JP4064582B2 - Evaporation pressure control valve - Google Patents

Evaporation pressure control valve Download PDF

Info

Publication number
JP4064582B2
JP4064582B2 JP28405199A JP28405199A JP4064582B2 JP 4064582 B2 JP4064582 B2 JP 4064582B2 JP 28405199 A JP28405199 A JP 28405199A JP 28405199 A JP28405199 A JP 28405199A JP 4064582 B2 JP4064582 B2 JP 4064582B2
Authority
JP
Japan
Prior art keywords
valve
pressure
valve body
bellows
pressure control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28405199A
Other languages
Japanese (ja)
Other versions
JP2001108139A (en
Inventor
守男 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP28405199A priority Critical patent/JP4064582B2/en
Publication of JP2001108139A publication Critical patent/JP2001108139A/en
Application granted granted Critical
Publication of JP4064582B2 publication Critical patent/JP4064582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Fluid-Driven Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、蒸発圧力制御弁に関し、特に、冷凍サイクル装置の蒸発器の出口側に設けられ、蒸発器の蒸発圧力(負荷温度)を制御する蒸発圧力制御弁に関するものである。
【0002】
【従来の技術】
図3に示されているように、大型空気調和装置、商用の冷凍陳列装置等、1台の圧縮機100に対して、一つの凝縮器101と、複数台の蒸発器1021 、1022 、1023 が接続され、各蒸発器1021 、1022 、1023 ごとに膨張弁1031 、1032 、1033 が設けられたマルチ冷凍サイクル装置では、各蒸発器の負荷温度を個々に制御するために、蒸発器1021 、1022 の出口側に蒸発器の蒸発圧力(負荷温度)を制御する蒸発圧力制御弁1041 、1042 が設けられる。
【0003】
蒸発圧力制御弁は、EPR(Evaporating Pressure Rrgilator)と云われ、負荷に応じて蒸発圧力を制御するものであり、蒸発圧力制御弁としては、蒸発器の出口側圧力に感応するベローズ装置により弁体を開閉駆動する直動式(自力式)蒸発圧力制御弁と、ステッピングモータ等の電磁アクチュエータにより弁体を開閉駆動する電動式(外部制御式)蒸発圧力制御弁が知られている。
【0004】
【発明が解決しようとする課題】
自力式蒸発圧力制御弁は、ベローズ装置による比例制御系だけであるため、冷媒、使用目的によって設定値を機械的に変更、調整する必要がある。
【0005】
電動式蒸発圧力制御弁は、温度センサ、圧力センサにより検出された温度、圧力に応じて電磁アクチュエータに与える電流を変化させて蒸発圧力制御を制御するから、制御精度が、温度、圧力検出の応答性に左右され、電力系や制御系に故障が生じると、制御不能になる。また、電磁アクチュエータがステッピングモータで、ステッピングモータのロータの回転をねじ機構による回転/直線運動変換手段によって弁体開閉方向の直線方向に変換し、弁体を開閉駆動する電動式蒸発圧力制御弁は応答性が悪い。
【0006】
この発明は、従来の蒸発圧力制御弁に於ける上述の如き問題点を解消するためになされたもので、制御精度が高く、応答性に優れ、電動弁としての制御系を簡素化でき、しかも電力系や制御系に故障が生しても制御不能に陥ることがないハイブリット式の蒸発圧力制御弁を提供することを目的としている。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、請求項1記載の発明による蒸発圧力制御弁は、冷凍サイクル装置の蒸発器の出口側に設けられ、蒸発器の蒸発圧力を制御する蒸発圧力制御弁において、弁ポートを有する弁ハウジングと、前記弁ポートの開閉する弁体と、前記弁体を開閉方向に駆動する電磁アクチュエータと、前記電磁アクチュエータの弁体開閉方向の運動を前記弁体に伝達する連結棒と、前記連結棒と前記弁体との間に設けられ、蒸発器の出口側圧力を及ぼされて前記弁体を開閉方向に駆動するベローズ装置と、前記弁体を開弁方向へ駆動する弁ばねとを有し、前記電磁アクチュエータに前記連結棒の一端が接続され、前記連結棒は他端にて前記ベローズ装置の一端と接続され、前記ベローズ装置は他端にて前記弁体と接続されて伸長することにより前記弁体を閉弁方向へ駆動するものである。
【0008】
請求項2記載の発明による蒸発圧力制御弁は、前記電磁アクチュエータは電磁コイルと永久磁石付きのロータとにより構成されたステッピングモータであり、前記ロータの回転を弁体開閉方向の直線方向に変換する回転/直線運動変換手段を有し、前記回転/直線運動変換手段の直線運動側部材に前記連結棒の一端が接続されているものである。
【0009】
請求項3記載の発明による蒸発圧力制御弁は、前記電磁アクチュエータは電磁コイルとプランジャとにより構成されたリニア電磁アクチュエータであり、前記プランジャに前記連結棒の一端が接続されているものである。
【0010】
請求項4記載の発明による蒸発圧力制御弁は、前記ベローズ装置のベローズ内圧を真空に設定され、ベローズ内部にベローズを伸長方向に付勢する内部ばねを有しているものである。
【0011】
請求項5記載の発明による蒸発圧力制御弁は、前記ベローズ装置が前記弁ポートより下流側のベローズ配置室に配置されて均圧通路によって蒸発器の出口側圧力を及ぼされ、前記弁ハウジングは前記ベローズ配置室と弁室との間に均圧用弁ポートを有し、前記弁体は、前記均圧用弁ポートを開閉する均圧設定用弁部を有し、閉弁時には均圧設定用弁部によって前記均圧用弁ポートを閉じると共に、開弁に応じて前記均圧用弁ポートを開くよう構成されているものである。
【0012】
請求項1記載の発明による蒸発圧力制御弁では、電磁アクチュエータに連結棒の一端が接続され、連結棒は他端にてベローズ装置の一端と接続され、ベローズ装置は他端にて弁体と接続されて伸長することにより弁体を閉弁方向へ駆動するので、電磁アクチュエータとベローズ装置とにより弁体の開閉が行われ、電磁アクチュエータによる電動式蒸発圧力制御弁とベローズ装置による自力式蒸発圧力制御弁の機能を兼ね備えたハイブリット式の蒸発圧力制御弁が得られる。
【0013】
請求項2記載の発明による蒸発圧力制御弁では、回転/直線運動変換手段の直線運動側部材に連結棒の一端が接続され、連結棒は他端にてベローズ装置の一端と接続され、ベローズ装置は他端にて弁体と接続されて伸長することにより弁体を閉弁方向へ駆動するので、ステッピングモータとベローズ装置とにより弁体の開閉が行われ、ステッピングモータによる電動式蒸発圧力制御弁とベローズ装置による自力式蒸発圧力制御弁の機能を兼ね備えたハイブリット式の蒸発圧力制御弁が得られる。
【0014】
請求項3記載の発明による蒸発圧力制御弁では、プランジャに連結棒の一端が接続され、連結棒は他端にてベローズ装置の一端と接続され、ベローズ装置は他端にて弁体と接続されて伸長することにより弁体を閉弁方向へ駆動するので、リニア電磁アクチュエータとベローズ装置とにより弁体の開閉が行われ、リニア電磁アクチュエータによる電動式蒸発圧力制御弁とベローズ装置による自力式蒸発圧力制御弁の機能を兼ね備えたハイブリット式の蒸発圧力制御弁が得られる。
【0015】
請求項4記載の発明による蒸発圧力制御弁では、ベローズ装置のベローズ内圧を真空に設定され、ベローズ内部にベローズを伸長方向に付勢する内部ばねが設けられていることで、ベローズ装置は温度影響を受けることなく蒸発圧力に応動する。
【0016】
請求項5記載の発明による蒸発圧力制御弁では、均圧用弁ポートの開度は弁ポートと同じに保たれ、これにより弁体の前面側に作用する圧力と背面側に作用する圧力とが同圧に保たれ、弁ポート前後の差圧が弁体に作用することがない。
【0017】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。
【0018】
(実施の形態1)
図1はこの発明による蒸発圧力制御弁の実施の形態1を示している。蒸発圧力制御弁はハウジング本体1とハウジング本体1に気密結合された上部蓋体2による弁ハウジング3を有している。弁ハウジング3には、入力ポート4、主弁ポート5、主弁ポート5の弁座部6、弁室7、出口ポート8、および均圧用弁ポート9、均圧用弁ポート9の弁座部10、均圧室11、ベローズ配置室12が形成されている。
【0019】
弁室7は出口ポート8と直接連通しており、弁室7には弁体13が配置されている。弁体13は、弁座部6に選択的に着座して主弁ポート5を開閉する主弁部13aと、弁座部10に選択的に着座して均圧用弁ポート9を開閉する均圧設定用弁部13bとを有している。
【0020】
主弁ポート5と均圧用弁ポート9とは、弁体13の開閉方向に間隔をおいて同心配置され、互いに同一の口径に設定されている。弁体13の主弁部13aと均圧設定用弁部13bとは、弁体開閉方向に、主弁ポート5と均圧用弁ポート9との弁体開閉方向の間隔と同じ間隔をおいて配置されている。この構造により、主弁ポート5が主弁部13aによって閉じられる閉弁時には、均圧用弁ポート9は均圧設定用弁部13bによって閉じられ、主弁ポート5の開かれることに応じて均圧用弁ポート9も開かれ、主弁ポート5と均圧用弁ポート9との開度が同一に保たれる。
【0021】
弁ハウジング3にはステッピングモータ14が取り付けられている。ステッピングモータ14は、ハウジング本体1に固着されたマウント部材15、マウント部材15に固定されたドーム状のロータケース16、ロータケース16の外側に固定されたステータコイル(電磁コイル)17、ロータケース16内に回転可能に設けられ永久磁石18を有するロータ19とを有しており、ステータコイル17に対する通電によってロータ19を回転駆動する。
【0022】
なお、マウント部材15、ロータケース16は気密構造をなし、これらの内部は、上部蓋体2に形成された孔20によってベローズ配置室12と連通し、ベローズ配置室12の内圧と同じ圧力になる。また、ロータケース16には、固定ロッド21、ストッパ端22aを有する螺旋ガイド部材22、可動ストッパ23、ピン24等によるストッパ機構が組み込まれている。
【0023】
ロータ19には雌ねじ部材25が固定されており、上部蓋体2には取付部材26によって中空軸状の雄ねじ部材27が弁体13の開閉方向に同方向に固定されている。雌ねじ部材25と雄ねじ部材27とはねじ係合して回転/直線運動変換手段をなし、雌ねじ部材25の回転により雌ねじ部材25が弁体開閉方向と同方向に直線移動(上下移動)する。
【0024】
雄ねじ部材27には連結棒28が弁体開閉方向と同方向の軸線方向に移動可能に貫通嵌合しており、連結棒28は、一端(上端)にて、固定具29、バッファばね30等を介して雌ねじ部材25と連結され、雌ねじ部材25の上下移動により軸線方向に移動する。
【0025】
連結棒28は、図示のようにベローズ装置32の上端側の部材に形成された凹部に収容された求心ボール31に他端(下端)にて当接されて求心ボール31を介してベローズ装置32の上端に接続されている。ベローズ装置32は、ベローズ配置室12内に配置され、内圧を真空に設定されたベローズ33と、ベローズ33の内部に収容されベローズ33を伸長方向に付勢する内部ばね34とを有している。ベローズ装置32は、図示のように弁体13に形成された孔に配された求心ボール35に凹部が形成されたその他端にて当接されて求心ボール35を介して弁体13と接続され、伸長することにより、弁体13を閉弁方向へ駆動する。なお、ベローズ装置32は、被制御域の圧力範囲において伸縮するように設計されていればよい。
【0026】
ベローズ配置室12は、均圧室11を隔てて弁ポート5より下流側にあり、弁体13に形成された均圧通路36a,36bによって均圧室11と共に入力ポート4の圧力、すなわち、蒸発器の出口側圧力(Pe)を及ぼされる。
【0027】
弁ハウジング3にはばね止め部材37が固定されており、ばね止め部材37と弁体13との間に弁体13を開弁方向へ駆動する駆動力を付与する弁ばね38が設けられている。したがって、図示のように、弁ばね38により弁開方向に駆動する駆動力が付与されている弁体13と、上端が雌ねじ部材25に連結された連結棒28の下端との間に求心ボール31及び35を介してベローズ装置32が挟まれて上記接続が保持されている。
【0028】
つぎに、上述の構成による蒸発圧力制御弁の動作について説明する。
【0029】
図示されているような全閉状態では、弁体13の主弁部13aが弁座部6に着座して主弁ポートを閉じ、同じく弁体13の均圧設定用弁部13bが弁座部10に着座して均圧用弁ポート9を閉じている。これにより、均圧室11、ベローズ配置室12の内圧は入力ポート4の圧力、すなわち、蒸発器の出口側圧力(Pe)になり、弁体13の前面側(下面側)に作用する圧力と背面側(上面側)に作用する圧力とが同圧に保たれ、主弁ポート5の前後の差圧(Pe−Ps)が弁体13に作用することがない。
【0030】
ベローズ装置32は、蒸発器の出口側圧力(Pe)に感応し、負荷温度と冷媒回路中の冷媒飽和温度との相関により蒸発器圧力を制御するものであり、蒸発器の出口側圧力(Pe)の上昇に伴い収縮し、この収縮に応じて弁体13は弁ばね38のばね力によって開弁移動する。この弁体13の開弁移動により、弁体13の主弁部13aが弁座部6より離れて主弁ポート5を開き、同じく弁体13の均圧設定用弁部13bが弁座部10より離れて均圧用弁ポート9を開く。
【0031】
なお、ベローズ装置32は、ベローズ33の内圧を真空に設定され、ベローズ33の内部にベローズ33を伸長方向に付勢する内部ばね34が設けられているから、ベローズ装置32は温度影響を受けることなく絶対圧力感知で、蒸発圧力(Pe)に正確に応動する。
【0032】
上述のように、弁体13が開弁移動することにより、主弁ポート5の開弁量に応じて入力ポート4より出口ポート8へ冷媒が流れる。この時、主弁ポート5と均圧用弁ポート9との開弁量は同じ値に保たれるから、開弁後も、弁体13の前面側(下面側)に作用する圧力と背面側(上面側)に作用する圧力とが同圧に保たれ、主弁ポート5の前後の差圧(Pe−Ps)が弁体13に作用することがない。これは、弁体13の開閉駆動力が少なくて済み、弁リフト量を小さくして応答性を向上できることを意味する。
【0033】
ステッピングモータ14によって開弁量を制御する場合には、ステータコイル17に通電を行い、これを励磁することで、ロータ19を回転させ、ロータ19の回転を、雌ねじ部材25と雄ねじ部材27とのねじ係合によって、雌ねじ部材25とこれに連結された連結棒28を弁開閉方向に移動する直線運動に変換し、弁ばね38による開弁方向駆動力が弁体に付与された状態の下に、連結棒28の弁開閉方向の移動によってベローズ装置32全体の位置を弁開閉方向に移動させ、弁体13を開閉移動させる。
【0034】
外部信号でステッピングモータ14の制御を行う場合は、負荷温度を直接センシングし、制御対象とすることも可能であり、より広範囲の、高精度なシステムを構築することができる。
【0035】
上述したように、弁体13の前面側(下面側)に作用する圧力と背面側(上面側)に作用する圧力とが同圧に保たれ、主弁ポート5の前後の差圧(Pe−Ps)が弁体13に作用することがないから、弁体13の開閉駆動力が少なくて済み、ステッピングモータ14を小型化することが可能になる。
【0036】
また、ステッピングモータ14による駆動速度が遅くても、またセンシング遅れがあっても、ベローズ装置32による直接動作により補償され、応答性のよい高精度な蒸発圧力制御が行われる。また、ステッピングモータ14の電力系や制御系に故障が生じても、ベローズ装置32による直接動作により補償されるから、電動弁としての制御系を簡素化でき、ステッピングモータ14の電力系や制御系に故障が生しても制御不能に陥ることがない。
【0037】
(実施の形態2)
図2はこの発明による蒸発圧力制御弁の実施の形態2を示している。なお、図2において、図1に対応する部分は、図1に付した符号と同一の符号を付けて、その説明を省略する。
【0038】
この実施の形態では、電磁アクチュエータとして、ステッピングモータ14に代えて、リニア電磁アクチュエータ40が用いられている。リニア電磁アクチュエータ40は、上部蓋体2に固定されたプランジャチューブ41と、プランジャチューブ41の外側に固定された電磁コイル42と、プランジャチューブ41の端部に固定された吸引子43と、プランジャチューブ41内に弁開閉方向に移動可能に設けられたプランジャ44とを有し、プランジャ44に連結棒28の上端が直接接続され、プランジャ44によって連結棒28を直接駆動するようになっている。
【0039】
上述の電磁アクチュエータ部分の構造以外は、実施の形態1のものと同様に構成されており、この実施の形態2によっても、実施の形態1と同等の作用、効果が得られる。
【0040】
【発明の効果】
以上の説明から理解される如く、請求項1記載の発明による蒸発圧力制御弁によれば、電磁アクチュエータとベローズ装置とにより弁体の開閉が行われ、電磁アクチュエータによる電動式蒸発圧力制御弁とベローズ装置による自力式蒸発圧力制御弁の機能を兼ね備えたハイブリット式の蒸発圧力制御弁が得られるから、電磁アクチュエータによる電動式蒸発圧力制御弁の長所とベローズ装置による自力式蒸発圧力制御弁の長所を活かすことができ、高い制御精度と優れた応答性が得られ、また、電動弁としての制御系を簡素化でき、しかも電力系や制御系に故障が生しても制御不能に陥ることがない。
【0041】
請求項2記載の発明による蒸発圧力制御弁によれば、ステッピングモータとベローズ装置とにより弁体の開閉が行われ、ステッピングモータによる電動式蒸発圧力制御弁とベローズ装置による自力式蒸発圧力制御弁の機能を兼ね備えたハイブリット式の蒸発圧力制御弁が得られるから、電磁アクチュエータによる電動式蒸発圧力制御弁の長所とベローズ装置による自力式蒸発圧力制御弁の長所を活かすことができ、高い制御精度と優れた応答性が得られ、また、電動弁としての制御系を簡素化でき、しかも電力系や制御系に故障が生しても制御不能に陥ることがない。
【0042】
請求項3記載の発明による蒸発圧力制御弁にれば、リニア電磁アクチュエータとベローズ装置とにより弁体の開閉が行われ、リニア電磁アクチュエータによる電動式蒸発圧力制御弁とベローズ装置による自力式蒸発圧力制御弁の機能を兼ね備えたハイブリット式の蒸発圧力制御弁が得られるから、電磁アクチュエータによる電動式蒸発圧力制御弁の長所とベローズ装置による自力式蒸発圧力制御弁の長所を活かすことができ、高い制御精度と優れた応答性が得られ、また、電動弁としての制御系を簡素化でき、しかも電力系や制御系に故障が生しても制御不能に陥ることがない。
【0043】
請求項4記載の発明による蒸発圧力制御弁によれば、ベローズ装置のベローズ内圧を真空に設定され、ベローズ内部にベローズを伸長方向に付勢する内部ばねが設けられ、ベローズ装置は、温度影響を受けることなく絶対圧力感知で、蒸発圧力に正確に応動するから、高精度な蒸発圧力制御を行うことができる。
【0044】
請求項5記載の発明による蒸発圧力制御弁によれば、均圧用弁ポートの開度は弁ポートと同じと保たれて弁体の前面側に作用する圧力と背面側に作用する圧力とが同圧に保たれ、弁ポート前後の差圧が弁体に作用することがないから、弁体の開閉駆動力が少なくて済み、弁リフト量を小さくして応答性を向上できる。
【図面の簡単な説明】
【図1】この発明による蒸発圧力制御弁の実施の形態1を示す断面図である。
【図2】この発明による蒸発圧力制御弁の実施の形態2を示す断面図である。
【図3】マルチ冷凍サイクル装置の例を示す回路図である。
【符号の説明】
3 弁ハウジング
4 入力ポート
5 主弁ポート
7 弁室
8 出口ポート
9 均圧用弁ポート
11 均圧室
12 ベローズ配置室
13 弁体
14 ステッピングモータ
17 ステータコイル
18 永久磁石
19 ロータ
25 雌ねじ部材
27 雄ねじ部材
28 連結棒
32 ベローズ装置
33 ベローズ
34 内部ばね
36a,36b 均圧通路
38 弁ばね
40 リニア電磁アクチュエータ
42 電磁コイル
43 吸引子
44 プランジャ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an evaporation pressure control valve, and more particularly to an evaporation pressure control valve that is provided on the outlet side of an evaporator of a refrigeration cycle apparatus and controls the evaporation pressure (load temperature) of the evaporator.
[0002]
[Prior art]
As shown in FIG. 3, a single compressor 101 and a plurality of evaporators 102 1 , 102 2 , one compressor 100, such as a large air conditioner and a commercial refrigeration display device, In the multi-refrigeration cycle apparatus in which 102 3 is connected and the expansion valves 103 1 , 103 2 , 103 3 are provided for each of the evaporators 102 1 , 102 2 , 102 3 , the load temperature of each evaporator is individually controlled. Therefore, evaporation pressure control valves 104 1 and 104 2 for controlling the evaporation pressure (load temperature) of the evaporator are provided on the outlet side of the evaporators 102 1 and 102 2 .
[0003]
The evaporation pressure control valve is referred to as EPR (Evaporating Pressure Rigulator), and controls the evaporation pressure in accordance with the load. The evaporation pressure control valve is a valve body that uses a bellows device that is sensitive to the outlet side pressure of the evaporator. There are known a direct-acting (self-powered) evaporation pressure control valve that opens and closes and an electric (external control) evaporation pressure control valve that opens and closes a valve element by an electromagnetic actuator such as a stepping motor.
[0004]
[Problems to be solved by the invention]
Since the self-powered evaporation pressure control valve is only a proportional control system using a bellows device, it is necessary to mechanically change and adjust the set value depending on the refrigerant and the purpose of use.
[0005]
The electric evaporation pressure control valve controls the evaporation pressure control by changing the current applied to the electromagnetic actuator according to the temperature sensor and the temperature and pressure detected by the pressure sensor, so the control accuracy is the response of temperature and pressure detection. If the power system or control system fails, it becomes impossible to control. Further, the electromagnetic actuator is a stepping motor, and the electric evaporation pressure control valve that converts the rotation of the rotor of the stepping motor into a linear direction in the valve body opening / closing direction by means of rotation / linear motion conversion means by a screw mechanism and drives the valve body to open and close is Responsiveness is poor.
[0006]
The present invention has been made to solve the above-described problems in the conventional evaporation pressure control valve, has high control accuracy, excellent response, and can simplify the control system as an electric valve. An object of the present invention is to provide a hybrid evaporation pressure control valve that does not become uncontrollable even if a failure occurs in a power system or a control system.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an evaporation pressure control valve according to the first aspect of the present invention is provided on the outlet side of the evaporator of the refrigeration cycle apparatus, and controls the evaporation pressure of the evaporator. A valve housing having a port; a valve body that opens and closes the valve port; an electromagnetic actuator that drives the valve body in an opening and closing direction; and a connecting rod that transmits movement of the electromagnetic actuator in the valve body opening and closing direction to the valve body A bellows device that is provided between the connecting rod and the valve body and is driven by the outlet side pressure of the evaporator to drive the valve body in the opening and closing direction ; and a valve spring that drives the valve body in the valve opening direction One end of the connecting rod is connected to the electromagnetic actuator, the connecting rod is connected to one end of the bellows device at the other end, and the bellows device is connected to the valve body at the other end. Elongate It is intended to drive the valve body in the valve closing direction by.
[0008]
Evaporation pressure control valve according to a second aspect of the present invention, prior Symbol electromagnetic actuator is a stepping motor constituted by a rotor with an electromagnetic coil and the permanent magnet, converting the rotation of the rotor in a linear direction of the valve closing direction has a rotation / linear motion converting means for one end of the connecting rod into a linear movement side member of the rotary / linear motion conversion means is being connected.
[0009]
Evaporation pressure control valve according to the invention of claim 3, wherein the pre Symbol electromagnetic actuator is a linear electromagnetic actuator constituted by an electromagnetic coil and a plunger, in which one end of the connecting rod to the plunger is connected .
[0010]
According to a fourth aspect of the present invention, there is provided an evaporation pressure control valve in which the bellows internal pressure of the bellows device is set to a vacuum, and the bellows device has an internal spring that biases the bellows in the extending direction.
[0011]
In the evaporation pressure control valve according to the fifth aspect of the invention, the bellows device is arranged in a bellows arrangement chamber downstream from the valve port, and an outlet pressure of the evaporator is exerted by a pressure equalizing passage. There is a pressure equalizing valve port between the bellows arrangement chamber and the valve chamber, and the valve body has a pressure equalizing setting valve portion for opening and closing the pressure equalizing valve port, and when the valve is closed, the pressure equalizing setting valve portion Is configured to close the pressure equalizing valve port and open the pressure equalizing valve port in response to opening of the valve.
[0012]
In the evaporation pressure control valve according to the first aspect of the present invention , one end of the connecting rod is connected to the electromagnetic actuator, the connecting rod is connected to one end of the bellows device at the other end, and the bellows device is connected to the valve body at the other end. Since the valve body is driven in the valve closing direction by being extended, the valve body is opened and closed by the electromagnetic actuator and the bellows device, and the electric evaporation pressure control valve by the electromagnetic actuator and the self-powered evaporation pressure control by the bellows device A hybrid evaporation pressure control valve having a valve function can be obtained.
[0013]
In the evaporation pressure control valve according to the second aspect of the present invention , one end of the connecting rod is connected to the linear motion side member of the rotation / linear motion converting means, and the connecting rod is connected to one end of the bellows device at the other end. Is connected to the valve body at the other end and extends to drive the valve body in the valve closing direction, so that the valve body is opened and closed by the stepping motor and the bellows device, and the electric evaporation pressure control valve by the stepping motor And a hybrid evaporation pressure control valve having the function of a self-evaporation pressure control valve by the bellows device.
[0014]
In the evaporation pressure control valve according to the third aspect of the present invention , one end of the connecting rod is connected to the plunger, the connecting rod is connected to one end of the bellows device at the other end, and the bellows device is connected to the valve body at the other end. Therefore, the valve body is opened and closed by the linear electromagnetic actuator and the bellows device, and the electric evaporation pressure control valve by the linear electromagnetic actuator and the self-evaporating pressure by the bellows device are driven. A hybrid evaporation pressure control valve having a control valve function can be obtained.
[0015]
In the evaporative pressure control valve according to the fourth aspect of the invention, the bellows device is set to a vacuum, and an internal spring is provided inside the bellows to urge the bellows in the extending direction. Responds to evaporating pressure without being subjected to.
[0016]
In the evaporation pressure control valve according to the fifth aspect of the present invention, the opening degree of the pressure equalizing valve port is kept the same as that of the valve port, whereby the pressure acting on the front side of the valve body and the pressure acting on the back side are the same. The pressure difference is maintained between the valve port and the valve body.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0018]
(Embodiment 1)
FIG. 1 shows Embodiment 1 of an evaporation pressure control valve according to the present invention. The evaporating pressure control valve has a housing body 1 and a valve housing 3 having an upper lid 2 hermetically coupled to the housing body 1. The valve housing 3 includes an input port 4, a main valve port 5, a valve seat portion 6 of the main valve port 5, a valve chamber 7, an outlet port 8, a pressure equalizing valve port 9, and a valve seat portion 10 of the pressure equalizing valve port 9. A pressure equalizing chamber 11 and a bellows arrangement chamber 12 are formed.
[0019]
The valve chamber 7 is in direct communication with the outlet port 8, and a valve body 13 is disposed in the valve chamber 7. The valve body 13 is selectively seated on the valve seat portion 6 to open and close the main valve port 5, and the valve body 13 is selectively seated on the valve seat portion 10 to open and close the pressure equalizing valve port 9. And a setting valve portion 13b.
[0020]
The main valve port 5 and the pressure equalizing valve port 9 are arranged concentrically at intervals in the opening and closing direction of the valve body 13 and set to have the same diameter. The main valve portion 13a and the pressure equalization setting valve portion 13b of the valve body 13 are arranged at the same interval in the valve body opening / closing direction as the interval between the main valve port 5 and the pressure equalization valve port 9 in the valve body opening / closing direction. Has been. With this structure, when the main valve port 5 is closed by the main valve portion 13a, the pressure equalizing valve port 9 is closed by the pressure equalizing setting valve portion 13b, and the pressure equalizing valve 9 is opened according to the opening of the main valve port 5. The valve port 9 is also opened, and the opening degrees of the main valve port 5 and the pressure equalizing valve port 9 are kept the same.
[0021]
A stepping motor 14 is attached to the valve housing 3. The stepping motor 14 includes a mount member 15 fixed to the housing body 1, a dome-shaped rotor case 16 fixed to the mount member 15, a stator coil (electromagnetic coil) 17 fixed to the outside of the rotor case 16, and the rotor case 16. And a rotor 19 having a permanent magnet 18 provided rotatably therein. The rotor 19 is rotationally driven by energization of the stator coil 17.
[0022]
The mount member 15 and the rotor case 16 have an airtight structure, and the inside thereof communicates with the bellows arrangement chamber 12 through a hole 20 formed in the upper lid 2 and has the same pressure as the internal pressure of the bellows arrangement chamber 12. . Further, the rotor case 16 incorporates a stopper mechanism including a fixed rod 21, a spiral guide member 22 having a stopper end 22a, a movable stopper 23, a pin 24, and the like.
[0023]
A female screw member 25 is fixed to the rotor 19, and a hollow shaft-shaped male screw member 27 is fixed to the upper lid 2 in the same direction as the opening / closing direction of the valve body 13 by an attachment member 26. The female screw member 25 and the male screw member 27 are screw-engaged to form a rotation / linear motion converting means, and the female screw member 25 linearly moves (moves up and down) in the same direction as the valve body opening / closing direction by the rotation of the female screw member 25.
[0024]
A connecting rod 28 is fitted through the male screw member 27 so as to be movable in the same axial direction as the valve body opening / closing direction. The connecting rod 28 has a fixture 29, a buffer spring 30 and the like at one end (upper end). The internal thread member 25 is connected to the internal thread member 25 and is moved in the axial direction by the vertical movement of the internal thread member 25 .
[0025]
As shown in the figure, the connecting rod 28 is brought into contact with the centripetal ball 31 accommodated in the recess formed in the member on the upper end side of the bellows device 32 at the other end (lower end), and the bellows device 32 via the centripetal ball 31. Connected to the top of the. The bellows device 32 is disposed in the bellows arrangement chamber 12 and includes a bellows 33 whose internal pressure is set to a vacuum, and an internal spring 34 that is housed in the bellows 33 and biases the bellows 33 in the extending direction. . Bellows device 32, connected to the valve body 13 through a centripetal ball 35 abuts against at its other end with a recess formed in the centripetal ball 35 disposed in a hole formed in the valve body 13 as shown The valve body 13 is driven in the valve closing direction by extending. The bellows device 32 only needs to be designed to expand and contract in the pressure range of the controlled region.
[0026]
The bellows arrangement chamber 12 is located downstream of the valve port 5 with respect to the pressure equalizing chamber 11, and the pressure of the input port 4 together with the pressure equalizing chamber 11, that is, evaporation by the pressure equalizing passages 36 a and 36 b formed in the valve body 13. The outlet pressure (Pe) of the vessel is exerted.
[0027]
A spring retaining member 37 is fixed to the valve housing 3, and a valve spring 38 is provided between the spring retaining member 37 and the valve body 13 to provide a driving force for driving the valve body 13 in the valve opening direction. . Accordingly, as shown in the drawing, the centripetal ball 31 is provided between the valve body 13 to which a driving force for driving in the valve opening direction is applied by the valve spring 38 and the lower end of the connecting rod 28 whose upper end is connected to the female screw member 25. And the bellows apparatus 32 is pinched | interposed through 35 and 35, and the said connection is hold | maintained.
[0028]
Next, the operation of the evaporation pressure control valve configured as described above will be described.
[0029]
In the fully closed state as shown, the main valve portion 13a of the valve body 13 is seated on the valve seat portion 6 to close the main valve port, and the pressure equalization setting valve portion 13b of the valve body 13 is also the valve seat portion. 10 is closed, and the pressure equalizing valve port 9 is closed. Thereby, the internal pressure of the pressure equalizing chamber 11 and the bellows arrangement chamber 12 becomes the pressure of the input port 4, that is, the outlet side pressure (Pe) of the evaporator, and the pressure acting on the front surface side (lower surface side) of the valve body 13 The pressure acting on the back side (upper side) is kept at the same pressure, and the differential pressure ( Pe− Ps) before and after the main valve port 5 does not act on the valve body 13.
[0030]
The bellows device 32 is responsive to the outlet pressure (Pe) of the evaporator, and controls the evaporator pressure based on the correlation between the load temperature and the refrigerant saturation temperature in the refrigerant circuit, and the outlet pressure (Pe) of the evaporator. ) And the valve body 13 is opened by the spring force of the valve spring 38 in response to the contraction. By the valve opening movement of the valve body 13, the main valve portion 13 a of the valve body 13 is separated from the valve seat portion 6 to open the main valve port 5, and the pressure equalization setting valve portion 13 b of the valve body 13 is also used as the valve seat portion 10. The pressure equalizing valve port 9 is opened further away.
[0031]
In the bellows device 32, the internal pressure of the bellows 33 is set to a vacuum, and an internal spring 34 that biases the bellows 33 in the extending direction is provided inside the bellows 33. Therefore, the bellows device 32 is affected by temperature. It is absolute pressure sensing and responds accurately to evaporation pressure (Pe).
[0032]
As described above, by the valve body 13 is opened moves, the refrigerant flows to the outlet port 8 from the input port 4 depending on the amount of opening of the main valve port 5. At this time, since the valve opening amounts of the main valve port 5 and the pressure equalizing valve port 9 are maintained at the same value, the pressure acting on the front surface side (lower surface side) of the valve body 13 and the rear surface side (after the valve opening) The pressure acting on the upper surface side) is maintained at the same pressure, and the differential pressure ( Pe− Ps) before and after the main valve port 5 does not act on the valve body 13. This means that the opening / closing driving force of the valve body 13 is small, and the responsiveness can be improved by reducing the valve lift amount.
[0033]
When the valve opening amount is controlled by the stepping motor 14, the stator coil 17 is energized and energized to rotate the rotor 19, thereby rotating the rotor 19 between the female screw member 25 and the male screw member 27. By screw engagement , the female screw member 25 and the connecting rod 28 connected to the female screw member 25 are converted into a linear motion that moves in the valve opening / closing direction, and a valve opening direction driving force by the valve spring 38 is applied to the valve body. By moving the connecting rod 28 in the valve opening / closing direction, the position of the entire bellows device 32 is moved in the valve opening / closing direction, and the valve body 13 is moved in the opening / closing direction.
[0034]
When the stepping motor 14 is controlled by an external signal, it is also possible to directly sense the load temperature and set it as a control target, and it is possible to construct a wider range and high accuracy system.
[0035]
As described above, the pressure acting on the front surface side (lower surface side) of the valve body 13 and the pressure acting on the rear surface side (upper surface side) are maintained at the same pressure, and the differential pressure ( Pe − Since Ps) does not act on the valve body 13, the opening / closing driving force of the valve body 13 is small, and the stepping motor 14 can be downsized.
[0036]
Even if the driving speed of the stepping motor 14 is slow or there is a sensing delay, it is compensated by the direct operation of the bellows device 32, and highly accurate evaporation pressure control with good response is performed. Further, even if a failure occurs in the power system or control system of the stepping motor 14, it is compensated by direct operation by the bellows device 32. Therefore, the control system as a motor-operated valve can be simplified. Even if a failure occurs, there is no loss of control.
[0037]
(Embodiment 2)
FIG. 2 shows Embodiment 2 of the evaporation pressure control valve according to the present invention. 2, parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted.
[0038]
In this embodiment, a linear electromagnetic actuator 40 is used as the electromagnetic actuator instead of the stepping motor 14. The linear electromagnetic actuator 40 includes a plunger tube 41 fixed to the upper lid 2, an electromagnetic coil 42 fixed to the outside of the plunger tube 41, an attractor 43 fixed to the end of the plunger tube 41, and a plunger tube 41 has a plunger 44 provided so as to be movable in the valve opening / closing direction. The upper end of the connecting rod 28 is directly connected to the plunger 44, and the connecting rod 28 is directly driven by the plunger 44.
[0039]
Except for the structure of the electromagnetic actuator portion described above, the structure is the same as that of the first embodiment, and this second embodiment can provide the same operations and effects as the first embodiment.
[0040]
【The invention's effect】
As can be understood from the above description, according to the evaporation pressure control valve of the first aspect of the invention, the valve body is opened and closed by the electromagnetic actuator and the bellows device, and the electric evaporation pressure control valve and bellows by the electromagnetic actuator are opened and closed. A hybrid evaporation pressure control valve that combines the functions of a self-evaporating pressure control valve with a device can be obtained. Take advantage of the advantages of an electric evaporation pressure control valve with an electromagnetic actuator and the self-evaporation pressure control valve with a bellows device. Therefore, high control accuracy and excellent responsiveness can be obtained, the control system as a motor-operated valve can be simplified, and even if a failure occurs in the power system or the control system, the control system does not fall out of control.
[0041]
According to the evaporation pressure control valve of the second aspect of the invention, the valve body is opened and closed by the stepping motor and the bellows device, and the electric evaporation pressure control valve by the stepping motor and the self-powered evaporation pressure control valve by the bellows device. A hybrid evaporation pressure control valve that combines functions can be obtained, so that the advantages of the electric evaporation pressure control valve by the electromagnetic actuator and the self-evaporation pressure control valve by the bellows device can be utilized, with high control accuracy and excellent Therefore, the control system as a motor-operated valve can be simplified, and even if a failure occurs in the power system or the control system, the control system does not become uncontrollable.
[0042]
According to the evaporation pressure control valve of the third aspect of the invention, the valve body is opened and closed by the linear electromagnetic actuator and the bellows device, and the self-powered evaporation pressure control by the electric evaporation pressure control valve by the linear electromagnetic actuator and the bellows device. A hybrid evaporation pressure control valve that combines the functions of a valve can be obtained, so that the advantages of the electric evaporation pressure control valve with an electromagnetic actuator and the self-evaporation pressure control valve with a bellows device can be utilized, and high control accuracy Excellent responsiveness can be obtained, the control system as a motor-operated valve can be simplified, and even if a failure occurs in the power system or the control system, the control system does not fall out of control.
[0043]
According to the evaporation pressure control valve of the invention of claim 4, the bellows internal pressure of the bellows device is set to a vacuum, and an internal spring is provided inside the bellows to urge the bellows in the extending direction. Since it responds to the evaporating pressure accurately by sensing absolute pressure without receiving it, highly accurate evaporating pressure control can be performed.
[0044]
According to the evaporation pressure control valve of the fifth aspect of the present invention, the opening degree of the pressure equalizing valve port is kept the same as that of the valve port, and the pressure acting on the front side of the valve body is the same as the pressure acting on the back side. Since the pressure difference is maintained between the valve port and the valve body does not act on the valve body, the opening / closing driving force of the valve body can be reduced, and the valve lift amount can be reduced to improve the responsiveness.
[Brief description of the drawings]
FIG. 1 is a sectional view showing Embodiment 1 of an evaporation pressure control valve according to the present invention.
FIG. 2 is a sectional view showing Embodiment 2 of an evaporation pressure control valve according to the present invention.
FIG. 3 is a circuit diagram showing an example of a multi-refrigeration cycle apparatus.
[Explanation of symbols]
3 valve housing 4 input port 5 main valve port 7 valve chamber 8 outlet port 9 pressure equalizing valve port 11 pressure equalizing chamber 12 bellows arrangement chamber 13 valve body 14 stepping motor 17 stator coil 18 permanent magnet 19 rotor 25 female screw member 27 male screw member 28 Connecting rod 32 Bellows device 33 Bellows 34 Internal springs 36a, 36b Pressure equalizing passage 38 Valve spring 40 Linear electromagnetic actuator 42 Electromagnetic coil 43 Attractor 44 Plunger

Claims (5)

冷凍サイクル装置の蒸発器の出口側に設けられ、蒸発器の蒸発圧力を制御する蒸発圧力制御弁において、
弁ポートを有する弁ハウジングと、
前記弁ポートを開閉する弁体と、
前記弁体を開閉方向に駆動する電磁アクチュエータと、
前記電磁アクチュエータの弁体開閉方向の運動を前記弁体に伝達する連結棒と、
前記連結棒と前記弁体との間に設けられ、蒸発器の出口側圧力を及ぼされて前記弁体を開閉方向に駆動するベローズ装置と、
前記弁体を開弁方向へ駆動する弁ばねとを有し、
前記電磁アクチュエータに前記連結棒の一端が接続され、前記連結棒は他端にて前記ベローズ装置の一端と接続され、前記ベローズ装置は他端にて前記弁体と接続されて伸長することにより前記弁体を閉弁方向へ駆動する
とを特徴とする蒸発圧力制御弁。
In the evaporation pressure control valve that is provided on the outlet side of the evaporator of the refrigeration cycle apparatus and controls the evaporation pressure of the evaporator,
A valve housing having a valve port;
A valve body for opening and closing the valve port;
An electromagnetic actuator for driving the valve body in an opening and closing direction;
A connecting rod that transmits the movement of the electromagnetic actuator in the valve body opening and closing direction to the valve body;
A bellows device that is provided between the connecting rod and the valve body, and that exerts pressure on the outlet side of the evaporator to drive the valve body in an opening and closing direction;
A valve spring for driving the valve body in a valve opening direction;
One end of the connecting rod is connected to the electromagnetic actuator, the connecting rod is connected to one end of the bellows device at the other end, and the bellows device is connected to the valve body at the other end to extend the Drive the valve body in the valve closing direction
Evaporation pressure control valve, wherein the this.
記電磁アクチュエータは電磁コイルと永久磁石付きのロータとにより構成されたステッピングモータであり、前記ロータの回転を弁体開閉方向の直線方向に変換する回転/直線運動変換手段を有し、前記回転/直線運動変換手段の直線運動側部材に前記連結棒の一端が接続されていることを特徴とする請求項1記載の蒸発圧力制御弁。 Before SL electromagnetic actuator is a stepping motor constituted by a rotor with an electromagnetic coil and the permanent magnet has a rotational / linear motion converting means for converting the rotation of the rotor in a linear direction of the valve closing direction, the rotary / evaporation pressure control valve according to claim 1, wherein the linear motion-side member of the linear motion converting means and one end of the connecting rod, characterized in that it is connected. 記電磁アクチュエータは電磁コイルとプランジャとにより構成されたリニア電磁アクチュエータであり、前記プランジャに前記連結棒の一端が接続されていることを特徴とする請求項1記載の蒸発圧力制御弁。 Before SL electromagnetic actuator is a linear electromagnetic actuator constituted by an electromagnetic coil and a plunger, evaporation pressure control valve according to claim 1, wherein the one end of the connecting rod to the plunger is connected. 前記ベローズ装置は、ベローズ内圧を真空に設定され、ベローズ内部にベローズを伸長方向に付勢する内部ばねを有していることを特徴とする請求項1、2又は3記載の蒸発圧力制御弁。  The evaporative pressure control valve according to claim 1, 2 or 3, wherein the bellows device has an internal spring for setting the internal pressure of the bellows to a vacuum and urging the bellows in the extending direction. 前記ベローズ装置は前記弁ポートより下流側のベローズ配置室に配置されて均圧通路によって蒸発器の出口側圧力を及ぼされ、前記弁ハウジングは前記ベローズ配置室と弁室との間に均圧用弁ポートを有し、前記弁体は、前記均圧用弁ポートを開閉する均圧設定用弁部を有し、閉弁時には均圧設定用弁部によって前記均圧用弁ポートを閉じると共に、開弁に応じて前記均圧用弁ポートを開くよう構成されていることを特徴とする請求項1、2、3又は4記載の蒸発圧力制御弁。  The bellows device is disposed in a bellows arrangement chamber downstream from the valve port, and an outlet pressure of the evaporator is exerted by a pressure equalizing passage. The valve housing is a pressure equalizing valve between the bellows arrangement chamber and the valve chamber. The valve body has a pressure equalization setting valve portion that opens and closes the pressure equalization valve port.When the valve is closed, the pressure equalization setting valve portion closes the pressure equalization valve port and opens the valve. 5. The evaporation pressure control valve according to claim 1, wherein the pressure equalizing valve port is configured to open accordingly.
JP28405199A 1999-10-05 1999-10-05 Evaporation pressure control valve Expired - Fee Related JP4064582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28405199A JP4064582B2 (en) 1999-10-05 1999-10-05 Evaporation pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28405199A JP4064582B2 (en) 1999-10-05 1999-10-05 Evaporation pressure control valve

Publications (2)

Publication Number Publication Date
JP2001108139A JP2001108139A (en) 2001-04-20
JP4064582B2 true JP4064582B2 (en) 2008-03-19

Family

ID=17673666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28405199A Expired - Fee Related JP4064582B2 (en) 1999-10-05 1999-10-05 Evaporation pressure control valve

Country Status (1)

Country Link
JP (1) JP4064582B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968123A (en) * 2014-04-14 2014-08-06 北京工业大学 High-pressure trigger stop valve
US12072039B2 (en) 2018-12-20 2024-08-27 Danfoss A/S Electric expansion valve
US12117215B2 (en) 2018-12-20 2024-10-15 Danfoss A/S Valve having a motor arranged inside a tube having sections with different diameters

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069389A (en) * 2003-08-26 2005-03-17 Saginomiya Seisakusho Inc Valve device
WO2005073604A1 (en) * 2004-01-30 2005-08-11 Kabushiki Kaisha Saginomiya Seisakusho Double seat valve
FR2890718B1 (en) * 2005-09-13 2009-03-06 Prodecfu Sarl FLUID FLOW CONTROL VALVE.
JP5582286B2 (en) * 2009-12-25 2014-09-03 独立行政法人海洋研究開発機構 Valve mechanism
CN102853597B (en) * 2011-06-27 2014-07-02 浙江三花股份有限公司 Electronic expansion valve
JP5901960B2 (en) * 2011-12-22 2016-04-13 株式会社不二工機 Motorized valve
CN114616416A (en) * 2019-10-28 2022-06-10 伊格尔工业股份有限公司 Expansion valve
JP2023005492A (en) * 2021-06-29 2023-01-18 株式会社デンソー Evaporation pressure regulation valve
EP4397895A1 (en) 2021-09-03 2024-07-10 Fujikoki Corporation Pressure regulating valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968123A (en) * 2014-04-14 2014-08-06 北京工业大学 High-pressure trigger stop valve
US12072039B2 (en) 2018-12-20 2024-08-27 Danfoss A/S Electric expansion valve
US12117215B2 (en) 2018-12-20 2024-10-15 Danfoss A/S Valve having a motor arranged inside a tube having sections with different diameters

Also Published As

Publication number Publication date
JP2001108139A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
JP4064582B2 (en) Evaporation pressure control valve
JP5022120B2 (en) Motorized valves for air conditioning systems
CN2382919Y (en) Constant flow regulating valve
JPH0227583B2 (en)
JP2001153236A (en) Two-stage motor-driven expansion valve
JPS60155871A (en) Method and device for controlling refrigeration system
JPH0245104B2 (en)
JP2000320711A (en) Electric control valve
CN110259355B (en) Locking system for environmental chamber and environmental chamber
KR100557506B1 (en) Valve for regulating flux automatically and heating-system using the same
JPH0133714B2 (en)
JP2005351308A (en) Control method of flow control valve
EP0275931A2 (en) Expansion valve
US4784039A (en) Electric and pneumatic valve positioner
CN214578881U (en) Lifting type electronic expansion valve with large-caliber on-off function
CN111043380A (en) Shape memory alloy expansion valve
JPH0311667Y2 (en)
CN105570497B (en) Refrigerator refrigeration system dynamoelectric switching valve and its refrigerator refrigeration system
JPS63199980A (en) Pilot proportional valve
JPS5810623B2 (en) Expansion valve using shape memory alloy
JPS63275865A (en) Double stage reducing valve
JPH0755355Y2 (en) Pump discharge characteristic control device
JP2001207959A (en) Control valve for variable displacement compressor
JP2500629Y2 (en) Variable capacity swash plate compressor
JPS5923900Y2 (en) Electromagnetically actuated switching valve device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees