practically about 0 ° C to 200 ° C. In addition, since it may generate heat | fever by making activated carbon contact dry hydrogen chloride gas, you may make it contact, cooling, so that this temperature may not be exceeded.
[0013]
FIG. 1 shows an example of a water removing device (1) for removing water contained in activated carbon (A) by the removing method of the present invention. This device (1) includes an activated carbon filling container (2), a gas introduction pipe (3), and a gas outlet pipe (4). The activated carbon filling container (2) is filled with activated carbon (A). The gas introduction pipe (3) introduces a gas component from the outside into the activated carbon filling container (2). The gas outlet pipe (4) guides the gas from the activated carbon filling container (2) to the outside. In the activated carbon filling container (2), activated carbon (A) is filled in a filling region (2A) partitioned by a separator (21) such as a wire mesh. The activated carbon filling container (2) is provided with, for example, a jacket (5), and is configured to heat and cool the filled activated carbon (A).
[0014]
Such removal device (1) has a surface in contact with the dry hydrogen chloride gas (B) that is inert to the dry hydrogen chloride gas, for example, a metal material such as stainless steel or carbon steel, a vinyl chloride resin, a fluororesin. It is preferable to be comprised with resin materials, such as inorganic glass.
[0015]
Such a removal device (1) is an activated carbon filling container (filled with activated carbon (A) used in order to remove impurity components contained in gaseous raw materials, intermediates, products, etc. in chemical plants and the like ( 2) may be connected to a gas introduction pipe (3) for introducing dry hydrogen chloride gas (B) or dry inert gas (C), whereby moisture is removed by the method of the present invention. The activated carbon (A) after complete removal can be used for removing impurities while the activated carbon filling container (2) is filled.
[0016]
In order to remove the water contained in the activated carbon (A) using such a removal device (1), for example, first, the activated carbon filling container (2) is heated by the jacket (5), and the dry inert gas (C) is removed. The gas is introduced into the activated carbon filling container (2) from the gas introduction pipe (3) and led out to the outside from the gas outlet pipe (4), so that it is aerated and brought into contact with the activated carbon (A).
[0017]
Thereafter, the introduction of the dry inert gas (C) is stopped, and the dry hydrogen chloride gas (B) is introduced from the gas introduction pipe (3) into the activated carbon filling container (2) and led out from the gas outlet pipe (4). Thus, the dry hydrogen chloride gas (B) may be passed through the activated carbon filling container (2) and brought into contact with the activated carbon (A) filled in the activated carbon filling container (2).
[0018]
The hydrogen chloride gas (B ′) led out from the gas outlet pipe (4) contains moisture removed from the activated carbon (A). It can also be recovered from B) using a cooling trap (6) or the like.
[0019]
The dry hydrogen chloride gas (B) is a space velocity represented by a volume in terms of atmospheric pressure (0.1 MPa) per hour with respect to the volume of the filling region (2A) filled with activated carbon, and usually 1 / h to 1000 / H, preferably 1 / h to 100 / h.
[0020]
In addition, after the start of ventilation, heat generation may occur due to the adsorption heat of hydrogen chloride on the activated carbon, but since moisture is removed by dry hydrogen chloride gas (B) and the heat generation gradually decreases, the presence or absence of heat generation Can also be used as a measure of moisture removal.
[0021]
Since the activated carbon from which moisture has been removed by the method of the present invention has sufficiently removed moisture, for example, hydrogen gas, nitrogen gas, oxygen gas, argon gas, air, hydrogen chloride gas, chlorine gas, hydrogen bromide gas, It can be suitably used for adsorbing and removing impurities contained in gas components such as bromine gas without the risk of mixing moisture.
[0022]
【The invention's effect】
According to the method of the present invention, water contained in activated carbon can be sufficiently removed.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
[0024]
Comparative Example 1
4.5 kg of activated carbon (Nippon Enviro Chemical Co., Ltd., “Shirakaba WH2C 8/32”) stored in the atmosphere is used for the activated carbon filling container [SUS304, inner diameter 200 mm, high 400 mm thick cylindrical shape] (2) in an activated carbon filling region (2A). The volume of this filling area (2A) was 10 L (10 dm 3 ).
[0025]
While introducing dry nitrogen gas (C) at 170 ° C from the gas inlet pipe (3) into the activated carbon filling container (2) at an introduction rate of 1 m 3 / h in terms of atmospheric pressure, the gas outlet pipe (4) Then, steam was supplied to the jacket (5) while venting and the jacket temperature was set to 170 ° C. A cold trap (6) at −30 ° C. was attached to the gas outlet pipe (4), and water contained in the nitrogen gas after aeration was recovered. When 1 hour passed after the start of the introduction of the dry nitrogen gas (C), the nitrogen gas temperature from the gas outlet pipe (4) was 110 ° C. When 10 hours had passed after the start of introduction, the supply of steam and the introduction of dry nitrogen gas (C) were stopped, and the activated carbon filled container (2) was sealed. At this time, the water recovered in the cold trap (6) was 82 g.
[0026]
Example 1
In Comparative Example 1, the supply of steam and the introduction of dry nitrogen gas (C) were stopped, and then the activated carbon filled container (2) was sealed and allowed to cool to 30 ° C. by natural cooling. The supply of steam was stopped, and the introduction of dry hydrogen chloride gas (moisture content of 10 ppm or less) (B) from the gas inlet pipe (3) was led out from the gas outlet pipe (4) and ventilation was started. After 30 minutes, the internal temperature of the activated carbon filled container (2) became 110 ° C. In addition, water began to be collected again in the cold trap (6) attached to (4) in the gas outlet pipe. Thereafter, the internal temperature gradually decreased and reached 30 ° C. after 6 hours had passed since the start of aeration of dry hydrogen chloride gas. At this time, the amount of recovered water after starting the aeration of the dry hydrogen chloride gas (B) was 2.9 g.
[0027]
Comparative Example 2
When operated in the same manner as in Comparative Example 1, 10 hours after the start of the introduction of the dry nitrogen gas (C), the water recovered in the cold trap (6) was 82 g.
[0028]
After that, without stopping the supply of steam, the jacket temperature was kept at 170 ° C., and 170 ° C. dry nitrogen gas (C) was continuously ventilated for 10 hours, but the cold trap (6) had fresh water. It was not recovered.
[0029]
Thereafter, with the jacket temperature maintained at 170 ° C., the inside of the activated carbon filling container (5) was closed to the cold trap (6), and the absolute pressure was reduced to 5 Torr (660 Pa) and left for 10 hours, but the cold trap (6 ) No new water was recovered.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a water removal device for removing water contained in activated carbon by the removal method of the present invention.
[Explanation of symbols]
A: Activated carbon B: Dry hydrogen chloride gas C: Dry nitrogen gas (dry inert gas)
1: Water removal device 2: Activated carbon filling container 21:
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003209673A JP4066907B2 (en) | 2003-08-29 | 2003-08-29 | Method for removing moisture contained in activated carbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003209673A JP4066907B2 (en) | 2003-08-29 | 2003-08-29 | Method for removing moisture contained in activated carbon |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005075649A JP2005075649A (en) | 2005-03-24 |
JP4066907B2 true JP4066907B2 (en) | 2008-03-26 |
Family
ID=34402520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003209673A Expired - Fee Related JP4066907B2 (en) | 2003-08-29 | 2003-08-29 | Method for removing moisture contained in activated carbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4066907B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109516461B (en) * | 2018-12-31 | 2023-12-26 | 江苏丽鑫环保科技有限公司 | Activated carbon defluorination system |
-
2003
- 2003-08-29 JP JP2003209673A patent/JP4066907B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005075649A (en) | 2005-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100236785B1 (en) | Carbonaceous adsorbent, process for producing the same, and method and apparatus for gas separation | |
US3755989A (en) | Removal of mercury from gas streams | |
US4863493A (en) | High purity acetylene gas | |
RU2000107366A (en) | METHOD FOR PRODUCING ACETYLENE AND SYNTHESIS-GAS. | |
JP5269426B2 (en) | Hydrogen generation system | |
CN207227001U (en) | Utilize MOCVD tail gas co-producing high-purity hydrogen and the device of high-purity ammon | |
JP4066907B2 (en) | Method for removing moisture contained in activated carbon | |
JP2000317246A (en) | Method and device for recovering ammonia | |
GB1021963A (en) | A process for working up waste gases containing hydrogen chloride | |
JP2000312824A (en) | Molecular sieving carbon for separating methane from mixed gas of methane and nitrogen | |
JP2002068723A (en) | Method and device for manufacturing activated charcoal | |
CN1274652C (en) | Method for destruction of organic compounds by co-oxidation with activated carbon | |
JP4380597B2 (en) | Production method of purified activated carbon | |
US3522007A (en) | Purification of chlorine | |
US3063218A (en) | Chlorine dioxide separation | |
JP2995495B2 (en) | Carbon adsorbent, its production method, gas separation method and its apparatus | |
JP2010030866A (en) | Purification method of hydrogen sulfide gas | |
JP4537699B2 (en) | Activated carbon slurry transport method | |
JP3813437B2 (en) | Digestion gas adsorption storage method and apparatus | |
JP2013194005A (en) | Method and apparatus for purifying dissolved acetylene | |
JP3198557U (en) | Sulfur hexafluoride gas purification equipment | |
JP4085161B2 (en) | Method for producing carbide from high water content biomass | |
USRE23690E (en) | Process fob obtaining dry chlorine | |
RU2055017C1 (en) | Carbon dioxide production method | |
RU99102710A (en) | METHOD FOR PRODUCING METAL SILICON |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071231 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080130 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |