JP4063703B2 - Crankshaft manufacturing method - Google Patents

Crankshaft manufacturing method Download PDF

Info

Publication number
JP4063703B2
JP4063703B2 JP2003101953A JP2003101953A JP4063703B2 JP 4063703 B2 JP4063703 B2 JP 4063703B2 JP 2003101953 A JP2003101953 A JP 2003101953A JP 2003101953 A JP2003101953 A JP 2003101953A JP 4063703 B2 JP4063703 B2 JP 4063703B2
Authority
JP
Japan
Prior art keywords
crank
connecting portion
crankshaft
connection
connection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003101953A
Other languages
Japanese (ja)
Other versions
JP2004308751A (en
Inventor
一郎 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyama Manufacturing Co Inc
Original Assignee
Maruyama Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyama Manufacturing Co Inc filed Critical Maruyama Manufacturing Co Inc
Priority to JP2003101953A priority Critical patent/JP4063703B2/en
Publication of JP2004308751A publication Critical patent/JP2004308751A/en
Application granted granted Critical
Publication of JP4063703B2 publication Critical patent/JP4063703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/10Crankshafts assembled of several parts, e.g. by welding by crimping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/30Material joints
    • F16C2226/36Material joints by welding

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、往復動ポンプ等で用いられるクランク軸に関し、特にその製造方法に関するものである。
【0002】
【従来の技術】
ピストンないしはプランジャ(以下「ピストン」と総称する)の往復動により液体を輸送するための従来一般の往復動ポンプは、シリンダと、シリンダ内を往復動するピストンと、ピストンを駆動する駆動部とを備えている。シリンダの、駆動部とは反対側の端部には、いわゆるポンプ室が形成されている。また、駆動部は、電動モータや内燃エンジン等の原動機からの動力を受けて回転し、ピストンの往復直線運動に変換するためのクランク軸を備えている。
【0003】
上述したような往復動ポンプにおけるクランク軸は、原動機の出力回転軸に接続される中空軸状の接続部と、接続部の中心軸線から偏心しているクランクピンを有するクランク部とから構成されている。
【0004】
クランク軸の従来の製造方法としては、次の3つの方法が知られている。
【0005】
第1の方法は、焼入れや焼戻しを施して調質した合金鋼の丸棒を素材として、クランク部及び接続部を機械加工して、所定の形状を得るというものである。
【0006】
第2の方法は、非調質の合金鋼の丸棒に対して、クランク部に相当する部分を鍛造して近似形状とした後、これを素材として調質後、クランク部及び接続部を機械加工して所定の形状を得るというものである。
【0007】
第3の方法は、以下の特許文献1に開示されている方法であり、接続部に相当する素材と、クランク部に相当する素材とを溶接により互いに結合した後、機械加工により所定の形状を得るというものである。
【0008】
【特許文献1】
特開昭50−133364号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上述したような従来のクランク軸製造方法には種々の問題点がある。
【0010】
すなわち、上記の第1及び第2の方法にあっては、接続部の機械加工が、原動機の出力回転軸に合わせた穴とキー溝部とで形成される一定の深さのある有底穴の加工となるので、キー溝部の加工に時間がかかり、コストがかかるという問題がある。
【0011】
また、第3の方法では、溶接部分にスラグ巻込みや他の溶接欠陥が起きやすいという問題もある。
【0012】
そこで、本発明の目的は、かかる従来における技術的課題を解決し、安価に且つ容易に所望形状のクランク軸を製造することのできる製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明は、回転軸(24)が嵌合接続される穴(38)を有し且つ回転軸(24)との締結用キー(40)が挿入されるキー溝部(42)が形成された接続部(34)と、接続部(34)に一体的に設けられ、接続部(34)の中心軸線(C)から偏心したクランクピン(44)を有するクランク部(36)とを備えるクランク軸(26)を製造する方法において、接続部(34)となる中空軸状の接続部素材(134)を用意し、クランク部(36)となる丸棒状のクランク部素材(136)を用意し、接続部素材(134)に対して、一端側の部分(46)に穴(38)とキー溝部(42)を加工すると共に、他端側に内径が穴(38)の内径よりも大きな拡径部分(48)を形成し、接続部素材(134)における前記他端側の端面(50)とクランク部素材(136)の一方の端面とを突き合わせて摩擦圧接し、摩擦圧接後、クランクピン(44)を形成すべくクランク部素材(136)の外形を加工すると共に、接続部素材(134)の外径を調整すべく接続部素材(134)の外形を加工することを特徴としている。
【0014】
この方法においては、接続部素材(134)及びクランク部素材(136)として非調質の鋼材を用いることができる。両素材(134,136)を接合する手段が摩擦圧接によるため、接合部(52)の信頼性は高いものとなる。
【0015】
また、摩擦接合の開始都時に面圧を高めるて確実に摩擦接合を可能とするために、接続部素材(134)における前記端面(50)をテーパ面とすることが有効である。
【0016】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。
【0017】
図1は本発明の実施の形態に係るピストンの往復動により液体を輸送するための往復動ポンプ10を示す断面図である。図示の往復動ポンプ10は、基本的には従来から知られている一般的な3連式のものであり、3本のシリンダ12が互いに平行に配置されており、各シリンダ12内にピストン(プランジャ)14が往復動可能に設けられている。また、シリンダ12の一端側には、ピストン14を往復動させるための駆動部16が設けられており、他端側にはポンプ室(図示しない)が配設されている。ポンプ室は、ピストン14がシリンダ12内で往復動された場合に、液体をポンプ室内に吸引し、そしてポンプ室から外部に吐出するための弁装置を備えている。
【0018】
駆動部16は、ポンプケーシング18の一部を構成するクランクケース20と、クランクケース20の外部に配置される例えば電動モータや内燃エンジン等の原動機22とを備えている。また、クランクケース20内には、原動機22の出力回転軸24に接続されて回転駆動されるクランク軸26と、ピストン14にピストンロッド28を介して一体的に固定されるピストン元30と、ピストン元30とクランク軸26とを連結するコネクションロッド32とが配設されている。原動機22を駆動させ、クランク軸26を所定の方向に回転させると、その回転力がコネクションロッド32、ピストン元30及びピストンロッド28を経て伝えられ、ピストン14がシリンダ12内を往復動するよう構成されている。
【0019】
図2及び図3は、本発明の製造方法に従って製造されたクランク軸26を示している。図1〜図3から理解される通り、クランク軸26は、中空軸状の接続部34と、接続部34と一体化されたクランク部36とから構成されている。接続部34は、原動機24の出力回転軸24が嵌合接続される穴38を有し、その穴38の内周面には、出力回転軸24とクランク軸26とを締結するためのキー40が挿入されるキー溝部42が形成されている。クランク部36は、それぞれが各コネクションロッド32と回転可能に係合される3つのクランクピン44を有している。3つのクランクピン44は、接続部36の中心軸線Cから同一の偏心量で偏心されている。また、これらのクランクピン44は、3つのピストン14が一定周期でずれて往復動されるよう、角度的に等間隔(120度間隔)に形成されている。
【0020】
次に、このようなクランク軸26を製造する手順について図4及び図5に沿って説明する。
【0021】
まず、接続部34となる接続部素材134として、非調質鋼からなる中空軸状部材を用意する。また、クランク部36となるクランク部素材136として、同じく非調質鋼からなる中実の丸棒を用意する。クランク部素材136の外径は接続部素材134の外径とほぼ同一とすることが好ましい。これらの接続部素材134とクランク部素材136とは、以下で述べるが、互いに摩擦圧接により互いに接合される。
【0022】
ここで、非調質鋼とは、調質(焼入れ・焼戻し)を行っていない鋼であり、熱間鍛造後の放冷操作中にバナジウム等の微細炭窒化添加物の析出によって強化された鋼をいう。非調質鋼は、調質に伴うコストを低減でき、また、硬さ等の機械的性質の均一性に優れているという特質がある。
【0023】
次いで、図4に示すように、接続部素材134に対し、原動機22の出力回転軸24の外径とほぼ同一の内径の穴38が形成されるよう、機械加工を行う。この加工は、クランク部36とは反対側となる端部から一定長さの範囲の部分46に対して行う。また、この部分46の内周面に、原動機22の出力回転軸24とクランク軸26とを締結するためのキー40を受けるキー溝部42を加工する。この穴38とキー溝部40の機械加工は、全長にわたり中空となっている接続部素材134に対して行うため、有底穴に対して行う場合に比して、格段に手間がかからない。従って、加工時間も短くて済み、よって加工コストも安価なものとなる。更に、容易に加工できることから、加工精度の向上にも寄与する。
【0024】
また、接続部素材134に対しては、クランク部素材136が摩擦圧接される側の端部から所定長さの範囲内の部分48に、内径を部分46よりも大きくする加工を行う。この部分48を内径が拡径されることから拡径部分と称すると、拡径部分48の長さは、摩擦圧接を行うに十分な長さであって、摩擦圧接に伴って生ずるバリの格納部位となるべき大きさとされている。拡径部分48の内径は、接続部素材134の中心軸線Cからキー溝部42の外端までの最大長さよりも大きくされている。これにより、拡径部分48の断面形状の内周と外周は、当該拡径部分48の全長にわたり、常に円形となり、キー溝部42による窪み等は形成されない。
【0025】
更に、拡径部分48側の端面50を接続部素材134の中心軸線Cに対して傾斜するよう、すなわちテーパ面となるよう機械加工を行う。このテーパ面50は内周縁側が外周縁側よりも突出させることが好ましい。
【0026】
以上の接続部素材134に対する機械加工が完了したならば、周知の摩擦圧接装置(図示しない)に接続部素材134とクランク部材136をセットし、摩擦圧接を行う。ここで、摩擦圧接とは、2つの部材を回転させつつ突き合わせ、その突合せ面に摩擦発熱を起こさせて強加圧力をかけて両部材を接合させる手法をいう。
【0027】
このような摩擦圧接による接合であるため、接合部52に高い信頼性が得られる。また、接続部素材134の端面50がテーパ面となっているため、摩擦圧接開始時においては接触面積が小さく、面圧を上げることができ、摩擦圧接を確実に行うことができる。加えて、本実施形態では、クランク部素材136が接続部素材134に最初に接する部位が接続部素材134の端面50の内周縁であり、しかも接続部素材134の拡径部分48の内径が他の部分よりも大きくされているため、摩擦圧接が進行するにつれて、図5に示すようにバリ54が拡径部分48内に格納されることとなり、接続部素材134の部分46にバリ54が入り込んで原動機22の出力回転軸24の挿入を妨げる等の不具合が防止される。更に、この拡径部分48で摩擦圧接時の熱の影響を吸収するため、部分46の穴加工寸法が変化することを防止し、精度を高く維持することができる。
【0028】
摩擦圧接が完了したならば、接続部素材134の中心軸線Cを基準として、接続部素材134の外径を調整する機械加工や、クランク部素材136に対してクランクピン44を形成する機械加工等の外形加工を行う。斯くして、図2及び図3に示す形状のクランク軸26が製造される。
【0029】
このように、非調質鋼からなる2つの素材134,136を摩擦圧接により接合してクランク軸26を製造するため、クランク軸26全体、特にクランク部36の強度が均一となり、調質した合金鋼を素材として用いたときのように切削加工により硬化層がなくなる心配はない。なお、図2において符号56は、キー40をキー溝部42に固定するためのねじ58(図1参照)が螺合されるねじ穴を示している。
【0030】
以上述べた本実施形態にかかる製造方法によれば、容易に高精度のクランク軸を容易に製造することが可能であるが、本発明は上記実施形態に限られないことは言うまでもない。
【0031】
例えば、上記実施形態では、接続部素材とクランク部素材とを同じ合金鋼としているが、摩擦圧接法を利用していることから、異なる材質の素材同士を接合させることができる。
【0032】
また、上記実施形態では、テーパ端面50は内周縁が外周縁よりも突出している形態を採っているが、逆に外周縁が内周縁よりも突出している形態であってもよい。
【0033】
更に、本発明の方法により製造されるクランク軸は、3連式往復動ポンプ用に限られず、その他の多連式や単式の往復動ポンプ用や、その他の機構用であってもよい。
【0034】
【発明の効果】
以上説明したように本発明の製造方法によれば、所定形状のクラング軸を容易に且つ高精度に製造することができる。製造が容易であることから、製造に要するコストも低くて済む。また、2つの素材を摩擦圧接により接合するため、接合部の信頼性が高く、高精度であることも相俟って、当該方法により製造されたクランク軸を用いた往復動ポンプの性能や信頼性の向上にも寄与することとなる。
【図面の簡単な説明】
【図1】本発明の方法により製造されたクランク軸が適用可能な3連式往復動ポンプを示す断面図である。
【図2】本発明の方法により製造されたクランク軸の一実施形態を示す部分断面側面図である。
【図3】図2のIII−III線に沿っての矢視図である。
【図4】図2及び図3に示すクランク軸を製造する場合に用いられる接続部素材とクランク部素材とを示す部分断面側面図である。
【図5】図4の接続部素材とクランク部素材とを摩擦圧接した状態を示す部分断面側面図である。
【符号の説明】
10…往復動ポンプ、12…シリンダ、14…ピストン、16…駆動部、22…原動機、24…出力回転軸、26…クランク軸、34…接続部、36…クランク部、38…穴、40…キー、42…キー溝部、44…クランクピン、48…拡径部分、50…端面(テーパ面)、52…接合部、54…バリ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crankshaft used in a reciprocating pump or the like, and more particularly to a manufacturing method thereof.
[0002]
[Prior art]
A conventional general reciprocating pump for transporting liquid by reciprocating movement of a piston or plunger (hereinafter collectively referred to as “piston”) includes a cylinder, a piston that reciprocates in the cylinder, and a drive unit that drives the piston. I have. A so-called pump chamber is formed at the end of the cylinder opposite to the drive unit. Moreover, the drive part is provided with the crankshaft for receiving the motive power from motors, such as an electric motor and an internal combustion engine, and rotating and converting into the reciprocating linear motion of a piston.
[0003]
The crankshaft in the reciprocating pump as described above is composed of a hollow shaft-like connecting portion connected to the output rotation shaft of the prime mover and a crank portion having a crankpin eccentric from the central axis of the connecting portion. .
[0004]
As conventional crankshaft manufacturing methods, the following three methods are known.
[0005]
The first method is to obtain a predetermined shape by machining a crank part and a connection part using a round bar of alloy steel subjected to quenching and tempering as a raw material.
[0006]
The second method is to forge a portion corresponding to the crank part to a non-tempered alloy steel round bar to obtain an approximate shape, and after using this as a raw material, the crank part and the connecting part are machined. Processing to obtain a predetermined shape.
[0007]
A third method is a method disclosed in the following Patent Document 1, and after joining a material corresponding to the connecting portion and a material corresponding to the crank portion to each other by welding, a predetermined shape is formed by machining. Is to get.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 50-133364
[Problems to be solved by the invention]
However, the conventional crankshaft manufacturing method as described above has various problems.
[0010]
That is, in the first and second methods described above, the machining of the connecting portion is performed on the bottomed hole having a certain depth formed by the hole and the key groove portion that are aligned with the output rotation shaft of the prime mover. Since this is a process, there is a problem that it takes time and costs to process the key groove.
[0011]
Further, the third method has a problem that slag entrainment and other welding defects are likely to occur in the welded portion.
[0012]
Accordingly, an object of the present invention is to provide a manufacturing method capable of solving the conventional technical problems and manufacturing a crankshaft having a desired shape easily and inexpensively.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a key groove portion having a hole (38) into which the rotating shaft (24) is fitted and connected, and into which a fastening key (40) with the rotating shaft (24) is inserted. A crank part having a crank pin (44) formed integrally with the connection part (34) in which (42) is formed and the connection part (34) and being eccentric from the central axis (C) of the connection part (34) ( 36), a hollow shaft-shaped connecting portion material (134) serving as the connecting portion (34) is prepared, and a round bar-shaped crank portion material serving as the crank portion (36) is prepared. (136) is prepared, and the hole (38) and the key groove portion (42) are processed in the portion (46) on one end side with respect to the connection portion material (134), and the inner diameter is the hole (38) on the other end side. Forming an enlarged diameter part (48) larger than the inner diameter of the connecting part material (134) The end face of the other end side (50) against the one end surface of the crank portion material (136) and friction welding, after friction welding the definitive, the outer shape of the crank portion material to form a crank pin (44) (136) And the outer shape of the connection portion material (134) is processed to adjust the outer diameter of the connection portion material (134) .
[0014]
In this method, a non-heat treated steel material can be used as the connecting portion material (134) and the crank portion material (136). Since the means for joining both materials (134, 136) is friction welding, the reliability of the joint (52) is high.
[0015]
In addition, in order to increase the surface pressure at the start of friction welding and to enable friction welding with certainty, it is effective to make the end surface (50) of the connecting portion material (134) a tapered surface.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is a cross-sectional view showing a reciprocating pump 10 for transporting liquid by reciprocating pistons according to an embodiment of the present invention. The reciprocating pump 10 shown in the figure is basically of a general triple type known from the past, and three cylinders 12 are arranged in parallel to each other, and a piston ( Plunger) 14 is provided so as to be able to reciprocate. A drive unit 16 for reciprocating the piston 14 is provided on one end side of the cylinder 12, and a pump chamber (not shown) is provided on the other end side. The pump chamber includes a valve device for sucking the liquid into the pump chamber and discharging the liquid from the pump chamber to the outside when the piston 14 is reciprocated in the cylinder 12.
[0018]
The drive unit 16 includes a crankcase 20 constituting a part of the pump casing 18 and a prime mover 22 such as an electric motor or an internal combustion engine disposed outside the crankcase 20. Further, in the crankcase 20, a crankshaft 26 connected to the output rotary shaft 24 of the prime mover 22 and rotationally driven, a piston base 30 integrally fixed to the piston 14 via a piston rod 28, and a piston A connection rod 32 that connects the base 30 and the crankshaft 26 is provided. When the prime mover 22 is driven and the crankshaft 26 is rotated in a predetermined direction, the rotational force is transmitted through the connection rod 32, the piston base 30 and the piston rod 28, and the piston 14 reciprocates in the cylinder 12. Has been.
[0019]
2 and 3 show a crankshaft 26 manufactured according to the manufacturing method of the present invention. As understood from FIGS. 1 to 3, the crankshaft 26 includes a hollow shaft-shaped connection portion 34 and a crank portion 36 integrated with the connection portion 34. The connecting portion 34 has a hole 38 into which the output rotary shaft 24 of the prime mover 24 is fitted and connected, and a key 40 for fastening the output rotary shaft 24 and the crankshaft 26 to the inner peripheral surface of the hole 38. A key groove portion 42 is formed in which is inserted. The crank portion 36 has three crank pins 44 that are rotatably engaged with the respective connection rods 32. The three crank pins 44 are eccentric from the central axis C of the connecting portion 36 by the same eccentric amount. Further, these crank pins 44 are formed at equal angular intervals (120-degree intervals) so that the three pistons 14 are reciprocated while deviating at a constant period.
[0020]
Next, a procedure for manufacturing such a crankshaft 26 will be described with reference to FIGS.
[0021]
First, a hollow shaft-shaped member made of non-heat treated steel is prepared as the connection portion material 134 that becomes the connection portion 34. Further, as the crank part material 136 to be the crank part 36, a solid round bar made of non-heat treated steel is prepared. The outer diameter of the crank part material 136 is preferably substantially the same as the outer diameter of the connection part material 134. As will be described below, the connecting portion material 134 and the crank portion material 136 are joined to each other by friction welding.
[0022]
Here, non-tempered steel is steel that has not been tempered (quenched / tempered), and is strengthened by precipitation of fine carbonitriding additives such as vanadium during the cooling operation after hot forging. Say. Non-tempered steel has the characteristics that it can reduce the costs associated with tempering and has excellent uniformity in mechanical properties such as hardness.
[0023]
Next, as shown in FIG. 4, the connecting portion material 134 is machined so that a hole 38 having an inner diameter substantially the same as the outer diameter of the output rotary shaft 24 of the prime mover 22 is formed. This processing is performed on a portion 46 having a certain length from the end opposite to the crank portion 36. Further, a key groove portion 42 that receives a key 40 for fastening the output rotary shaft 24 and the crankshaft 26 of the prime mover 22 is machined on the inner peripheral surface of the portion 46. Since the machining of the hole 38 and the key groove portion 40 is performed on the connection portion material 134 that is hollow over the entire length, it is not much laborious as compared with the case of performing the processing on the bottomed hole. Accordingly, the processing time can be shortened, and the processing cost can be reduced. Furthermore, since it can process easily, it contributes also to the improvement of a processing precision.
[0024]
Further, the connecting portion material 134 is processed to have an inner diameter larger than that of the portion 46 in the portion 48 within a predetermined length from the end portion on the side where the crank portion material 136 is friction-welded. When this portion 48 is referred to as an enlarged diameter portion because the inner diameter is enlarged, the length of the enlarged diameter portion 48 is long enough to perform friction welding, and storage of burrs caused by friction welding is performed. The size should be a part. The inner diameter of the enlarged diameter portion 48 is larger than the maximum length from the central axis C of the connecting portion material 134 to the outer end of the key groove portion 42. Thereby, the inner periphery and the outer periphery of the cross-sectional shape of the enlarged diameter portion 48 are always circular over the entire length of the enlarged diameter portion 48, and no depression or the like by the key groove portion 42 is formed.
[0025]
Further, machining is performed so that the end surface 50 on the diameter-enlarged portion 48 side is inclined with respect to the central axis C of the connecting portion material 134, that is, a tapered surface. It is preferable that the inner peripheral edge of the tapered surface 50 protrudes more than the outer peripheral edge.
[0026]
When the machining for the connecting portion material 134 is completed, the connecting portion material 134 and the crank member 136 are set in a known friction welding apparatus (not shown), and the friction welding is performed. Here, the friction welding refers to a technique in which two members are butted while rotating and both the members are joined by applying frictional heat to the abutting surfaces and applying a strong pressure.
[0027]
Since it is joining by such friction welding, high reliability is obtained in the joining part 52. Moreover, since the end surface 50 of the connection part material 134 is a taper surface, a contact area is small at the time of the start of friction welding, a surface pressure can be raised, and friction welding can be performed reliably. In addition, in this embodiment, the part where the crank part material 136 first contacts the connection part material 134 is the inner peripheral edge of the end surface 50 of the connection part material 134, and the inner diameter of the enlarged diameter portion 48 of the connection part material 134 is other than that. Therefore, as the friction welding progresses, the burr 54 is stored in the enlarged diameter portion 48 as shown in FIG. 5, and the burr 54 enters the portion 46 of the connecting portion material 134. Thus, problems such as preventing insertion of the output rotating shaft 24 of the prime mover 22 are prevented. Further, since the diameter-enlarged portion 48 absorbs the influence of heat at the time of friction welding, it is possible to prevent a change in the hole machining size of the portion 46 and maintain high accuracy.
[0028]
When the friction welding is completed, machining for adjusting the outer diameter of the connection material 134 based on the central axis C of the connection material 134, machining for forming the crank pin 44 on the crank material 136, or the like. Perform external processing. Thus, the crankshaft 26 having the shape shown in FIGS. 2 and 3 is manufactured.
[0029]
In this way, since the crankshaft 26 is manufactured by joining the two materials 134 and 136 made of non-heat treated steel by friction welding, the strength of the entire crankshaft 26, particularly the crank portion 36, becomes uniform, and the tempered alloy There is no worry that the hardened layer disappears due to cutting as in the case of using steel as a material. 2, reference numeral 56 indicates a screw hole into which a screw 58 (see FIG. 1) for fixing the key 40 to the key groove portion 42 is screwed.
[0030]
According to the manufacturing method according to this embodiment described above, it is possible to easily manufacture a highly accurate crankshaft, but it goes without saying that the present invention is not limited to the above-described embodiment.
[0031]
For example, in the said embodiment, although the connection part raw material and the crank part raw material are the same alloy steel, since the friction welding method is utilized, the raw materials of a different material can be joined.
[0032]
Moreover, in the said embodiment, although the taper end surface 50 has taken the form in which the inner periphery protrudes from the outer periphery, conversely, the form in which the outer periphery protrudes from the inner periphery may be sufficient.
[0033]
Furthermore, the crankshaft manufactured by the method of the present invention is not limited to a triple reciprocating pump, but may be used for other multiple reciprocating pumps, a single reciprocating pump, or other mechanisms.
[0034]
【The invention's effect】
As described above, according to the manufacturing method of the present invention, a crankshaft having a predetermined shape can be manufactured easily and with high accuracy. Since the manufacturing is easy, the cost required for the manufacturing can be reduced. In addition, since the two materials are joined by friction welding, the performance and reliability of the reciprocating pump using the crankshaft manufactured by the method is combined with the high reliability and high precision of the joint. It will also contribute to the improvement of performance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a triple reciprocating pump to which a crankshaft manufactured by the method of the present invention can be applied.
FIG. 2 is a partial sectional side view showing an embodiment of a crankshaft manufactured by the method of the present invention.
FIG. 3 is a view taken along the line III-III in FIG. 2;
4 is a partial cross-sectional side view showing a connecting portion material and a crank portion material used in manufacturing the crankshaft shown in FIGS. 2 and 3. FIG.
5 is a partial cross-sectional side view showing a state in which the connecting portion material and the crank portion material of FIG. 4 are friction-welded. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Reciprocating pump, 12 ... Cylinder, 14 ... Piston, 16 ... Drive part, 22 ... Motor | power_engine, 24 ... Output rotary shaft, 26 ... Crankshaft, 34 ... Connection part, 36 ... Crank part, 38 ... Hole, 40 ... Key, 42 ... Key groove, 44 ... Crank pin, 48 ... Expanded diameter part, 50 ... End surface (tapered surface), 52 ... Junction, 54 ... Burr.

Claims (2)

回転軸(24)が嵌合接続される穴(38)を有し且つ前記回転軸(24)との締結用キー(40)が挿入されるキー溝部(42)が形成された接続部(34)と、前記接続部(34)に一体的に設けられ、前記接続部(34)の中心軸線(C)から偏心したクランクピン(44)を有するクランク部(36)とを備えるクランク軸(26)を製造する方法において、
前記接続部(34)となる中空軸状の接続部素材(134)を用意し、
前記クランク部(36)となる丸棒状のクランク部素材(136)を用意し、
前記接続部素材(134)に対して、一端側の部分(46)に前記穴(38)と前記キー溝部(42)を加工すると共に、他端側に内径が前記穴(38)の内径よりも大きな拡径部分(48)を形成し、
前記接続部素材(134)における前記他端側の端面(50)と前記クランク部素材(136)の一方の端面とを突き合わせて摩擦圧接し、
摩擦圧接後、前記クランクピン(44)を形成すべく前記クランク部素材(136)の外形を加工すると共に、前記接続部素材(134)の外径を調整すべく前記接続部素材(134)の外形を加工することを特徴とするクランク軸の製造方法。
A connecting portion (34) having a hole (38) into which the rotating shaft (24) is fitted and connected, and having a key groove portion (42) into which a fastening key (40) with the rotating shaft (24) is inserted. ) And a crank part (36) provided integrally with the connection part (34) and having a crank pin (44) eccentric from the central axis (C) of the connection part (34). In the method of producing
Prepare a hollow shaft-shaped connecting portion material (134) to be the connecting portion (34),
Prepare a round bar-shaped crank part material (136) to be the crank part (36),
The hole (38) and the key groove part (42) are processed in the part (46) on one end side with respect to the connection part material (134), and the inner diameter on the other end side is larger than the inner diameter of the hole (38). Forming a larger diameter expansion part (48),
The end surface (50) on the other end side of the connection portion material (134) and one end surface of the crank portion material (136) are brought into contact with each other and friction-welded,
After the friction welding, the outer shape of the crank part material (136) is processed to form the crank pin (44), and the outer diameter of the connection part material (134) is adjusted to adjust the outer diameter of the connection part material (134). A method of manufacturing a crankshaft characterized by machining an outer shape.
前記接続部素材(134)における前記端面(50)をテーパ面とすることを特徴とする請求項1に記載のクランク軸の製造方法。  The method of manufacturing a crankshaft according to claim 1, wherein the end surface (50) of the connecting portion material (134) is a tapered surface.
JP2003101953A 2003-04-04 2003-04-04 Crankshaft manufacturing method Expired - Fee Related JP4063703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101953A JP4063703B2 (en) 2003-04-04 2003-04-04 Crankshaft manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101953A JP4063703B2 (en) 2003-04-04 2003-04-04 Crankshaft manufacturing method

Publications (2)

Publication Number Publication Date
JP2004308751A JP2004308751A (en) 2004-11-04
JP4063703B2 true JP4063703B2 (en) 2008-03-19

Family

ID=33465585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101953A Expired - Fee Related JP4063703B2 (en) 2003-04-04 2003-04-04 Crankshaft manufacturing method

Country Status (1)

Country Link
JP (1) JP4063703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690367A (en) * 2015-05-22 2018-02-13 美国轮轴制造公司 The driving-shaft assembly of yoke with friction welding to transmission shaft tube

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056531A (en) * 2009-09-09 2011-03-24 Kyb Co Ltd Method for manufacturing piston rod
EP2769938B1 (en) 2013-02-22 2016-02-10 Joseph Vögele AG Drive shaft module for a construction machine
PL2769939T3 (en) 2013-02-22 2015-09-30 Voegele Ag J Screw conveyor for a material conveying system of construction machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690367A (en) * 2015-05-22 2018-02-13 美国轮轴制造公司 The driving-shaft assembly of yoke with friction welding to transmission shaft tube
CN107690367B (en) * 2015-05-22 2019-10-11 美国轮轴制造公司 The method for being used to form driving-shaft assembly

Also Published As

Publication number Publication date
JP2004308751A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
EP0404531A1 (en) Friction bonding apparatus
JP4075730B2 (en) Variable compression ratio mechanism
JP2006105390A (en) Shaft member for fluid bearing device and its manufacturing method
JP4063703B2 (en) Crankshaft manufacturing method
JPH1182671A (en) Swash plate type hydraulic device
CN1290814A (en) Method for producing compressor piston
EP1795751B1 (en) Sliding surface of sliding member
EP1801432A2 (en) Connecting rod and method of producing the same
JP2004060634A (en) Method of manufacturing crankshaft for hermetic reciprocating compressor
KR20030029493A (en) Refrigerating Compressor and Manufacturing Method of Connecting Rod of the Same
JPS63219890A (en) Combined crankshaft for rotary compressor
JP2004025198A (en) Diffusion welding method, manufacturing method of joining component and engine valve, and engine valve manufactured thereby
KR100358449B1 (en) Process for producing raw material of single-head piston
JP2002267015A (en) Method of manufacturing closed cavity piston
US8267006B2 (en) Axial piston machine
JPH10288145A (en) Radial plunger pump
JP2015227707A (en) Crank shaft and manufacturing method thereof
KR101281385B1 (en) Method for manufacturing piston for swash plate type compressor
JP3037925B2 (en) Manufacturing method of integral hollow push rod
KR20170094225A (en) Driveshaft
KR200290481Y1 (en) End piece for cam shaft
KR200230842Y1 (en) Main frame for compressor
JPS59176407A (en) Combined body of annular part and tubulous member and its manufacturing method
JP2008144638A (en) Piston
WO2021255485A1 (en) Variable internal combustion engine crank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees