JP4065968B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP4065968B2
JP4065968B2 JP31919697A JP31919697A JP4065968B2 JP 4065968 B2 JP4065968 B2 JP 4065968B2 JP 31919697 A JP31919697 A JP 31919697A JP 31919697 A JP31919697 A JP 31919697A JP 4065968 B2 JP4065968 B2 JP 4065968B2
Authority
JP
Japan
Prior art keywords
lens
positive
object side
lens component
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31919697A
Other languages
Japanese (ja)
Other versions
JPH11142739A (en
Inventor
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP31919697A priority Critical patent/JP4065968B2/en
Publication of JPH11142739A publication Critical patent/JPH11142739A/en
Application granted granted Critical
Publication of JP4065968B2 publication Critical patent/JP4065968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は小型軽量でコストパフォーマンスに優れ、製造組み立てが比較的容易なズームレンズ、特にコンパクトな標準ズームレンズに関する。
【0002】
【従来の技術】
近年、広角を含み、かつズーム比が3〜4倍のいわゆる標準ズームレンズは小型化と低コスト化の一途をたどり、カメラボディに装着されたまま持ち運ばれる場合が非常に多くなっている。このため、標準ズームレンズは小型で軽量、かつ充分な結像性能を有し、さらに安価であることが必須の条件になっている。かかる条件を満足するにはズームレンズの各レンズ群を強いパワーで構成し、かつ各レンズ群を出来る限り薄肉化する必要がある。薄肉化のためにレンズ枚数を軽減するには、非球面レンズを導入するのが効果的である。近年、非球面レンズが安価で生産できるようになり、例えば、特開平8−248319号公報に開示されるようなパワー配置が正負正正、正負負正である4群ズームレンズの第2群、第4群等に非球面レンズを使用する例が増えている。また、該非球面は正負正負正などの5群以上のズームレンズの後群などに使用することも可能であり、同様の薄肉化の効果が期待できる。さらに、非球面を使用せずに、標準ズームレンズの小型化と小径化を試みた例に、特公平4−40689号公報、特公昭61−60418号公報、特公平1−46044号公報、特開昭62−270910号公報、特開平6−337354号公報等に開示されたズームレンズがある。
【0003】
【本発明が解決しようとする課題】
しかしながら、特開平8−248319号公報に開示されたズームレンズに代表される正負正正4群ズームレンズにおいては、4群中の非球面レンズの加工が比較的難しく、また鏡筒組み込み時の偏心精度、空気間隔精度が厳しく、設計性能を十分維持したまま製造することが難しいという問題がある。また、組み立て調整にかかるコストも増加してしまうため、非球面レンズの採用によるレンズ枚数の軽減のコスト面での効果が相殺されてしまう傾向がある。
【0004】
また、非球面を使用せずに、標準ズームレンズの小型化と小径化を試みた、特公平4−40689号公報、特公昭61−60418号公報、特公平1−46044号公報、特開昭62−270910号公報、特開平6−337354号公報等に開示されたズームレンズは、比較的大型で、ズーム比も3倍程度のものが主流である。このため、ズーム比が大きくても大型で構成枚数も多く、光学性能も不十分である。
【0005】
本発明は、上記問題に鑑みてなされたものであり、精度的に厳しい後方レンズ群に非球面を使用せずに、小径・小型であり、少ないレンズ構成枚数で、コストパフォーマンスに優れ、製造時の難易度のより少ない、変倍比3.5〜3.8倍程度で、かつ高性能なズームレンズを提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明のズームレンズは、物体側から順に、正の屈折カを有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群Gmとからなり、前記第1レンズ群G1と前記第2レンズ群G2との空気間隔を変化させることにより変倍を行うズームレンズにおいて、
【0007】
前記第4レンズ群Gmは、物体側から順に、物体側に凸面を向けた正メニスカスレンズ成分L1と、物体側に凸面を向け負レンズと正レンズの接合からなる接合正レンズ成分L2と、正レンズ成分L3と、像側に凸面を向けた負メニスカスレンズ成分L4とからなり
【0008】
前記正メニスカスレンズ成分L1と前記接合正レンズ成分L2との間には物体側に凸面を向けたメニスカス形状からなる空気レンズを有し、かつ前記正レンズ成分L3と前記負レンズ成分L4との間には像側に凸を向けたメニスカス形状からなる空気レンズを有することを特徴としている。
【0009】
【発明の実施の形態】
本発明のズームレンズは、基本的に正負正正タイプを代表とする凸先行ズームレンズの後群(マスタ一群)のレンズ構成を、極端に非球面レンズの効果を利用した設計方法をとること無しに、良好な性能を確保し、改良したレンズである。特に、本発明のズームレンズにおいて重要な構成は、凸レンズ先行型ズームレンズの後群(マスター群)にあたる前記レンズ群Gmに、物体側に凸面を向け、強いメニスカス形状を持つ正メニスカスレンズ成分L1を有する点と、前記正メニスカスレンズ成分L1と前記接合正レンズ成分L2との間に物体側に凸面を向けたメニスカス形状からなる空気レンズを有し、かつ前記正レンズ成分L3と前記負レンズ成分L4との間に像側に凸を向けたメニスカス形状からなる空気レンズを有する点である。かかる構成により、それぞれのレンズにおいて、高次収差を発生させ、結果的に球面収差やコマ収差の補正を良好に行なっている。
【0010】
また、前記空気レンズは、レンズ群Gmの中心に向かってそれぞれ凹面を向けており、適切な形状とすることにより、非球面を使用することなく良好な収差補正が可能になる。また、前記接合正レンズ成分L2によってペッツバール和、軸上色収差の補正を行なっている。
【0011】
以上説明したように、本発明のズームレンズでは、出来るかぎり凸先行ズームレンズの後群(マスター群)を単独の対物レンズ系として、可能な限りの収差補正自由度を与えるレンズ構成を採用している。この結果、良好な収差補正が可能で、かつ製造する事の容易な多群ズームレンズが達成できている。
【0012】
また、本発明のズームレンズは、以下の条件式(1)、
0<(Rb−Ra)/(Rb+Ra)≦l (1)
を満足することが望ましい。
【0013】
ここで、Raは前記正メニスカスレンズ成分L1の像側の面の曲率半径を、
Rbは前記接合正レンズ成分L2の物体側の面の曲率半径をそれぞれ表している。
【0014】
条件式(1)はレンズ群Gmの中のレンズ成分L1と前記正レンズ成分L2との間に存在する物体側に凸面を向けたメニスカス形状の空気レンズの形状の適切な範囲を規定している。本発明のズームレンズでは、後記する実施例にも示すとおり、特開平8−248319号公報に代表されるズームレンズの4群と異なり、マスターレンズ群でもあるレンズ群Gmが比較的独立して良好に収差補正を行なっており、前記の空気レンズの形状が重要な要素となる。条件式(1)の上限値を上回る場合、レンズ群Gmの中のレンズ成分L1と前記正レンズ成分L2との間の物体側に凸面を向けたメニスカス形状からなる空気レンズ(以下、「レンズ群Gmの中の物体側の空気レンズ」という)の形状が平凸形状になり、レンズ群Gmの中の物体側の空気レンズの偏角が著しく変化してしまう。この結果、球面収差の良好な補正と、各焦点距離における球面収差の変化を抑えることが困難になり好ましくない。さらに好ましくは、条件式(1)の上限値を0.6以下または0.4以下に設定すると、球面収差等の諸収差をより良好に補正できる。また、条件式(1)の上限値を0.3以下に設定すると本発明の効果を最大限に発揮できる。逆に、条件式(1)の下限値を下回る場合、レンズ群Gmの中の物体側の空気レンズの形状が像側に凸形状を向けた逆向きの形状になる。このため、上限値を上回る場合と同様に、レンズ群Gmの中の物体側の空気レンズの偏角が著しく変化し、結果的に球面収差の良好な補正と、各焦点距離における球面収差の変化を抑えることが困難になり好ましくない。
【0015】
また、本発明のズームレンズでは、以下の条件式(2)、
0<(Ra−R1)/(Ra+R1)≦1 (2)
を満足することが望ましい。
【0016】
ここで、R1は前記正メニスカスレンズ成分L1の物体側の面の曲率半径を、Raは前記正メニスカスレンズ成分L1の像側の面の曲率半径をそれぞれ表している。
【0017】
条件式(2)は、前記レンズ群Gm中の物体側に凸面を向け全体としてメニスカス形状を有するレンズ成分L1の適切なベンディング形状を規定している。前記レンズ成分L1は単レンズまたは接合レンズを有していても良く、接合レンズの場合、レンズ成分L1全体の形状を規定することとする。前記レンズ成分L1は主に球面収差、軸上色収差の補正を行っている。特に、高次の球面収差を発生させ、各焦点距離における球面収差の変動を抑えている。したがって、光軸に平行に入射する光束に対する前記レンズ成分L1の各面の偏角を適切な値に設定することにより、良好な収差補正が可能になる。条件式(2)の上限値を上回る場合、前記レンズ成分L1の形状が平凸形状に近づくため、像側の面の偏角が減少する方向に変化する。また、直後の空気レンズの収差補正効果も減少するために最適な高次の球面収差が発生しなくなる。この結果、各焦点距離における球面収差の変動を抑えることが困難になる。さらに好ましくは、条件式(2)の上限値を0.6以下に設定すると、球面収差等の諸収差をより良好に補正できる。また、条件式(2)の上限値を0.3以下に設定すると本発明の効果を最大限に発揮できる。逆に、、条件式(2)の下限値を下回る場合、前記レンズ成分L1の形状が像側に凸形状を向けた逆向きの形状になってしまう。このため、上限値を上回る場合と同様に、前記レンズ成分L1各面における偏角が著しく変化する。このため、球面収差の良好な補正と、各焦点距離における球面収差の変化を抑えることが困難になり好ましくない。
【0018】
また、本発明のズームレンズでは、以下の条件式(3)、
−1≦(Rd−Rc)/(Rd+Rc)<0 (3)
を満足することが望ましい。
【0019】
ここで、Rcは前記正レンズ成分L3の像側の面の曲率半径を、
Rdは前記負レンズ成分L4の物体側の面の曲率半径をそれぞれ表している。
【0020】
条件式(3)は、前記レンズ群Gmの中の正レンズ成分L3と前記負レンズ成分L4との間の像側に凸を向けたメニスカス形状からなる空気レンズの形状の適切な範囲を規定している。本発明のズームレンズでは、後記する実施例にも示すとおり、特開平8−248319号公報に代表されるズームレンズの4群と異なり、マスターレンズ群でもあるレンズ群Gmが比較的独立して良好に収差補正を行なう必要があり、前記の空気レンズの形状が重要である。条件式(3)の上限値を上回る場合、レンズ群Gmの中の正レンズ成分L3と前記負レンズ成分L4との間の像側に凸面を向けたメニスカス形状からなる空気レンズ(以下、「レンズ群Gmの中の像側の空気レンズ」という)の形状が物体側に凸形状を向けた逆向きの形状になってしまう。このため、空気レンズの偏角が著しく変化し、結果的に上方コマ収差、倍率色収差をはじめとする軸外諸収差の補正が困難になる。逆に、条件式(3)の下限値を下回る場合、レンズ群Gmの中の像側の空気レンズの形状が平凸形状になってしまう。このため、空気レンズの偏角が著しく変化し、上限を上回る場合と同様に、上方コマ収差、倍率色収差をはじめとする軸外諸収差の補正が困難になる。さらに好ましくは、条件式(3)の下限値を−0.8以下または−0.7以下に設定すると、上方コマ収差、倍率色収差をはじめとする軸外諸収差をより良好に補正できる。また、条件式(3)の下限値を−0.6以下に設定すると本発明の効果を最大限に発揮できる。
【0021】
また、本発明のズームレンズでは、以下の条件式(4)、
n凸<n凹 (4)
を満足することが望ましい。
【0022】
ここで、n凹は前記接合正レンズ成分L2中の物体側の負レンズのd線(λ=587.56nm)に対する屈折率を、
n凸は前記接合正レンズ成分L2中の像側の正レンズのd線に対する屈折率をそれぞれ表している。
【0023】
条件式(4)は、前記接合正レンズ成分L2中の物体側の負レンズと像側の正レンズの適切な屈折率差を規定している。条件式(4)を満たさない場合、ペッツバール和が適切な値に設定できなくなり、結果的に非点収差および像面湾曲を良好に保てなくなり好ましくない。
【0024】
また、本発明のズームレンズでは、以下の条件式(5)、(6)、
0.1<d12/d34<7 (5)
0.01<d23/d34<5 (6)
を満足することが望ましい。
【0025】
ここで、d12は前記正メニスカスレンズ成分L1の最も像側の面から前記接合正レンズ成分L2の最も物体側の面までの光軸上の距離を、
d23は前記接合正レンズ成分L2の最も像側の面から前記正レンズ成分L3の最も物体側の面までの光軸上の距離を、
d34は前記正レンズ成分L3の最も像側の面から前記負レンズ成分L4の最も物体側の面までの光軸上の距離をそれぞれ表している。
【0026】
条件式(5)は、前記レンズ成分L1と前記正レンズ成分L2との間の空気レンズの光軸上の厚さと、正レンズ成分L3と前記負レンズ成分L4との間の空気レンズの厚さの適切な比を規定している。条件式(5)の上限値を上回る場合、前記レンズ成分L1と前記正レンズ成分L2との間隔が著しく大きくなってしまう。このため、空気レンズの収差補正効果が著しく減少し、特に各焦点距離における球面収差の変動を抑えることが困難になる。さらに好ましくは、条件式(5)の上限値を5以下に設定すると、球面収差等の諸収差をより良好に補正できる。また、条件式(5)の上限値を3以下に設定すると本発明の効果を最大限に発揮できる。逆に、条件式(5)の下限値を下回る場合、前記レンズ成分L1と前記正レンズ成分L2との間隔が著しく小さくなる。このため、空気レンズの収差補正効果が著しく減少し、上限を上回る場合と同様、結果的に各焦点距離における球面収差の変動を抑えることが困難になる。また、条件式(5)の下限値を0.3以上に設定すると、球面収差等の諸収差をより良好に補正できる。また、条件式(5)の下限値を0.4以上に設定すると本発明の効果を最大限に発揮できる。
【0027】
条件式(6)は、前記接合正レンズ成分L2と前記正レンズ成分L3との間の空気間隔の光軸上の厚さと、正レンズ成分L3と前記負レンズ成分L4との間の空気レンズの厚さの適切な比を規定している。条件式(6)の上限値を上回る場合、前記接合正レンズ成分L2と前記正レンズ成分L3との間隔が著しく大きくなるか、または正レンズ成分L3と前記負レンズ成分L4との間の空気レンズの厚さが著しく小さくなってしまう。前者の場合、レンズ群Gmの総厚が著しく大きくなり、コンパクト化の要請に反し好ましくない。また、後者の場合、空気レンズが著しく薄くなり、空気レンズの収差補正効果が減少し、軸外収差の補正が困難になり好ましくない。さらに好ましくは、条件式(6)の上限値を3以下、さらに1以下に設定すると本発明の効果を最大限に発揮できる。逆に、条件式(6)の下限値を下回る場合、前記接合正レンズ成分L2と前記正レンズ成分L3との間隔が著しく小さくなるか、または前記正レンズ成分L3と負レンズ成分L4との間の空気レンズの厚みが著しく大きくなってしまう。このことは、上限を上回る場合と同様に、空気レンズの収差補正効果が減少し、結果的に上方コマ収差、倍率色収差をはじめとする軸外諸収差の補正が困難になる。また、条件式(6)の下限値を0.02以上、さらに0.03以上に設定すると本発明の効果を最大限に発揮できる。
【0028】
【実施例】
以下に添付図面に基づいて本発明の実施の形態にかかるズームレンズを説明する。
【0029】
(第1実施例)
図1は本発明の第1実施例にかかるズームレンズのレンズ構成と広角端から望遠端にいたる各レンズ群の移動軌跡を示す図である。第1実施例にかかるズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群Gmの正・負・正・正の4つのレンズ群から構成されている。
【0030】
第1レンズ群G1は物体側から、物体側に凸面を向けた負メニスカスレンズと正メニスカスレンズとの接合よりなる接合正レンズL11、物体側に凸面を向けた正メニスカスレンズL12より構成され、第2レンズ群G2は物体側から、物体側に非球面を有し、樹脂とガラス部材の複合からなる負メニスカスレンズL21、両凹レンズL22、両凸レンズL23、両凹レンズと両凸レンズとの接合により成り物体側に凹面を向けた接合負メニスカスレンズL24より構成され、第3レンズ群G3は物体側から、開口絞りS、両凸レンズL31、両凸レンズと両凹レンズとの接合より成る接合正レンズL32より構成され、第4レンズ群Gmは物体側から、物体側に凸面を向けた正メニスカスレンズL1、物体側に凸面を向けた負メニスカスレンズと両凸レンズとの接合よりなる接合正レンズL2、物体側に凹面を向けた正メニスカスレンズL3、物体側に凹面を向けた負メニスカスレンズL4より構成されている。
【0031】
変倍は広角端から望遠端に向かって、第1レンズ群G1と第2レンズ群G2との間の空気間隔が拡大し、第2レンズ群G2と第3レンズ群G3との間の空気間隔が縮小し、第3レンズ群G3と第4レンズ群Gmとの間の空気間隔が縮小するように全レンズ群を独立して移動することによって行なう。また、近距離合焦は第2レンズ群G2を物体方向に移動して行なう。
【0032】
以下の表1に第1実施例にかかるズームレンズの諸元値を示す。表において、面番号は物体側から数えたレンズ面の番号、rは曲率半径、dは面間隔、ndはd線(λ=587.56nm)に対する屈折率、νdはアッベ数である。また、fは焦点距離、FNOはFナンバー、2ωは画角、Bfはバックフォーカスをそれぞれ示している。
【0033】
また、非球面は、光軸から垂直方向の高さyにおける各非球面の頂点の接平面から光軸方向に沿った距離(サグ量)をS(y)とし、基準曲率半径をR、円錐係数をk、n次の非球面係数をCnとするとき、以下の非球面式で与えられるものとする。
【0034】
【数1】

Figure 0004065968
【0035】
表中のレンズデータにおいて、非球面には*印を付してあり、曲率半径rには近軸曲率半径を掲げる。また、以下のすべての実施例において、諸元値、非球面式などは第1実施例と同様のものを用いる。
【0036】
【表1】
Figure 0004065968
Figure 0004065968
Figure 0004065968
【0037】
図2乃至図4は第1実施例にかかるズームレンズの諸収差を示す図である。図中、FNOはFナンバー、Yは像高、d,gはそれぞれd線,g線の収差曲線であることを示している。また、非点収差図において、実線はサジタル像面、点線はメリジオナル像面を示している。以下、すべての実施例の収差図において第1実施例と同様の符号を用いる。
【0038】
図2は、広角端での無限遠合焦時の収差図である。大画角まで十分カバーし、良好に収差補正が成されていることがわかる。図3は、中間焦点距離での無限遠合焦時の収差図である。広角端同様、良好に収差補正が成されていることがわかる。図4は、望遠端の無限遠合焦時の収差図である。広角端同様、良好に収差捕正が成されていることがわかる。
【0039】
(第2実施例)
図5は本発明の第2実施例にかかるズームレンズのレンズ構成と広角端から望遠端にいたる各レンズ群の移動軌跡を示す図である。第2実施例にかかるズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群Gmの正・負・正・正の4つの群から構成されている。
【0040】
第1レンズ群G1は物体側から、物体側に凸面を向けた負メニスカスレンズと正メニスカスレンズとの接合よりなる接合正レンズL11と、物体側に凸面を向けた正メニスカスレンズL12より構成され、第2レンズ群G2は物体側から、物体側に非球面を有する負メニスカスレンズL21、物体側に凸面を向けた負メニスカスレンズL22、両凸レンズL23、両凹レンズと両凸レンズとの接合により成り物体側に凹面を向けた接合負メニスカスレンズL24より構成され、第3レンズ群G3は物体側から、開口絞りS、両凸レンズL31、両凸レンズと両凹レンズとの接合より成る接合正レンズL32より構成され、第4レンズ群Gmは物体側から、物体側に凸面を向けた正メニスカスレンズL1、物体側に凸面を向けた負メニスカスレンズと両凸レンズとの接合より成る接合正レンズL2、両凸レンズL3、物体側に凹面を向けた負メニスカスレンズL4より構成されている。変倍は広角端から望遠端に向かって、第1レンズ群G1と第2レンズ群G2との間の空気間隔が拡大し、第2レンズ群G2と第3レンズ群G3との間の空気間隔が縮小し、第3レンズ群G3と第4レンズ群Gmとの間の空気間隔が縮小するように全レンズ群を独立して移動することによって行なう。また、近距離合焦は第2レンズ群G2を物体方向に移動して行なう。
【0041】
表2に第2実施例にかかるズームレンズの諸元値を掲げる。
【0042】
【表2】
Figure 0004065968
Figure 0004065968
Figure 0004065968
【0043】
図6乃至図8は第2実施例にかかるズームレンズの諸収差を示す図である。図6は、広角端での無限遠合焦時の収差図である。大画角まで十分カバーし、良好に収差捕正が成されていることがわかる。図7は、中間焦点距離での無限遠合焦時の収差図である。広角端同様、良好に収差補正が成されていることがわかる。図8は、望遠端の無限遠合焦時の収差図である。広角端同様、良好に収差補正が成されている。
【0044】
(第3実施例)
図9は本発明の第3実施例にかかるズームレンズのレンズ構成と広角端から望遠端にいたる各レンズ群の移動軌跡を示す図である。第3実施例にかかるズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群Gmの正・負・正・正の4つの群から構成されている。第1レンズ群G1は物体側から、物体側に凸面を向けた負メニスカスレンズと正メニスカスレンズとの接合より成る接合正レンズL11、物体側に凸面を向けた正メニスカスレンズL12より構成され、第2レンズ群G2は物体側から、物体側に非球面を有する負メニスカスレンズL21、両凹レンズL22、両凸レンズL23、両凹レンズと両凸レンズとの接合により成り物体側に凹面を向けた接合負メニスカスレンズL24より構成され、第3レンズ群G3は物体側から、開口絞りS、両凸レンズL31、両凸レンズL32、物体側に凹面を向けた負メニスカスレンズL33より構成され、第4レンズ群Gmは物体側から、物体側に凸面を向けた正メニスカスレンズL1、物体側に凸面を向けた負メニスカスレンズと両凸レンズとの接合よりなる接合正レンズL2、物体側に凹面を向けた正メニスカスレンズL3、物体側に凹面を向けた負メニスカスレンズL4より構成されている。変倍は広角端から望遠端に向かって、第1レンズ群G1と第2レンズ群G2との間の空気間隔が拡大し、第2レンズ群G2と第3レンズ群G3との間の空気間隔が縮小し、第3レンズ群G3と第4レンズ群Gmとの間の空気間隔が縮小するように全レンズ群を独立して移動することによって行なう。また、近距離合焦は第2レンズ群G2を物体方向に移動して行なう。
【0045】
以下の表3に第3実施例にかかるズームレンズの諸元値を掲げる。
【0046】
【表3】
Figure 0004065968
Figure 0004065968
Figure 0004065968
【0047】
図10乃至図12は第3実施例にかかるズームレンズの諸収差を示す図である。図10は、広角端での無限遠合焦時の収差図である。大画角まで十分カバーし、良好に収差捕正が成されていることがわかる。図11は、中間焦点距離での無限遠合焦時の収差図である。広角端同様、良好に収差補正が成されていることがわかる。図12は、望遠端の無限遠合焦時の収差図である。広角端同様、良好に収差補正が成されている。
【図面の簡単な説明】
【図1】本発明の第1実施例にかかるズームレンズのレンズ構成と移動軌跡を示す図である。
【図2】本発明の第1実施例にかかるズームレンズの広角端での無限遠合焦時の諸収差を示す図である。
【図3】本発明の第1実施例にかかるズームレンズの中間焦点距離での無限遠合焦時の諸収差を示す図である。
【図4】本発明の第1実施例にかかるズームレンズの望遠端での無限遠合焦時の諸収差を示す図である。
【図5】本発明の第2実施例にかかるズームレンズのレンズ構成と移動軌跡を示す図である。
【図6】本発明の第2実施例にかかるズームレンズの広角端での無限遠合焦時の諸収差を示す図である。
【図7】本発明の第2実施例にかかるズームレンズの中間焦点距離での無限遠合焦時の諸収差を示す図である。
【図8】本発明の第2実施例にかかるズームレンズの望遠端での無限遠合焦時の諸収差を示す図である。
【図9】本発明の第3実施例にかかるズームレンズのレンズ構成と移動軌跡を示す図である。
【図10】本発明の第3実施例にかかるズームレンズの広角端での無限遠合焦時の諸収差を示す図である。
【図11】本発明の第3実施例にかかるズームレンズの中間焦点距離での無限遠合焦時の諸収差を示す図である。
【図12】本発明の第3実施例にかかるズームレンズの望遠端での無限遠合焦時の諸収差を示す図である。
【符号の説明】
Gl 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
Gm 第4レンズ群(マスターレンズ群)
S 開口絞り
A 固定絞り[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom lens, particularly a compact standard zoom lens, which is small and light, has excellent cost performance, and is relatively easy to manufacture and assemble.
[0002]
[Prior art]
In recent years, so-called standard zoom lenses that include a wide angle and have a zoom ratio of 3 to 4 times continue to be reduced in size and cost, and are often carried while attached to the camera body. For this reason, the standard zoom lens is required to be small and light, have sufficient imaging performance, and be inexpensive. In order to satisfy such conditions, it is necessary to construct each lens group of the zoom lens with a strong power and to make each lens group as thin as possible. In order to reduce the number of lenses for thinning, it is effective to introduce an aspheric lens. In recent years, it has become possible to produce aspheric lenses at low cost. For example, the second group of a four-group zoom lens having positive / negative positive / positive positive / negative positive / negative power arrangement as disclosed in JP-A-8-248319, An example of using an aspheric lens for the fourth group and the like is increasing. The aspherical surface can also be used for the rear group of five or more zoom lenses such as positive, negative, positive and negative, and the same thinning effect can be expected. Furthermore, examples of attempts to reduce the size and diameter of a standard zoom lens without using an aspherical surface include Japanese Patent Publication No. 4-40689, Japanese Patent Publication No. 61-60418, Japanese Patent Publication No. 1-446044, There are zoom lenses disclosed in Japanese Laid-Open Patent Publication Nos. 62-270910 and 6-337354.
[0003]
[Problems to be solved by the present invention]
However, in the positive / negative positive / positive four-group zoom lens represented by the zoom lens disclosed in Japanese Patent Laid-Open No. 8-248319, it is relatively difficult to process the aspherical lens in the fourth group, and the eccentricity when the lens barrel is incorporated. There is a problem that it is difficult to manufacture while maintaining a sufficient design performance because the accuracy and air spacing accuracy are severe. In addition, since the cost for assembly adjustment increases, the cost effect of reducing the number of lenses by using an aspheric lens tends to be offset.
[0004]
In addition, Japanese Patent Publication No. 4-40689, Japanese Patent Publication No. 61-60418, Japanese Patent Publication No. 1-446044, Japanese Patent Publication No. Sho, JP-A-4-40689, which attempted to reduce the size and diameter of a standard zoom lens without using an aspherical surface. The zoom lenses disclosed in JP-A-62-270910 and JP-A-6-337354 are relatively large and have a zoom ratio of about 3 times. For this reason, even if the zoom ratio is large, the zoom lens is large and has a large number of components, and the optical performance is insufficient.
[0005]
The present invention has been made in view of the above-mentioned problems, and has a small diameter and a small size without using an aspherical surface in a precisely strict rear lens group. An object of the present invention is to provide a high-performance zoom lens having a zoom ratio of about 3.5 to 3.8 times, which is less difficult.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a zoom lens according to the present invention includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. a third lens group G3 having made a fourth lens group Gm having a positive refractive power, and performs zooming by varying the air gap between the first lens group G1 and the second lens group G2 In zoom lenses,
[0007]
The fourth lens group Gm includes, in order from the object side, a positive meniscus lens component L1 having a convex surface facing the object side, a cemented positive lens component L2 composed of a negative lens and a positive lens having a convex surface facing the object side, and a positive lens a lens component L3, and a negative meniscus lens component L4 Metropolitan having a convex surface directed toward the image side,
[0008]
Between the positive meniscus lens component L1 and the cemented positive lens component L2, there is an air lens having a meniscus shape with a convex surface facing the object side, and between the positive lens component L3 and the negative lens component L4. Is characterized in that it has an air lens having a meniscus shape with the convex side facing the image side.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The zoom lens of the present invention basically does not adopt a design method that uses the effect of an aspherical lens in the lens configuration of the rear group (master group) of the convex preceding zoom lens represented by the positive, negative, positive and positive types. In addition, it is an improved lens that ensures good performance. In particular, an important configuration of the zoom lens according to the present invention is that the positive meniscus lens component L1 having a strong meniscus shape and a convex surface facing the object side is directed to the lens group Gm, which is the rear group (master group) of the convex leading zoom lens. And an air lens having a meniscus shape with a convex surface facing the object side between the positive meniscus lens component L1 and the cemented positive lens component L2, and the positive lens component L3 and the negative lens component L4. And an air lens having a meniscus shape with a convex toward the image side. With such a configuration, high-order aberration is generated in each lens, and as a result, spherical aberration and coma are corrected well.
[0010]
Further, the air lens has a concave surface directed toward the center of the lens group Gm. When the air lens has an appropriate shape, it is possible to correct aberrations without using an aspherical surface. Further, Petzval sum and axial chromatic aberration are corrected by the cemented positive lens component L2.
[0011]
As described above, in the zoom lens of the present invention, the rear lens group (master group) of the convex leading zoom lens is used as a single objective lens system as much as possible, and the lens configuration that gives as much aberration correction freedom as possible is adopted. Yes. As a result, a multi-group zoom lens capable of excellent aberration correction and easy to manufacture has been achieved.
[0012]
The zoom lens according to the present invention includes the following conditional expression (1),
0 <(Rb−Ra) / (Rb + Ra) ≦ l (1)
It is desirable to satisfy
[0013]
Here, Ra is the radius of curvature of the image-side surface of the positive meniscus lens component L1,
Rb represents the radius of curvature of the object-side surface of the cemented positive lens component L2.
[0014]
Conditional expression (1) defines an appropriate range of the shape of the meniscus air lens having a convex surface facing the object side existing between the lens component L1 and the positive lens component L2 in the lens group Gm. . In the zoom lens of the present invention, the lens group Gm, which is also the master lens group, is relatively independent and good, unlike the four zoom lens groups represented by Japanese Patent Application Laid-Open No. 8-248319, as shown in the examples described later. Aberration correction is performed, and the shape of the air lens is an important factor. When the upper limit of conditional expression (1) is exceeded, an air lens (hereinafter, “lens group”) having a meniscus shape with a convex surface facing the object side between the lens component L1 and the positive lens component L2 in the lens group Gm. The object-side air lens in Gm ”becomes a plano-convex shape, and the deflection angle of the object-side air lens in the lens group Gm changes significantly. As a result, it becomes difficult to satisfactorily correct spherical aberration and suppress changes in spherical aberration at each focal length, which is not preferable. More preferably, when the upper limit value of conditional expression (1) is set to 0.6 or less or 0.4 or less, various aberrations such as spherical aberration can be corrected more favorably. Further, when the upper limit value of conditional expression (1) is set to 0.3 or less, the effects of the present invention can be maximized. On the other hand, when the lower limit value of conditional expression (1) is not reached, the shape of the air lens on the object side in the lens group Gm becomes a reverse shape with the convex shape facing the image side. For this reason, as in the case of exceeding the upper limit value, the declination of the air lens on the object side in the lens group Gm changes remarkably, resulting in good correction of spherical aberration and change of spherical aberration at each focal length. It is difficult to suppress this, which is not preferable.
[0015]
In the zoom lens of the present invention, the following conditional expression (2),
0 <(Ra−R1) / (Ra + R1) ≦ 1 (2)
It is desirable to satisfy
[0016]
Here, R1 represents the radius of curvature of the object side surface of the positive meniscus lens component L1, and Ra represents the radius of curvature of the image side surface of the positive meniscus lens component L1.
[0017]
Conditional expression (2) defines an appropriate bending shape of the lens component L1 having a meniscus shape as a whole with the convex surface facing the object side in the lens group Gm. The lens component L1 may include a single lens or a cemented lens. In the case of a cemented lens, the shape of the entire lens component L1 is defined. The lens component L1 mainly corrects spherical aberration and axial chromatic aberration. In particular, high-order spherical aberration is generated to suppress the variation of spherical aberration at each focal length. Therefore, by setting the declination of each surface of the lens component L1 with respect to the light beam incident in parallel to the optical axis to an appropriate value, it is possible to correct aberrations satisfactorily. When the upper limit value of conditional expression (2) is exceeded, the shape of the lens component L1 approaches a plano-convex shape, so that the declination of the image-side surface changes in a decreasing direction. In addition, since the aberration correction effect of the air lens immediately after is reduced, the optimum higher-order spherical aberration does not occur. As a result, it becomes difficult to suppress variations in spherical aberration at each focal length. More preferably, when the upper limit value of conditional expression (2) is set to 0.6 or less, various aberrations such as spherical aberration can be corrected more favorably. Further, when the upper limit value of conditional expression (2) is set to 0.3 or less, the effects of the present invention can be maximized. On the other hand, when the lower limit value of conditional expression (2) is not reached, the shape of the lens component L1 becomes a reverse shape with the convex shape facing the image side. For this reason, as in the case where the upper limit value is exceeded, the deflection angle on each surface of the lens component L1 changes significantly. For this reason, it is difficult to satisfactorily correct spherical aberration and suppress changes in spherical aberration at each focal length.
[0018]
In the zoom lens of the present invention, the following conditional expression (3),
−1 ≦ (Rd−Rc) / (Rd + Rc) <0 (3)
It is desirable to satisfy
[0019]
Here, Rc is the radius of curvature of the image side surface of the positive lens component L3,
Rd represents the radius of curvature of the object side surface of the negative lens component L4.
[0020]
Conditional expression (3) defines an appropriate range of the shape of the air lens having a meniscus shape with the convex facing the image side between the positive lens component L3 and the negative lens component L4 in the lens group Gm. ing. In the zoom lens of the present invention, the lens group Gm, which is also the master lens group, is relatively independent and good, unlike the four zoom lens groups represented by Japanese Patent Application Laid-Open No. 8-248319, as shown in the examples described later. Therefore, it is necessary to correct aberrations, and the shape of the air lens is important. When the upper limit of conditional expression (3) is exceeded, an air lens (hereinafter referred to as “lens”) having a meniscus shape with a convex surface facing the image side between the positive lens component L3 and the negative lens component L4 in the lens group Gm. The shape of the “air lens on the image side in the group Gm” becomes a reverse shape with the convex shape facing the object side. For this reason, the declination of the air lens changes remarkably, and as a result, it becomes difficult to correct various off-axis aberrations including upper coma and lateral chromatic aberration. On the contrary, when the lower limit value of conditional expression (3) is not reached, the shape of the air lens on the image side in the lens group Gm becomes a plano-convex shape. For this reason, the declination of the air lens changes remarkably, and it becomes difficult to correct off-axis aberrations such as upward coma and lateral chromatic aberration, as in the case where the upper limit is exceeded. More preferably, when the lower limit value of conditional expression (3) is set to −0.8 or less or −0.7 or less, various off-axis aberrations including upper coma and lateral chromatic aberration can be corrected more favorably. Moreover, when the lower limit value of the conditional expression (3) is set to −0.6 or less, the effect of the present invention can be maximized.
[0021]
In the zoom lens of the present invention, the following conditional expression (4),
n convex <n concave (4)
It is desirable to satisfy
[0022]
Here, n concave is the refractive index with respect to the d-line (λ = 587.56 nm) of the negative lens on the object side in the cemented positive lens component L2.
The n-convex represents the refractive index for the d-line of the positive lens on the image side in the cemented positive lens component L2.
[0023]
Conditional expression (4) defines an appropriate refractive index difference between the object-side negative lens and the image-side positive lens in the cemented positive lens component L2. If the conditional expression (4) is not satisfied, the Petzval sum cannot be set to an appropriate value, and astigmatism and curvature of field cannot be maintained well as a result.
[0024]
In the zoom lens of the present invention, the following conditional expressions (5), (6),
0.1 <d12 / d34 <7 (5)
0.01 <d23 / d34 <5 (6)
It is desirable to satisfy
[0025]
Here, d12 is the distance on the optical axis from the most image side surface of the positive meniscus lens component L1 to the most object side surface of the cemented positive lens component L2.
d23 is the distance on the optical axis from the most image side surface of the cemented positive lens component L2 to the most object side surface of the positive lens component L3,
d34 represents the distance on the optical axis from the most image side surface of the positive lens component L3 to the most object side surface of the negative lens component L4.
[0026]
Conditional expression (5) indicates that the thickness on the optical axis of the air lens between the lens component L1 and the positive lens component L2 and the thickness of the air lens between the positive lens component L3 and the negative lens component L4. An appropriate ratio is specified. If the upper limit value of conditional expression (5) is exceeded, the distance between the lens component L1 and the positive lens component L2 will be significantly large. For this reason, the aberration correction effect of the air lens is remarkably reduced, and it becomes difficult to suppress the variation of the spherical aberration particularly at each focal length. More preferably, when the upper limit value of conditional expression (5) is set to 5 or less, various aberrations such as spherical aberration can be corrected more favorably. Further, when the upper limit value of conditional expression (5) is set to 3 or less, the effect of the present invention can be maximized. On the other hand, when the lower limit value of conditional expression (5) is not reached, the distance between the lens component L1 and the positive lens component L2 becomes remarkably small. For this reason, the aberration correction effect of the air lens is remarkably reduced, and as a result, as in the case where the upper limit is exceeded, it is difficult to suppress the variation of spherical aberration at each focal length. If the lower limit value of conditional expression (5) is set to 0.3 or more, various aberrations such as spherical aberration can be corrected more favorably. Moreover, when the lower limit value of the conditional expression (5) is set to 0.4 or more, the effect of the present invention can be maximized.
[0027]
Conditional expression (6) indicates that the thickness of the air interval between the cemented positive lens component L2 and the positive lens component L3 on the optical axis, and the air lens between the positive lens component L3 and the negative lens component L4. An appropriate ratio of thickness is specified. When the upper limit value of conditional expression (6) is exceeded, the distance between the cemented positive lens component L2 and the positive lens component L3 becomes significantly large, or the air lens between the positive lens component L3 and the negative lens component L4. The thickness will be significantly reduced. In the former case, the total thickness of the lens group Gm is remarkably increased, which is not preferable against the demand for compactness. In the latter case, the air lens is remarkably thinned, the aberration correction effect of the air lens is reduced, and correction of off-axis aberrations becomes difficult, which is not preferable. More preferably, when the upper limit value of conditional expression (6) is set to 3 or less, and further 1 or less, the effect of the present invention can be maximized. Conversely, when the lower limit value of conditional expression (6) is not reached, the distance between the cemented positive lens component L2 and the positive lens component L3 is remarkably reduced or between the positive lens component L3 and the negative lens component L4. The thickness of the air lens is significantly increased. As in the case where the upper limit is exceeded, this reduces the aberration correction effect of the air lens, and as a result, it becomes difficult to correct various off-axis aberrations including upper coma and lateral chromatic aberration. Further, when the lower limit value of conditional expression (6) is set to 0.02 or more, and further 0.03 or more, the effect of the present invention can be maximized.
[0028]
【Example】
A zoom lens according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
[0029]
(First embodiment)
FIG. 1 is a diagram showing the lens configuration of the zoom lens according to the first embodiment of the present invention and the movement locus of each lens group from the wide-angle end to the telephoto end. The zoom lens according to the first example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 is composed of four lens groups, that is, positive, negative, positive, and positive, of a fourth lens group Gm having a positive refractive power.
[0030]
The first lens group G1 includes a cemented positive lens L11 made of a cemented negative meniscus lens having a convex surface facing the object side and a positive meniscus lens, and a positive meniscus lens L12 having a convex surface facing the object side. The two-lens group G2 has an aspheric surface from the object side to the object side, and is composed of a negative meniscus lens L21 made of a composite of a resin and a glass member, a biconcave lens L22, a biconvex lens L23, and a biconcave lens and a biconvex lens. The third lens group G3 includes, from the object side, an aperture stop S, a biconvex lens L31, and a cemented positive lens L32 formed by cementing a biconvex lens and a biconcave lens from the object side. The fourth lens group Gm includes, from the object side, a positive meniscus lens L1 having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side. It cemented positive lens L2 made of junction between's and a biconvex lens, a positive meniscus lens having a concave surface directed toward the object side L3, and is composed of a negative meniscus lens L4 having a concave surface directed toward the object side.
[0031]
In zooming, the air gap between the first lens group G1 and the second lens group G2 increases from the wide-angle end toward the telephoto end, and the air gap between the second lens group G2 and the third lens group G3. Is reduced, and all the lens groups are moved independently so that the air gap between the third lens group G3 and the fourth lens group Gm is reduced. The short distance focusing is performed by moving the second lens group G2 in the object direction.
[0032]
Table 1 below shows specification values of the zoom lens according to the first example. In the table, the surface number is the number of the lens surface counted from the object side, r is the radius of curvature, d is the surface spacing, nd is the refractive index with respect to the d line (λ = 587.56 nm), and νd is the Abbe number. Further, f indicates the focal length, FNO indicates the F number, 2ω indicates the angle of view, and Bf indicates the back focus.
[0033]
In the aspherical surface, the distance (sag amount) along the optical axis direction from the tangent plane of each aspherical surface at the height y in the vertical direction from the optical axis is S (y), the reference radius of curvature is R, and the cone. When the coefficient is k and the n-order aspheric coefficient is Cn, it is given by the following aspheric expression.
[0034]
[Expression 1]
Figure 0004065968
[0035]
In the lens data in the table, an aspherical surface is marked with *, and the curvature radius r is a paraxial curvature radius. In all the following embodiments, the specification values, aspherical formulas, and the like are the same as those in the first embodiment.
[0036]
[Table 1]
Figure 0004065968
Figure 0004065968
Figure 0004065968
[0037]
2 to 4 are graphs showing various aberrations of the zoom lens according to the first example. In the figure, FNO is an F number, Y is an image height, and d and g are aberration curves of d-line and g-line, respectively. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the dotted line indicates the meridional image plane. Hereinafter, the same symbols as those in the first embodiment are used in the aberration diagrams of all the embodiments.
[0038]
FIG. 2 is an aberration diagram when focusing on infinity at the wide-angle end. It can be seen that the lens sufficiently covers up to a large angle of view and that aberrations are corrected well. FIG. 3 is an aberration diagram at the time of focusing at infinity at the intermediate focal length. As with the wide-angle end, it can be seen that aberration correction is satisfactorily performed. FIG. 4 is an aberration diagram when focusing on infinity at the telephoto end. As with the wide-angle end, it can be seen that aberration correction is performed well.
[0039]
(Second embodiment)
FIG. 5 is a diagram showing the lens configuration of the zoom lens according to the second embodiment of the present invention and the movement locus of each lens group from the wide-angle end to the telephoto end. The zoom lens according to the second example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes four groups of positive, negative, positive, and positive groups of the fourth lens group Gm having a positive refractive power.
[0040]
The first lens group G1 includes a cemented positive lens L11 composed of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens, and a positive meniscus lens L12 having a convex surface facing the object side. The second lens group G2 is composed of a negative meniscus lens L21 having an aspheric surface on the object side, a negative meniscus lens L22 having a convex surface on the object side, a biconvex lens L23, and a biconcave lens and a biconvex lens. The third lens group G3 includes, from the object side, an aperture stop S, a biconvex lens L31, and a cemented positive lens L32 composed of a cemented biconvex lens and a biconcave lens. The fourth lens group Gm includes a positive meniscus lens L1 having a convex surface directed toward the object side from the object side, and a negative meniscus lens having a convex surface directed toward the object side. It cemented positive lens L2 made of junction between's and a biconvex lens, a biconvex lens L3, and is composed of a negative meniscus lens L4 having a concave surface directed toward the object side. In zooming, the air gap between the first lens group G1 and the second lens group G2 increases from the wide-angle end toward the telephoto end, and the air gap between the second lens group G2 and the third lens group G3. Is reduced, and all the lens groups are moved independently so that the air gap between the third lens group G3 and the fourth lens group Gm is reduced. The short distance focusing is performed by moving the second lens group G2 in the object direction.
[0041]
Table 2 lists specifications of the zoom lens according to the second example.
[0042]
[Table 2]
Figure 0004065968
Figure 0004065968
Figure 0004065968
[0043]
6 to 8 are graphs showing various aberrations of the zoom lens according to the second example. FIG. 6 is an aberration diagram when focusing on infinity at the wide-angle end. It can be seen that the lens sufficiently covers up to a large angle of view and that aberrations are corrected well. FIG. 7 is an aberration diagram at the time of focusing on infinity at the intermediate focal length. As with the wide-angle end, it can be seen that aberration correction is satisfactorily performed. FIG. 8 is an aberration diagram when focusing on infinity at the telephoto end. As with the wide-angle end, aberration correction is performed satisfactorily.
[0044]
(Third embodiment)
FIG. 9 is a diagram showing the lens configuration of the zoom lens according to the third embodiment of the present invention and the movement locus of each lens unit from the wide-angle end to the telephoto end. The zoom lens according to the third example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes four groups of positive, negative, positive, and positive groups of the fourth lens group Gm having a positive refractive power. The first lens group G1 includes a cemented positive lens L11 made of a cemented negative meniscus lens having a convex surface facing the object side and a positive meniscus lens, and a positive meniscus lens L12 having a convex surface facing the object side. The two-lens group G2 includes a negative meniscus lens L21 having an aspheric surface on the object side, a biconcave lens L22, a biconvex lens L23, and a cemented negative meniscus lens having a concave surface facing the object side, which is formed by cementing the biconcave lens and the biconvex lens. The third lens group G3 includes an aperture stop S, a biconvex lens L31, a biconvex lens L32, a negative meniscus lens L33 having a concave surface facing the object side, and the fourth lens group Gm includes an object side. A positive meniscus lens L1 having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side and a biconvex lens Li Cheng cemented positive lens L2, the positive meniscus lens having a concave surface directed toward the object side L3, and is composed of a negative meniscus lens L4 having a concave surface directed toward the object side. In zooming, the air gap between the first lens group G1 and the second lens group G2 increases from the wide-angle end toward the telephoto end, and the air gap between the second lens group G2 and the third lens group G3. Is reduced, and all the lens groups are moved independently so that the air gap between the third lens group G3 and the fourth lens group Gm is reduced. The short distance focusing is performed by moving the second lens group G2 in the object direction.
[0045]
Table 3 below lists specifications of the zoom lens according to the third example.
[0046]
[Table 3]
Figure 0004065968
Figure 0004065968
Figure 0004065968
[0047]
10 to 12 are graphs showing various aberrations of the zoom lens according to the third example. FIG. 10 is an aberration diagram when focusing on infinity at the wide-angle end. It can be seen that the lens sufficiently covers up to a large angle of view and that aberrations are corrected well. FIG. 11 is an aberration diagram at the time of focusing at infinity at the intermediate focal length. As with the wide-angle end, it can be seen that aberration correction is satisfactorily performed. FIG. 12 is an aberration diagram when focusing on infinity at the telephoto end. As with the wide-angle end, aberration correction is performed satisfactorily.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a lens configuration and a movement locus of a zoom lens according to a first example of the present invention.
FIG. 2 is a diagram showing various aberrations at the time of focusing on infinity at the wide angle end of the zoom lens according to the first example of the present invention.
FIG. 3 is a diagram illustrating various aberrations during focusing at infinity at an intermediate focal length of the zoom lens according to the first example of the present invention.
FIG. 4 is a diagram illustrating various aberrations at the time of focusing on infinity at the telephoto end of the zoom lens according to the first example of the present invention.
FIG. 5 is a diagram illustrating a lens configuration and a movement locus of a zoom lens according to a second example of the present invention.
FIG. 6 is a diagram illustrating various aberrations during infinite focus at the wide angle end of the zoom lens according to Example 2 of the present invention.
FIG. 7 is a diagram illustrating various aberrations during infinite focus at the intermediate focal length of the zoom lens according to Example 2 of the present invention.
FIG. 8 is a diagram illustrating various aberrations at the time of focusing on infinity at the telephoto end of the zoom lens according to Example 2 of the present invention.
FIG. 9 is a diagram illustrating a lens configuration and a movement locus of a zoom lens according to a third example of the present invention.
FIG. 10 is a diagram illustrating various aberrations at the time of focusing on infinity at the wide angle end of the zoom lens according to Example 3 of the present invention.
FIG. 11 is a diagram showing various aberrations during infinite focus at the intermediate focal length of the zoom lens according to Example 3 of the present invention.
FIG. 12 is a diagram illustrating various aberrations at the time of focusing on infinity at the telephoto end of the zoom lens according to Example 3 of the present invention.
[Explanation of symbols]
Gl 1st lens group G2 2nd lens group G3 3rd lens group Gm 4th lens group (master lens group)
S Aperture stop A Fixed stop

Claims (6)

物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群Gmとからなり、前記第1レンズ群G1と前記第2レンズ群G2との空気間隔を変化させることにより変倍を行うズームレンズにおいて、
前記第4レンズ群Gmは、物体側から順に、物体側に凸面を向けた正メニスカスレンズ成分L1と、物体側に凸面を向け負レンズと正レンズの接合からなる接合正レンズ成分L2と、正レンズ成分L3と、像側に凸面を向けた負メニスカスレンズ成分L4とからなり
前記正メニスカスレンズ成分L1と前記接合正レンズ成分L2との間には物体側に凸面を向けたメニスカス形状からなる空気レンズを有し、かつ前記正レンズ成分L3と前記負レンズ成分L4との間には像側に凸を向けたメニスカス形状からなる空気レンズを有することを特徴とするズームレンズ。
In order from the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a positive refractive power , and a positive refractive power . consists of a fourth lens group Gm, in the zoom lens to perform zooming by changing the air gap between the first lens group G1 and the second lens unit G2,
The fourth lens group Gm includes, in order from the object side, a positive meniscus lens component L1 having a convex surface facing the object side, a cemented positive lens component L2 composed of a negative lens and a positive lens having a convex surface facing the object side, and a positive lens a lens component L3, and a negative meniscus lens component L4 Metropolitan having a convex surface directed toward the image side,
Between the positive meniscus lens component L1 and the cemented positive lens component L2, there is an air lens having a meniscus shape with a convex surface facing the object side, and between the positive lens component L3 and the negative lens component L4. The zoom lens has an air lens having a meniscus shape with a convex surface facing the image side.
前記正メニスカスレンズ成分L1の像側の面の曲率半径をRaとし、前記接合正レンズ成分L2の物体側の面の曲率半径をRbとしたとき、
0<(Rb−Ra)/(Rb+Ra)≦1 (1)
の条件を満足することを特徴とする請求項1記載のズームレンズ。
When the radius of curvature of the image side surface of the positive meniscus lens component L1 is Ra and the radius of curvature of the object side surface of the cemented positive lens component L2 is Rb,
0 <(Rb−Ra) / (Rb + Ra) ≦ 1 (1)
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記正メニスカスレンズ成分L1の物体側の面の曲率半径をR1、前記正メニスカスレンズ成分L1の像側の面の曲率半径をRaとしたとき、
0<(Ra−R1)/(Ra+R1)≦1 (2)
の条件を満足することを特徴とする請求項1または2記載のズームレンズ。
When the radius of curvature of the object side surface of the positive meniscus lens component L1 is R1, and the radius of curvature of the image side surface of the positive meniscus lens component L1 is Ra,
0 <(Ra−R1) / (Ra + R1) ≦ 1 (2)
According to claim 1 or 2, wherein the zoom lens satisfies the condition.
前記正レンズ成分L3の像側の面の曲率半径をRc、前記負レンズ成分L4の物体側の面の曲率半径をRdとしたとき、
−1≦(Rd−Rc)/(Rd+Rc)<0 (3)
の条件を満足することを特徴とする請求項1、2または3記載のズームレンズ。
When the radius of curvature of the image side surface of the positive lens component L3 is Rc and the radius of curvature of the object side surface of the negative lens component L4 is Rd,
−1 ≦ (Rd−Rc) / (Rd + Rc) <0 (3)
The zoom lens according to claim 1, wherein the zoom lens satisfies the following condition.
前記接合正レンズ成分L2中の物体側の負レンズのd線(λ=587.56nm)に対する屈折率をn凹、前記接合正レンズ成分L2中の像側の正レンズのd線に対する屈折率をn凸としたとき、
n凸<n凹 (4)
の条件を満足することを特徴とする請求項1、2,3または4記載のズームレンズ。
The refractive index for the d-line (λ = 587.56 nm) of the negative lens on the object side in the cemented positive lens component L2 is n-concave, and the refractive index for the d-line of the positive lens on the image side in the cemented positive lens component L2 is When n convex
n convex <n concave (4)
The zoom lens according to claim 1, wherein the zoom lens satisfies the following condition.
前記正メニスカスレンズ成分L1の最も像側の面から前記接合正レンズ成分L2の最も物体側の面までの光軸上の距離をd12とし、前記接合正レンズ成分L2の最も像側の面から前記正レンズ成分L3の最も物体側の面までの光軸上の距離をd23とし、前記正レンズ成分L3の最も像側の面から前記負レンズ成分L4の最も物体側の面までの光軸上の距離をd34としたとき、
0.1<d12/d34<7 (5)
0.01<d23/d34<5 (6)
の条件を満足することを特徴とする請求項1、2,3、4または5記載のズームレンズ。
The distance on the optical axis from the most image side surface of the positive meniscus lens component L1 to the most object side surface of the cemented positive lens component L2 is d12, and the distance from the most image side surface of the cemented positive lens component L2 is The distance on the optical axis to the most object side surface of the positive lens component L3 is d23, and the distance on the optical axis from the most image side surface of the positive lens component L3 to the most object side surface of the negative lens component L4. When the distance is d34,
0.1 <d12 / d34 <7 (5)
0.01 <d23 / d34 <5 (6)
The zoom lens according to claim 1, wherein the zoom lens satisfies the following condition.
JP31919697A 1997-11-06 1997-11-06 Zoom lens Expired - Lifetime JP4065968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31919697A JP4065968B2 (en) 1997-11-06 1997-11-06 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31919697A JP4065968B2 (en) 1997-11-06 1997-11-06 Zoom lens

Publications (2)

Publication Number Publication Date
JPH11142739A JPH11142739A (en) 1999-05-28
JP4065968B2 true JP4065968B2 (en) 2008-03-26

Family

ID=18107493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31919697A Expired - Lifetime JP4065968B2 (en) 1997-11-06 1997-11-06 Zoom lens

Country Status (1)

Country Link
JP (1) JP4065968B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7136231B2 (en) 2003-02-27 2006-11-14 Nikon Corporation Zoom lens system

Also Published As

Publication number Publication date
JPH11142739A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
US7227700B2 (en) Wide zoom lens system
JP3147167B2 (en) Zoom lens
JP3200925B2 (en) Zoom lens with wide angle of view
JPH06337354A (en) Zoom lens
JP3728680B2 (en) Compact wide-angle zoom lens
JP2001330774A (en) Zoom lens
JP4686888B2 (en) Zoom lens and photographing apparatus provided with the lens
JPH06308385A (en) Wide-angle lens
JPH1020193A (en) Zoom lens
JP3028581B2 (en) High magnification zoom lens
JPH07199070A (en) Zoom lens
JP4325200B2 (en) Zoom lens
JP4505910B2 (en) Zoom lens and photographing apparatus provided with the lens
JPH0659192A (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP4210876B2 (en) Zoom lens
JPH10197794A (en) Zoom lens
JPH05127082A (en) Small-sized zoom lens
JP2910206B2 (en) Compact zoom lens
JP3005037B2 (en) Compact high zoom lens
JPH0527163A (en) Telephoto lens
JP4444416B2 (en) Zoom lens
JP3415765B2 (en) Zoom lens
JP4720005B2 (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term