JP4066334B2 - 映像信号処理装置 - Google Patents

映像信号処理装置 Download PDF

Info

Publication number
JP4066334B2
JP4066334B2 JP2002304110A JP2002304110A JP4066334B2 JP 4066334 B2 JP4066334 B2 JP 4066334B2 JP 2002304110 A JP2002304110 A JP 2002304110A JP 2002304110 A JP2002304110 A JP 2002304110A JP 4066334 B2 JP4066334 B2 JP 4066334B2
Authority
JP
Japan
Prior art keywords
input
video
point
color
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002304110A
Other languages
English (en)
Other versions
JP2004140645A (ja
Inventor
秀人 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
National Institute of Information and Communications Technology
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
National Institute of Information and Communications Technology
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, National Institute of Information and Communications Technology, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002304110A priority Critical patent/JP4066334B2/ja
Publication of JP2004140645A publication Critical patent/JP2004140645A/ja
Application granted granted Critical
Publication of JP4066334B2 publication Critical patent/JP4066334B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビデオカメラ、デジタルカメラ、スキャナなどの入力映像装置やCRT(Cathode−Ray Tube)ディスプレイ、PDP(Plasma Display Panel)ディスプレイ、LCD(Liquid Crystal Display)ディスプレイ、プロジェクタ、プリンタなどの出力映像装置間で、測色的特性を正確に制御して映像信号のやりとりができる映像信号処理装置に関する。
【0002】
【従来の技術】
映像機器のディジタル化によって、撮影、表示、編集、保存等の作業信頼性が向上し、映像による情報伝達や意思表現などが活発に行われるようになった。映像による情報伝達や意思表現の品質を左右する要素のひとつに色再現性があり、被写体の色情報を正確に収集し、これを正確に表示する、あるいは保存、編集を行うカラーマネジメントが必要になる。映像信号を測色的に取り扱うには、映像機器の測色的特性が必要であり、色再現プロファイルの導入が有効である。色再現プロファイルの標準化活動は企業コンソーシアムICC(International Color Consortium)によって進められており、モニタ、プリンタなどのデバイスドライバやOS(Operation Software)組み込み色変換エンジンでの活用が始まっている。
【0003】
一方、映像機器の構成を工夫して色再現性を向上するアプローチもある。そのひとつに、多原色映像システムがあり、映像システムの原色数を従来のRGBの3つに固定せず、4原色、5原色と任意数で設計する映像システムである。表示機器を多原色にすると色域が広がり、表示能力が向上する。味戸らは、プロジェクタを用いた6原色表示装置の技術を開示している(非特許文献1参照)。
【0004】
多原色映像機器が導入されると、映像信号処理も多原色化に対応する必要がある。この際、原色数がRGBの3つと固定されていた従来システムでは想定されない課題が発生する。まずRGB3原色システムの場合から考える。RGBディスプレイで目標の色XYZtを表示したい場合、以下の式によって映像信号RGBが算出される。
【0005】
【数1】
Figure 0004066334
ここで[X Y Z]RはRGBディスプレイのR原色のXYZ、[X Y Z]GはRGBディスプレイのG原色のXYZ、[X Y Z]BはRGBディスプレイのB原色のXYZをそれぞれ表わす。行列Mは3×3の正方行列であるため、その逆行列は一意に決まる。一方、多原色映像機器としてたとえば4原色ディスプレイを考えた場合、目標の色XYZtを表示するには以下の式によって映像信号[S1234]が算出される。
【0006】
【数2】
Figure 0004066334
ここで[X Y Z]1は4原色ディスプレイの第1原色のXYZ、[X YZ]2は4原色ディスプレイの第2原色のXYZ、[X Y Z]3は4原色ディスプレイの第3原色のXYZ、[X Y Z]4は4原色ディスプレイの第4原色のXYZをそれぞれ表わす。行列Nは3×4の非正方行列であるため、その逆行列には自由度があり、一意に決まらない。この問題は、4原色以上の多原色映像機器に特有の課題である。
【0007】
この課題を解決するために、味戸らは、(数1)を複数用意し、目標の色XYZtに応じて切り替えて利用する技術を開示している(非特許文献1参照)。
【0008】
たとえば4原色ディスプレイの場合、XYZ色空間における色域立体は、図16に示すように、1次色(S1,S2,S3,S4)、2次色(S1+S2,S2+S3,S3+S4,S4+S1)、3次色(S1+S2+S3,S2+S3+S4,S3+S4+S1,S4+S1+S2)、ブラックK、ホワイトWを頂点とする12面体となる。
【0009】
この12面体を、ブラックKを含まない8つの面とブラックKで構成される8つの四角錐に分割する。面1601はブラックKを含まない面の1つで、1次色S2、2次色S2+S3、3次色S1+S2+S3、2次色S1+S2から成る。
【0010】
図17の四角錐1701は、図16における面1601とブラックKから与えられる面体を表し、8つの四角錐の1つに相当する。目標の色XYZがたとえば四角錐1701の内部にある場合、ブラックKから目標の色XYZへのベクトル[X Y Z]1702は、ブラックKから1次色Sへのベクトル[X Y Z]1703、1次色Sから2次色S+Sへのベクトル[X Y Z]1704、2次色S+Sから3次色S+S+Sへのベクトル[X Y Z]1705を用いて以下のように表現できる。
【0011】
【数3】
Figure 0004066334
ここでwaはベクトル[X Y Z]a1703に対する重み係数、wbはベクトル[X Y Z]b1704に対する重み係数、wcはベクトル[X Y Z]c1705に対する重み係数である。
【0012】
ところで、ディスプレイの色域立体は映像信号空間でも定義できる。4原色ディスプレイの場合、映像信号は4次元となるため、映像信号空間は4次元空間となる。これを[α β γ δ]4次元空間と定義する。XYZ空間における四角錐1701は[α β γ δ]4次元空間で四角錐1801となる。
【0013】
同様に、XYZ空間におけるブラックKから目標の色XYZtへのベクトル[X Y Z]t1702は、[α β γ δ]4次元空間におけるブラックKから再現信号へのベクトル[α β γ δ]t1802となり、ブラックKから1次色S2へのベクトル[X Y Z]a1703はベクトル[α β γ δ]a1803となり、1次色S2から2次色S2+S3へのベクトル[X Y Z]b1704はベクトル[α β γ δ]b1804、2次色S2+S3から3次色S1+S2+S3へのベクトル[X Y Z]c1705はベクトル[α β γ δ]c1805となる。
【0014】
XYZ空間と同様に、ブラックKから再現信号へのベクトル[α β γ δ]t1802は、ブラックKから1次色S2へのベクトル[α β γ δ]a1803、1次色S2から2次色S2+S3へのベクトル[α β γ δ]b1804、2次色S2+S3から3次色S1+S2+S3へのベクトル[α β γ δ]c1805を用いて以下のように表現できる。
【0015】
【数4】
Figure 0004066334
(数3)を重み係数[wabc]について解いて、これを(数4)に代入すると以下のようになる。
【0016】
【数5】
Figure 0004066334
再現信号[α β γ δ]tを4原色ディスプレイに与えれば、4原色ディスプレイは目標の色XYZtを表示できる。
【0017】
以上より、図19に示す映像信号処理装置1901は、n原色ディスプレイ1902に目標の色XYZt1903を表示するように映像信号1904を一意に算出できる。
【0018】
すなわち、目標色内包四角錐検出部1905は、n原色ディスプレイの色域立体を分割したn(n−2)個の四角錐の中から目標の色XYZtを包含する四角錐を検出し、その四角錐を形成する3つのベクトルより(数3)の3×3正方行列を定義する。3×3正方行列は逆行列算出部1906で逆行列に変換され、(n×3)行列演算部1907に渡される。(n×3)行列演算部1907は(数5)に従って映像信号1904を算出し、目標の色XYZtを表示するような映像信号が一意に定まる。
【0019】
【非特許文献1】
味戸著「Six−primary color projection display for expanded color gamut reproduction」、International Symposium onMultispectral Imaging and Color Reproduction for Digital Archives, Society of Multispectral Imaging of Japan, p135−p138,1999年
【0020】
【発明が解決しようとする課題】
しかしながら、上記の従来の映像信号処理装置において、以下のような課題を残す。
【0021】
第1に、信号値の急激な変化により、ノイズが発生しやすい点である。3×3正方行列は四角錐を形成する3つのベクトルから構成されるが、ベクトルの始点、終点ともにディスプレイの色域表面に設けられる。そこで、ベクトルの要素は信号値の最小値あるいは最大値を取る。
【0022】
たとえば、ディスプレイの映像信号の階調が8ビットの場合、ベクトル要素は最小値の0、あるいは最大値の255のどちらかとなる。図18の4原色ディスプレイの場合、四角錐1801を形成するベクトル1803、ベクトル1804、ベクトル1805は以下のような値を取る。
【0023】
【数6】
Figure 0004066334
図20は、四角錐1801に接する四角錐2001を表す。この2つは、[αβ γ δ]4次元空間で見た場合で、XYZ空間では、四角錐1701に接する四角錐2002に相当する。四角錐の頂点は、ブラックK、2次色S1+S2、3次色S1+S2+S3、3次色S4+S1+S2、ホワイトWの5つである。そこで、四角錐2001を形成するベクトル2003、ベクトル2004、ベクトル2005の要素は以下のような値を取る。
【0024】
【数7】
Figure 0004066334
XYZ空間において、目標の色XYZtが四角錐1701から四角錐2002に移動した際、(数6)と(数7)に示した4×3行列の12個の要素のうち、αa、αb、δcの3つが0から255へ切り替わる。目標の色XYZtがカメラや伝送系から与えられる場合、ノイズを含むことが多く、ノイズの影響で不適切な四角錐が選択される可能性がある。
【0025】
たとえば、本来、(数6)を使うべきところで(数7)が選択された場合、本来、0であるはずの要素αa、αb、δcの3つが255となり、信号値が急激に変化することになる。(数5)の4×3行列の要素が急峻に変化すれば、再現信号[α β γ δ]tも急激に変化し、ノイズレベルを大きくすることになる。
【0026】
さらには、XYZ空間における四角錐の大きさは任意と考えるべきであり、小さな四角錐ほど目標の色XYZtへのノイズの影響を受けやすい。場合によっては隣接する四角錐を飛び越えて、共有面を持たない遠い四角錐が選択され、再現信号のパターンが大きく異なるケースも考えられる。
【0027】
第2に、目標の色XYZtを包含する四角錐を探し出す処理が複雑で、演算負荷が大きい。味戸らは四角錐をxy色度図に投影して2次元面で探し出す技術を開示し、さらに演算の高速化のために、xy色度図を細かなメッシュに分けて、メッシュの格子点ごとに選択されるべき四角錐を予め計算して、その結果を2次元ルックアップテーブルに持つ技術を開示している(非特許文献1参照)。しかし、メッシュが粗くなると、四角錐の選択エラーが発生しやすくなり、上述したようにノイズ発生の原因につながる。
【0028】
本発明は上記従来技術の課題を解決するもので、目標の色XYZtのノイズの影響を抑え、かつ高速演算を可能にする演算負荷の小さい映像信号処置装置を提供することを目的とする。
【0029】
【課題を解決するための手段】
この目的を達成するために本発明は、入力デバイスから入力測色値を受け、出力デバイスに出力信号を与える映像システムにおいて、入力測色値を出力デバイスの色域表面上の2点と色域内の1点で包含する入力測色値内包三角形を特定し、前記入力測色値内包三角形の頂点を測色値空間と出力デバイススカラー信号空間で算出する入力測色値内包三角形算出部と、測色値空間と出力デバイススカラー信号空間における入力測色値内包三角形の頂点座標から出力デバイスに与える出力信号を算出する線形補間部とを具備することによって、目標の色XYZtのノイズの影響を抑え、かつ演算負荷を軽減して高速演算を可能にする。
【0030】
【発明の実施の形態】
本発明の第1の態様は、第1映像機器の映像信号であり測色値空間内の入力点に変換された入力測色値が第2映像機器の色域表面上の2点と色域内の1点とで包含される入力測色値内包三角形の頂点座標を、前記測色値空間及び前記第2映像機器のスカラー信号空間のそれぞれで求める入力測色値内包三角形算出部と、前記測色値空間における入力測色値内包三角形の頂点座標と前記第2映像機器のスカラー信号空間における入力測色値内包三角形の頂点座標との線形補間により前記第2映像機器の映像信号を算出する線形補間部と、を具備する映像信号処理装置である。
【0031】
このように構成された映像信号処理装置によれば、入力測色値を第2映像機器の測色的特性に応じて測色的に等価な任意次元数の出力信号に変換できる作用を有する。
【0032】
本発明の第2の態様は、第1映像機器の映像信号から当該第1映像機器の色特性情報を用いて測色値空間内における入力点となる入力測色値を算出する入力測色値算出部と、前記入力測色値が第2映像機器の色域表面上の2点と色域内の1点とで包含される入力測色値内包三角形の頂点座標を、前記測色値空間及び前記第2映像機器のスカラー信号空間のそれぞれで求める入力測色値内包三角形算出部と、前記測色値空間における入力測色値内包三角形の頂点座標と前記第2映像機器のスカラー信号空間における入力測色値内包三角形の頂点座標との線形補間により前記第2映像機器の映像信号を算出する線形補間部と、を具備する映像信号処理装置である。
【0033】
このように構成された映像信号処理装置によれば、入力信号を第1映像機器の測色的特性に応じて入力測色値に変換し、前記入力測色値を第2映像機器の測色的特性に応じて測色的に等価な任意次元数の出力信号に変換できる作用を有する。
【0034】
本発明の第3の態様は、上記映像信号処理装置において、測色値空間が、第2映像機器のバイアス成分を差し引いたバイアスフリー測色値であることとした。
【0035】
これにより、出力信号のダイナミックレンジと測色値のダイナミックレンジが一致し、信号処理演算が単純化させる作用を有する。
【0036】
本発明の第4の態様は、上記映像信号処理装置において、第2映像機器のスカラー信号空間が、第2映像機器の明るさ表示特性と線形関係を持つスカラー信号で構成されるものとした。
【0037】
これにより、入力測色値と第2映像機器のスカラー信号が線形関係であるため、入力測色値から第2映像機器のスカラー信号への変換を線形演算で構築でき、信号処理演算を単純化できる作用を有する。
【0038】
本発明の第5の態様は、上記映像信号処理装置において、入力測色値内包三角形を形成する第2映像機器の色域内の1点が、第2映像機器のホワイト点とブラック点を結んだグレー軸と入力測色値の明度から成る入力明度均一面との交点で与えられる入力明度グレー軸交点であるものとした。
【0039】
これにより、入力測色値がブラック点以外にある場合、出力信号のすべてのチャネルが1以上の値を持ち、かつ入力側色値の明るさ量に応じた値を持つため、出力信号値が滑らかに変化し、入力信号が持つノイズを抑える作用を有する。
【0040】
本発明の第6の態様は、上記映像信号処理装置において、入力明度グレー軸交点の測色値空間における座標が、第2映像機器のホワイト点とブラック点の明度差と入力測色値とブラック点の明度差の比を第2映像機器のホワイト点とブラック点の測色値の差分ベクトルに乗算して算出されるものとした。
【0041】
これにより、簡単な線形演算で入力明度グレー軸交点の測色値空間における座標が算出できる作用を有する。
【0042】
本発明の第7の態様は、上記映像信号処理装置において、入力明度グレー軸交点の測色値空間における座標が、第2映像機器のホワイト点とブラック点を結んだ第2映像機器のグレー軸上の2点の明度差と前記第2映像機器のグレー軸上の2点のうち明度の低い方の点と入力測色値の明度差の比を前記第2映像機器のグレー軸上の2点の測色値の差分ベクトルに乗算して算出されるものとした。
【0043】
これにより、入力明度グレー軸交点の測色値空間における座標を実測値をもとに算出できるため、補間誤差を抑えられる作用を有する。
【0044】
本発明の第8の態様は、上記映像信号処理装置において、入力明度グレー軸交点の第2映像機器のスカラー信号空間における座標が、第2映像機器のホワイト点とブラック点の明度差と入力測色値とブラック点の明度差の比を第2映像機器のホワイト点とブラック点の第2映像機器のスカラー信号の差分ベクトルに乗算して算出されるものとした。
【0045】
これにより、簡単な線形演算で入力明度グレー軸交点の第2映像機器のスカラー信号空間における座標が算出できる作用を有する。
【0046】
本発明の第9の態様は、上記映像信号処理装置において、入力明度グレー軸交点の第2映像機器のスカラー信号空間における座標は、第2映像機器のホワイト点とブラック点を結んだ第2映像機器のグレー軸上の2点の明度差と前記第2映像機器のグレー軸上の2点のうち明度の低い方の点と入力測色値の明度差の比を前記第2映像機器のグレー軸上の2点の第2映像機器のスカラー信号の差分ベクトルに乗算して算出されるものとした。
【0047】
これにより、入力明度グレー軸交点の第2映像機器のスカラー信号空間における座標を実測値をもとに算出できるため、補間誤差を抑えられる作用を有する。
【0048】
本発明の第10の態様は、上記映像信号処理装置において、入力測色値内包三角形を形成する第2映像機器の色域表面上の2点が、第2映像機器の色域立体の辺と入力測色値の明度から成る入力明度均一面との交点のうち、隣り合う2点から選ばれるものとした。
【0049】
これにより、入力測色値内包三角形を形成する第2映像機器の色域表面上の2点が第2映像機器の色域形状に合った誤差の少ない補間演算で算出できる作用を有する。
【0050】
本発明の第11の態様は、上記映像信号処理装置において、入力測色値内包三角形を形成する第2映像機器の色域表面上の点である表面頂点の測色値空間における座標が、表面頂点を含む色立体の辺の両端点の明度差と前記両端点のうち明度の低い方の点と入力測色値との明度差の比を前記両端点の測色値の差分ベクトルに乗算して算出されるものとした。
【0051】
これにより、入力測色値内包三角形を形成する第2映像機器の色域表面上の点である表面頂点の測色値空間における座標が第2映像機器の色域形状に合った誤差の少ない補間演算で算出できる作用を有する。
【0052】
本発明の第12の態様は、上記映像信号処理装置において、入力測色値内包三角形を形成する第2映像機器の色域表面上の点である表面頂点の第2映像機器のスカラー信号空間における座標が、表面頂点を含む色立体の辺の両端点の明度差と前記両端点のうち明度の低い方の点と入力測色値との明度差の比を前記両端点の第2映像機器のスカラー信号の差分ベクトルに乗算して算出されるものとした。
【0053】
これにより、入力測色値内包三角形を形成する第2映像機器の色域表面上の点である表面頂点の第2映像機器のスカラー信号空間における座標が第2映像機器の色域形状に合った誤差の少ない補間演算で算出できる作用を有する。
【0054】
本発明の第13の態様は、上記映像信号処理装置において、線形補間部が、第2映像機器のスカラー信号空間における入力測色値内包三角形の3つの頂点の座標から成る第2映像機器のスカラー信号行列と、測色値空間における入力測色値内包三角形の3つの頂点の座標から成る測色値行列の逆行列と、入力測色値行列との積で第2映像機器のスカラー出力信号を算出し、第2映像機器の明るさ表示特性に基づいて第2映像機器のスカラー出力信号を第2映像機器の映像信号に変換するものとした。
【0055】
これにより、演算負荷の少ない線形演算で補間演算が実行できる作用を有する。
【0056】
本発明の第14の態様は、上記映像信号処理装置を第1映像機器の一部に組み込んだ映像信号処理システムである。
【0057】
本発明の第15の態様は、上記映像信号処理装置を第2映像機器の一部に組み込んだ映像信号処理システムである。
【0058】
本発明の第16の態様は、第1映像機器と、上記映像信号処理装置と、第2映像機器とからなる映像信号処理システムである。
【0059】
本発明の第17の態様は、コンピュータを、第1映像機器の映像信号であり測色値空間内の入力点に変換された入力測色値が第2映像機器の色域表面上の2点と色域内の1点とで包含される入力測色値内包三角形の頂点座標を、前記測色値空間及び前記第2映像機器のスカラー信号空間のそれぞれで求める入力測色値内包三角形算手段と、前記測色値空間における入力測色値内包三角形の頂点座標と前記第2映像機器のスカラー信号空間における入力測色値内包三角形の頂点座標との線形補間により前記第2映像機器の映像信号を算出する線形補間手段と、して機能させるプログラムである。
【0060】
以下、本発明に係る映像信号処理装置の実施の形態について図面を参照して具体的に説明する。
【0061】
(実施の形態1)
図1は、本発明の実施の形態1に係る映像信号処理システムの概念図である。同図に示す映像信号処理システムは、3バンドカメラ信号を4原色表示信号に変換して出力する構成である。
【0062】
入力デバイスとしての3バンドカメラ101は、RGB三原色で構成されるカメラRGB信号102を出力し、カメラRGB信号102は映像信号処理装置103に入力される。映像信号処理装置103では、入力測色値算出部104がカメラRGB信号102を受け、3バンドカメラ色再現プロファイル105をもとに、入力測色値信号106を算出する。入力測色値信号106は、3バンドカメラ101が撮影した被写体の色を表わす。
【0063】
出力デバイスとしての4原色表示装置107は、被写体の再現画像を表示するが、この表示色が入力測色値信号106と一致するように映像信号を処理することが目標となる。
【0064】
入力測色値内包三角形算出部108は、4原色表示装置107の色域上の2点と4原色表示装置107の色域内の1点で形成される三角形のうち、入力測色値信号106を包含する入力測色値内包三角形を算出する。
【0065】
この際、4原色表示装置色再現プロファイル109を参照して、測色値空間内の三角形と表示スカラー信号空間内の三角形を定義する。入力測色値内包三角形算出部108は2種類の信号を出力する。一方は入力測色値内包三角形の3頂点が持つ出力測色値である頂点出力測色値信号110で、他方は入力測色値内包三角形の3頂点が持つ表示スカラー信号である頂点表示スカラー信号111である。ともに線形補間部112に与えられる。なお、第2映像機器のスカラー信号空間となる表示スカラー信号空間は、第2映像機器となる4原色表示装置107の明るさ表示特性と線形関係を持つスカラー信号で構成される。
【0066】
線形補間部112は、頂点出力測色値信号110と頂点表示スカラー信号111をもとに線形補間を実行して4原色表示信号113を算出し、4原色表示装置107に出力する。以下、入力測色値算出部104、入力測色値内包三角形算出部108、線形補間部112の順に各部の処理構成を詳細に説明する。
【0067】
第1に、入力測色値算出部104は、3バンドカメラ101からカメラRGB信号102を受けて、被写体の色の測色値を算出し、これを入力測色値信号106として出力する。カメラRGB信号102から入力測色値信号106を算出するには、たとえば(数8)の線形モデルを用いる。
【0068】
【数8】
Figure 0004066334
ここで、[R G B]は3バンドカメラ101を、[X Y Z]inは入力測色値信号106をあらわす。3×3行列の要素mijは3バンドカメラ101のスペックに依存して決まる。たとえば3バンドカメラ101がITU−R BT.709準拠のスペックを持つ場合、3×3行列の要素mijは(数9)で与えられる。
【0069】
【数9】
Figure 0004066334
(数9)が与える[X Y Z]inは被写体の色を表わすため、映像信号処理装置103の設計目標は、4原色表示装置106で表示する色が[X Y Z]inと一致するように4原色表示装置信号113をはじき出すところとなる。
【0070】
第2に、入力測色値内包三角形算出部108は、図2に示すように、入力測色値信号106を包含する入力測色値内包三角形201を算出する。4原色表示装置106の色表示範囲である4原色表示装置色域202は、測色値XYZ空間で定義される。
【0071】
4原色表示装置色域202は、ブラック点K 203、ホワイト点W 204、1次色点R、G、C、B(205〜208)、2次色点R+G、G+C、C+B、B+R(209〜212)、3次色点R+G+C、G+C+B、C+B+R、B+R+G(213〜216)から成る12面体となる。
【0072】
入力測色値内包三角形201は、入力測色値信号106の明るさ成分Yinで与えられる入力明るさ均一面217上に定義される。入力測色値内包三角形201の頂点の1つは,ブラック点K 203とホワイト点W 204を結ぶグレー軸218と入力明るさ均一面217との交点である点A 219で与えられる。ブラック点K 203のXYZ値を[X Y Z]k、ホワイト点W 204のXYZ値を[X Y Z]wとすると、点A 219のXYZ値[X’ Y’ Z’]aは(数10)で与えられる。
【0073】
【数10】
Figure 0004066334
ここで[X’ Y’ Z’]は、[X Y Z]からブラック点K 203のXYZ値[X Y Z]kを差し引いたバイアスフリーのXYZ値を表わす。以降、バイアスフリーのXYZ値は同じルールで表記する。
【0074】
一方、点A 219以外の2つの頂点、点B 220と点C 221は、4原色表示装置色域202の色域表面に定義される。
【0075】
図3と図4を用いて、点B 220と点C 221の算出方法を説明する。
【0076】
図3は、4原色表示装置色域202を入力明るさ均一面217で切断した4原色表示装置色域切断面301を示し、この例では、点B 220、点C 221、点D 302、点E 303、点F 304、点G 305、点H306の7つの頂点を持つ。
【0077】
図4は、4原色表示装置色域切断面301をY軸上方から見た状態を示す。点A 219がY軸に載るように、X軸を−Xaだけ、Z軸を−Zaだけ平行移動している。4原色表示装置色域切断面301は点A 219を中心に7つの三角形に分割され、この中から入力測色値信号106を包含する三角形を検出し、これを入力測色値内包三角形201とする。
【0078】
入力測色値信号106を包含する三角形の検出は回転角の比較で実現できる。つまり、入力測色値信号106の回転角401を基準に、これをはさむ回転角を持つ2つの頂点を検出すればいい。図4の場合、回転角402を持つ点B 220と回転角403を持つ点C 221が選び出される。
【0079】
以上、図3と図4を実行する具体的手段を図5から図7を使って説明する。4原色表示装置色域切断面301の頂点(図3と図4では、点B 〜 H(220、221、302〜306)の6点)は、図5に示す稜線マップ501を用いて算出する。稜線とは4原色表示装置色域202の辺に相当し、4原色表示装置色域202の頂点を結ぶ直線である。
【0080】
4原色表示装置色域202の頂点とは、ブラック点K (0 0 0 0) 、1次色点R (1 0 0 0)、G (0 1 0 0)、C (0 0 1 0)、B (0 0 0 1)、2次色点R+G (1 1 0 0)、G+C (0 1 1 0)、C+B (0 0 1 1)、B+R (1 0 0 1)、3次色点R+G+C (1 1 1 0)、G+C+B (0 1 1 1)、C+B+R (1 0 1 1)、B+R+G (1 1 0 1)、ホワイト点W (1 1 1 1)の14点であり、図5では四角の箱で示されている。これらは実線に示される形で接続され、4原色表示装置色域202の立体の辺を形成している。稜線マップ501によって、色域立体の頂点が持つ明度の分布を一覧できる。
【0081】
図5では、一例として、ブラック点Kの明度を1、1次色点Rの明度を20、1次色点Gの明度を50、1次色点Cの明度を25、1次色点Bの明度を5とした。ホワイト点Wはこれら4つの1次色の和で与えられるため、ホワイト点Wの明度は100となる。2次色と3次色の明度は接続関係から自動的に決定される。
【0082】
つまり、2次色点R+G (1 1 0 0)は、1次色点R (1 0 00)と1次色点G (0 1 0 0)の和で与えられるため、2次色点R+G (1 1 0 0)の明度は70 (= 20 + 50)となる。3次色点R+G+C (1 1 1 0)は、1次色点R (1 0 0 0)、1次色点G (0 1 0 0)、1次色点C(0 0 1 0)の和で与えられるため、3次色点R+G+C (1 1 1 0)の明度は95 (= 20 +50 + 25)となる。4原色表示装置色域切断面301の頂点を特定するには、入力測色値信号106の明るさ成分Yinが含まれる稜線を稜線マップ501が見つけ出せばいい。
【0083】
図6は、入力測色値信号106の明るさ成分Yin =60として抽出された稜線を実線で示す。また白丸○は、4原色表示装置色域202の稜線と入力明るさ均一面217の交点を表わす。実線で示された稜線の両端の明度は入力明るさ均一面217の明度Yin =60を挟む。以上により、4原色表示装置色域切断面301の頂点B 〜 H(220、221、302〜306)を含む稜線が特定できる。
【0084】
次に、図4に従って点B 220と点C 221を特定するため、頂点B 〜H(220、221、302〜306)の色相を求める。頂点B 〜 H(220、221、302〜306)の色相hは(数11)で与えられる。
【0085】
【数11】
Figure 0004066334
ここで[X’’ Z’’]は、図4に示す2次元座標(X−Xa)−(Z−Za)を表わす。頂点B 〜 H(220、221、302〜306)の[X’’ Z’’]は図7に示すように、稜線の両端から線形補間で算出する。図7は、点C 221の[X’’ Z’’]iを求めるケースを表わし、1次色点C(207)と2次色点G+C(210)の[X’’ Z’’]を用いて以下のように算出する。
【0086】
【数12】
Figure 0004066334
ここで添字Lは稜線の両端点のうち、明度の低い方を表わし、添字Vは明度の高い方を示す。
【0087】
図7は点C 221を含む稜線の両端点表わし、明度の低い方の点が1次色点C(207)、明度の高い方の点が2次色点G+C(210)に対応する。従って、[X’’ Z’’] Lは1次色点C(207)の測色値XYZをX軸方向に−Xa、Z軸方向に−Zaシフトした座標に当たり、[X’’ Z’’] Vは2次色点G+C(210)の測色値XYZをX軸方向に−Xa、Z軸方向に−Zaシフトした座標に相当する。
【0088】
以上、(数11)で色相hを頂点B 〜 H(220、221、302〜306)に対して計算し、図4のように入力測色値信号106の色相をはさむ頂点を探せば、点B 220と点C 221が決定され、点A 219と共に入力測色値内包三角形201が定義できる。
【0089】
次に、入力測色値内包三角形算出部108の2つの出力、頂点出力測色値信号110と頂点表示スカラー信号111の算出方法を説明する。点B 220のバイアスフリーのXYZ測色値[X’ Y’ Z’]bは、図8に示すように、点B 220を含む稜線の両端点211と214の測色値[X’ Y’ Z’]Lと[X’ Y’ Z’]Vから以下のように算出される。
【0090】
【数13】
Figure 0004066334
すなわち、点B 220のバイアスフリーXYZ測色値[X’ Y’ Z’]bは、点B 220を含む稜線の両端点211と214の明度値Y’L、Y’Vの差の点A 220の明度値Y’inによる内分比(Y’in−Y’L)/(Y’V−Y’L)を、両端点211と214の測色値[X’ Y’ Z’]Lと[X’ Y’Z’]Vの差に線形重み付けして求められる。
【0091】
また、点C 221のバイアスフリーXYZ測色値[X’ Y’ Z’]cも(数13)で算出でき、点C 221を含む稜線の両端点207と210バイアスフリーの測色値をそれぞれ[X’ Y’ Z’]L、[X’ Y’ Z’]Vとすればいい。入力測色値内包三角形201の3つの頂点、点A 219、点B 220、点C 221のバイアスフリーXYZ測色値[X’ Y’ Z’]a、[X’ Y’ Z’]b、[X’ Y’ Z’]cは、頂点出力測色値信号110として入力測色値内包三角形算出部108から出力され、線形補間部112に与えられる。
【0092】
なお、測色値XYZは測光計を用いて計測する必要があるが、これはブラック点K 203と1次色点R、G、C、B(205〜208)の5点に対して実施すれば十分である。なぜならば、2次色点R+G、G+C、C+B、B+R(209〜212)、3次色点R+G+C、G+C+B、C+B+R、B+R+G(213〜216)、ホワイト点W204の測色値XYZは、ブラック点K 203と1次色点R、G、C、B(205〜208)の足し算で算出できるからである。
【0093】
たとえば、2次色点G+C(210)は、図9に示すように、ブラック成分801にG成分802とC成分803を加えればよい。ただし、G成分802とC成分803はブラック成分801を差し引いたバイアスフリーのXYZ値である。
【0094】
一方、頂点表示スカラー信号111は点A 219においては以下のように算出される。
【0095】
【数14】
Figure 0004066334
つまり点A 219の頂点表示装置信号[S1234aは、ブラック点K 203とホワイト点W204の明度値Y’k、Y’wの差の点A 219の明度値Y’aによる内分比で与えられる。
【0096】
ただし、頂点表示スカラー信号111の定義域は0から1とする。また、頂点表示スカラー信号111は、図10に示すように、表示装置の階調特性から定義される。図10において、横軸は表示装置に与える表示信号であり、この例では1チャンネル8ビット階調として0から255までの256階調を持つ。
【0097】
一方、縦軸は表示色の明度を表わす。明度は各チャネルの最高輝度が1となるように正規化した明るさ尺度である。頂点表示スカラー信号111は明度と同一であり、表示色の明度と線形関係を持つ。点B 220は、点B 220を含む稜線の両端点211と214の表示スカラー信号[S1234L、[S1234Vから以下のように算出される。
【0098】
【数15】
Figure 0004066334
すなわち、点B 220の表示スカラー信号[S1234bは、稜線の両端点211と214の明度値Y’LとY’Vの差の入力測色値信号106の明るさ成分Y’in による内分比(Y’in−Y’L)/(Y’V−Y’L)を、両端点211と214の表示スカラー信号[S1234L、[S1234Vの差に線形重み付けして求められる。
【0099】
また、点C 221の表示スカラー信号[S1234cも(数15)で算出でき、点C 221を含む稜線の両端点207と210表示スカラー信号をそれぞれ[S1234L、[S1234Vとすればいい。以上、頂点表示スカラー信号111は(数14)、(数15)によって算出される。
【0100】
第3に、線形補間部112は、頂点出力測色値信号110と頂点表示スカラー信号111をもとに、4原色表示信号111を算出する。図11は、入力測色値信号106と入力測色値内包三角形201の3つの頂点、点A 219、点B 220、点C 221の関係を測色値XYZ空間で表現している。加えて、4原色表示スカラー信号1101と出力表示スカラー信号内包三角形1102の3つの頂点、点A 1103、点B 1104、点C 1105の関係を表示スカラー信号S1234空間で表現している。
【0101】
4原色表示スカラー信号1101は4原色表示信号111に対応する明度リニア信号で、図10で説明した階調特性から与えられる。つまり、4原色表示信号111を横軸の表示信号から与え、これに対応する縦軸の明度を読み取れば、4原色表示スカラー信号1101が求められる。4原色表示装置106で入力測色値信号106と同じ色を表示するには、測色値XYZと表示スカラー信号が線形の関係にある点を利用する。
【0102】
すなわち、4原色表示スカラー信号1101と出力表示スカラー信号内包三角形1102の3つの頂点、点A 1103、点B 1104、点C 1105の関係を、入力測色値信号106と入力測色値内包三角形201の3つの頂点、点A 219、点B 220、点C 221の関係と同等にすればいい。
【0103】
具体的には、入力測色値信号106を点A 219、点B 220、点C 221の測色値と重み係数[qabc]で(数16)のように表わし、4原色表示スカラー信号1101を点A 1103、点B 1104、点C 1105の表示スカラー信号と重み係数[qabc]で(数17)のように表わすことに相当する。
【0104】
【数16】
Figure 0004066334
【数17】
Figure 0004066334
(数16)において、qaは点A 219のバイアスフリーXYZ値に対する重み係数、qbは点B 220のバイアスフリーXYZ値に対する重み係数、qcは点C 221のバイアスフリーXYZ値に対する重み係数である。
【0105】
一方、(数17)において、qaは点A 1103の表示スカラー信号に対する重み係数、qbは点B 1104の表示スカラー信号に対する重み係数、qcは点C 1105の表示スカラー信号に対する重み係数である。測色値XYZと表示スカラー信号は線形関係を持つため、同じ重み係数[qabc]で対応つけられた入力測色値信号106と4原色表示スカラー信号1101は等価の関係にある。(数16)を重み係数[qabc]に対して解き、これを(数17)に代入すれば、4原色表示スカラー信号1101が算出できる。すなわち、
【0106】
【数18】
Figure 0004066334
で与えられる。行列Pは頂点表示スカラー信号111から、行列Uは頂点出力測色値信号110から、行列Cは入力測色値信号106、行列Kはブラック点K 203の測色値XYZからそれぞれ与えられる。
【0107】
以上、(数18)によって、入力測色値信号106は4原色表示スカラー信号1101に変換されるが、行列Pと行列Uの要素のひとつがグレー軸上に位置するため、入力測色値信号106がバイアス成分と一致しない場合、4原色表示スカラー信号1101のいずれのチャネルも0になることがない。行列Pと行列Uのグレー軸上に位置する要素とは、図2における点A 219である。
【0108】
そこで、入力測色値信号105がダイナミックレンジ全体に渡って大きく変化したとして、4原色表示スカラー信号1101は最小値から最大値まで急激に動くことはなく、滑らかな変化を示すといった作用効果を奏する。
【0109】
また、行列Pと行列Uのすべての要素が明るさ一定面上にあるため、4原色表示スカラー信号1101の各チャネルの数値の大小を比較することで色合いを容易に理解できるといった効果がある。仮にS1を赤、S2を黄色、S3を緑、S4を青とした場合、[S1234] = [0.8 0.5 0.5 0.5]であれば、明るさはホワイトに対して半分で、赤味を帯びた色であることがわかる。
【0110】
図2の点A 219、点B 220、点C 221は入力明るさ均一面217上にあるため、入力測色値の明るさはグレー軸218上にある点A 219が示している。一方、色合いは点A 219の表示スカラー信号よりも大きな値を持つチャネルが示しており、この例では、S1を赤が0.3だけ色味を持っていることがわかる。[S1234] = [0.8 0.8 0.4 0.4]であれば、明るさは0.4であり、[S1234] = [0.80.5 0.5 0.5]よりは暗く、色合いはオレンジ(=赤+黄色)になる。
【0111】
本例では、入力デバイスに3バンドカメラ、出力デバイスに4原色表示装置を用いた。これは一例であり、本発明は原色数を制限するものではない。
【0112】
すなわち、図11に示すように、原色数は表示スカラー信号の次元数に反映され、出力表示スカラー信号内包三角形1102の3つの頂点、点A 1103、点B 1104、点C 1105の座標の次元数に対応する。(数18)に示すように、点A 1103、点B 1104、点C 1105の座標の次元数は行列Pの行数に対応し、次元数は任意であることが理解できる。
【0113】
また、入力デバイスの3バンドカメラと出力デバイスの4原色表示装置は、図1に示すように、映像信号処理装置103の外部にあるとして説明を行ったが、この構成は一例である。映像信号処理装置103は3バンドカメラ101の内部に組み込むことも可能であり、また、3バンドカメラ101の内部に取り込むことも可能である。出力側の4原色表示装置107も同様であり、映像信号処理装置103を4原色表示装置107の内部に組み込んだり、4原色表示装置107を映像信号処理装置103の内部に取り込む構成も可能である。
【0114】
図12は4原色表示装置に本発明の映像処理装置を映像信号処理ICとして組み込んだ場合のシステム構成を表わす。4原色表示装置1201は標準ビデオインターフェイス1202を持ち、たとえばYPbPrのコンポーネント信号、あるいはコンポジット信号を入力できる。
【0115】
そこで、既存の3バンドカメラ1203で被写体1204を撮影し、3バンドカメラ1203の映像出力信号1205を直接、標準ビデオインターフェイス1202に接続できる。映像出力信号1205は標準ビデオインターフェイス1202を介して映像信号処理IC 1206に入力され、4原色表示信号1207に変換される。
【0116】
4原色表示信号1207はビデオメモリ1208を介して4原色表示パネル駆動回路1209に渡され、4原色表示パネル1210に再現映像1211が表示される。映像信号処理IC 1206の動作は図1に示した映像信号処理装置103に相当するため、映像出力信号1205は図1のカメラRGB信号102に対応し、また4原色表示信号1207は図1の4原色表示信号113に対応する。
【0117】
図1の3バンドカメラ色再現プロファイル105と4原色表示装置色再現プロファイル109は4原色表示装置1201に備えたスロットに差し込めるメモリーカード1212から映像信号処理IC 1206に与える。
【0118】
なお、メモリーカード1212をネットワークカードに換えれば、オンラインで遠隔操作も可能になる。また、3バンドカメラ1203の映像出力信号1205をネットワークに配信し、標準ビデオインターフェイス1202をネットワークカードに換えれば、ネットワークを介した映像配信が可能となる。
【0119】
ところで、入力測色値内包三角形算出部108は(数11)の三角関数を使って入力測色値信号106を内包する三角形を検出するが、演算負荷を小さくするために、直線の傾きを利用することもできる。
【0120】
つまり、図4において、入力測色値信号106の符号をもって、入力測色値信号106が存在する象限を特定し、その象限にX−Xa軸を境に隣接する象限と、Z−Za軸を境に隣接する象限、合計3つの象限のいずれかに属する頂点を特定する。特定された頂点と原点をつなぐ線分の傾きを求め、原点と入力測色値信号106をつなぐ線分の傾きを挟む隣り合う頂点を見つければいい。傾きを求めるには除算が伴うが、一般に三角関数よりも演算負荷は小さいと考えられる。
【0121】
以上、実施の形態1によって、4原色表示装置に入力測色値の色が表示される4原色出力信号を算出でき、かつ4原色出力信号値は滑らかに変化するため、入力測色値がノイズを含んでいても、その影響を抑えることができる。
【0122】
また、4原色出力信号の4つの値を比較することで、色合いと明るさが容易に理解できる。さらに入力測色値を内包する三角形の頂点が明るさ一定面上にあるため、この内包三角形の検出が小規模の演算で可能であり、高速演算を可能にする。
【0123】
(実施の形態2)
図13は、本発明の実施の形態2に係る映像信号処理システムの概念図である。同図に示す映像信号処理システムは、16バンドカメラ信号を3原色表示信号に変換する。
【0124】
16バンドカメラ1301はカメラ信号1302を出力し、カメラ信号1302は映像信号処理装置1303に入力される。映像信号処理装置1303では、入力測色値算出部1304がカメラ信号1302を受け、16バンドカメラ色再現プロファイル1305をもとに、入力測色値信号1306を算出する。
【0125】
入力測色値信号1306は16バンドカメラ1301が撮影した被写体の色を表わす。3原色表示装置1307は被写体の再現画像を表示するが、この表示色が入力測色値信号1306と一致するように映像信号を処理することが目標となる。
【0126】
入力測色値内包三角形算出部1308は、3原色表示装置1307の色域上の2点と3原色表示装置1307の色域内の1点で形成される三角形のうち、入力測色値信号1306を包含する入力測色値内包三角形を算出する。この際、3原色表示装置色再現プロファイル1309を参照して、測色値空間内の三角形と表示スカラー信号空間内の三角形を定義する。
【0127】
入力測色値内包三角形算出部1308は2種類の信号を出力する。一方は入力測色値内包三角形の3頂点が持つ出力測色値である頂点出力測色値信号1310で、他方は入力測色値内包三角形の3頂点が持つ表示スカラー信号である頂点表示スカラー信号1311である。ともに線形補間部1312に与えられる。
【0128】
線形補間部1312は、頂点出力測色値信号1310と頂点表示スカラー信号1311をもとに線形補間を実行して4原色表示信号1313を算出し、3原色表示装置1307に出力する。以下、入力測色値算出部1304、入力測色値内包三角形算出部1308、線形補間部1312の順に各部の処理構成を詳細に説明する。
【0129】
第1に、入力測色値算出部1304は、16バンドカメラ1301からカメラ信号1302を受けて、被写体の色の測色値を算出し、これを入力測色値信号1306として出力する。
【0130】
16バンドカメラとは被写体からの光を分光的に16の帯域に分割し、16枚の画像を撮影するカメラである。RGBカメラに比べると分光的解像度が5倍以上となるため、被写体の分光情報の計測に有利な構成である。入力測色値信号1306は(数19)によって算出できる。
【0131】
【数19】
Figure 0004066334
ここで、Vは列ベクトルでセンサー応答を、行列Sはカメラ特性を、列ベクトルRは被写体の分光反射率を表わす。行列Sが正方行列でない場合は、逆行列の算出に自由度が発生するため、ウィナー推定等を用いてノイズに強い逆行列を選択するのは有効な手段である。
【0132】
分光反射率Rが算出されれば、測色値XYZの定義に基づいて、照明と等色関数を与えることで入力測色値信号1306は計算できる。(数19)の計算に必要なパラメータと測色値XYZの算出に必要な照明と等色関数は、16バンドカメラ色再現プロファイル1305として入力測色値算出部1304に与える。
【0133】
第2に、入力測色値内包三角形算出部1308は、入力測色値信号1306を包含する入力測色値内包三角形を算出する。その動作は、(実施の形態1)の入力測色値内包三角形算出部108と同一であり、ここでは説明を省略する。
【0134】
第3に、線形補間部1312は、頂点出力測色値信号1310と頂点表示スカラー信号1311をもとに、3原色表示信号1313を算出する。その動作は、実施の形態1の線形補間部112と同一であり、ここでは説明を省略する。
【0135】
以上、実施の形態2によって、マルチバンドカメラからの入力信号を受け、信号変化の滑らかさと測色的精度を保って、3原色表示装置に出力信号を与えることができる。また、任意次元に対する映像信号処理が可能であり、マルチバンドシステムにも既存の3原色システムにも対応できることがわかる。
【0136】
(実施の形態3)
図14は、本発明の実施の形態3に係る映像信号処理システムの概念図である。同図に示す映像信号処理システムは、3原色表示装置の映像をプリンタに印刷する。
【0137】
3原色表示装置1401には、パーソナルコンピュータ1402で作成された映像が表示される。この映像は印刷物を作るための原稿であり、最終的にはプリンタ1403で印刷される。そこで、プリンタ1403の出力プリントは3原色表示装置1401に表示された原稿と同じ色を再現する必要がある。
【0138】
映像信号処理装置1404は、パーソナルコンピュータ1402から入力映像信号1405を受け取り、プリンタ1403の出力プリントが3原色表示装置1401の映像と同じ色になるようにプリンタ信号1406を出力することが目標となる。入力映像信号1405は入力測色値算出部1407に供給され、3原色表示装置色再現プロファイル1408をもとに、入力測色値信号1409を算出する。
【0139】
入力測色値信号1409は3原色表示装置1401に表示された映像の色を表わす。そこで、プリンタ1403の出力プリントの測色値XYZが入力測色値信号1409と一致するように映像信号を処理することが目標となる。
【0140】
入力測色値内包三角形算出部1410は、3原色表示装置1401の色域上の2点と3原色表示装置1401の色域内の1点で形成される三角形のうち、入力測色値信号1409を包含する入力測色値内包三角形を算出する。
【0141】
この際、プリンタ色再現プロファイル1411を参照して、測色値空間内の三角形と表示スカラー信号空間内の三角形を定義する。入力測色値内包三角形算出部1410は2種類の信号を出力する。一方は入力測色値内包三角形の3頂点が持つ出力測色値である頂点出力測色値信号1412で、他方は入力測色値内包三角形の3頂点が持つ表示スカラー信号である頂点表示スカラー信号1413である。ともに線形補間部1414に与えられる。
【0142】
線形補間部1414は、頂点出力測色値信号1412と頂点表示スカラー信号1413をもとに線形補間を実行してプリンタ信号1406を算出し、プリンタ装置1403に出力する。以下、入力測色値算出部1407、入力測色値内包三角形算出部1410、線形補間部1414の順に各部の処理構成を詳細に説明する。
【0143】
第1に、入力測色値算出部1407は、パーソナルコンピュータ1402から入力映像信号1405を受けて、3原色表示装置1401の表示色の測色値を算出し、これを入力測色値信号1409として出力する。
【0144】
たとえば、3原色表示装置1401がITU−R BT.709準拠のスペックを持つ場合、(数9)が与える[X Y Z]inが3原色表示装置1401の表示色の測色値となる。映像信号処理装置1404の設計目標は、プリンタ1403の出力プリントの測色値XYZが[X Y Z]inと一致するようにプリンタ信号1406をはじき出すところとなる。
【0145】
第2に、入力測色値内包三角形算出部1410は、図2に示すように、入力測色値信号1409を包含する入力測色値内包三角形201を算出する。その算出方法は、(実施の形態1)と同一であるため、説明を割愛する。
【0146】
ただし、図1の4原色表示装置色再現プロファイル109が本実施の形態ではプリンタ色再現プロファイル1411になるが、本発明は原色数に依存しないため、6種類、あるいは7種類のインクを使うハイファイプリンタ等でも実施できる。
【0147】
また、プリンタの測色的入出力特性はCRTディスプレイ等にくらべて非線形性が多く見られるが、図5に示す稜線マップ501の測色点を増やすことで色再現性を高めることができる。実施の形態1では、ブラック点K (0 0 0 0) 、1次色点R (1 0 0 0)、G (0 1 0 0)、C (00 1 0)、B (0 0 0 1)の5点を測定すれば、残りの2次色、3次色、ホワイト点は足し算で算出された。同じ方法を用いて、仮にプリンタ等で色再現性が確保できない場合は、2次色、3次色、ホワイト点も実測対象とすれば精度が向上する。
【0148】
また、稜線上に新たな実測点を加えることも有効である。さらに入力測色値内包三角形201の頂点のひとつである点A 219は、実施の形態1においては、ブラック点K 203とホワイト点W 204の2点から(数14)を用いて内挿した。これを図15に示すように、グレー軸1501上に実測点を追加すれば、より短い区間(点1502と点1503の区間)で内挿が実行でき、補間精度が向上する。あるいは、点A219に実測値を与えればいい。
【0149】
第3に、線形補間部1414は、頂点出力測色値信号1412と頂点表示スカラー信号1413をもとに、プリンタ信号1406を算出する。その算出方法は、実施の形態1と同一であるため、説明を割愛する。ただし、図1の4原色表示装置色再現プロファイル109が本実施の形態ではプリンタ色再現プロファイル1411になるが、本発明は原色数に依存しないため、6種類、あるいは7種類のインクを使うハイファイプリンタ等でも実施できる。
【0150】
以上、実施の形態3によって、ハードディスクや半導体メモリ、CD−ROM、DVDなどの記録メディアに格納された映像と色再現プロファイルを入力し、信号変化の滑らかさと測色的精度を保って既存の表示装置に映像を表示できる。
【0151】
なお、映像信号処理装置の各機能(入力測色値算出部、入力測色値内包三角形算出部、線形補間部)のすべて又は任意の一部はソフトウエアで構成することが出きる。すなわち、コンピュータを、上記した映像信号処理装置の入力測色値算出部、入力測色値内包三角形算出部、線形補間部として機能させるプログラムをROM等のメディアに保存し、必要に応じて読み出して使用するように構成する。
【0152】
【発明の効果】
以上のように本発明によれば、第1映像機器から入力測色値を受け、第2映像機器に出力信号を与える場合、信号変化が滑らかでノイズに強く、高速演算が可能な映像信号処理装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る3バンドカメラの映像信号を4原色表示装置の映像信号に変換する映像信号処理システムの構成図
【図2】図1に示す4原色表示装置のXYZ測色値空間における色域立体を示す図
【図3】図2に示す4原色表示装置の色域立体の辺と入力明るさ均一面との交点を示す図
【図4】図2に示す入力測色値内包三角形を検出する方法を説明する図
【図5】図3に示す点B 〜 H(220、221、302〜306)の位置を算出するために用いる稜線マップを説明する図
【図6】図5に示す稜線マップにおいて、入力測色値信号の明るさ成分Yin =60として抽出された稜線を示す図
【図7】図2に示す入力測色値内包三角形の頂点のひとつである点Cを含む稜線の両端点を示す図
【図8】図7に加えて、図2に示す入力測色値内包三角形の頂点のひとつである点Bを含む稜線の両端点を示す図
【図9】図2に示す2次色点G+Cをブラック成分、G成分、そしてC成分の足し算で求める方法を説明する図
【図10】表示装置の階調特性(表示信号と明度の関係)を示す図
【図11】(a)入力測色値信号と入力測色値内包三角形の3つの頂点の関係を測色値XYZ空間で示す図
(b)入力測色値信号と入力測色値内包三角形の3つの頂点の関係を表示スカラー信号空間で示す図
【図12】4原色表示装置に映像信号処理ICとして組み込んだ場合のシステム構成を示す図
【図13】本発明の実施形態2に係る16バンドカメラの映像信号を3原色表示装置の映像信号に変換する映像信号処理システムの構成図
【図14】本発明の実施形態3に係る3原色表示装置の映像信号をプリンタ信号に変換する映像信号処理システムの構成図
【図15】グレー軸上に実測点を追加し、より短い区間で内挿が実行できる場合を説明する図
【図16】図2に示す4原色表示装置の色域立体の頂点である1次色、2次色、3次色に対して名前をつけたことを説明する図
【図17】4原色表示装置のXYZ色空間における色域立体から目標色を包含する四角錘抜き出した図
【図18】(a)図17に示す四角錘をXYZ色空間で示す図
(b)図17に示す四角錘を4次元の表示スカラー信号空間で示す図
【図19】従来の映像信号処理装置の概念図
【図20】(a)XYZ色空間における隣接する四角錘の空間形状を示す形状を示す図
(b)4次元の表示スカラー信号空間における隣接する四角錘の空間形状を示す形状を示す図
【符号の説明】
101 3バンドカメラ
103 映像信号処理装置
104 入力測色値算出部
105 3バンドカメラ色再現プロファイル
107 4原色表示装置
108 入力測色値内包三角形算出部
109 4原色表示装置色再現プロファイル
112 線形補間部

Claims (15)

  1. 第1映像機器の映像信号である入力測色値であって測色値の色空間内の入力点に変換された入力測色値を包含する入力測色値内包三角形であって前記第2映像機器の色域表面上の2点と色域内の1点とで形成される入力測色値内包三角形の頂点座標を、前記測色値の色空間及び前記第2映像機器の明るさ表示特性と線形関係を持つ前記第2映像機器のスカラー信号の色空間のそれぞれにおいて求める入力測色値内包三角形算出部と、前記測色値の色空間における入力測色値内包三角形の頂点座標と前記第2映像機器のスカラー信号の色空間における入力測色値内包三角形の頂点座標との間の線形補間により前記第2映像機器の映像信号を算出する線形補間部と、を具備し、前記線形補間は、前記測色値の色空間における入力測色値内包三角形の頂点座標と前記第2映像機器のスカラー信号の色空間における入力測色値内包三角形の頂点座標とで共通の重み係数を用いて行われる、映像信号処理装置。
  2. 第1映像機器の映像信号から前記第1映像機器の色特性情報を用いて測色値の色空間内における入力点となる入力測色値を算出する入力測色値算出部と、前記入力測色値を包含する入力測色値内包三角形であって前記第2映像機器の色域表面上の2点と色域内の1点とで形成される入力測色値内包三角形の頂点座標を、前記測色値の色空間及び前記第2映像機器の明るさ表示特性と線形関係を持つ前記第2映像機器のスカラー信号の色空間のそれぞれにおいて求める入力測色値内包三角形算出部と、前記測色値の色空間における入力測色値内包三角形の頂点座標と前記第2映像機器のスカラー信号の色空間における入力測色値内包三角形の頂点座標との間の線形補間により前記第2映像機器の映像信号を算出する線形補間部と、を具備し、前記線形補間は、前記測色値の色空間における入力測色値内包三角形の頂点座標と前記第2映像機器のスカラー信号の色空間における入力測色値内包三角形の頂点座標とで共通の重み係数を用いて行われる、映像信号処理装置。
  3. 入力測色値内包三角形を形成する前記第2映像機器の色域内の1点は、前記第2映像機器の色域においてホワイト点とブラック点を結んだグレー軸と入力測色値の明度から成る入力明度均一面との交点で与えられる入力明度グレー軸交点であることを特徴とする請求項1または請求項のいずれかに記載の映像信号処理装置。
  4. 入力明度グレー軸交点の測色値の色空間における座標は、前記第2映像機器のホワイト点とブラック点の明度差と入力測色値とブラック点の明度差の比を前記第2映像機器のホワイト点とブラック点の測色値の差分ベクトルに乗算して算出されることを特徴とする請求項記載の映像信号処理装置。
  5. 入力明度グレー軸交点の測色値の色空間における座標は、前記第2映像機器の色域においてホワイト点とブラック点を結んだグレー軸上の2点の明度差と前記第2映像機器のグレー軸上の2点のうち明度の低い方の点と入力測色値の明度差の比を前記第2映像機器のグレー軸上の2点の測色値の差分ベクトルに乗算して算出されることを特徴とする請求項記載の映像信号処理装置。
  6. 入力明度グレー軸交点の第2映像機器のスカラー信号の色空間における座標は、前記第2映像機器の色域におけるホワイト点とブラック点の明度差と入力測色値とブラック点の明度差との比を、前記第2映像機器の色域におけるホワイト点とブラック点のスカラー信号の差分ベクトルに乗算して算出されることを特徴とする請求項記載の映像信号処理装置。
  7. 入力明度グレー軸交点の前記第2映像機器のスカラー信号の色空間における座標は、第2映像機器の色域においてホワイト点とブラック点を結んだグレー軸上の2点の明度差と第2映像機器のグレー軸上の2点のうち明度の低い方の点と入力測色値の明度差の比を、第2映像機器のグレー軸上の2点の第2映像装置スカラー信号の差分ベクトルに乗算して算出されることを特徴とする請求項記載の映像信号処理装置。
  8. 入力測色値内包三角形を形成する前記第2映像機器の色域表面上の2点は、前記第2映像機器の色域立体の辺と入力測色値の明度から成る入力明度均一面との交点のうち、隣り合う2点から選ばれることを特徴とする請求項1または請求項2記載の映像信号処理装置。
  9. 入力測色値内包三角形を形成する前記第2映像機器の色域表面上の点である表面頂点の測色値の色空間における座標は、表面頂点を含む色立体の辺の両端点の明度差と前記両端点のうち明度の低い方の点と入力測色値との明度差の比を前記両端点の測色値の差分ベクトルに乗算して算出されることを特徴とする請求項1または請求項2記載の映像信号処理装置。
  10. 入力測色値内包三角形を形成する前記第2映像機器の色域表面上の点である表面頂点の前記第2映像機器のスカラー信号の色空間における座標は、表面頂点を含む色立体の辺の両端点の明度差と前記両端点のうち明度の低い方の点と入力測色値との明度差の比を前記両端点の前記第2映像機器のスカラー信号の差分ベクトルに乗算して算出されることを特徴とする請求項1または請求項2記載の映像信号処理装置。
  11. 線形補間部は、前記第2映像機器のスカラー信号の色空間における入力測色値内包三角形の3つの頂点の座標から成る前記第2映像機器のスカラー信号行列と、測色値の色空間における入力測色値内包三角形の3つの頂点の座標から成る測色値行列の逆行列と、入力測色値行列との積で前記第2映像機器のスカラー出力信号を算出し、前記第2映像機器の明るさ表示特性に基づいて前記第2映像機器のスカラー出力信号を前記第2映像機器の映像信号に変換することを特徴とする請求項1または請求項2記載の映像信号処理装置。
  12. 請求項1から請求項11のいずれかに記載の映像信号処理装置を第1映像機器の一部に組み込んだことを特徴とする映像信号処理システム。
  13. 請求項1から請求項11のいずれかに記載の映像信号処理装置を第2映像機器の一部に組み込んだことを特徴とする映像信号処理システム。
  14. 第1映像機器と、請求項1から請求項11のいずれかに記載の映像信号処理装置と、第2映像機器とからなる映像信号処理システム。
  15. コンピュータを、
    第1映像機器の映像信号であり測色値の色空間内の入力点に変換された入力測色値を包含する入力測色値内包三角形であって前記第2映像機器の色域表面上の2点と色域内の1点とで形成される入力測色値内包三角形の頂点座標を、前記測色値の色空間及び前記第2映像機器の明るさ表示特性と線形関係を持つ前記第2映像機器のスカラー信号の色空間のそれぞれにおいて求める入力測色値内包三角形算手段と、
    前記測色値の色空間における入力測色値内包三角形の頂点座標と前記第2映像機器のスカラー信号の色空間における入力測色値内包三角形の頂点座標との間の線形補間により前記第2映像機器の映像信号を算出する線形補間手段と、して機能させ、
    前記線形補間は、前記測色値の色空間における入力測色値内包三角形の頂点座標と前記第2映像機器のスカラー信号の色空間における入力測色値内包三角形の頂点座標とで共通の重み係数を用いて行われる、プログラム。
JP2002304110A 2002-10-18 2002-10-18 映像信号処理装置 Expired - Fee Related JP4066334B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304110A JP4066334B2 (ja) 2002-10-18 2002-10-18 映像信号処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304110A JP4066334B2 (ja) 2002-10-18 2002-10-18 映像信号処理装置

Publications (2)

Publication Number Publication Date
JP2004140645A JP2004140645A (ja) 2004-05-13
JP4066334B2 true JP4066334B2 (ja) 2008-03-26

Family

ID=32451637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304110A Expired - Fee Related JP4066334B2 (ja) 2002-10-18 2002-10-18 映像信号処理装置

Country Status (1)

Country Link
JP (1) JP4066334B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533989B2 (ja) * 2004-09-09 2010-09-01 独立行政法人情報通信研究機構 球面平均多原色分解法およびそれを用いた画像表示法
CN100346632C (zh) * 2005-06-02 2007-10-31 复旦大学 一种抗几何变形的用于隐秘的传输图像的大容量通信方法
JP4752444B2 (ja) * 2005-10-12 2011-08-17 セイコーエプソン株式会社 色変換装置、色変換方法、色変換プログラム、画像処理装置、及び画像表示装置
EP2009899A1 (en) 2007-06-27 2008-12-31 Thomson Licensing Method of creating a gamut boundary descriptor preserving the discontinuities of an actual gamut surface

Also Published As

Publication number Publication date
JP2004140645A (ja) 2004-05-13

Similar Documents

Publication Publication Date Title
US6297826B1 (en) Method of converting color data
US8204304B2 (en) Color gamut mapping by forming curved cross-sectional surfaces
US7450281B2 (en) Image processing apparatus and information processing apparatus, and method thereof
JP2003087591A (ja) 画像処理方法及び画像処理装置
WO1999010835A1 (en) Scanner calibration and correction techniques using scaled lightness values
JPH11341296A (ja) 色域変換方法及び色域変換装置
WO2005109856A2 (en) Gamut mapping with primary color rotation
EP3961551B1 (en) Gamut conversion method and apparatus, and medium
US20120057785A1 (en) Method and system to modify a color lookup table
JP6950513B2 (ja) 色変換テーブル調整方法、色変換テーブル調整プログラム、色変換テーブル調整装置、及び、色変換テーブル調整システム
US7167276B2 (en) Data conversion between color coordinate systems
JP2003219193A (ja) カラー画像処理方法及びカラー画像処理装置
US20050276473A1 (en) Apparatus and method of detecting color gamut in color device and calculating color space inverse transform function
US20040252130A1 (en) Color signal processing apparatus and method for reproducing colors on MPD
CN109873919B (zh) 配置文件调节方法、调节装置以及调节系统
JP4066334B2 (ja) 映像信号処理装置
US8368962B2 (en) Color look up table adjusting apparatus, recording medium on which a color look up table adjusting program is recorded and color look up table adjusting system
JP2019205104A (ja) 情報処理装置、情報処理方法及びプログラム
US6522338B1 (en) Method of color matching between color image processing devices, by interpolation of relatively small number of color data sets
US9019294B2 (en) Color processing apparatus and method thereof
US8363267B2 (en) Image forming apparatus and color converting method thereof
JPH11155076A (ja) 色変換方法、色変換テーブル作成装置、色変換装置、および記録媒体
Motomura et al. Backward model for multi-primary display using linear interpolation on equi-luminance plane
EP2938059B1 (en) Color processing apparatus and color processing method
US9424801B2 (en) Display control device, non-transitory computer readable medium storing display control program, and color value data structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees