JP4063301B2 - Method for manufacturing electrostrictive polymer actuator - Google Patents

Method for manufacturing electrostrictive polymer actuator Download PDF

Info

Publication number
JP4063301B2
JP4063301B2 JP2006119739A JP2006119739A JP4063301B2 JP 4063301 B2 JP4063301 B2 JP 4063301B2 JP 2006119739 A JP2006119739 A JP 2006119739A JP 2006119739 A JP2006119739 A JP 2006119739A JP 4063301 B2 JP4063301 B2 JP 4063301B2
Authority
JP
Japan
Prior art keywords
actuator
electrodes
electrode
view
stretchable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006119739A
Other languages
Japanese (ja)
Other versions
JP2006204100A (en
Inventor
洋二 浦野
治倫 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006119739A priority Critical patent/JP4063301B2/en
Publication of JP2006204100A publication Critical patent/JP2006204100A/en
Application granted granted Critical
Publication of JP4063301B2 publication Critical patent/JP4063301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は電歪ポリマーを用いたアクチュエータの製造方法に関するものである。   The present invention relates to a method for manufacturing an actuator using an electrostrictive polymer.

超小型機器に用いるアクチュエータとして、圧電素子を用いたものと電歪ポリマーを用いたものとが知られている。前者は厚み方向に分極処理を行ったシート状の圧電材料の両面に導電性伸縮材料からなる電極を配して、圧電逆効果により伸縮させるものであり、分極方向と同極性の電圧の印加によって分極方向に伸び、直交方向に縮む性質を有している。後者はシリコンゴムやアクリル等のシート状の絶縁性伸縮材料からなる伸縮部の両面に導電性伸縮材料からなる電極を配して、誘電分極によって延伸させるもので、電圧の印加時、電極間方向に縮み、直交する方向に伸びる性質を有している。
特開昭59−200081号公報
As actuators used in microminiature devices, those using piezoelectric elements and those using electrostrictive polymers are known. In the former, electrodes made of a conductive stretch material are arranged on both sides of a sheet-like piezoelectric material that has been polarized in the thickness direction, and stretched by the piezoelectric reverse effect. By applying a voltage having the same polarity as the polarization direction, It has the property of extending in the polarization direction and contracting in the orthogonal direction. In the latter, electrodes made of conductive stretch material are placed on both sides of a stretchable portion made of a sheet-like insulating stretch material such as silicon rubber or acrylic, and stretched by dielectric polarization. And has a property of extending in the direction orthogonal to each other.
JP 59-200801 A

本発明は上記電歪ポリマーアクチュエータを簡便に製造することができる電歪ポリマーアクチュエータの製造方法を提供することを課題とするものである。   It is an object of the present invention to provide a method for producing an electrostrictive polymer actuator capable of easily producing the electrostrictive polymer actuator.

上記課題を解決するために本発明に係る電歪ポリマーアクチュエータの製造方法は、円筒状またはシート状の伸縮部を電極を介して積層して円柱状もしくは角柱状の積層体を形成し、次いで該積層体を積層方向と平行する方向にスライスすることに特徴を有している。これにより、単一の積層体から複数のアクチュエータを得ることができる。   In order to solve the above-mentioned problem, the electrostrictive polymer actuator manufacturing method according to the present invention forms a cylindrical or prismatic laminate by laminating cylindrical or sheet-like stretchable parts via electrodes, It is characterized by slicing the laminate in a direction parallel to the lamination direction. Thereby, a several actuator can be obtained from a single laminated body.

本発明は、単一の積層体から複数のアクチュエータを得ることができて製作効率が向上する上に、同一の特性を有するアクチュエータを簡便に多数得ることができる。   According to the present invention, a plurality of actuators can be obtained from a single laminated body, the manufacturing efficiency is improved, and a large number of actuators having the same characteristics can be easily obtained.

以下、本発明を添付図面に示す実施形態に基いて説明する。まず本発明において製造しようとする電歪ポリマーアクチュエータについて説明すると、図2及び図3において、図中2はシリコンゴムやアクリル等の絶縁性伸縮材料からなる伸縮部、3は導電性伸縮材料からなる電極であり、伸縮部2はリング状に形成しているとともに、多数の径の異なるリング状伸縮部2を同心円状に形成しており、これら伸縮部2の間には夫々リング状の電極3を介在させるとともに、最外周面と最内周面にもリング状の電極3を配して、各伸縮部2の内周側と外周側とに夫々電極3が位置するようにしてある。そして図2に示すように、一つおきの電極3を直流電源のプラス側に、残る電極3を直流電源のマイナス側に接続している。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings. First, the electrostrictive polymer actuator to be manufactured according to the present invention will be described. In FIGS. 2 and 3, reference numeral 2 denotes a stretchable portion made of an insulating stretchable material such as silicon rubber or acrylic, and 3 denotes a conductive stretchable material. It is an electrode, and the expansion / contraction part 2 is formed in a ring shape, and a large number of ring-shaped expansion / contraction parts 2 having different diameters are formed concentrically, and each ring-shaped electrode 3 is interposed between the expansion / contraction parts 2. In addition, ring-shaped electrodes 3 are arranged on the outermost peripheral surface and the innermost peripheral surface so that the electrodes 3 are positioned on the inner peripheral side and the outer peripheral side of each of the stretchable parts 2, respectively. As shown in FIG. 2, every other electrode 3 is connected to the positive side of the DC power source, and the remaining electrodes 3 are connected to the negative side of the DC power source.

このように形成したアクチュエータ1において、電極3,3間に電圧を印加すれば、図2(b)及び図3(b)に示すように、電極3,3間方向である径方向Xにおいて縮むとともに、直交する方向である軸方向Yに伸びる。   In the actuator 1 formed as described above, when a voltage is applied between the electrodes 3 and 3, the actuator 1 contracts in the radial direction X, which is the direction between the electrodes 3 and 3, as shown in FIGS. At the same time, it extends in the axial direction Y, which is an orthogonal direction.

シート状の伸縮部2の両面に電極3を配したものに比して、伸縮動作を確実に利用することができるものであり、また同心円状に積層しているために発生する力も大きい。また、印加する電圧値に応じて変位量が変化するために、変位量の調整も容易である。   Compared with the case where the electrodes 3 are arranged on both surfaces of the sheet-like stretchable part 2, the stretching operation can be used with certainty, and the force generated due to the concentric lamination is also large. Moreover, since the displacement amount changes according to the voltage value to be applied, the displacement amount can be easily adjusted.

図4に他例を示す。これは同心円状に積層するにあたり、中心が偏心した位置にくるように積層したもので、この場合、電圧を印加した時、周方向において縮む量が異なってくるために、アクチュエータ1は屈曲することになる。   FIG. 4 shows another example. In this case, the layers are stacked so that the center is located in an eccentric position. In this case, when the voltage is applied, the amount of contraction in the circumferential direction differs, so that the actuator 1 bends. become.

図5は同心円状に積層するにあたり、中心軸に近いほど電極3,3間の距離が長くなるようにするとともに、各電極に印加する電圧を同一にしたもので、径が異なる各リング状伸縮部2の伸縮量をほぼ等しくすることができ、軸方向への均一な延伸機能を得ることができる。   FIG. 5 shows that the distance between the electrodes 3 and 3 increases as the distance from the center axis increases, and the voltage applied to each electrode is the same. The amount of expansion and contraction of the portion 2 can be made substantially equal, and a uniform stretching function in the axial direction can be obtained.

図6に示すように、各電極3,3間距離は同じにするものの、各電極間3,3に印加する電圧は中心軸に近いほど低くなるようにしても、軸方向への均一な延伸機能を得ることができる。   As shown in FIG. 6, although the distance between the electrodes 3 and 3 is the same, even if the voltage applied to the electrodes 3 and 3 is lower as it is closer to the central axis, it is uniformly stretched in the axial direction. Function can be obtained.

なお、各電極3,3間に同じ電圧を印加する場合は、図7に示すように、アクチュエータ1の一面における一つおきの電極3の縁に絶縁性柔軟材料7を塗布するとともに、アクチュエータ1の他面において他の電極の縁に絶縁性柔軟材料7を塗布し、その後、図8に示すようにアクチュエータ1の軸方向両面に導電性伸縮材料8を塗布して外部電極とするとよく、各電極3,3間に異なる電圧を印加する場合は、図7に示す処理を行った後、図9に示すように、アクチュエータ1の一面では先に塗布した絶縁性柔軟材料7間のリング状部分に導電性伸縮材料8を塗布して夫々を外部電極とし、他面では全面に導電性伸縮材料8を塗布して接地用外部電極とすればよい。なお、シェンケル昇圧回路を用いれば、複数の電圧を単一電源より得ることができる。   In addition, when applying the same voltage between each electrode 3 and 3, as shown in FIG. 7, while applying the insulating flexible material 7 to the edge of every other electrode 3 in one surface of the actuator 1, the actuator 1 It is preferable to apply the insulating flexible material 7 to the edge of the other electrode on the other surface, and then apply the conductive stretchable material 8 to both axial surfaces of the actuator 1 as shown in FIG. When different voltages are applied between the electrodes 3 and 3, after performing the processing shown in FIG. 7, as shown in FIG. 9, on one surface of the actuator 1, the ring-shaped portion between the insulating flexible material 7 previously applied The conductive stretchable material 8 may be applied to the external electrode, and the other surface may be coated with the conductive stretchable material 8 to form the grounding external electrode. If a Schenkel booster circuit is used, a plurality of voltages can be obtained from a single power source.

図10に他の一例を示す。ここでは伸縮部2を電極3を介して積層することは行っていないが、一対の電極3,3を両端に設けた伸縮部2の側面を金属薄板4に貼り合わせてユニモルフ構造としている。この場合、電極3,3間に電圧を印加した時、伸縮部2は電極3,3間の方向において縮もうとするのに対して、金属薄板4は縮まないために、図に示すように、アクチュエータ1は金属薄板4を撓ませる(屈曲させる)ものであり、また印加電圧値に応じて屈曲変位量を変えることができる。   FIG. 10 shows another example. Here, the stretchable portion 2 is not laminated via the electrode 3, but the side surface of the stretchable portion 2 provided with a pair of electrodes 3 and 3 at both ends is bonded to the metal thin plate 4 to form a unimorph structure. In this case, when a voltage is applied between the electrodes 3 and 3, the stretchable portion 2 tends to shrink in the direction between the electrodes 3 and 3, whereas the metal thin plate 4 does not shrink. The actuator 1 bends (bends) the thin metal plate 4 and can change the amount of bending displacement according to the applied voltage value.

図11に示すように、金属薄板4の両面に夫々アクチュエータ1,1を貼り合わせてバイモルフ構造とすれば、いずれのアクチュエータ1に電圧を印加するかによって、屈曲方向を変えることができるものであり、結果的に屈曲運動の可動範囲を大きくすることができる。   As shown in FIG. 11, if the actuators 1 and 1 are bonded to both surfaces of the thin metal plate 4 to form a bimorph structure, the bending direction can be changed depending on which actuator 1 the voltage is applied to. As a result, the movable range of the bending motion can be increased.

もちろん、アクチュエータ1として、前述のような同心円状の積層構造のものを用いて図12に示す形態のものとしてもよいものであり、この場合、低印加電圧で高出力を得ることができる。また、このような構造とする場合、金属薄板4を含めたアクチュエータ1は、自駆動型のダイヤフラムとして用いることができる。   Of course, the actuator 1 may have a concentric laminated structure as described above and may have the form shown in FIG. 12, and in this case, a high output can be obtained with a low applied voltage. Further, in the case of such a structure, the actuator 1 including the metal thin plate 4 can be used as a self-driven diaphragm.

なお、積層型とする場合、図13に示すように、複数個の三角形状のアクチュエータ1を並べて略円形となるようにしてもよい。この場合も低印加電圧で高出力を得ることができるとともに、金属薄板4を含めたアクチュエータ1は、自駆動型のダイヤフラムとして用いることができる。   In the case of a stacked type, as shown in FIG. 13, a plurality of triangular actuators 1 may be arranged in a substantially circular shape. Also in this case, a high output can be obtained with a low applied voltage, and the actuator 1 including the thin metal plate 4 can be used as a self-driven diaphragm.

この他、図14に示すように、伸縮部2及び電極3を渦巻き状にしたものを用いてもよい。なお、電極3が重なる部分については図15に示すように絶縁性柔軟材料7を介在させて絶縁を行っておく。   In addition, as shown in FIG. 14, the stretchable part 2 and the electrode 3 in a spiral shape may be used. It should be noted that the portion where the electrode 3 overlaps is insulated by interposing an insulating flexible material 7 as shown in FIG.

また、図16に示すように、伸縮部2と電極部3とを交互に並べた短冊状のアクチュエータ1を金属薄板4に貼り合わせたものであってもよく、この場合も図に矢印で示すような屈曲動作を行わせることができ、また図17に示すように、絶縁性柔軟材料7と導電性柔軟材料8とによって各電極3に電源を接続することができる。   Moreover, as shown in FIG. 16, the strip-shaped actuator 1 which alternately arranged the expansion-contraction part 2 and the electrode part 3 may be bonded together to the metal thin plate 4, and this case is also shown by the arrow in the figure. Such a bending operation can be performed, and a power source can be connected to each electrode 3 by the insulating flexible material 7 and the conductive flexible material 8 as shown in FIG.

図18は同心円状に積層したアクチュエータ1を金属薄板4の片面に貼り合わせたものをダイヤフラムとしているダイヤフラムポンプの一例を示しており、吸気口51と排気口52とを備えるとともにこれら吸気口51及び排気口52に逆止弁53,54を組み付けたベース5に、固着手段55によって上記ダイヤフラムの周縁を固定することで、ダイヤフラムとベース5とで囲まれたポンプ室56を形成しており、アクチュエータ1に電圧を印加すれば、ポンプ室56の内容積が小さくなって吐出口52から流体の吐出がなされ、アクチュエータ1への電圧を遮断すれば、アクチュエータ1及び金属薄板4の復帰により、吸気口51からポンプ室56への吸入がなされる。   FIG. 18 shows an example of a diaphragm pump in which a concentrically stacked actuator 1 bonded to one side of a thin metal plate 4 is used as a diaphragm. The diaphragm pump includes an intake port 51 and an exhaust port 52. A pump chamber 56 surrounded by the diaphragm and the base 5 is formed by fixing the peripheral edge of the diaphragm to the base 5 in which the check valves 53 and 54 are assembled to the exhaust port 52 by the adhering means 55. If the voltage is applied to 1, the internal volume of the pump chamber 56 is reduced and fluid is discharged from the discharge port 52. If the voltage to the actuator 1 is interrupted, the return of the actuator 1 and the metal thin plate 4 causes the intake port. Inhalation from 51 to the pump chamber 56 is performed.

そして上記のような積層型のアクチュエータ1は、図1に示すように、円筒状またはシート状の伸縮部2と電極3とを交互に積層した積層体1’を形成し、その後、該積層体1’を積層方向と平行する方向でスライスすることによって、同一特性の多数のアクチュエータ1を効率良く製造することができる。   Then, as shown in FIG. 1, the laminated actuator 1 as described above forms a laminated body 1 ′ in which cylindrical or sheet-like stretchable portions 2 and electrodes 3 are alternately laminated, and then the laminated body. By slicing 1 ′ in a direction parallel to the stacking direction, a large number of actuators 1 having the same characteristics can be efficiently manufactured.

本発明の実施の形態の一例を示すもので、(a)(b)は製造法を示す斜視図である。An example of embodiment of this invention is shown, (a) (b) is a perspective view which shows a manufacturing method. (a)(b)は同上の斜視図である。(a) (b) is a perspective view same as the above. (a)(b)は断面図である。(a) (b) is sectional drawing. (a)(b)は同上の他例の斜視図である。(a) (b) is a perspective view of the other example same as the above. 更に他例の斜視図である。Furthermore, it is a perspective view of another example. 別の例の斜視図である。It is a perspective view of another example. 同上の外部電極の形成手順を示すもので、(a)は斜視図、(b)は断面図である。The procedure for forming the external electrode is shown, in which (a) is a perspective view and (b) is a cross-sectional view. 同上の外部電極の形成手順を示すもので、(a)は斜視図、(b)は断面図である。The procedure for forming the external electrode is shown, in which (a) is a perspective view and (b) is a cross-sectional view. 他の外部電極の形成手順を示すもので、(a)は斜視図、(b)は断面図である。The other external electrode formation procedure is shown, in which (a) is a perspective view and (b) is a cross-sectional view. 他の一例を示すもので、(a)(b)は断面図である。Another example is shown, and (a) and (b) are sectional views. (a)(b)は同上の他例の断面図である。(a) (b) is sectional drawing of the other example same as the above. 同上の更に他例の斜視図である。It is a perspective view of another example same as the above. 同上の別の例の斜視図である。It is a perspective view of another example same as the above. 同上の更に別の例の斜視図である。It is a perspective view of another example same as the above. 同上の外部電極の構成を示す斜視図である。It is a perspective view which shows the structure of an external electrode same as the above. 同上の他の例の斜視図である。It is a perspective view of the other example same as the above. 同上の外部電極の構成を示す斜視図である。It is a perspective view which shows the structure of an external electrode same as the above. (a)(b)は同上のアクチュエータを用いたダイヤフラムポンプの断面図である。(a) (b) is sectional drawing of the diaphragm pump using the actuator same as the above.

符号の説明Explanation of symbols

1 アクチュエータ
1’ 積層体
2 伸縮部
3 電極
DESCRIPTION OF SYMBOLS 1 Actuator 1 'Laminated body 2 Elastic part 3 Electrode

Claims (1)

絶縁性伸縮材料からなる伸縮部の両面に導電性伸縮材料からなる電極を配した電歪ポリマーアクチュエータの製造方法であって、円筒状またはシート状の伸縮部を電極を介して積層して円柱状もしくは角柱状の積層体を形成し、次いで該積層体を積層方向と平行する方向にスライスすることを特徴とする電歪ポリマーアクチュエータの製造方法。   A method of manufacturing an electrostrictive polymer actuator in which electrodes made of a conductive stretch material are arranged on both sides of a stretchable portion made of an insulating stretchable material, wherein a cylindrical or sheet-like stretchable portion is laminated via electrodes to form a columnar shape Alternatively, a method for producing an electrostrictive polymer actuator, wherein a prismatic laminate is formed and then the laminate is sliced in a direction parallel to the lamination direction.
JP2006119739A 2006-04-24 2006-04-24 Method for manufacturing electrostrictive polymer actuator Expired - Fee Related JP4063301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119739A JP4063301B2 (en) 2006-04-24 2006-04-24 Method for manufacturing electrostrictive polymer actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119739A JP4063301B2 (en) 2006-04-24 2006-04-24 Method for manufacturing electrostrictive polymer actuator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001392700A Division JP3832338B2 (en) 2001-12-25 2001-12-25 Electrostrictive polymer actuator

Publications (2)

Publication Number Publication Date
JP2006204100A JP2006204100A (en) 2006-08-03
JP4063301B2 true JP4063301B2 (en) 2008-03-19

Family

ID=36961587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119739A Expired - Fee Related JP4063301B2 (en) 2006-04-24 2006-04-24 Method for manufacturing electrostrictive polymer actuator

Country Status (1)

Country Link
JP (1) JP4063301B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330662A (en) * 2011-06-21 2012-01-25 无锡长辉机电科技有限公司 Fermat spiral flow pipe valveless piezoelectric pump
CN102261325A (en) * 2011-06-21 2011-11-30 南京航空航天大学 Logarithmic solenoid valve pressure-free electric pump
CN102330663A (en) * 2011-06-21 2012-01-25 无锡长辉机电科技有限公司 Hyperbolic spiral flow pipe valveless piezoelectric pump

Also Published As

Publication number Publication date
JP2006204100A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP3832338B2 (en) Electrostrictive polymer actuator
TWI729189B (en) Tactile feedback generating device
JP4069160B2 (en) Ultrasonic actuator
JP4697929B2 (en) Multilayer piezoelectric element and vibration wave drive device
US20070052329A1 (en) Piezoelectric vibrator, manufacturing method thereof and linear actuator having the same
US20160126450A1 (en) Diaphragm actuator and method for producing a diaphragm actuator
JP4063301B2 (en) Method for manufacturing electrostrictive polymer actuator
JP2008278712A (en) Drive device
JP4063300B2 (en) Electrostrictive polymer actuator
WO2011089803A1 (en) Piezoelectric electricity generating element, piezoelectric electricity generating device and production method for piezoelectric electricity generating element
JP5134431B2 (en) Pronunciation
JP6173938B2 (en) Piezoelectric pump
US10792704B2 (en) Electrostatic transducer and method for manufacturing same
US7336022B2 (en) Piezoelectrical bending converter
JP2003324223A (en) Laminated piezoelectric element
JP2004281547A (en) Stacked piezoelectric element and its manufacturing method
JP2009232523A (en) Electrostrictive actuator and manufacturing method therefor
WO2013088866A1 (en) Stacked actuator
US8008840B2 (en) Drive unit
JP2007312600A (en) Piezoelectric element and ultrasonic actuator
JP2019125630A (en) Piezoelectric generator and method of manufacturing the same
JP2004087662A (en) Piezoelectric element
JP5687278B2 (en) Multilayer piezoelectric actuator
KR102135089B1 (en) An electro active fiber
KR20210009976A (en) Ultrasonic sensor having laminaged type piezoelectric ceramic layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees