JP4063594B2 - Manufacturing method of laminated piezoelectric actuator - Google Patents
Manufacturing method of laminated piezoelectric actuator Download PDFInfo
- Publication number
- JP4063594B2 JP4063594B2 JP2002158525A JP2002158525A JP4063594B2 JP 4063594 B2 JP4063594 B2 JP 4063594B2 JP 2002158525 A JP2002158525 A JP 2002158525A JP 2002158525 A JP2002158525 A JP 2002158525A JP 4063594 B2 JP4063594 B2 JP 4063594B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric actuator
- manufacturing
- laminated piezoelectric
- electrodeposition
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000004070 electrodeposition Methods 0.000 claims description 33
- 238000000576 coating method Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000003973 paint Substances 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 12
- 239000011810 insulating material Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 239000011347 resin Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000003822 epoxy resin Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 229910018559 Ni—Nb Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000256247 Spodoptera exigua Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、積層圧電アクチュエータの製造方法に関し、特に、耐湿性に優れ、保護性を有する、且つ薄く均一な絶縁層の形成方法に関するものである。
【0002】
【従来の技術】
積層圧電アクチュエータは、圧電セラミックス層と内部電極層を交互に積層し、内部電極層が一層ずつ対向電極に接続した構造で、電圧の印加により積層方向に数μmから数10μmの変位量が得られる。その主な用途は、半導体製造用の微小の位置決め装置や特殊なガスの流量を調整するマスフローコントローラのアクチュエータのような産業機器や、変位量を拡大する機構に積層圧電アクチュエータを組み込み、ワイヤー式ドットプリンターやインチワーム式超音波モータ等の民生機器まで、広い範囲に及んでいる。そのため、積層圧電アクチュエータには、使い勝手の良さや長期使用時の信頼性が要求されている。
【0003】
積層圧電アクチュエータの外周面には、対向する内部電極が露出しているので、使い勝手の良さや信頼性を確保するため、外周面に絶縁性の塗料を塗布し外装樹脂とするのが一般的である。従来、塗布工程において、塗料が表面張力により流れてしまい、積層圧電アクチュエータのコーナー部は、絶縁層が極端に薄くなる傾向がある。
【0004】
このような外装樹脂状態で、積層圧電アクチュエータを使用していると、外装樹脂の薄いコーナー部から水分が浸透し、内部電極まで水分が達すると、内部電極材料の一部の銀がイオン化し、電界に沿って移動し、対向極の電極に到達して電気的短絡に至る、所謂、シルバーマイグレーションが発生するという問題点がある。そこで、コーナー部の絶縁層厚みを確保するために、外装樹脂全体の厚みを厚く形成してコーナー部の外装樹脂厚みを確保したり、コーナー部を面取りし、表面張力の影響を減少し、樹脂が流れないように絶縁層を形成し、耐湿性の向上を図っている。
【0005】
【発明が解決しようとする課題】
しかしながら、前述した外装樹脂全体の厚みを厚くする方法では、薄く均一な絶縁層の形成は不可能で、積層圧電アクチュエータの無効な体積が大きくなってしまう問題点がある。また、コーナー部の面取りを行うと、製造コストが高騰してしまう問題点がある。
【0006】
本発明は、このような問題点を解決すべくなされたもので、コーナー部の絶縁層厚みが十分確保でき、耐湿性に優れ、保護性を有する、且つ薄く均一な絶縁層の形成が可能な積層圧電アクチュエータの製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明によれば、複数の圧電セラミックス層と内部電極層が交互に積層され、前記内部電極の表面露出部が一層置きにガラス等の絶縁物で絶縁処理した上に対向電極となるように内部電極に接続する一対の外部電極を有する積層圧電アクチュエータの外周面を絶縁塗料で被覆する製造方法において、先ず、電着塗料を用いて電着法により、外部電極や内部電極端部が表面に露出している外周面に一次絶縁層を形成し、次に、同じく電着法によりコーナー部近傍に二次絶縁層を形成することを特徴とする積層圧電アクチュエータの製造方法が得られる。
【0008】
また、本発明によれば、一次の電着塗料を付着させる電圧をV1、二次の電着塗料を付着させる電圧をV2とすると、V1<V2の電圧条件であることを特徴とする積層圧電アクチュエータの製造方法が得られる。
【0009】
さらに、本発明によれば、積層圧電アクチュエータの製造方法において、有機物絶縁材料の電着塗料や有機物絶縁材料と無機物絶縁材料が混合された電着塗料を用いることを特徴とする積層圧電アクチュエータの製造方法が得られる。
【0010】
電着塗装方法は、自動車の鋼板の防錆やカラー化で最近急激に発達した技術で、樹脂成分をイオン化して溶剤中に分散し、導電性の被塗工物に樹脂成分のイオン極性とは逆極性の電圧を印加して、被塗工物を溶剤中に浸漬し、プラス―マイナスの電気的吸着力で被塗工物表面に樹脂成分を付着し、しかる後に、熱や紫外線で樹脂を硬化する方法である。
【0011】
本発明では、一次の電着塗装で形成されるコーナー部の膜厚が非常に薄いため、二次の電着塗装時に、一次の電着塗装電圧より高電圧とすることで、トンネル効果で電界が漏れ、二次の電着塗装がコーナー部に集中するために、コーナー部の樹脂厚みを確保できる製造方法である。
【0012】
【実施例】
以下に実施例を挙げ、本発明の積層圧電アクチュエータの製造方法について、図面を参照して詳細に説明する。
【0013】
(実施例1)
まず、Pb(Ni-Nb)ZrTiO3系圧電セラミックスとAg/Pd系内部電極材料を用いて、グリーンシートの積層方法で、積層方向長さ10mm、積層方向の断面が5×5mmの寸法の積層燒結体を試作した。次に、該積層燒結体の5×10mm寸法の対向する2面に露出した内部電極端部を一層ずつ対向電極を形成するように、一層置きにガラス絶縁処理した後、複数の共通外部電極を形成し、該外部電極にリード線を半田付けし、外装樹脂塗工前の積層圧電アクチュエータとした。該積層圧電アクチュエータの外観を図3に示す。
【0014】
しかる後に、該積層圧電アクチュエータを、アクリル系電着塗料を満たした電着液に浸漬し、積層圧電アクチュエータのリード端子に直流30Vの電圧を30秒印加することによりアクリル樹脂を積層圧電アクチュエータ表面に露出している内部電極及外部電極の表面に付着させ、電着液から取り出した後、110℃で15分予備加熱し、さらにアクリル樹脂を150℃で1時間熱処理し、積層圧電アクチュエータの表面に焼き付けることによって、厚さ約15μmから30μmの一次のアクリル樹脂絶縁層を形成した。一次の絶縁層形成体の外観を図2に示す。この時、積層圧電アクチュエータのコーナー部の絶縁層の形成量は、ほんのわずかである。
【0015】
次に、二次の絶縁層形成として、積層圧電アクチュエータを同じアクリル系電着塗料を満たした電着液に浸漬し、積層圧電アクチュエータのリード端子に直流100Vの電圧を1分間印加し、積層圧電アクチュエータのコーナー部のみに電流が流れ、前記コーナー部のみにアクリル樹脂を付着させ、電着液から取り出した後、110℃で15分予備加熱と150℃で1時間の熱処理で積層圧電アクチュエータのコーナー部にアクリル樹脂を焼き付けることによって、コーナー部のみに約20μmから40μmの有機絶縁層を形成した。本実施例の製造方法による積層圧電アクチュエータの外観を図1に示した。
【0016】
本実施例の製造方法による積層圧電アクチュエータの寸法、有効圧電体積比率を表1に示した。比較のため、従来のエポキシ樹脂の粉体塗装で絶縁層を形成した積層圧電アクチュエータの寸法と有効圧電体積比率も示した。
【0017】
【表1】
【0018】
表1より、本実施例の製造方法によれば、従来方法に比較して、有効圧電活性比率が大きな積層圧電アクチュエータが得られる。
【0019】
また、水分の侵入に対する信頼性の評価として、85℃―90%相対湿度の高温高湿度の環境下で直流電圧100Vを印加して、エージングを実施した。エージング結果を表2に示した。
【0020】
【表2】
【0021】
表2より、本発明の製造方法によれば、コーナー部の絶縁樹脂厚みが確保できるので、コーナー部からの水分の侵入が少なく、高温高湿の環境下でも寿命が長い積層圧電アクチュエータが得られる。
【0022】
(実施例2)
実施例1と同様に、Pb(Ni-Nb)ZrTiO3系圧電セラミックスとAg/Pd系内部電極材料を用いて、グリーンシートの積層方法で、積層方向長さ10mm、積層方向の断面が5×5mmの寸法の積層燒結体を試作した。次に、該積層燒結体の5×10mm寸法の対向する2面に露出した内部電極端部を一層ずつ対向電極を形成するように、一層置きにガラス絶縁処理した後、複数の共通外部電極を形成し、該外部電極にリード線を半田付けし、外装樹脂塗工前の積層圧電アクチュエータとした。
【0023】
しかる後に、該積層圧電アクチュエータを、無機物の酸化チタンの粉末を分散したエポキシ系電着塗料を満たした電着液に浸漬し、積層圧電アクチュエータのリード端子に直流50Vの電圧を30秒印加することにより酸化チタンをフィラーとするエポキシ樹脂を積層圧電アクチュエータ表面に露出している内部電極及外部電極の表面に付着させ、電着液から取り出した後、120℃で15分予備加熱し、さらにエポキシ樹脂を150℃で1.5時間熱処理し、積層圧電アクチュエータの表面に焼き付けることによって、厚さ約15μmから30μmの一次のエポキシ樹脂絶縁層を形成した。
【0024】
次に、二次の絶縁層形成として、積層圧電アクチュエータを同じエポキシ系電着塗料を満たした電着液に浸漬し、積層圧電アクチュエータのリード端子に直流100Vの電圧を1分間印加し、積層圧電アクチュエータのコーナー部のみに電流が流れ、前記コーナー部のみに酸化チタンをフィラーとするエポキシ樹脂を付着させ、電着液から取り出した後、120℃で15分予備加熱と150℃で1.5時間の熱処理で積層圧電アクチュエータのコーナー部にエポキシ樹脂を焼き付けることによって、コーナー部のみに約15μmから30μmの有機絶縁層を形成した。
【0025】
本実施例の製造方法による水分の侵入に対する信頼性の評価として、85℃−90%相対湿度の高温高湿度の環境下で直流電圧100Vを印加して、エージングを実施した。エージング結果を実施例1と同じく表2に示した。表2より、本発明の製造方法によれば、コーナー部の絶縁樹脂厚みが確保できるので、コーナー部からの水分の侵入が少なく、高温高湿の環境下でも寿命が長い積層圧電アクチュエータが得られ、特に無機物をフィラーとして分散することで、有機物単体の絶縁塗膜よりも寿命が長い積層圧電アクチュエータが得られる。
【0026】
【発明の効果】
以上、詳細に説明したように、本発明の製造方法によれば、一次、二次の電着塗装を繰り返し実施することで、製造が容易で、コーナー部の絶縁層が十分に確保でき、内部電極面の耐湿性が維持でき、取り扱いが容易で、信頼性の向上が図られる積層圧電アクチュエータの製造方法の提供が可能である。
【図面の簡単な説明】
【図1】一次有機絶縁層が形成された積層圧電アクチュエータ素子に、二次有機絶縁層が形成された外観図。
【図2】積層圧電アクチュエータに電着法により一次有機絶縁層が形成された外観図。
【図3】未外装の積層圧電アクチュエータにリード線が取り付けられた状態を示す外観図。
【符号の説明】
1 圧電セラミック層
2 内部電極層
3 ガラス絶縁部
4 外部電極
5 リード線
6 一次有機絶縁層
7 一次有機絶縁層
8 二次有機絶縁層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a laminated piezoelectric actuator, and more particularly, to a method for forming a thin and uniform insulating layer having excellent moisture resistance and protection.
[0002]
[Prior art]
The laminated piezoelectric actuator has a structure in which piezoelectric ceramic layers and internal electrode layers are alternately laminated, and the internal electrode layers are connected to the counter electrode one by one, and a displacement of several μm to several tens of μm is obtained in the stacking direction by applying a voltage. . Its main application is the incorporation of laminated piezoelectric actuators into industrial equipment such as micro-positioning devices for semiconductor manufacturing, actuators of mass flow controllers that adjust the flow rate of special gases, and mechanisms that expand displacement, and wire-type dots It covers a wide range of consumer devices such as printers and inchworm type ultrasonic motors. Therefore, the multilayer piezoelectric actuator is required to have good usability and reliability during long-term use.
[0003]
Since the opposing internal electrodes are exposed on the outer peripheral surface of the multilayer piezoelectric actuator, it is common to apply an insulating paint to the outer peripheral surface to make an exterior resin in order to ensure ease of use and reliability. is there. Conventionally, in the coating process, the paint flows due to surface tension, and the insulating layer tends to be extremely thin at the corners of the laminated piezoelectric actuator.
[0004]
In such an exterior resin state, when using a laminated piezoelectric actuator, moisture penetrates from the thin corner portion of the exterior resin, and when the moisture reaches the internal electrode, a part of silver of the internal electrode material is ionized, There is a problem that so-called silver migration occurs, which moves along the electric field, reaches the electrode of the counter electrode, and causes an electrical short circuit. Therefore, in order to ensure the insulating layer thickness of the corner portion, the thickness of the entire exterior resin is formed to secure the exterior resin thickness of the corner portion, or the corner portion is chamfered to reduce the influence of the surface tension, and the resin. An insulating layer is formed so as to prevent flow of moisture, thereby improving moisture resistance.
[0005]
[Problems to be solved by the invention]
However, in the method of increasing the thickness of the entire exterior resin described above, it is impossible to form a thin and uniform insulating layer, and there is a problem that an invalid volume of the laminated piezoelectric actuator is increased. In addition, when the corner portion is chamfered, there is a problem that the manufacturing cost increases.
[0006]
The present invention has been made to solve such problems, and can sufficiently ensure the thickness of the insulating layer at the corner portion, has excellent moisture resistance, has a protective property, and can form a thin and uniform insulating layer. It is to provide a method for manufacturing a laminated piezoelectric actuator.
[0007]
[Means for Solving the Problems]
According to the present invention, a plurality of piezoelectric ceramic layers and internal electrode layers are alternately laminated, and the surface exposed portions of the internal electrodes are insulated with an insulating material such as glass every other layer so that the internal electrodes become counter electrodes. In a manufacturing method in which the outer peripheral surface of a laminated piezoelectric actuator having a pair of external electrodes connected to an electrode is coated with an insulating paint, first, the external electrode and internal electrode end portions are exposed on the surface by electrodeposition using an electrodeposition paint. A primary insulating layer is formed on the outer peripheral surface, and then a secondary insulating layer is formed in the vicinity of the corner portion by the same electrodeposition method.
[0008]
Further, according to the present invention, the voltage condition for applying the primary electrodeposition paint is V1, and the voltage for applying the second electrodeposition paint is V2. An actuator manufacturing method is obtained.
[0009]
Furthermore, according to the present invention, in the method for manufacturing a laminated piezoelectric actuator, an electrodeposition paint of an organic insulating material or an electrodeposition paint in which an organic insulating material and an inorganic insulating material are mixed is used. A method is obtained.
[0010]
The electrodeposition coating method is a technology that has recently been rapidly developed for rust prevention and coloration of automobile steel plates. The resin component is ionized and dispersed in a solvent. Applies a voltage of reverse polarity, soaks the object to be coated in a solvent, attaches the resin component to the surface of the object to be coated with plus / minus electric adsorption force, and then heats or ultraviolet rays the resin. Is a method of curing.
[0011]
In the present invention, since the film thickness of the corner portion formed by the primary electrodeposition coating is very thin, by applying a voltage higher than the primary electrodeposition coating voltage at the time of the secondary electrodeposition coating, the electric field is generated by the tunnel effect. Leaks and secondary electrodeposition coating concentrates on the corner portion, so that the resin thickness at the corner portion can be secured.
[0012]
【Example】
Examples A method for manufacturing a multilayer piezoelectric actuator according to the present invention will be described below in detail with reference to the drawings.
[0013]
Example 1
First, using a Pb (Ni—Nb) ZrTiO 3 piezoelectric ceramic and an Ag / Pd internal electrode material, a green sheet is laminated, and the lamination direction length is 10 mm and the cross section in the lamination direction is 5 × 5 mm. A sintered body was prototyped. Next, the internal electrode ends exposed on the two opposing surfaces of the laminate sintered body having a size of 5 × 10 mm are subjected to glass insulation treatment every other layer so as to form a counter electrode layer by layer, and then a plurality of common external electrodes are formed. Then, a lead wire was soldered to the external electrode to obtain a laminated piezoelectric actuator before coating the exterior resin. The appearance of the multilayer piezoelectric actuator is shown in FIG.
[0014]
Thereafter, the laminated piezoelectric actuator is immersed in an electrodeposition liquid filled with an acrylic electrodeposition paint, and a voltage of 30 V DC is applied to the lead terminal of the laminated piezoelectric actuator for 30 seconds to apply acrylic resin to the surface of the laminated piezoelectric actuator. After adhering to the exposed internal and external electrode surfaces and taking out from the electrodeposition solution, preheating was performed at 110 ° C. for 15 minutes, and acrylic resin was heat-treated at 150 ° C. for 1 hour to form a surface of the laminated piezoelectric actuator. By baking, a primary acrylic resin insulating layer having a thickness of about 15 μm to 30 μm was formed. The appearance of the primary insulating layer forming body is shown in FIG. At this time, the amount of the insulating layer formed at the corner of the laminated piezoelectric actuator is very small.
[0015]
Next, as a secondary insulating layer formation, the laminated piezoelectric actuator is immersed in an electrodeposition liquid filled with the same acrylic electrodeposition paint, and a DC voltage of 100 V is applied to the lead terminal of the laminated piezoelectric actuator for 1 minute, thereby forming the laminated piezoelectric actuator. A current flows only in the corner of the actuator, and an acrylic resin is attached only to the corner, and after taking out from the electrodeposition solution, the corner of the laminated piezoelectric actuator is subjected to preheating at 110 ° C. for 15 minutes and heat treatment at 150 ° C. for 1 hour. An organic insulating layer having a thickness of about 20 μm to 40 μm was formed only on the corner portion by baking an acrylic resin on the portion. The appearance of the multilayer piezoelectric actuator produced by the manufacturing method of this example is shown in FIG.
[0016]
Table 1 shows the dimensions and effective piezoelectric volume ratios of the laminated piezoelectric actuator produced by the manufacturing method of this example. For comparison, the dimensions and effective piezoelectric volume ratio of a laminated piezoelectric actuator in which an insulating layer is formed by powder coating of a conventional epoxy resin are also shown.
[0017]
[Table 1]
[0018]
From Table 1, according to the manufacturing method of the present embodiment, a laminated piezoelectric actuator having a large effective piezoelectric activity ratio can be obtained as compared with the conventional method.
[0019]
In addition, as an evaluation of reliability against moisture intrusion, aging was performed by applying a DC voltage of 100 V in a high temperature and high humidity environment of 85 ° C. to 90% relative humidity. The aging results are shown in Table 2.
[0020]
[Table 2]
[0021]
From Table 2, according to the manufacturing method of the present invention, since the insulating resin thickness of the corner portion can be secured, a multilayer piezoelectric actuator having a long life even in a high-temperature and high-humidity environment can be obtained with little intrusion of moisture from the corner portion. .
[0022]
(Example 2)
Similar to Example 1, using a Pb (Ni—Nb) ZrTiO 3 piezoelectric ceramic and an Ag / Pd internal electrode material, the green sheet is laminated by a lamination direction length of 10 mm and a lamination direction cross section of 5 ×. A prototype of a laminated sintered body having a size of 5 mm was produced. Next, the internal electrode ends exposed on the two opposing surfaces of the laminate sintered body having a size of 5 × 10 mm are subjected to glass insulation treatment every other layer so as to form a counter electrode layer by layer, and then a plurality of common external electrodes are formed. Then, a lead wire was soldered to the external electrode to obtain a laminated piezoelectric actuator before coating the exterior resin.
[0023]
Thereafter, the laminated piezoelectric actuator is immersed in an electrodeposition liquid filled with an epoxy-based electrodeposition coating material in which inorganic titanium oxide powder is dispersed, and a voltage of 50 V DC is applied to the lead terminal of the laminated piezoelectric actuator for 30 seconds. The epoxy resin containing titanium oxide as a filler is adhered to the surface of the internal and external electrodes exposed on the surface of the laminated piezoelectric actuator, taken out from the electrodeposition solution, preheated at 120 ° C. for 15 minutes, and further epoxy resin Was heat-treated at 150 ° C. for 1.5 hours and baked on the surface of the laminated piezoelectric actuator to form a primary epoxy resin insulating layer having a thickness of about 15 μm to 30 μm.
[0024]
Next, as a secondary insulating layer formation, the laminated piezoelectric actuator is immersed in an electrodeposition liquid filled with the same epoxy-based electrodeposition paint, a voltage of 100 V DC is applied to the lead terminal of the laminated piezoelectric actuator for 1 minute, and the laminated piezoelectric actuator is applied. An electric current flows only in the corner portion of the actuator, and an epoxy resin containing titanium oxide as a filler is attached only to the corner portion, and after taking out from the electrodeposition liquid, preheating at 120 ° C. for 15 minutes and 1.5 hours at 150 ° C. An epoxy resin was baked on the corner portion of the laminated piezoelectric actuator by the heat treatment to form an organic insulating layer of about 15 μm to 30 μm only on the corner portion.
[0025]
As an evaluation of the reliability against moisture intrusion by the production method of this example, aging was performed by applying a DC voltage of 100 V in a high temperature and high humidity environment of 85 ° C. to 90% relative humidity. The aging results are shown in Table 2 as in Example 1. From Table 2, according to the manufacturing method of the present invention, since the insulating resin thickness of the corner portion can be secured, a multilayer piezoelectric actuator having a long life even under a high temperature and high humidity environment can be obtained with little intrusion of moisture from the corner portion. In particular, by dispersing an inorganic substance as a filler, a multilayer piezoelectric actuator having a longer life than an insulating coating film of an organic substance alone can be obtained.
[0026]
【The invention's effect】
As described above in detail, according to the manufacturing method of the present invention, it is easy to manufacture by repeating primary and secondary electrodeposition coatings, and a sufficient insulating layer in the corner portion can be secured. It is possible to provide a method for manufacturing a laminated piezoelectric actuator that can maintain moisture resistance of the electrode surface, is easy to handle, and can be improved in reliability.
[Brief description of the drawings]
FIG. 1 is an external view in which a secondary organic insulating layer is formed on a laminated piezoelectric actuator element in which a primary organic insulating layer is formed.
FIG. 2 is an external view in which a primary organic insulating layer is formed on a laminated piezoelectric actuator by an electrodeposition method.
FIG. 3 is an external view showing a state in which a lead wire is attached to an unpackaged laminated piezoelectric actuator.
[Explanation of symbols]
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002158525A JP4063594B2 (en) | 2002-05-31 | 2002-05-31 | Manufacturing method of laminated piezoelectric actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002158525A JP4063594B2 (en) | 2002-05-31 | 2002-05-31 | Manufacturing method of laminated piezoelectric actuator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003347621A JP2003347621A (en) | 2003-12-05 |
JP4063594B2 true JP4063594B2 (en) | 2008-03-19 |
Family
ID=29773748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002158525A Expired - Lifetime JP4063594B2 (en) | 2002-05-31 | 2002-05-31 | Manufacturing method of laminated piezoelectric actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4063594B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5283161B2 (en) * | 2008-04-25 | 2013-09-04 | Necトーキン株式会社 | Multilayer piezoelectric ceramic element and manufacturing method thereof |
JP2012043844A (en) | 2010-08-13 | 2012-03-01 | Ngk Insulators Ltd | Piezoelectric/electrostrictive actuator |
EP2765621A4 (en) | 2011-09-22 | 2015-08-05 | Ngk Insulators Ltd | Piezoelectric/electrostrictive actuator |
-
2002
- 2002-05-31 JP JP2002158525A patent/JP4063594B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003347621A (en) | 2003-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2242312A (en) | Laminated displacement device | |
JPH01161709A (en) | Laminated ceramic component | |
JPS6127688A (en) | Electrostrictive effect element and production thereof | |
JP4063594B2 (en) | Manufacturing method of laminated piezoelectric actuator | |
JP5283161B2 (en) | Multilayer piezoelectric ceramic element and manufacturing method thereof | |
JP6306698B2 (en) | Multilayer device and method for manufacturing a multilayer device | |
JPH0666483B2 (en) | Electrostrictive effect element | |
JP3506609B2 (en) | Multilayer piezoelectric actuator | |
JPS6132835B2 (en) | ||
JP6809822B2 (en) | Piezoelectric actuator | |
JPH03283581A (en) | Laminated piezoelectric actuator element | |
KR20100084314A (en) | Manufacturing method of multilayer ceramic electronic device using the metallic powder coated glass | |
JPH06181343A (en) | Laminated displacement element and manufacture thereof | |
JPH0476969A (en) | Electrostrictive effect element | |
JPH02125674A (en) | Electrostrictive element | |
JPS6380585A (en) | Electrostrictive effect element | |
JPH02250678A (en) | Laminated piezoelectric actuator | |
JPS6262571A (en) | Electrostrictive effect element | |
JP2613408B2 (en) | Multilayer piezoelectric actuator | |
JP6898167B2 (en) | Laminated piezoelectric element | |
JPH04369277A (en) | Multilayer piezoelectric actuator | |
JPH049390B2 (en) | ||
JP2014187061A (en) | Piezoelectric element and manufacturing method therefor | |
JPH02240976A (en) | Laminated type piezoelectric actuator | |
JP2004079825A (en) | Laminated piezoelectric ceramic component and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071225 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4063594 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140111 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |