JP4064297B2 - Gas separation recovery filling equipment - Google Patents

Gas separation recovery filling equipment Download PDF

Info

Publication number
JP4064297B2
JP4064297B2 JP2003140626A JP2003140626A JP4064297B2 JP 4064297 B2 JP4064297 B2 JP 4064297B2 JP 2003140626 A JP2003140626 A JP 2003140626A JP 2003140626 A JP2003140626 A JP 2003140626A JP 4064297 B2 JP4064297 B2 JP 4064297B2
Authority
JP
Japan
Prior art keywords
gas
container
recovery
recovered
dilution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003140626A
Other languages
Japanese (ja)
Other versions
JP2004002188A (en
Inventor
和潔 高野
Original Assignee
山陽電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽電子工業株式会社 filed Critical 山陽電子工業株式会社
Priority to JP2003140626A priority Critical patent/JP4064297B2/en
Publication of JP2004002188A publication Critical patent/JP2004002188A/en
Application granted granted Critical
Publication of JP4064297B2 publication Critical patent/JP4064297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力用機器に絶縁ガスとしてSF6ガス(6フッ化硫黄ガス、以下同じ)やSF6ガスと希釈ガスとの混合ガスが充填されているが、この電力用機器の点検,修理時にこのガスを抜き取って回収したり、あるいは点検,修理後に再充填する技術に関する。
【0002】
【従来の技術】
SF6ガスは、変電所等の高電圧電力用トランスや電力回路の遮断器に充填されており、その熱的安定性、電気的安定性、高絶縁耐圧性を生かして装置の小型化を可能にし、都市部の変電所の小容積化でその貢献度は大きい。トランスや遮断器に充填されているSF6ガスは、そのガスの純度が100%のものや窒素ガス等の希釈ガスによりうすめられて充填されているものがある。
【0003】
【特許文献1】
特開 2000-015039
これ等が用いられている機器は定期的に点検保守や修理が必要であり、その点検保守や修理のときはこら等のガスを抜き出して大気と置換した後に人が中に入って装置内部の点検や修理を行なう。そして点検や修理が完了すると再び絶縁ガスを充填して稼動に入る。ガスの抜き取りに際してはSF6ガスが機器内に残留しないよう高真空になるまで真空引き回収を行い、そしてこの充填に際しては、電力機器等の容器に空気が残らないよう高真空に空気を排出した後、所定濃度の絶縁ガスを充填する必要があった。このため長時間を要した。従来、ガス抜取に際しこれ等のガスによる人体等への害は少ないので大気中に放出することもあった。
【0004】
しかし、SF6ガスは高価なガスであるため経費的に容易に回収して再利用できる範囲の回収装置は従来よりあり、このSF6ガスを回収して点検や修理後に再び充填して再利用することもあった。
抜き取ったSF6ガスを加圧して圧縮した後に冷却して液化回収する装置はあったが、被回収容器内を高真空域まで吸引して回収したり、他の希釈ガスが混合している混合ガスからSF6ガスのみを分離して回収する装置等はなかった。
【0005】
すなわち、他の希釈ガスと混合してSF6ガスの濃度が下がっている場合はその分圧が低くなるために高圧に圧縮し、いっそう低い温度までの冷却が必要となるため装置の価格が高額となった。
【0006】
近年、地球温暖化防止のために炭酸ガス等の大気中への放出が規制されるようになってきた。1997年世界環境会議が京都で開催され、その結果、炭酸ガスの24000倍の温暖化係数を持つSF6ガスも大気中へ放出することが厳しく規制されるようになった。
SF6ガスが大気中に漏出することが無いようにするためには、
(1) 充填機器のシール部より漏れて漏出するガスを無くする。
(2) 機器据付時、保守点検や修理時,解体廃棄時等で、ガスの抜き取りや再充 填にかかわるときに大気中に放出されるSF6ガスを無くすることが重要で ある。
【0007】
この(1)については、機器のシール部が改良されたことにより現在は大変少なくなっている。
また、(2)については、電力業界は電気共同研究会により平成10年12月に「電力用SF6ガス取扱い基準」を作成して自主規制し、その排出を規制することとした。
その規制の主な内容は、点検修理時には0.015MPa・abs(回収率97vol%以上)、解体撤去時には、0.005MPa・abs(回収率99vol%以上)の高真空域まで吸引して回収する自主基準を作成した。電力業界は点検修理に伴う停電時間をできるだけ短くするという公的使命がある。
【0008】
高真空域まで吸引して回収すると回収に長時間を要するという欠点がある。点検修理時の回収率が低いのは、装置停止による停電時間を可能な限り短くするための妥協案であり、撤去時は十分に時間をとって真空引きするようになっている。すなわち、高真空域まで吸引して回収し、大気中への漏出量を少なく押えている。
【0009】
電力業界としては2005年までに上記基準に合う回収装置を開発して実施することにしている。
不活性ガスである窒素ガスを50vol%混入してもインパルス破壊電圧はSF6ガス単独時の85%,商用電力周波数の破壊電力は同96.6%であり、性能劣化が少ないのでSF6ガスをトランスや遮断器に封入する際に希釈ガスである窒素ガス等によりうすめて使用するメーカーが増えつつある。
【0010】
従来は、このような希釈ガスが混入した混合ガスは回収しにくいガスであったために、点検や廃棄時にその多くは大気中に放出して廃棄していた。更に、点検保守作業や修理作業の終了後にSF6ガスを再充填するが、被回収容器内のSF6ガスが所定の濃度になるようにするため被回収容器内に外気が残らないよう高真空域に吸引して外気を一旦排出した後に所定濃度のSF6ガスを再充填していたために長時間を要していた。本発明では、このガスを分離回収し、更に再充填を行なうガス分離回収充填装置を提供することを目的とする。
【0011】
【発明が解決しようとする課題】
被回収容器(トランスや遮断器等)からSF6ガスや希釈ガスを大気中に漏出することなくほぼ全量を回収することであり、更に、回収や再充填を含む点検作業にかかる時間の短縮をはかることを目的とする。定期点検や修理に際し、絶縁ガスが充填されているトランス等、被回収容器から被回収ガスを抜き出した後、容器内を空気と置換した後、人が入り、電力機器の修理、点検を行なう。その修理完了後、再び絶縁ガスを充填する。これ等の時間は電力機器の動作を停止するため停電となる。この停電時間の短縮のためには、被回収容器内の機器・装置の修理や点検に要する時間はガスの回収・再充填装置の性能の如何にかかわらず所定時間は必要とするものであるから、この所定時間以外のガスの抜き取り回収とガスの再充填時間の短縮が必要であり、本発明はこの回収と再充填にかかわる新しい方法でその時間短縮をはかろうとするものである。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するために、臨界温度45.64℃,臨界圧力3.66MPa・G,融点−50.8℃,昇華点−63.8℃のSF6ガスの特徴を考慮しながら分離回収するものである。
図1に本発明の1実施例を示す。
【0013】
この被回収容器26にはSF6ガス等の被回収ガスが約0.6MPa・absの高圧で充填してある。そしてSF6ガスは易液化ガスであるため、これを加圧ポンプ31により加圧する加圧部22と冷却して液化する液化部23を設け、被回収ガス中のSF6ガスの濃度が高い範囲においては、被回収ガス中のSF6ガスの分圧も高いので、液化するガスの液化温度と圧力との関係から容易に液化するために必要とする圧力は比較的低い圧力範囲でよく、また、液化温度も比較的高い範囲で容易に液化回収することができる。
【0014】
まず、かかる方法により被回収容器内の圧力が該加圧ポンプ31と液化部23により液化可能範囲までSF6ガスを回収する。そしてこの圧力が所定の圧力以下になると外部のガス供給部25から窒素ガスなどの希釈ガスを被回収容器に導入してSF6ガスをうすめて、この希釈ガスとSF6ガスが混合した被回収ガスを被回収容器からガス分離部に導入して希釈ガスとSF6ガスとに分離してSF6ガスを回収しようとするものである。
【0015】
被回収容器に充填されている被回収ガスは、前述のようにSF6ガス100%のものと窒素ガス等の希釈ガスによりうすめられている場合とがある。この希釈ガスとSF6ガスとの混合ガスからSF6ガスを分離するガス分離部21を設けることにより、高真空に真空引きして被回収ガスを取り出す代わりに希釈ガスを充填して被回収容器内を陽圧にしてSF6ガスの濃度をうすめながら取り出して分離回収する、この方法の方が回収時間が早くなる。
【0016】
このガス分離部は、特定ガスを吸着する吸着剤を用いるPSA方(Pressure Swing Adosorption)により行なう。特定ガスと希釈ガスを含む混合ガスを該吸着剤を充填した吸着筒に圧力を加えながら送り込むと、この吸着剤に特定ガス(一方のガス)が吸着して除かれ、吸着されない他方のガスが該吸着筒の多端から分離されて取り出されるので、この工程を吸着工程といい、この吸着筒に圧力を加えながらガスを送り込む圧力を操作圧という。
【0017】
そして吸着剤に特定ガスが吸着されて満杯になる少し前に混合ガス(原料ガス)の送入を止め、その吸着筒の入口端より吸着筒の圧力を減じてやると、該吸着剤に吸着していた特定ガスが吸着剤より離脱して排出され、吸着剤の吸着能力が再生するので、この工程を再生工程という。
【0018】
この吸着工程と再生工程とを繰り返しながら、すなわち、吸着筒に圧力を加えたり、減じたりしながらガスを分離するので圧力変動吸着(PSA)法という。
【0019】
そして吸着剤には、その種類により対象ガスであるSF6ガスを吸着し、希釈ガスである窒素ガス等を吸着しないものと、反対に対象ガスであるSF6ガスを吸着せずに混合している希釈ガスの方をよく吸着するものとがある。
この様に使用する吸着剤により対象ガスを取り出す方法が少し異なる。
例えば、SF6ガスを対象ガスとした場合に、前者の吸着剤は活性炭に分子篩機能をもたせた分子篩炭があり、後者の吸着剤とてはゼオライトの5Aタイプや4Aタイプ等がある。ゼオライトは窒素ガス,水分,炭酸ガス,酸素,その他SF6の分解ガスの一部も吸着するのでこれ等を混合ガスより分離できる。
【0020】
前者の場合は、SF6ガスが吸着剤に吸着することにより分離されるのであるから、減圧再生工程で吸着剤より離脱するSF6ガスを回収する。
また、後者では加圧吸着工程でSF6ガスが吸着筒の他端より分離されて出てくるので吸着工程でSF6ガスを回収する。この両方の吸着剤の内から適当なものを選択してPSA方式によるガス分離回収充填装置を構成するもので、本発明はこれら両吸着剤を用いる方法を含むものである。
【0021】
かかる構成によるガス分離部によってSF6ガスと他の希釈ガスとに分離した場合であっても希釈ガス側にSF6ガスがわずかではあるが含まれる。被回収ガス中のSF6ガス濃度が変わる全ての範囲にわたって、分離されたこの希釈ガス中に含まれるSF6ガスをppmオーダーに少なく押えることは技術的にも困難であり、このSF6ガスがある程度の濃度で含まれる排出ガスを大気中に放出することは問題となる。
【0022】
このため、ガス分離部で分離した希釈ガス(微量ではあるがSF6ガスを含む)を再び被回収容器に戻すように構成する。
すなわち、被回収容器とガス分離部とを導管で接続し、被回収容器中の複数種類のガスが混合された被回収ガスを該ガス分離部で分離して、分離した一方のガスを回収すると共に、他方の希釈ガスを導管にて前記の被回収容器に戻して充填するようにしたガス分離回収充填装置を構成する。そして、ガス分離回収時と再充填時に被回収容器に戻すガスを必要に応じて変える。すなわち上記において被回収ガスがSF6ガスと希釈ガスとが混合した混合ガスである場合、回収のときはガス分離部で分離した一方のガスがSF6ガスであり、他方のガスが希釈ガスである。充填のときは分離した一方のガスが希釈ガスであり他方のガスがSF6ガスである。回収時にはSF6をわずかではあるが含む希釈ガスを被回収容器に戻すことによりこの混合ガス濃度はだんだん低下して行く。
【0023】
点検作業終了後のガス充填時にはガス分離部で分離した一方のガスが希釈ガスであり、被回収容器外に回収するかもしくは大気中に放出し、他方のガスであるSF6ガスを被回収容器に戻し入れる。このことにより被回収容器内のガス濃度は高くなってゆく。ガス濃度計測値により必要な分離ガスを戻し入れることにより被回収容器内の濃度制御ができる。
後で更に詳述する。
ガス回収時には被回収容器とガス分離部とを分離したガスを被回収容器に戻すルートによガスをサイクリックに廻しながら分離したSF6ガスのみを液化回収することにより外気にSF6をろ漏洩することなく、被回収容器中のSF6ガス濃度がだんだん下がっていくとともに被回収容器の内部圧力も下がっていく。この圧力が所定値以下になると希釈ガス供給源を有するガス供給部100から希釈ガスを充填して一定圧を維持しながらガス分離部21でガス分離を継続する。
【0024】
そして被回収ガス濃度が一定値以下になるとガス分離部で分離される希釈ガス中に含まれるSF6ガス濃度が大変低くなるので大気に放出することができる。該希釈ガスを供給するガス供給部はガス分離部で分離可能なガスであればよく、窒素ガスあるいは空気(窒素と酸素の混合ガス)でもよく、ゼオライトを吸着剤として用いればこれを十分分離できる。絶縁ガスを抜き取った後は空気と入れ換えて、人が内部に入って仕事(修理)を行なうので都合がよい。この電力機器を収容する被回収容器の呼び名はガスを回収するときは良いが、点検,修理後、再びガスを充填するときは充填容器となるが、同一品で呼び名が変わるのはよくないので本文中ではガス充填時であっても被回収容器と呼ぶこととする。
【0025】
【発明の実施の形態】
修理点検を実施した後、ガスを再充填した後で目的濃度よりも低いSF6ガスが被回収容器に充填されたときは、被回収容器内の混合ガスを該ガス分離部に導入して分離し、SF6ガスを被回収容器に戻すようにして分離した希釈ガスを回収し、この中に含まれるSF6ガスを更に別な処理により低減して大気中に放出するかあるいはその排出ガス中に含まれるSF6ガスの濃度がある程度以下の値であればそのまま大気中へ放出することにより、該被回収容器内より余分な希釈ガスを抜き取り、SF6ガス濃度を高め被回収容器内の混合ガス濃度を目的値に合わせる。
【0026】
この手段を用いることにより再充填に際して、容器中の空気を高真空まで排気する必要がなく、一定値まで空気を排出した後、希釈ガスを先に注入した後、SF6ガスと希釈ガスを充填し、その混合ガスをガス分離部と被回収容器との間のルートを巡回させてSF6ガスと空気等を含む希釈ガスに分離して希釈ガスを排出することにより、修理時に入った空気を外部に排出しながらSF6混合ガスを充填することが出来るので充填時間の短縮ができる。
更に詳しく説明すると被回収ガスを回収する場合は、SF6ガスの濃度センサー20とガス分離部21を有するガス分離回収充填装置において、被回収容器26よりSF6ガスと他の希釈ガスを含む被回収ガスを該ガス分離部に導入し、SF6ガスと他の希釈ガスとに分離せしめてSF6ガスをSF6ガスの出口3より加圧部22,液化部23に取出し、液化回収すると共に、該希釈ガスを該ポンプ7にて被回収容器26に戻すように構成し、該被回収ガス中のSF6ガスの濃度をSF6ガス濃度センサー20で検出し、所定値以下になった場合は該希釈ガスを弁52を開にして大気中に放出するようにする。
【0027】
また、ガス分離部21とポンプ7とガス供給部25を有するガス分離回収充填装置において、被回収容器26よりSF6ガスと他の希釈ガスを含む被回収ガスを該ガス分離部21に導入し、SF6ガスと他の希釈ガスとに分離せしめてSF6ガスを前記と同じく回収し、この希釈ガスを該ポンプ7にて被回収容器26内に戻すと共に、前記のガス分離部21へ導入する被回収容器内のガスの圧力を圧力センサー36により検出しながら所定の圧力よりも低くなった場合には該ガス供給部25から弁29を開にしてガスを該被回収容器に導入して充填するように構成する。
【0028】
【実施例】
例えば、ガス分離部21の操作圧が0.2MPa・Gであれば、このガス供給部25からガスを被回収容器26へ導入して充填することを開始する圧力も0.2MPa・G以上の圧力が基準となる。この場合はPSA方式によるガス分離部21に被回収容器内の圧力で供給してPSAガス分離を行なうものである。
ガス供給部25より供給するガスはガス分離部21により分離可能な希釈ガスであればよく、例えば窒素ガスボンベ27と減圧弁28との構成によるもので窒素ガスを供給する、あるいは空気ポンプ42による外気を導入する装置、又は、空気ポンプとドライヤー43を組合わせた装置で空気を供給するように構成することができる。
【0029】
他の実施例を図3に示す。濃縮SF6ガスを被回収容器から取出し、ガス分離部に供給するガス取り出し部66をつけた実施例である。ガス分離部21と分離したSF6ガス出口3以降は液化回収する部分は同じであるので省略する。このガス取り出し部を介在させてガス分離部に被回収ガスを供給する方法である。これはガス取り出し部が減圧弁69と昇圧ポンプ65と電磁弁等で構成されており、被回収容器26内に充填されている被回収ガスの圧力がPSA方式のガス分離部の操作圧よりも高いときには、減圧弁69を介してその操作圧に必要な圧力に調節して供給し、回収作業が進行して被回収容器26内の圧力が前記の操作圧よりも下がってきた場合には昇圧ポンプ65を働かせて被回収容器26から被回収ガスを抜き出してPSAの操作に必要な操作圧まで昇圧調整して供給する機能を有するものである。
【0030】
このガス取り出し部を有する構成の場合は、ガス取り出し部66とガス分離部21でポンプ7とを有するガス分離回収充填装置において、該ガス分離部でSF6ガスと他の希釈ガスとに分離したもので、該希釈ガス中に一部SF6ガスが混在するガスを該ポンプにより被回収容器に戻すように構成し、被回収容器のガスの圧力が大気圧以下になったときには、弁29'を開にして外気取り入れ口70から外気を被回収容器に導入して希釈ガスとして充填するように構成する。
【0031】
図1は、一実施例を示し、SF6を液化回収するための加圧部22や液化部23を含む本発明の全体的な構成を示すフロー図である。
同図中のガス分離部21の詳細は、図2 (A)あるいは図2 (B)に実施例のフロー図を示し、これがここにあてはまる。被回収容器26の被回収ガスの出口1'より被回収ガスをガス分離部21の被回収ガスの入口1と接続し、ガス分離部21で濃縮したSF6ガスをSF6ガスの出口3より加圧部22に導入し、他方の希釈ガスを主体とする分離されたガスは排ガスの出口2より被回収容器26の排出ガスの入口2'に戻される。該加圧部22は、バッファタンク30と加圧ポンプ31及び一定圧力以上に過加圧しないように戻り回路を減圧弁32とで構成している。
加圧されたSF6ガスは液化部23に送り、冷却液化した後に貯留タンク24に貯留する。液化部23は、冷却器33,電磁弁34,37,液化タンク35より構成し、冷却器33で冷却して、液化タンク35に送り冷却液化する。
【0032】
液化部23に入ってくるSF6ガスは、純度100%でない限り、液化タンク35内でSF6ガスが液化して貯留タンク24に取り出されるので、その液化しない不純ガスが蓄積される。それを取り出してガス分離部より上流部に戻してやる必要があるがこの構成の記載は図1においては省略してある。なお、SF6ガスが液化されて回収作業の進行に従い被回収容器内の圧力が所定値以下に低下するのでガス供給部25より弁29を開にしてガスを導入して充填し、ガス分離部21の動作に必要なガス圧を保つように構成する。このガス供給部25は例えば窒素ガスボンベ27と減圧弁28で構成する方法もある。またガス供給部40として示すようにフィルター41より外気を取込みコンプレッサー42で昇圧した後、ドライヤー43により水分を除去した外気を希釈ガスとして供給外気の出口44と弁29と接続して供給してもよい。
【0033】
図2 (A)は、吸着剤に対象ガスであるSF6ガスを強く吸着し、窒素ガス等の希釈ガスをほとんど吸着しない分子篩炭を用いるガス分離部のフロー図である。
この例では、トランス等の被回収容器26からのガスを被回収ガスの入口1より導入し、電磁弁8,10を開として吸着筒4に導入して吸着剤にSF6ガスを吸着させ、吸着筒4の他端より希釈ガスである窒素ガス等をSF6ガスと分離して取出し、電磁弁14,9を介して排出ガスタンク6に貯える。この排出ガスは、ポンプ7により排出ガスの出口2を介して加圧排出されて図1に示す被回収容器26に戻して充填される。入口1より導入する被回収ガスは圧力センサー36とSF6ガス濃度センサー20に接続され圧力と濃度が計測される。
【0034】
被回収ガスを吸着筒4に導入して、吸着剤がSF6ガスを吸着して満杯(吸着飽和する)になる前に導入を止め、再生工程の終了した吸着筒5との間で均圧の工程を行なう。
すなわち、電磁弁8,10,16,11,14を閉とし、吸着筒5のすべての電磁弁を閉として、均圧用の電磁弁17を開として吸着筒4内に浮遊する窒素ガスを吸着筒5へ向かって一部のSF6ガスと共に移動させる。
【0035】
その後電磁弁17を閉とし、吸着筒4の吸着剤に吸着したSF6ガスは、電磁弁11,18を開とし、真空引き用のポンプ7により濃縮したSF6ガスをSF6ガスの出口3から図1に示すバッファタンク30に送り出す。
この工程は、吸着筒4の吸着剤に吸着しているSF6ガスを、該吸着筒内を減圧して離脱させ、濃縮してSF6ガスの出口3より取り出すと共に、吸着剤の吸着能力を再生するので再生工程という。
【0036】
吸着筒5は、被回収ガスを電磁弁12を介して導入し、SF6ガスを吸着剤に吸着させて電磁弁15,9を開とし、窒素ガスをPSA動作圧力の脈動を抑制する排出ガスタンク6に送出し、前記の工程と同様にポンプ7により排出ガスの出口2を介して排出させて図1に示す被回収容器26に戻して充填される。前記SF6ガス濃度センサーにより被回収ガス中のSF6濃度が一定値以下になると分離された希釈ガス(窒素ガス)中のSF6濃度は大変少なくなるので電磁弁51を閉として被回収容器に戻すのを止め、弁52を開にして、放出口50より大気中に排出する。該圧力センサー36でその圧力が一定値以下になった場合はガス供給部より希釈ガスまたは外気を被回収容器内に導入する。かかる方法により、ガス分離部で加圧吸着工程,均圧工程,再生工程を繰り返しながらガスの分離を行なう。
このように、ガス分離を被回収ガスの入口1から原料ガスである被回収ガスを取り込み、吸着剤にSF6ガスを吸着して分離して再生工程で濃縮したSF6ガスとして取り出し、SF6ガスの出口3より送出する。一方、希釈ガスである窒素ガス等は排出ガスタンク6に貯留してポンプ7により被回収容器26へ戻される。2本の吸着筒により上記工程を交互に行い混合ガスを連続してSF6と希釈ガスに分離し、一方は回収し同時に他方は被回収容器に戻される。
【0037】
図2 (B)は、吸着剤として、対象ガスであるSF6ガスをほとんど吸着せず、希釈ガスである窒素ガス,水分や酸素等の方をよく吸着するゼオライトを用いる方式のガス分離部の構成を示すフロー図である。
被回収ガスの入口1から原料ガスである被回収ガスを導入し、電磁弁8,10を開として吸着筒4に導入し、吸着剤に希釈ガスである窒素ガス等を吸着させて、他端からほとんど吸着しないSF6ガスが濃縮して電磁弁14,18を介してSF6ガスの出口3から図1のバッファタンク30に送り出される。
【0038】
吸着筒4の吸着剤が希釈ガスである窒素ガス等を吸着して満杯になる(吸着飽和する)少し前に原料ガスの導入を止め、再生工程の終了した吸着筒5との間に均圧化の工程を行なう。
すなわち、電磁弁8,18,11,13を閉とし、電磁弁14,15,10,12を開として、吸着筒4内に浮遊するSF6ガスを吸着筒5の方へ一部の窒素ガスと共に移動させた後に、電磁弁10,14,13を閉とし、電磁弁11,9,8,12,15,18を開として原料ガスを吸着筒5へ導入するとともに濃縮したSF6ガスは、電磁弁15,18を介してSF6ガスの出口3より導出されるので吸着筒5が吸着工程に入ることになる。
【0039】
吸着筒4の吸着剤に吸着された希釈ガスである窒素ガス等は、この吸着筒内の圧力を低下させることより吸着していた窒素ガス等が離脱して電磁弁11,9を介して排出ガスタンク6に貯留した後にポンプ7により弁51を開にして排出ガスの出口2から図1の被回収容器26へ送り出される。これも入口1により取入れる被回収ガス中のSF6ガス濃度と圧力がSF6ガス濃度計20及び圧力センサー36により測定され、被回収ガス内のSF6ガス濃度が一定値以下に下がった後の分離される希釈ガス中に含まれるSF6濃度は大変少ないので弁51を閉とし、52を開とし、大気中に放出する。
このように、(A)(B)とも2本の吸着筒により吸着工程,均圧工程,再生工程を交互に繰り返すことにより混合ガスを連続してSF6と希釈ガスに分離し、一方は回収し同時に他方は被回収容器に戻される。
【0040】
なお、前記の図2 (A)及び図2 (B)のフロー図の説明における均圧工程は装置の能力によっては省略することもできる。
次に充填については1実施例を図4に示す。これを用いて説明する。
SF6ガスボンベ55と減圧弁57で構成するSF6ガス供給源60と窒素ガスボンベ27と減圧弁28で構成する希釈ガス供給源25によりSF6ガスと希釈ガスが供給できるガス供給部100と図2に示すガス分離部21内の圧力センサー36と濃度センサー20を有するガス分離回収充填装置において、被回収容器26とガス供給部100と更にガス分離部を導管で接続し、該圧力センサー36と濃度センサー20に該被回収容器の混合ガスを導管にて接続し、該混合ガスの圧力と濃度を計測し、図中には省略してあるが、該圧力センサー36と該濃度センサー20とは信号線にて同じく図中省略してある該制御部に接続され、該制御部より信号線にて該ガス供給部に接続され、該制御部の指示により該被回収容器26に該ガス供給部100より希釈ガスとSF6ガスが制御されて導入されるよう構成し、まず該被回収容器26に希釈ガスを制御部の指示により弁29'を開にして導入し、容器内に残留する外気等を被回収容器26より一定量排出した後、同じくSF6ガスを弁29を開にして導入し該被回収容器内の圧力と濃度を該圧力センサー36と該濃度センサー20により検出しながら所定の充填圧力となるようガス供給部よりSF6ガスと希釈ガスを制御しながら供給(充填)する。
【0041】
次に別の実施例について説明する。
ガス分離部21とSF6ガスボンベ55と減圧弁57で構成するSF6ガス供給源60と窒素ガスボンベ27と減圧弁28とで構成する希釈ガス供給源25によりSF6ガスと希釈ガスが供給できるガス供給部100と図2に示すガス分離部21内の圧力センサー36と濃度センサー20と図中には省略しているが、制御部を有するガス分離回収充填装置において、被回収容器26とガス供給部100を導管で接続し該被回収容器26の混合ガスを導管にて該ガス分離部21と圧力センサー36と濃度センサー20に接続し該混合ガスの圧力と濃度を計測し、図中には制御部と信号線は省略しているが、
【0042】
該圧力センサーと該濃度センサーと該制御部は信号線にて接続され、更に、該制御部とガス分離部とガス供給部が接続され、更に、該制御部とガス分離部とガス供給部が信号線により接続されて、該ガス供給部よりSF6ガスと希釈ガスがそれぞれ制御部により弁29',弁29を開閉して導入されるよう構成し、まず該被回収容器26に希釈ガスを弁29'を開にして導入し、容器内に残留する外気等を被回収容器26より一定量排出した後、SF6ガスを弁29を開にして導入し、該被回収容器内の圧力と濃度を該圧力センサー36と濃度センサー20により検出しながら所定の充填圧力と濃度になるようガス供給部100よりガスを供給しながら該被回収容器内の混合ガスをガス分離部21に導入してSF6ガスと外気を含む希釈ガスに分離し、SF6ガスを被回収容器にSF6ガス出口3と排出ガス入口2'を接続して戻し入れ、外気を含む希釈ガスを弁52を開にして放出口50より被回収容器外に排出するように構成して、被回収容器26内に残留する空気等を排出しながらSF6ガスを充填するようにして、充填時間を短縮するようにした。
尚検出した圧力と濃度の関係から必要により被回収容器に希釈ガスを戻し、SF6ガスを被回収容器外に排出してもよい、必要なガスを被回収容器に戻すことが出来る。
【0043】
【発明の効果】
本発明によれば、希釈されたSF6ガスが混在する混合ガスを大気中に放出させることなく、被回収容器内のSF6ガスの回収が可能となる。
更に再充填に際しては分離濃縮したSF6ガスをトランス等の容器に、希釈ガスの方を容器外に導出することにより、充填しながら空気等の排出を行うことができ時間を短縮できる。
【図面の簡単な説明】
【図1】 本発明の全体的な構成を示すフロー図である。
【図2】 図2 (A),図2 (B)共にガス分離部21の詳細な構成を示すフロー図である。
【図3】 被回収容器26とガス取り出し部66並びにガス分離部21との相互接続状況を示すフロー図である。
【図4】 ガス分離部21の排出ガスの出口2に排出ガス回収容器63を、また、被回収容器26にガス供給部100を接続した場合のフロー図である。
【符号の説明】
1 被回収ガスの入口
1' 被回収ガスの出口
2 排出ガスの出口
2' 排出ガスの入口
3 SF6ガスの出口
4 吸着筒
5 吸着筒
6 排出ガスタンク
7 ポンプ
8〜19 電磁弁
20 SF6ガスの濃度センサー
21 ガス分離部
22 加圧部
23 液化部
24 貯留タンク
25 窒素ガス供給部
26 被回収容器
27 窒素ガスボンベ
28 減圧弁
29 電磁弁
29' 電磁弁
30 バッファタンク
31 加圧ポンプ
32 減圧弁
33 冷却器
34 電磁弁
35 液化タンク
36 圧力センサー
37 電磁弁
40 外気供給部
41 エアーフィルター
42 空気ポンプ
43 ドライヤー
44 供給外気の出口
51 電磁弁
52 電磁弁
55 SF6ガスボンベ
57 減圧弁
63 排出ガス回収容器
64 電磁弁
64' 電磁弁
65 昇圧ポンプ
66 ガス取り出し部
67 電磁弁
68 電磁弁
69 減圧弁
70 外気取入れ口
100 ガス供給部
[0001]
BACKGROUND OF THE INVENTION
In the present invention, the power equipment is filled with SF6 gas (sulfur hexafluoride gas, the same applies hereinafter) or a mixed gas of SF6 gas and dilution gas as an insulating gas. The present invention relates to technology for extracting and collecting gas, or for refilling after inspection and repair.
[0002]
[Prior art]
SF6 gas is filled in transformers for high voltage power such as substations and circuit breakers in power circuits, making it possible to reduce the size of the equipment by taking advantage of its thermal stability, electrical stability, and high dielectric strength. The contribution of the substations in urban areas is greatly reduced. SF6 gas filled in transformers and circuit breakers includes those with a purity of 100% and those filled with dilution gas such as nitrogen gas.
[0003]
[Patent Document 1]
JP 2000-015039
Equipment that uses these devices must be regularly inspected and maintained and repaired. During inspection, maintenance and repair, these gases are extracted and replaced with the atmosphere. Inspect and repair. When the inspection and repair are completed, the insulating gas is filled again and operation begins. At the time of gas extraction, vacuum recovery is performed until SF6 gas does not remain in the equipment until a high vacuum is reached, and at the time of filling, air is exhausted to a high vacuum so that no air remains in the container of power equipment. It was necessary to fill the insulating gas with a predetermined concentration. This took a long time. Conventionally, when gas is extracted, there is little damage to human bodies and the like due to these gases, so that they may be released into the atmosphere.
[0004]
However, since SF6 gas is an expensive gas, there has been a recovery device that can be easily recovered and reused in terms of cost, and this SF6 gas must be recovered and refilled and reused after inspection and repair. There was also.
There was a device that pressurized and compressed the extracted SF6 gas, then cooled and liquefied and recovered, but it was recovered by sucking the recovered container up to a high vacuum range, or mixed with other dilution gas There was no device to separate and recover only SF6 gas from
[0005]
In other words, when the SF6 gas concentration is lowered by mixing with other diluent gas, the partial pressure is lowered, so it is compressed to a higher pressure, and cooling to a lower temperature is required, so the price of the apparatus is high. became.
[0006]
In recent years, the release of carbon dioxide or the like into the atmosphere has been regulated to prevent global warming. In 1997, the World Environment Conference was held in Kyoto. As a result, the release of SF6 gas, which has a global warming potential of 24,000 times that of carbon dioxide, into the atmosphere has become strictly regulated.
To prevent SF6 gas from leaking into the atmosphere,
(1) Eliminate gas that leaks from the sealing part of filling equipment.
(2) It is important to eliminate SF6 gas released into the atmosphere when it is involved in gas extraction and refilling during equipment installation, maintenance inspection, repair, dismantling and disposal.
[0007]
This (1) is very small at present due to the improved seal part of the equipment.
As for (2), the electric power industry created the “Standard for Handling SF6 Gas for Electric Power” in December 1998 by the Electric Joint Study Group, and decided to regulate its emission.
The main contents of the regulations are voluntary standards for suctioning and recovering to a high vacuum range of 0.015 MPa · abs (recovery rate of 97 vol% or more) at the time of inspection and repair, and 0.005 MPa · abs (recovery rate of 99 vol% or more) when dismantling and removal. It was created. The power industry has a public mission to minimize the power outage time associated with inspection and repair.
[0008]
There is a disadvantage that it takes a long time to recover if it is sucked and recovered to a high vacuum range. The low recovery rate at the time of inspection and repair is a compromise for shortening the power failure time due to the shutdown of the device as much as possible, and when removing it, it takes enough time to evacuate. In other words, the high vacuum region is sucked and collected, and the amount of leakage into the atmosphere is kept small.
[0009]
The electric power industry will develop and implement a collection device that meets the above criteria by 2005.
Even if 50vol% of inert gas, nitrogen gas, is mixed, the impulse breakdown voltage is 85% of the SF6 gas alone, and the breakdown power at the commercial power frequency is 96.6%. Increasing number of manufacturers are using it with nitrogen gas, which is a dilution gas, when it is sealed in containers.
[0010]
Conventionally, since the mixed gas mixed with such a diluent gas has been difficult to recover, most of it has been discharged into the atmosphere and discarded during inspection and disposal. In addition, SF6 gas is refilled after inspection / maintenance work and repair work is completed. It took a long time because it was refilled with a predetermined concentration of SF6 gas after it was sucked and the outside air was once discharged. An object of the present invention is to provide a gas separation / recovery / filling device that separates and collects the gas and refills the gas.
[0011]
[Problems to be solved by the invention]
This is to collect almost the entire amount of SF6 gas and dilution gas from the container to be collected (transformer, circuit breaker, etc.) without leaking into the atmosphere, and to shorten the time required for inspection work including recovery and refilling. For the purpose. During periodic inspections and repairs, after extracting the gas to be collected from the container to be collected, such as a transformer filled with insulating gas, the inside of the container is replaced with air, and then a person enters to repair and check the power equipment. After the repair is completed, the insulating gas is filled again. These times cause power outages because the operation of the power equipment is stopped. In order to shorten the power outage time, the time required for repair and inspection of the equipment and devices in the container to be collected is required for a predetermined time regardless of the performance of the gas recovery / refilling device. Therefore, it is necessary to extract and collect the gas other than the predetermined time and to shorten the refilling time of the gas, and the present invention intends to shorten the time by a new method related to the collecting and refilling.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention separates and recovers, taking into consideration the characteristics of SF6 gas having a critical temperature of 45.64 ° C., a critical pressure of 3.66 MPa · G, a melting point of −50.8 ° C., and a sublimation point of −63.8 ° C.
FIG. 1 shows an embodiment of the present invention.
[0013]
The recovery container 26 is filled with a recovery target gas such as SF6 gas at a high pressure of about 0.6 MPa · abs. Since SF6 gas is an easily liquefied gas, a pressurizing unit 22 that pressurizes the SF6 gas with a pressurizing pump 31 and a liquefying unit 23 that cools and liquefies are provided, and in a range where the concentration of SF6 gas in the gas to be recovered is high Since the partial pressure of SF6 gas in the gas to be recovered is high, the pressure required for liquefying easily from the relationship between the liquefaction temperature of the gas to be liquefied and the pressure may be within a relatively low pressure range. Can be easily liquefied and recovered in a relatively high range.
[0014]
First, the SF6 gas is recovered to such a range that the pressure in the container to be recovered can be liquefied by the pressure pump 31 and the liquefying unit 23 by such a method. When this pressure becomes a predetermined pressure or less, a diluent gas such as nitrogen gas is introduced from the external gas supply unit 25 into the collection container and the SF6 gas is diluted, and the collection gas in which the dilution gas and the SF6 gas are mixed is supplied. It is intended to recover SF6 gas by introducing it into a gas separation section from a container to be recovered and separating it into dilution gas and SF6 gas.
[0015]
The gas to be collected filled in the container to be collected may be diluted with SF6 gas 100% and diluent gas such as nitrogen gas as described above. By providing a gas separation unit 21 that separates the SF6 gas from the mixed gas of the dilution gas and the SF6 gas, the inside of the container to be collected is filled with the dilution gas instead of evacuating to high vacuum and taking out the gas to be collected. The recovery time is faster in this method, where the positive pressure is taken out and the concentration of SF6 gas is increased and separated and recovered.
[0016]
This gas separation part is performed by the PSA method (Pressure Swing Adosorption) using an adsorbent that adsorbs a specific gas. When a mixed gas containing a specific gas and a dilution gas is fed into the adsorption cylinder filled with the adsorbent while applying pressure, the specific gas (one gas) is adsorbed and removed by this adsorbent, and the other gas that is not adsorbed is removed. Since it is separated and taken out from the multiple ends of the adsorption cylinder, this process is referred to as an adsorption process, and the pressure for feeding gas while applying pressure to the adsorption cylinder is referred to as operation pressure.
[0017]
If the mixed gas (raw material gas) is stopped feeding shortly before the specific gas is adsorbed by the adsorbent, and the pressure in the adsorbing cylinder is reduced from the inlet end of the adsorbing cylinder, the adsorbent adsorbs the adsorbent. The specific gas that has been removed is released from the adsorbent and discharged, and the adsorption capacity of the adsorbent is regenerated. This process is called a regeneration process.
[0018]
This process is called a pressure fluctuation adsorption (PSA) method because the gas is separated while repeating the adsorption process and the regeneration process, that is, applying pressure to the adsorption cylinder or reducing the pressure.
[0019]
The adsorbent adsorbs SF6 gas, which is the target gas, depending on its type, and does not adsorb nitrogen gas, etc., which is a dilution gas. Some gas adsorbs better.
The method of extracting the target gas is slightly different depending on the adsorbent used in this way.
For example, when SF6 gas is the target gas, the former adsorbent is molecular sieve charcoal with activated carbon having a molecular sieve function, and the latter adsorbent includes zeolite 5A type and 4A type. Zeolite also adsorbs part of the decomposition gas of nitrogen gas, moisture, carbon dioxide gas, oxygen and other SF6, so these can be separated from the mixed gas.
[0020]
In the former case, since the SF6 gas is separated by adsorbing to the adsorbent, the SF6 gas separated from the adsorbent is recovered in the decompression regeneration step.
In the latter case, SF6 gas is separated from the other end of the adsorption cylinder in the pressure adsorption process, and the SF6 gas is recovered in the adsorption process. An appropriate one of these adsorbents is selected to constitute a gas separation recovery and filling apparatus by the PSA method, and the present invention includes a method using both these adsorbents.
[0021]
Even when the gas separation unit having such a configuration separates SF6 gas into other dilution gas, a slight amount of SF6 gas is included on the dilution gas side. It is technically difficult to keep the SF6 gas contained in the separated diluted gas as low as ppm order over the entire range where the SF6 gas concentration in the gas to be recovered changes, and this SF6 gas has a certain concentration. It is a problem to release the exhaust gas contained in the atmosphere.
[0022]
For this reason, it is configured such that the dilution gas (including a small amount of SF6 gas) separated by the gas separation unit is returned to the container to be collected again.
That is, the container to be recovered and the gas separation part are connected by a conduit, and the gas to be recovered in which a plurality of types of gases in the container to be recovered are mixed is separated by the gas separation part, and one separated gas is recovered. At the same time, a gas separation / recovery / filling apparatus is constructed in which the other dilution gas is returned to the container to be collected by a conduit and filled. Then, the gas to be returned to the container to be recovered at the time of gas separation and recovery and refilling is changed as necessary. That is, in the above, when the gas to be recovered is a mixed gas in which SF6 gas and diluent gas are mixed, one gas separated by the gas separation unit is SF6 gas and the other gas is diluent gas at the time of recovery. At the time of filling, one of the separated gases is a dilution gas, and the other gas is SF6 gas. At the time of recovery, the mixed gas concentration gradually decreases by returning the diluted gas containing a small amount of SF6 to the container to be recovered.
[0023]
When gas is filled after the inspection work is completed, one of the gases separated by the gas separation unit is the dilution gas, and it is either collected outside the container to be collected or released to the atmosphere, and the other gas, SF6 gas, is put into the container to be collected. Put it back. As a result, the gas concentration in the container to be collected increases. The concentration in the container to be recovered can be controlled by returning the necessary separation gas based on the measured gas concentration.
Further details will be described later.
At the time of gas recovery, SF6 is filtered and leaked to the outside air by liquefying and recovering only the separated SF6 gas while circulating the gas cyclically by the route that returns the gas separated from the recovery container and gas separation part to the recovery container In addition, the SF6 gas concentration in the container to be recovered gradually decreases and the internal pressure of the container to be recovered also decreases. When this pressure falls below a predetermined value, the gas separation unit 21 continues gas separation while filling the dilution gas from the gas supply unit 100 having the dilution gas supply source and maintaining a constant pressure.
[0024]
When the concentration of the gas to be recovered becomes a certain value or less, the SF6 gas concentration contained in the dilution gas separated by the gas separation unit becomes very low and can be released to the atmosphere. The gas supply unit for supplying the dilution gas may be any gas that can be separated by the gas separation unit, and may be nitrogen gas or air (mixed gas of nitrogen and oxygen), which can be sufficiently separated by using zeolite as an adsorbent. . After the insulating gas is extracted, it is convenient because it is replaced with air and a person enters the inside to perform work (repair). The name of the container to be collected that contains this power equipment is good when recovering gas, but when it is filled again after inspection and repair, it becomes a filled container, but it is not good that the name changes with the same product. In this text, even when gas is filled, it is called a container to be collected.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
After the repair and inspection, if SF6 gas lower than the target concentration is filled in the collection container after refilling the gas, the mixed gas in the collection container is introduced into the gas separation section and separated. The separated diluted gas is recovered by returning the SF6 gas to the container to be recovered, and the SF6 gas contained therein is reduced by further processing to be released into the atmosphere or contained in the exhaust gas. If the SF6 gas concentration is below a certain level, it is released into the atmosphere as it is, so that excess dilution gas is extracted from the container to be recovered, the SF6 gas concentration is increased, and the mixed gas concentration in the container to be recovered is the target value. To match.
[0026]
By using this means, it is not necessary to evacuate the air in the container to a high vacuum at the time of refilling, and after exhausting the air to a certain value, the dilution gas is injected first, and then the SF6 gas and the dilution gas are filled. The mixed gas is circulated through the route between the gas separation unit and the container to be recovered, and is separated into a dilution gas containing SF6 gas and air, etc. Since the SF6 gas mixture can be filled while being discharged, the filling time can be shortened.
More specifically, in the case of recovering the gas to be recovered, in the gas separation recovery filling device having the SF6 gas concentration sensor 20 and the gas separation unit 21, the gas to be recovered containing SF6 gas and other dilution gas from the recovery container 26 The SF6 gas is separated into SF6 gas and another dilution gas, and the SF6 gas is taken out from the SF6 gas outlet 3 to the pressurization unit 22 and the liquefaction unit 23, and liquefied and recovered. The pump 7 is configured to return to the recovery container 26, and the SF6 gas concentration in the recovery gas is detected by the SF6 gas concentration sensor 20. Open to release to the atmosphere.
[0027]
Further, in the gas separation recovery filling device having the gas separation unit 21, the pump 7, and the gas supply unit 25, the gas to be recovered including SF6 gas and other dilution gas is introduced into the gas separation unit 21 from the recovery container 26, The SF6 gas is recovered in the same manner as described above by separating it into SF6 gas and another dilution gas, and this dilution gas is returned to the recovery container 26 by the pump 7 and introduced into the gas separation unit 21 as described above. When the pressure of the gas in the container is lower than a predetermined pressure while being detected by the pressure sensor 36, the valve 29 is opened from the gas supply unit 25 to introduce and fill the container with the gas. Configure.
[0028]
【Example】
For example, if the operating pressure of the gas separation unit 21 is 0.2 MPa · G, the pressure at which gas is introduced from the gas supply unit 25 into the recovery container 26 and filling is started is also a pressure of 0.2 MPa · G or more. The standard. In this case, the PSA gas separation is performed by supplying the PSA system gas separation unit 21 with the pressure in the container to be collected.
The gas supplied from the gas supply unit 25 may be a dilution gas that can be separated by the gas separation unit 21. For example, nitrogen gas is supplied by the configuration of the nitrogen gas cylinder 27 and the pressure reducing valve 28, or the outside air by the air pump 42 is used. The apparatus can be configured to supply air with a device that introduces the air or a device that combines the air pump and the dryer 43.
[0029]
Another embodiment is shown in FIG. In this embodiment, the concentrated SF6 gas is taken out from the container to be collected and a gas takeout part 66 is supplied to the gas separation part. Since the portion to be liquefied and recovered after the SF6 gas outlet 3 separated from the gas separation unit 21 is the same, the description is omitted. In this method, the gas to be recovered is supplied to the gas separation unit through the gas extraction unit. This is because the gas extraction part is composed of a pressure reducing valve 69, a pressure increasing pump 65, a solenoid valve, etc., and the pressure of the gas to be recovered filled in the recovery container 26 is higher than the operating pressure of the PSA type gas separation part. When the pressure is high, the pressure is adjusted to be supplied to the operation pressure via the pressure reducing valve 69, and when the recovery operation proceeds and the pressure in the collection container 26 is lower than the operation pressure, the pressure is increased. The pump 65 is operated to extract the gas to be collected from the container 26 to be collected and to supply the pressure adjusted to the operation pressure necessary for the operation of the PSA.
[0030]
In the case of the configuration having this gas extraction part, in the gas separation recovery and filling apparatus having the gas extraction part 66 and the gas separation part 21 and the pump 7, the gas separation part is separated into SF6 gas and other dilution gas Thus, the gas mixed partially with SF6 gas in the dilution gas is returned to the recovery container by the pump, and the valve 29 'is opened when the pressure of the gas in the recovery container falls below the atmospheric pressure. Thus, the outside air is introduced from the outside air inlet 70 into the container to be collected and filled as a dilution gas.
[0031]
FIG. 1 is a flowchart showing an overall configuration of the present invention including a pressurizing unit 22 and a liquefying unit 23 for liquefying and collecting SF6, showing an embodiment.
The details of the gas separation unit 21 in the figure are shown in the flow chart of the embodiment in FIG. 2 (A) or FIG. 2 (B), which applies here. The recovered gas is connected to the recovered gas inlet 1 of the gas separation unit 21 from the recovered gas outlet 1 ′ of the recovered container 26, and the SF6 gas concentrated in the gas separation unit 21 is pressurized from the SF6 gas outlet 3 The separated gas mainly composed of the other dilution gas is returned to the exhaust gas inlet 2 ′ of the recovery container 26 from the exhaust gas outlet 2. The pressurizing unit 22 includes a buffer tank 30, a pressurizing pump 31, and a pressure reducing valve 32 as a return circuit so as not to overpressurize more than a certain pressure.
The pressurized SF6 gas is sent to the liquefying unit 23, cooled and liquefied, and stored in the storage tank 24. The liquefying unit 23 includes a cooler 33, electromagnetic valves 34 and 37, and a liquefaction tank 35, and is cooled by the cooler 33 and sent to the liquefaction tank 35 to be cooled and liquefied.
[0032]
As long as the SF6 gas entering the liquefaction unit 23 is not 100% pure, the SF6 gas is liquefied in the liquefaction tank 35 and taken out to the storage tank 24, so that the impure gas that is not liquefied is accumulated. Although it is necessary to take it out and return it to the upstream part from the gas separation part, the description of this structure is omitted in FIG. Since the SF6 gas is liquefied and the pressure in the container to be recovered falls below a predetermined value as the recovery operation progresses, the valve 29 is opened from the gas supply unit 25 to introduce and fill the gas, and the gas separation unit 21 The gas pressure required for the operation is maintained. For example, there is a method in which the gas supply unit 25 includes a nitrogen gas cylinder 27 and a pressure reducing valve. Alternatively, as shown as the gas supply unit 40, after taking outside air from the filter 41 and increasing the pressure by the compressor 42, the outside air from which moisture has been removed by the dryer 43 may be supplied as a dilution gas connected to the supply outside air outlet 44 and the valve 29. Good.
[0033]
FIG. 2 (A) is a flow diagram of a gas separation unit using molecular sieve charcoal that strongly adsorbs SF6 gas as a target gas to the adsorbent and hardly adsorbs a diluent gas such as nitrogen gas.
In this example, the gas from the collection target container 26 such as a transformer is introduced from the inlet 1 of the collection target gas, the electromagnetic valves 8 and 10 are opened and introduced into the adsorption cylinder 4 to adsorb the SF6 gas to the adsorbent, and the adsorption Nitrogen gas or the like, which is a dilution gas, is taken out from the other end of the cylinder 4 separately from the SF6 gas, and stored in the exhaust gas tank 6 via the solenoid valves 14 and 9. The exhaust gas is pressurized and discharged by the pump 7 through the exhaust gas outlet 2, and is returned to the recovery container 26 shown in FIG. The gas to be recovered introduced from the inlet 1 is connected to the pressure sensor 36 and the SF6 gas concentration sensor 20, and the pressure and concentration are measured.
[0034]
The gas to be collected is introduced into the adsorption cylinder 4 and stopped before the adsorbent adsorbs the SF6 gas and becomes full (adsorption saturation). Perform the process.
That is, the solenoid valves 8, 10, 16, 11, 14 are closed, all the solenoid valves of the adsorption cylinder 5 are closed, the pressure equalizing solenoid valve 17 is opened, and the nitrogen gas floating in the adsorption cylinder 4 is adsorbed. Move toward 5 with some SF6 gas.
[0035]
After that, the solenoid valve 17 is closed, and the SF6 gas adsorbed to the adsorbent in the adsorption cylinder 4 opens the solenoid valves 11 and 18, and the SF6 gas concentrated by the vacuum pump 7 is removed from the SF6 gas outlet 3 as shown in FIG. To the buffer tank 30 shown in FIG.
In this step, the SF6 gas adsorbed on the adsorbent in the adsorption cylinder 4 is desorbed by depressurizing the inside of the adsorption cylinder, concentrated and taken out from the SF6 gas outlet 3, and the adsorption capacity of the adsorbent is regenerated. This is called the regeneration process.
[0036]
The adsorption cylinder 5 introduces the gas to be collected through the electromagnetic valve 12, adsorbs the SF6 gas to the adsorbent, opens the electromagnetic valves 15 and 9, and discharges the nitrogen gas to the exhaust gas tank 6 that suppresses the pulsation of the PSA operating pressure. In the same manner as in the above-described steps, the gas is discharged through the outlet 2 of the exhaust gas by the pump 7 and returned to the container 26 to be collected shown in FIG. When the SF6 concentration in the gas to be recovered falls below a certain value by the SF6 gas concentration sensor, the SF6 concentration in the separated diluted gas (nitrogen gas) becomes very small, so the solenoid valve 51 is closed and returned to the recovery container. Then, the valve 52 is opened and discharged from the discharge port 50 into the atmosphere. When the pressure of the pressure sensor 36 is below a certain value, dilution gas or outside air is introduced into the collection container from the gas supply unit. By this method, gas separation is performed while repeating the pressure adsorption process, the pressure equalization process, and the regeneration process in the gas separation unit.
In this way, the gas separation is performed by taking the gas to be recovered, which is the raw material gas, from the inlet 1 of the gas to be recovered, and separating the SF6 gas by adsorbing the SF6 gas to the adsorbent and taking it out as the SF6 gas concentrated in the regeneration process. Sent from 3. On the other hand, nitrogen gas or the like as dilution gas is stored in the exhaust gas tank 6 and returned to the container 26 by the pump 7. The above steps are alternately performed by two adsorption cylinders, and the mixed gas is continuously separated into SF6 and dilution gas, one is collected and the other is returned to the container to be collected.
[0037]
Fig. 2 (B) shows the configuration of a gas separation unit using a zeolite that hardly adsorbs the target gas, SF6 gas, and adsorbs the diluent gas, nitrogen gas, moisture, oxygen, etc. better. FIG.
The gas to be recovered, which is the raw material gas, is introduced from the inlet 1 of the gas to be recovered, the solenoid valves 8 and 10 are opened, and the gas is introduced into the adsorption cylinder 4. The SF6 gas that hardly adsorbs from the gas is condensed and sent from the SF6 gas outlet 3 to the buffer tank 30 in FIG.
[0038]
The adsorbent in the adsorption cylinder 4 adsorbs nitrogen gas, which is a dilution gas, and becomes full (adsorption saturation) shortly before the introduction of the raw material gas is stopped, and the pressure is equalized between the adsorption cylinder 5 after the regeneration process is completed. The process of conversion is performed.
That is, the solenoid valves 8, 18, 11, and 13 are closed, the solenoid valves 14, 15, 10, and 12 are opened, and the SF6 gas floating in the adsorption cylinder 4 is moved toward the adsorption cylinder 5 together with some nitrogen gas. After moving, the solenoid valves 10, 14, 13 are closed, the solenoid valves 11, 9, 8, 12, 15, 18 are opened, the raw material gas is introduced into the adsorption cylinder 5, and the concentrated SF6 gas is Since the gas is led out from the SF3 gas outlet 3 through 15 and 18, the adsorption cylinder 5 enters the adsorption process.
[0039]
Nitrogen gas, etc., which is a dilution gas adsorbed by the adsorbent in the adsorption cylinder 4, is released through the solenoid valves 11 and 9 when the adsorbed nitrogen gas is released by lowering the pressure in the adsorption cylinder. After being stored in the gas tank 6, the valve 51 is opened by the pump 7 and sent out from the outlet 2 of the exhaust gas to the collection container 26 of FIG. Again, the SF6 gas concentration and pressure in the collected gas taken in at the inlet 1 are measured by the SF6 gas concentration meter 20 and the pressure sensor 36, and separated after the SF6 gas concentration in the collected gas falls below a certain value. Since the concentration of SF6 contained in the diluted gas is very low, valve 51 is closed, 52 is opened, and the gas is released into the atmosphere.
Thus, in both (A) and (B), the mixed gas is continuously separated into SF6 and dilution gas by alternately repeating the adsorption process, pressure equalization process, and regeneration process with two adsorption cylinders, and one is recovered. At the same time, the other is returned to the container to be collected.
[0040]
Note that the pressure equalization step in the description of the flow charts of FIGS. 2A and 2B can be omitted depending on the capability of the apparatus.
Next, FIG. 4 shows an example of filling. This will be described using this.
The gas supply unit 100 capable of supplying SF6 gas and dilution gas by the SF6 gas supply source 60 constituted by the SF6 gas cylinder 55 and the pressure reducing valve 57, the dilution gas supply source 25 constituted by the nitrogen gas cylinder 27 and the pressure reduction valve 28, and the gas shown in FIG. In the gas separation / recovery / filling device having the pressure sensor 36 and the concentration sensor 20 in the separation unit 21, the container 26, the gas supply unit 100, and the gas separation unit are connected by a conduit, and the pressure sensor 36 and the concentration sensor 20 are connected to each other. The mixed gas in the container to be collected is connected by a conduit, and the pressure and concentration of the mixed gas are measured. Although not shown in the figure, the pressure sensor 36 and the concentration sensor 20 are connected by a signal line. Also connected to the control unit, which is omitted in the figure, is connected to the gas supply unit through a signal line from the control unit, and is supplied from the gas supply unit 100 to the recovery container 26 according to instructions from the control unit. And SF6 gas is introduced in a controlled manner. The diluent gas is introduced into the collection target container 26 by opening the valve 29 'in accordance with the instruction of the control unit, and after a certain amount of outside air remaining in the container is discharged from the collection target container 26, the SF6 gas is also opened through the valve 29. The pressure and concentration inside the container to be collected are detected by the pressure sensor 36 and the concentration sensor 20, and the SF6 gas and the dilution gas are supplied from the gas supply unit while controlling the SF6 gas and the dilution gas so as to reach a predetermined filling pressure (filling )
[0041]
Next, another embodiment will be described.
A gas supply unit 100 that can supply SF6 gas and dilution gas by a dilution gas supply source 25 constituted by an SF6 gas supply source 60, a nitrogen gas cylinder 27, and a pressure reduction valve 28 constituted by a gas separation unit 21, an SF6 gas cylinder 55, and a pressure reduction valve 57. 2 and the pressure sensor 36 and the concentration sensor 20 in the gas separation unit 21 shown in FIG. 2 are omitted in the drawing, but in the gas separation recovery and filling apparatus having the control unit, the container 26 and the gas supply unit 100 are connected to each other. Connected with a conduit, the mixed gas in the container 26 to be collected is connected to the gas separation unit 21, the pressure sensor 36, and the concentration sensor 20 with a conduit, and the pressure and concentration of the mixed gas are measured. Although signal lines are omitted,
[0042]
The pressure sensor, the concentration sensor, and the control unit are connected by a signal line, and further, the control unit, the gas separation unit, and the gas supply unit are connected, and the control unit, the gas separation unit, and the gas supply unit are further connected. Connected by a signal line, SF6 gas and dilution gas are introduced from the gas supply unit by opening and closing the valves 29 ′ and 29 by the control unit, respectively. After 29 ′ is opened and introduced, a certain amount of outside air remaining in the container is discharged from the container to be collected 26, and then SF6 gas is introduced with the valve 29 opened to reduce the pressure and concentration in the container to be collected. While supplying gas from the gas supply unit 100 so that the predetermined filling pressure and concentration are detected while being detected by the pressure sensor 36 and the concentration sensor 20, the mixed gas in the container to be recovered is introduced into the gas separation unit 21 and SF6 gas is supplied. And the diluted gas containing the outside air. The outlet gas inlet 2 ′ is connected and returned, and the dilution gas containing the outside air is opened to open the valve 52 and discharged out of the container to be recovered from the discharge port 50, and the air remaining in the container to be recovered 26 The filling time was shortened by filling SF6 gas while discharging etc.
Note that the necessary gas may be returned to the container to be recovered. The dilution gas may be returned to the container to be recovered as necessary from the relationship between the detected pressure and concentration, and the SF6 gas may be discharged out of the container to be recovered.
[0043]
【The invention's effect】
According to the present invention, it is possible to recover the SF6 gas in the container to be recovered without releasing the mixed gas containing the diluted SF6 gas into the atmosphere.
Further, when refilling, the separated and concentrated SF6 gas is led out to a container such as a transformer, and the dilution gas is led out of the container, so that air or the like can be discharged while filling and the time can be shortened.
[Brief description of the drawings]
FIG. 1 is a flowchart showing the overall configuration of the present invention.
FIG. 2 (A) and FIG. 2 (B) are flow charts showing the detailed configuration of a gas separation unit 21. FIG.
FIG. 3 is a flow diagram showing the state of interconnection between a container to be collected 26, a gas extraction unit 66, and a gas separation unit 21;
FIG. 4 is a flow diagram when an exhaust gas recovery container 63 is connected to the exhaust gas outlet 2 of the gas separation unit 21 and a gas supply unit 100 is connected to the recovery container 26;
[Explanation of symbols]
1 Collected gas inlet
1 'Collected gas outlet
2 Exhaust gas outlet
2 'exhaust gas inlet
3 SF6 gas outlet
4 Suction cylinder
5 Suction cylinder
6 Exhaust gas tank
7 Pump
8-19 Solenoid valve
20 SF6 gas concentration sensor
21 Gas separation unit
22 Pressurizing part
23 Liquefaction part
24 storage tank
25 Nitrogen gas supply unit
26 Collected containers
27 Nitrogen gas cylinder
28 Pressure reducing valve
29 Solenoid valve
29 'Solenoid valve
30 Buffer tank
31 Pressurizing pump
32 Pressure reducing valve
33 Cooler
34 Solenoid valve
35 Liquefaction tank
36 Pressure sensor
37 Solenoid valve
40 Outside air supply section
41 Air filter
42 Air pump
43 Hair dryer
44 Supply outside air outlet
51 Solenoid valve
52 Solenoid valve
55 SF6 gas cylinder
57 Pressure reducing valve
63 Exhaust gas collection container
64 Solenoid valve
64 'solenoid valve
65 Booster pump
66 Gas outlet
67 Solenoid valve
68 Solenoid valve
69 Pressure reducing valve
70 Outside air intake
100 Gas supply unit

Claims (6)

SF6ガスと希釈ガスが混合した被回収ガスからガスを分離するガス分離回収充填装置において、被回収容器とガス分離部とを導管で接続し、該被回収容器中の被回収ガスを該ガス分離部で分離して、分離した一方の希釈ガスを回収すると共に、他方のSF6ガスを導管にて前記の被回収容器に戻して充填するように構成したことを特徴とするガス分離回収充填装置。  In a gas separation / recovery / filling device that separates a gas from a gas to be recovered mixed with SF6 gas and a diluent gas, the container to be recovered and a gas separation unit are connected by a conduit, and the gas to be recovered in the container to be recovered is separated into the gas A gas separation / recovery / filling device configured to collect one of the separated dilution gases and return the other SF6 gas to the collection target container via a conduit and fill the separated recovery gas. 被回収容器内にあるSF6ガスと希釈ガスの混合した混合ガスからガスを分離するガス分離回収充填方法において、被回収容器から導管を介してガス分離部に混合ガスを導く工程と、該ガス分離部で混合ガスをSF6ガスと希釈ガスに分離する工程と、分離した一方の希釈ガスを回収する工程と、他方のSF6ガスを導管を介して該被回収容器に戻して充填する工程を同時に行なうことを特徴とするガス分離回収充填方法。In a gas separation recovery filling method for separating a gas from a mixed gas of SF6 gas and dilution gas in a container to be recovered, a step of introducing the mixed gas from the container to be recovered to a gas separation part through a conduit, and the gas separation The step of separating the mixed gas into SF6 gas and diluent gas, the step of collecting one of the separated diluent gases, and the step of filling the other SF6 gas back into the container to be collected through a conduit are performed simultaneously. A gas separation recovery filling method characterized by the above. 該被回収容器にガス供給部からガスを供給する工程と、該被回収容器のガスの圧力が所定値よりも低くなった場合に、該ガス供給部から希釈ガス又はSF6ガスを該被回収容器へ導入工程とを更に有することを特徴とする請求項2記載のガス分離回収充填方法。  A step of supplying gas from the gas supply unit to the recovery container; and when the pressure of the gas in the recovery container is lower than a predetermined value, the recovery container supplies dilution gas or SF6 gas from the gas supply unit. 3. The gas separation / recovery / filling method according to claim 2, further comprising an introduction step. SF6ガスと希釈ガスが混合した被回収ガスからガスを分離するガス分離部と空気ポンプとドライヤーで外気を取り入れるようにしたガス供給部と液化回収部とで構成するガス分離回収充填装置において、被回収容器とガス分離部とを導管で接続し、該被回収容器中の被回収ガスを該ガス分離部でSF6ガスと希釈ガスに分離し、SF6ガスを液化回収部にて回収すると同時に、分離した他方の希釈ガスを導管にて前記の被回収容器に戻して充填するように構成し、分離回収作業の進行に伴い被回収容器の圧力が所定値よりも低くなった場合に、該ガス供給部から外気を該被回収容器へ導入することを特徴とするガス分離回収充填装置。  In a gas separation / recovery / filling device comprising a gas separation unit that separates a gas from a gas to be collected mixed with SF6 gas and a dilution gas, a gas supply unit configured to take outside air with an air pump and a dryer, and a liquefaction recovery unit. The recovery container and the gas separation part are connected by a conduit, and the gas to be recovered in the recovery container is separated into SF6 gas and dilution gas by the gas separation part, and at the same time the SF6 gas is recovered by the liquefaction recovery part. The other diluted gas is returned to the container to be collected by a conduit and filled, and when the pressure of the container to be collected becomes lower than a predetermined value as the separation and recovery operation proceeds, the gas supply is performed. A gas separation / recovery / filling apparatus, wherein outside air is introduced into the container to be collected from a section. ガス分離部とSF6ガスと希釈ガスが供給できるガス供給部と圧力センサーと濃度センサーを有するガス分離回収充填装置において、被回収容器とガス供給部とガス分離部を導管で接続し、該被回収容器内の圧力と濃度を検出しながら所定の充填圧力と濃度になるようガス供給部よりSF6ガスと希釈ガスを制御しながら充填するとともに被回収容器の被回収ガスをガス分離部に供給してSF6ガスと希釈ガスに分離し、該検出した圧力と濃度により分離したSF6または希釈ガスを被回収容器に戻し入れることを特徴とするガス分離回収充填装置。  In a gas separation recovery and filling apparatus having a gas separation unit, a gas supply unit capable of supplying SF6 gas and a dilution gas, a pressure sensor, and a concentration sensor, the container to be recovered, the gas supply unit, and the gas separation unit are connected by a conduit, and the recovery target While controlling the SF6 gas and dilution gas from the gas supply unit while controlling the pressure and concentration inside the container while controlling the SF6 gas and dilution gas, the gas to be recovered is supplied to the gas separation unit. A gas separation / recovery / filling device, wherein SF6 gas and dilution gas are separated into SF6 gas and dilution gas, and SF6 or dilution gas separated according to the detected pressure and concentration is returned to the container to be collected. ガス分離部とSF6ガスと希釈ガスが供給できるガス供給部と圧力センサーと濃度センサーを有するガス分離回収充填装置において、被回収容器とガス供給部とガス分離部を導管で接続し、該被回収容器内の圧力と濃度を検出しながら所定の充填圧力と濃度になるよう供給部よりSF6ガスと希釈ガスを導入し、更に該混合ガスを該被回収容器からガス分離部に導入して、SF6ガスと外気を含む希釈ガスに分離し、SF6ガスを被回収容器に戻し入れ、外気を含む希釈ガスを被回収容器外に排出するよう構成したことを特徴とするガス分離回収充填装置。  In a gas separation recovery and filling apparatus having a gas separation unit, a gas supply unit capable of supplying SF6 gas and a dilution gas, a pressure sensor, and a concentration sensor, the container to be recovered, the gas supply unit, and the gas separation unit are connected by a conduit, and the recovery target While detecting the pressure and concentration in the container, SF6 gas and dilution gas are introduced from the supply unit so that the predetermined filling pressure and concentration are obtained, and further, the mixed gas is introduced from the container to be collected into the gas separation unit, and SF6 A gas separation / recovery / filling device configured to separate a diluent gas containing gas and outside air, return SF6 gas to the container to be collected, and discharge the diluent gas containing outside air to the outside of the container to be collected.
JP2003140626A 2003-05-19 2003-05-19 Gas separation recovery filling equipment Expired - Fee Related JP4064297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140626A JP4064297B2 (en) 2003-05-19 2003-05-19 Gas separation recovery filling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140626A JP4064297B2 (en) 2003-05-19 2003-05-19 Gas separation recovery filling equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000139915A Division JP3453342B2 (en) 2000-05-12 2000-05-12 Gas separation recovery filling equipment

Publications (2)

Publication Number Publication Date
JP2004002188A JP2004002188A (en) 2004-01-08
JP4064297B2 true JP4064297B2 (en) 2008-03-19

Family

ID=30438120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140626A Expired - Fee Related JP4064297B2 (en) 2003-05-19 2003-05-19 Gas separation recovery filling equipment

Country Status (1)

Country Link
JP (1) JP4064297B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517128B2 (en) * 2010-06-30 2014-06-11 公益財団法人若狭湾エネルギー研究センター SF6 gas recovery apparatus and SF6 gas recovery method
CN113775921A (en) * 2021-09-06 2021-12-10 国网江苏省电力有限公司电力科学研究院 On-site positive pressure type sulfur hexafluoride gas recovery device and method

Also Published As

Publication number Publication date
JP2004002188A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP5926292B2 (en) Method and apparatus for recovering high value components by waste gas stream adsorption
KR101284728B1 (en) Method and equipment for selectively collecting process effluent
CA2569057C (en) Gas recovery of sulphur hexafluoride
JP2009099501A (en) Gas recovery device and its method
JP4033591B2 (en) SF6 gas recovery device
JP4064297B2 (en) Gas separation recovery filling equipment
JP4439655B2 (en) SF6 gas recovery device
JP4033593B2 (en) SF6 gas recovery device
JP2004091298A (en) Apparatus and method for recovering sulfur hexafluoride gas
JP3453342B2 (en) Gas separation recovery filling equipment
JP2006061831A (en) Pressure variable adsorption type gas separation method and apparatus
JP4047505B2 (en) SF6 gas recovery device
KR20210067589A (en) Sf6 liquid purification system increasing the sf6 recovery and recovering method using the same
JP2004340844A (en) Leak inspection device and control method of leak inspection device
KR101155996B1 (en) Recovery device of the insulation gas and system control method thereof
JP2001129344A (en) Sf6 gas recovery apparatus
JP4033592B2 (en) SF6 gas recovery device
US11456132B2 (en) Electrical switching device
JP2002355518A (en) Equipment for recovering specified gas
KR101207832B1 (en) Recovery device of the insulation gas using PSA and system control method thereof
JP2003044146A (en) Filling density adjuster for specific gas
KR101077025B1 (en) Gas recovery device and method therefor
JP2002114504A (en) Device and method for recovering sf6 gas
JP2003299931A (en) Method for separating gas and device for separating gas
JP7289908B1 (en) Pressure Swing Adsorption Gas Separator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees