JP2004087662A - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP2004087662A
JP2004087662A JP2002244911A JP2002244911A JP2004087662A JP 2004087662 A JP2004087662 A JP 2004087662A JP 2002244911 A JP2002244911 A JP 2002244911A JP 2002244911 A JP2002244911 A JP 2002244911A JP 2004087662 A JP2004087662 A JP 2004087662A
Authority
JP
Japan
Prior art keywords
piezoelectric
film layer
piezoelectric element
displacement
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002244911A
Other languages
Japanese (ja)
Inventor
Yasuyuki Katsube
勝部 恭行
Kazutaka Honma
本間 一隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2002244911A priority Critical patent/JP2004087662A/en
Publication of JP2004087662A publication Critical patent/JP2004087662A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric element capable of obtaining a large generating force, and validating cost performance. <P>SOLUTION: Two piezoelectric bimorphs 1a and 1b are overlapped, and a film layer 4 made of materials having low elastic coefficients and characteristics following up the displacement of opposite face directions on the surface and back faces is arranged between the overlaps so that a piezoelectric element 10 can be configured. Two upper and lower piezoelectric boards 2u and 2d are adhered to a piezoelectric bimorph, an electrode layer 3 is arranged between the adhesion, and anti-phase voltages are added to the upper and lower piezoelectric boards at the time of driving it. For example, when the upper piezoelectric board 2u is contracted and the lower piezoelectric board 2d is expanded, a free edge is bent upward as a whole, and when the direction of the voltage is changed, the free edge is bent downward on the contrary. A film layer 4 is formed of, for example, silicon system adhesive, and conductive materials such as carbon are added so that the film layer 4 can be made conductive. Thus, the film layer 4 is made to follow up the opposite displacement at the surface and back sides, and the film layer 4 is made conductive while any distorting operation is not suppressed. Thus, it is possible to provide an electrode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、圧電板を2枚貼り合わせたバイモルフ構成の圧電素子に関するもので、より具体的には、複数の圧電バイモルフを重ね合わせにする多層構造の改良に関する。
【0002】
【発明の背景】
よく知られているように、チタン酸バリウム等の圧電体は電界を加えると機械的に歪みを起こす逆圧電気効果を示すことから、これを電気,機械のエネルギ変換(アクチュエータ)に利用することが行われており、圧電アクチュエータとして、圧電板を2枚貼り合わせたバイモルフ構成の圧電素子がある。
【0003】
圧電バイモルフは、例えば特開平6−275884号公報などに示されているように、薄板形状に形成した圧電板を2枚貼り合わせ、当該貼り合わせの間に電極層を有する。そして、上下2つの圧電板は厚み方向に分極し、電圧を加えることで板面に沿う接線方向に歪みが発生するようにしている。さらに、分極の向きを上下で同一向きに揃える。この圧電バイモルフには、上下の圧電板に逆相に電圧を加えるので、例えば上側の圧電板が縮み下側の圧電板が伸びることにより全体的には自由端が上に湾曲し、電圧の向きを変えると逆の動作になり自由端が下に湾曲する。
【0004】
ところが、圧電バイモルフは、2枚対の薄板(圧電板)を厚み方向に曲がり変位させる圧電横効果によるものであるため、変位量は大きく得られるものの発生力が小さいという欠点がある。そこで、発生力を増すには圧電バイモルフを多層化する対策がある。しかし、複数の圧電バイモルフを単に重ね合わせて接合すると、接合層を挟んで互いの圧電バイモルフの変位を打ち消し合う動作になって大きな発生力を得られず、改善が求められている。
【0005】
つまり、本発明に係る図2を援用して説明すると、2つの圧電バイモルフの間の接合層(膜層4)では接触している上下の変位は向きが逆になり、当該接合層が単なるリジットな接着剤の膜層であると、表裏で相反する面方向の変位を妨げる抵抗になり、歪み動作を抑制してしまう。
【0006】
本発明は、上記した背景に鑑みてなされたもので、その目的とするところは、上記した問題を解決し、変位量を大きくするとともに、大きな発生力を得るとともにコスト面に有利性がある圧電素子を提供することにある。
【0007】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る圧電素子では、圧電材料から形成した薄板を2枚貼り合わせてあって当該貼り合わせの間に電極層を有する圧電バイモルフを備えている。そして、前記圧電バイモルフは複数を重ね合わせ、当該重ね合わせの間に、弾性係数が低く、表裏で相反する面方向の変位に追従する性質を有する材料により膜層を設ける。
【0008】
また、前記圧電バイモルフは複数を重ね合わせ、当該重ね合わせの間に、導電性材料により膜層を設けるとよい。さらに、前記膜層を、導電性を有するとともに、弾性係数が低く、表裏で相反する面方向の変位に追従する性質を有するものにするとよい。また、前記膜層の厚さを適宜に設定して剛性の調整を行うこともできる。
【0009】
また、前記膜層は、各種のものを用いることができるが、例えばゴム等の柔軟性部材や、接着剤や、金属メッシュ等の空隙を有する粗構造の金属部材などから形成する。
【0010】
従って本発明では、圧電バイモルフの間に設けた膜層は、弾性係数が低く表裏で相反する面方向の変位に追従する性質を有するので、複数の圧電バイモルフによる多層構造の相互間が柔軟になり、当該膜層は表裏で相反する変位に追従し、接触する圧電板の歪み動作を抑制しない。
【0011】
また、膜層が導電性であればこれを電極にすることができ、電極のための導体板は特に必要ない。つまり、積層した複数の圧電バイモルフには同一の向きに曲がり変位する動作を行わせるので電源の接続はパラレル接続になり、膜層の表裏に接触する圧電板にあっては同極になるので、導電性とした膜層を電極にすることができる。さらに、膜層には例えばシリコン系の接着剤を用いることができ、また、膜層の厚さを変えることで適切な剛性を得ることができる。
【0012】
【発明の実施の形態】
図1は、本発明の第1の実施の形態を示している。本実施の形態において、圧電素子10は、圧電横効果により厚み方向に曲がり変位する圧電バイモルフ1を複数重ね合わせるとともに、当該重ね合わせの間に、所定の膜層4を設けた構成をとっている。そして、係る膜層4は、弾性係数が低く、表裏で相反する面方向の変位に追従する性質を有する材料により構成される。
【0013】
圧電バイモルフ1は、圧電材料から薄板形状に形成した圧電板2を2枚貼り合わせ、当該貼り合わせの間に電極層3を有した構成からなる。そして、上下2つの圧電板2u,2dは、厚み方向に分極し、電圧を加えることで板面に沿う接線方向に歪みが発生するようにしている。さらに、分極の向きを上下で同一(上向き)に揃える。そして、この圧電バイモルフ1には、上下の圧電板2u,2dに逆相に電圧を加えるので、例えば上側の圧電板2uが縮み下側の圧電板2dが伸びることにより全体的には自由端が上に湾曲し、電圧の向きを変えると逆の動作になり自由端が下に湾曲する。
【0014】
ここでは2つの圧電バイモルフ1a,1bを重ねる構成を採り、圧電バイモルフ1aと圧電バイモルフ1bの間に膜層4を形成する。膜層4は接着剤により形成する。これは、例えばシリコン系の接着剤を重ね合わせ面(2d,2u)のそれぞれに塗布した状態で両圧電バイモルフ1a,1bを貼り合わせることにより形成できる。接着剤の塗布には、ハケ塗り,スピンコートなど、一般的な塗布方法を用いればよい。そして、接着剤は、急速に硬化が進む特性のものではなく、硬化に適宜な時間がかかるものが好ましい。つまり、硬化時間に余裕ができて膜層4の厚さ調節が容易に行える。
【0015】
また、膜層4は、重ね合わせ面(2d,2u)に対してその全域に拡がる単一膜に形成してもよいが、例えば部分的な所定形状の膜層部を数ヶ所に分散して有する形態に形成することもできる。
【0016】
接着剤は、弾性係数が低く、表裏で相反する面方向の変位に追従する性質を有するものとする。さらに、カーボン等の導電性材料を添加して導電性を持たせるようにするとよい。
【0017】
接着剤が導電性であれば膜層4を電極にすることができ、電極のための導体板は特に必要ない。つまり、積層した2つの圧電バイモルフ1a,1bには、図2に示すように同一の向きに曲がり変位する動作を行わせるので電源5の接続はパラレル接続になり、膜層4の表裏に接触する圧電板(2d,2u)にあっては同極になるので、導電性とした膜層4を電極にすることができる。
【0018】
なお、圧電素子10としては最外側となる圧電板の表面には電極が必要である。そこで本実施の形態では、圧電バイモルフ1aの圧電板2u,圧電バイモルフ1bの圧電板2dそれぞれの表面に予め単体で電極膜6を蒸着することにより形成する。
【0019】
駆動は、積層した2つの圧電バイモルフ1a,1bに電源5をパラレル接続し、同一極性に電圧を加える。これにより、2つの圧電バイモルフ1a,1bは、図2に示すように同一の向きに曲がり変位する動作になる。
【0020】
例えば、自由端が上に湾曲する極性に電圧を加えると、圧電バイモルフ1aは、上側の圧電板2uが縮み下側の圧電板2dが伸びる。そして、圧電バイモルフ1bでも同様に、上側の圧電板2uが縮み下側の圧電板2dが伸びる。係る現象を膜層4から見ると、上面にはこれと接触した圧電板2dの伸び変位のため引っ張り力が作用し、下面にはこれと接触した圧電板2uの縮み変位のため圧縮力が作用することになり、表裏で相反する面方向の作用力が加わる。しかし、本発明では上述したように、膜層4は弾性係数が低く表裏で相反する面方向の変位に追従する性質を有するので、それら相反する作用力を緩衝し、接触する圧電板2d,2uの歪み動作を抑制する抵抗にはならない。その結果、変位量は圧電バイモルフ1の単体時そのままを同等に保持しつつ、発生力を約2倍に増すことができる。
【0021】
また、膜層4は導電性の接着剤により形成するので電極となり、接触する相手側に電極膜がいらない。このため、圧電バイモルフ1としては、少なくとも一方の圧電板2には表面に電極膜を蒸着する処理が不要になり、他方の圧電板2の片面にだけ電極膜6を蒸着すればよい。従って、蒸着処理の手間が減り、コスト面に有利性がある。
【0022】
図3は、本発明の第2の実施の形態を示している。この第2の実施の形態では、3つの圧電バイモルフ1a,1b,1cを重ねた構成を採る。これに伴い、圧電バイモルフ1aと圧電バイモルフ1bの間に膜層4aを形成し、圧電バイモルフ1bと圧電バイモルフ1cの間に膜層4bを形成する。
【0023】
この場合も電源5の接続はパラレル接続になり、3つの圧電バイモルフ1a,1b,1cに対し、同一極性の電圧を加えるので、これらは同一の向きに曲がり変位するように動作する。そして、2つの膜層4a,4bは、弾性係数が低く表裏で相反する面方向の変位に追従する性質を有するので、それら相反する作用力を緩衝し、その結果、変位量は圧電バイモルフ1の単体時そのままを同等に保持しつつ、発生力を約3倍に増すことができる。すなわち、圧電バイモルフ1の積層数を増すことでも変位量を下げずに発生力のみを増大できる。
【0024】
ところで、本発明は上述した実施の形態に限定されるものではない。例えば、膜層4の厚さは当該圧電素子10の剛性と相関があり、膜層4の厚さを適宜に設定して剛性の調整を行うことができる。もちろんその場合、膜層4をなす接着剤の弾性係数も適切に設定することになる。圧電素子10を小型化する面からは膜層4は薄く形成したいが、弾性係数が低く柔軟性が高い接着剤を薄くすると剛性が落ち、表裏面で相反する変位への追従性も損なわれるので、これらの点をバランスする適正値に設定する。
【0025】
また、膜層4の部材も適宜に変更でき、例えばゴム等の柔軟性部材や金属メッシュ等の空隙を有する粗構造の金属部材などにより形成する。そして、金属部材としては、例えば樹脂材料で隙間空間を有するベース体を形成し、その隙間空間に金属を入り込ませた後にベース体の樹脂を除去すれば、空隙を有する粗構造体を形成でき、そうした粗構造体でもよい。
【0026】
なお、接着剤に導電性材料を添加しないで膜層4を非導電性に構成する場合は、これと接触する圧電板(2d,2u)の表面に電極膜を形成しておき、外側の圧電板(2u,2d)から孔を開けて内側の電極膜に配線する構成を採ることができる。
【0027】
(追記)
例えば、本発明で言う膜層は、ゴム等の柔軟性部材により構成することもできる。
【0028】
【発明の効果】
以上のように、本発明に係る圧電素子では、圧電バイモルフの間に設けた膜層は弾性係数が低く表裏で相反する面方向の変位に追従する性質を有するので、複数の圧電バイモルフによる多層構造の相互間が柔軟になり、当該膜層は表裏で相反する変位に追従し、接触する圧電板の歪み動作を抑制しない。その結果、変位量は圧電バイモルフの単体時そのままを同等に保持しつつ、発生力を格段に増すことができる。
【0029】
また、膜層が導電性であればこれを電極にでき、接触する相手側に電極膜がいらない。このため、圧電バイモルフとしては、少なくとも一方の圧電板には表面に電極膜を蒸着する処理が不要になり、他方の圧電板の片面にだけ電極膜を蒸着すればよい。従って、蒸着処理の手間が減り、コスト面に有利性がある。
【図面の簡単な説明】
【図1】第1の実施の形態を示す圧電素子の側面図である。
【図2】圧電素子の曲がり変位を示す側面図である。
【図3】第2の実施の形態を示す圧電素子の側面図である。
【符号の説明】
1,1a,1b,1c 圧電バイモルフ
2,2u,2d 圧電板
3 電極層
4,4a,4b 膜層
5 電源
6 電極膜
10 圧電素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bimorph-structured piezoelectric element in which two piezoelectric plates are bonded, and more specifically, to an improvement in a multilayer structure in which a plurality of piezoelectric bimorphs are superposed.
[0002]
BACKGROUND OF THE INVENTION
As is well known, a piezoelectric material such as barium titanate exhibits a reverse-pressure electric effect that causes mechanical strain when an electric field is applied. Therefore, it is necessary to use this for electric / mechanical energy conversion (actuator). As a piezoelectric actuator, there is a bimorph piezoelectric element in which two piezoelectric plates are bonded together.
[0003]
As shown in, for example, Japanese Unexamined Patent Application Publication No. 6-275883, a piezoelectric bimorph has two thin piezoelectric plates bonded together and has an electrode layer between the two bonded piezoelectric plates. The upper and lower two piezoelectric plates are polarized in the thickness direction, and a voltage is applied to generate distortion in a tangential direction along the plate surface. Further, the directions of polarization are aligned in the same direction in the upper and lower directions. In this piezoelectric bimorph, a voltage is applied to the upper and lower piezoelectric plates in opposite phases, so that, for example, the upper piezoelectric plate contracts and the lower piezoelectric plate expands, so that the free end is curved upward as a whole and the direction of the voltage is increased. Is changed, the opposite operation occurs and the free end curves downward.
[0004]
However, since the piezoelectric bimorph is based on a piezoelectric transverse effect in which two thin plates (piezoelectric plates) are bent and displaced in the thickness direction, a large amount of displacement can be obtained, but there is a disadvantage that the generated force is small. Therefore, there is a countermeasure for increasing the generation force by increasing the number of piezoelectric bimorphs. However, when a plurality of piezoelectric bimorphs are simply overlapped and joined, the displacement of the piezoelectric bimorphs is canceled out with the joining layer interposed therebetween, so that a large generating force cannot be obtained. Therefore, improvement is required.
[0005]
In other words, referring to FIG. 2 according to the present invention, in the bonding layer (membrane layer 4) between the two piezoelectric bimorphs, the contacting vertical displacement is reversed, and the bonding layer is simply rigid. If the film layer is made of a suitable adhesive, the resistance will prevent the displacement in the opposite surface directions on the front and back sides, and the distortion operation will be suppressed.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and has as its object to solve the above-described problems, to increase the amount of displacement, to obtain a large generating force, and to provide a piezoelectric element which is advantageous in terms of cost. It is to provide an element.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a piezoelectric element according to the present invention includes a piezoelectric bimorph in which two thin plates made of a piezoelectric material are bonded and an electrode layer is provided between the bonding. A plurality of the piezoelectric bimorphs are superimposed, and a film layer is provided between the superimpositions by using a material having a low elasticity coefficient and having a property of following the opposite surface displacement on both sides.
[0008]
Further, it is preferable that a plurality of the piezoelectric bimorphs are overlapped, and a film layer made of a conductive material is provided between the overlaps. Further, it is preferable that the film layer has conductivity, has a low elastic modulus, and has a property of following displacements in opposite surface directions on the front and back sides. The rigidity can be adjusted by appropriately setting the thickness of the film layer.
[0009]
The film layer may be made of various materials. For example, the film layer is formed of a flexible member such as rubber, an adhesive, or a metal member having a coarse structure having voids such as a metal mesh.
[0010]
Therefore, in the present invention, the film layer provided between the piezoelectric bimorphs has a low elastic modulus and has a property of following the displacement in the opposite surface direction on the front and back, so that the multilayer structure by the plurality of piezoelectric bimorphs becomes flexible. The film layer follows the opposite displacement on the front and back sides, and does not suppress the distortion operation of the contacting piezoelectric plate.
[0011]
If the film layer is conductive, it can be used as an electrode, and a conductor plate for the electrode is not particularly required. In other words, a plurality of laminated piezoelectric bimorphs are bent and displaced in the same direction, so that the power supply is connected in parallel, and the same polarity is applied to the piezoelectric plates that contact the front and back of the film layer. The conductive film layer can be used as an electrode. Further, for example, a silicon-based adhesive can be used for the film layer, and appropriate rigidity can be obtained by changing the thickness of the film layer.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a first embodiment of the present invention. In the present embodiment, the piezoelectric element 10 has a configuration in which a plurality of piezoelectric bimorphs 1 that bend and displace in the thickness direction due to a piezoelectric transverse effect are overlapped, and a predetermined film layer 4 is provided between the overlaps. . The film layer 4 is made of a material having a low elastic modulus and a property of following a displacement in a direction opposite to each other on both sides.
[0013]
The piezoelectric bimorph 1 has a configuration in which two piezoelectric plates 2 formed in a thin plate shape from a piezoelectric material are bonded, and an electrode layer 3 is provided between the bonding. The upper and lower two piezoelectric plates 2u and 2d are polarized in the thickness direction, and when a voltage is applied, distortion occurs in a tangential direction along the plate surface. Further, the directions of polarization are aligned in the same direction (upward). Since a voltage is applied to the upper and lower piezoelectric plates 2u and 2d in the opposite phase to the piezoelectric bimorph 1, for example, the upper piezoelectric plate 2u contracts and the lower piezoelectric plate 2d expands, so that the free end is totally formed. It bends up and reverses the direction when the voltage is turned, causing the free end to curve down.
[0014]
Here, a configuration is adopted in which two piezoelectric bimorphs 1a and 1b are overlapped, and a film layer 4 is formed between the piezoelectric bimorph 1a and the piezoelectric bimorph 1b. The film layer 4 is formed by an adhesive. This can be formed, for example, by bonding both piezoelectric bimorphs 1a and 1b in a state where a silicon-based adhesive is applied to each of the superposed surfaces (2d, 2u). A general coating method such as brush coating and spin coating may be used for applying the adhesive. It is preferable that the adhesive does not rapidly cure, but takes an appropriate time for curing. That is, the curing time has a margin, and the thickness of the film layer 4 can be easily adjusted.
[0015]
Further, the film layer 4 may be formed as a single film extending over the entire area with respect to the superposed surfaces (2d, 2u). For example, the film layer portion having a predetermined shape is dispersed in several places. It can also be formed in a form having.
[0016]
It is assumed that the adhesive has a low elasticity coefficient and has a property of following displacements in opposite surface directions on both sides. Further, it is preferable to add a conductive material such as carbon so as to have conductivity.
[0017]
If the adhesive is conductive, the film layer 4 can be used as an electrode, and a conductor plate for the electrode is not particularly required. That is, since the two piezoelectric bimorphs 1a and 1b are bent and displaced in the same direction as shown in FIG. 2, the power supply 5 is connected in parallel, and the front and back surfaces of the film layer 4 are contacted. Since the piezoelectric plates (2d, 2u) have the same polarity, the conductive film layer 4 can be used as an electrode.
[0018]
The piezoelectric element 10 needs an electrode on the outermost surface of the piezoelectric plate. Therefore, in the present embodiment, the electrode film 6 is formed by previously depositing a single electrode film 6 on the surface of each of the piezoelectric plate 2u of the piezoelectric bimorph 1a and the piezoelectric plate 2d of the piezoelectric bimorph 1b.
[0019]
For driving, a power supply 5 is connected in parallel to the two stacked piezoelectric bimorphs 1a and 1b, and a voltage is applied to the same polarity. Thereby, the two piezoelectric bimorphs 1a and 1b bend and displace in the same direction as shown in FIG.
[0020]
For example, when a voltage is applied to a polarity in which the free end curves upward, the piezoelectric bimorph 1a contracts the upper piezoelectric plate 2u and expands the lower piezoelectric plate 2d. Similarly, in the piezoelectric bimorph 1b, the upper piezoelectric plate 2u contracts and the lower piezoelectric plate 2d expands. When this phenomenon is viewed from the film layer 4, a tensile force acts on the upper surface due to the elongation displacement of the piezoelectric plate 2d in contact therewith, and a compressive force acts on the lower surface due to the shrinkage displacement of the piezoelectric plate 2u in contact therewith. As a result, opposing forces acting on the front and back surfaces in opposite directions are applied. However, in the present invention, as described above, since the film layer 4 has a low elastic modulus and has a property of following the opposing surface displacements on the front and back sides, the opposing acting forces are buffered and the contacting piezoelectric plates 2d and 2u are brought into contact. It does not become a resistor that suppresses the distortion operation of. As a result, the amount of displacement can be increased about twice while maintaining the same amount of displacement of the piezoelectric bimorph 1 alone.
[0021]
Further, since the film layer 4 is formed of a conductive adhesive, it becomes an electrode, and the electrode film does not need to be in contact with the partner. For this reason, in the piezoelectric bimorph 1, at least one of the piezoelectric plates 2 does not require a process of depositing an electrode film on the surface, and the electrode film 6 may be deposited only on one surface of the other piezoelectric plate 2. Therefore, the trouble of the vapor deposition process is reduced, which is advantageous in cost.
[0022]
FIG. 3 shows a second embodiment of the present invention. In the second embodiment, a configuration in which three piezoelectric bimorphs 1a, 1b, and 1c are stacked is adopted. Accordingly, a film layer 4a is formed between the piezoelectric bimorph 1a and the piezoelectric bimorph 1b, and a film layer 4b is formed between the piezoelectric bimorph 1b and the piezoelectric bimorph 1c.
[0023]
Also in this case, the connection of the power supply 5 is parallel connection, and a voltage of the same polarity is applied to the three piezoelectric bimorphs 1a, 1b, 1c, so that they operate to bend and displace in the same direction. Since the two film layers 4a and 4b have a low elastic modulus and have a property of following the opposing surface displacements on the front and back sides, the opposing acting forces are buffered. As a result, the amount of displacement of the piezoelectric bimorph 1 is reduced. The generated force can be increased by about three times while maintaining the same condition as a single unit. That is, even if the number of stacked piezoelectric bimorphs 1 is increased, only the generated force can be increased without reducing the displacement amount.
[0024]
By the way, the present invention is not limited to the above embodiment. For example, the thickness of the film layer 4 has a correlation with the rigidity of the piezoelectric element 10, and the rigidity can be adjusted by appropriately setting the thickness of the film layer 4. Of course, in that case, the elastic modulus of the adhesive forming the film layer 4 is also set appropriately. From the aspect of miniaturizing the piezoelectric element 10, the film layer 4 should be formed thin. However, if the adhesive having a low elastic coefficient and high flexibility is thinned, the rigidity is reduced, and the ability to follow opposing displacements on the front and back surfaces is also impaired. , These points are set to appropriate values to balance them.
[0025]
Further, the member of the film layer 4 can be appropriately changed, and is formed of, for example, a flexible member such as rubber or a metal member having a coarse structure having voids such as a metal mesh. Then, as the metal member, for example, a base body having a gap space is formed of a resin material, and after removing the resin of the base body after allowing the metal to enter the gap space, a coarse structure having a gap can be formed. Such a coarse structure may be used.
[0026]
When the film layer 4 is made non-conductive without adding a conductive material to the adhesive, an electrode film is formed on the surface of the piezoelectric plate (2d, 2u) in contact therewith, and the outer piezoelectric film is formed. It is possible to adopt a configuration in which holes are formed in the plates (2u, 2d) and wiring is performed on the inner electrode film.
[0027]
(Postscript)
For example, the film layer referred to in the present invention can be made of a flexible member such as rubber.
[0028]
【The invention's effect】
As described above, in the piezoelectric element according to the present invention, since the film layer provided between the piezoelectric bimorphs has a low elastic modulus and has a property of following displacements in opposite surface directions on the front and back, a multilayer structure including a plurality of piezoelectric bimorphs is used. Are flexible, the film layer follows opposite displacements on the front and back, and does not suppress the distortion operation of the piezoelectric plate in contact. As a result, it is possible to significantly increase the generated force while maintaining the displacement amount as it is when the piezoelectric bimorph is used alone.
[0029]
In addition, if the film layer is conductive, it can be used as an electrode, and there is no need for an electrode film on the contact partner. For this reason, as a piezoelectric bimorph, at least one of the piezoelectric plates does not need to have a process of depositing an electrode film on the surface thereof, and only has to deposit the electrode film on one surface of the other piezoelectric plate. Therefore, the trouble of the vapor deposition process is reduced, which is advantageous in cost.
[Brief description of the drawings]
FIG. 1 is a side view of a piezoelectric element according to a first embodiment.
FIG. 2 is a side view showing a bending displacement of a piezoelectric element.
FIG. 3 is a side view of a piezoelectric element according to a second embodiment.
[Explanation of symbols]
1, 1a, 1b, 1c Piezoelectric bimorph 2, 2u, 2d Piezoelectric plate 3 Electrode layer 4, 4a, 4b Film layer 5 Power supply 6 Electrode film 10 Piezoelectric element

Claims (6)

圧電材料から形成した薄板を2枚貼り合わせてあって当該貼り合わせの間に電極層を有する圧電バイモルフを備えて、
前記圧電バイモルフは複数を重ね合わせ、当該重ね合わせの間に、弾性係数が低く、表裏で相反する面方向の変位に追従する性質を有する材料により膜層を設けることを特徴とする圧電素子。
With a piezoelectric bimorph having two thin plates formed of a piezoelectric material bonded together and having an electrode layer between the bonding,
A piezoelectric element, wherein a plurality of the piezoelectric bimorphs are superimposed, and a film layer is provided between the superimpositions by using a material having a low elasticity coefficient and having a property of following a displacement in an opposite surface direction on both sides.
圧電材料から形成した薄板を2枚貼り合わせてあって当該貼り合わせの間に電極層を有する圧電バイモルフを備えて、
前記圧電バイモルフは複数を重ね合わせ、当該重ね合わせの間に、導電性材料により膜層を設けることを特徴とする圧電素子。
With a piezoelectric bimorph having two thin plates formed of a piezoelectric material bonded together and having an electrode layer between the bonding,
A piezoelectric element, wherein a plurality of the piezoelectric bimorphs are overlapped, and a film layer made of a conductive material is provided between the overlaps.
前記膜層が、導電性を有するとともに、弾性係数が低く、表裏で相反する面方向の変位に追従する性質を有することを特徴とする請求項1,2に記載の圧電素子。The piezoelectric element according to claim 1, wherein the film layer has conductivity, has a low elastic modulus, and has a property of following a displacement in a direction opposite to each other on the front and back sides. 前記膜層の厚さを適宜に設定して剛性の調整を行うことを特徴とする請求項1〜3に記載の圧電素子。4. The piezoelectric element according to claim 1, wherein the rigidity is adjusted by appropriately setting the thickness of the film layer. 前記膜層が、接着剤であることを特徴とする請求項1〜4に記載の圧電素子。The piezoelectric element according to claim 1, wherein the film layer is an adhesive. 前記膜層が、金属メッシュ等の空隙を有する粗構造の金属部材であることを特徴とする請求項1〜4に記載の圧電素子。The piezoelectric element according to any one of claims 1 to 4, wherein the film layer is a metal member having a rough structure having a void such as a metal mesh.
JP2002244911A 2002-08-26 2002-08-26 Piezoelectric element Withdrawn JP2004087662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244911A JP2004087662A (en) 2002-08-26 2002-08-26 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244911A JP2004087662A (en) 2002-08-26 2002-08-26 Piezoelectric element

Publications (1)

Publication Number Publication Date
JP2004087662A true JP2004087662A (en) 2004-03-18

Family

ID=32053253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244911A Withdrawn JP2004087662A (en) 2002-08-26 2002-08-26 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP2004087662A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505539A (en) * 2003-09-11 2007-03-08 ニュー トランスデューサーズ リミテッド Electromechanical force transducer
EP1787677A1 (en) * 2004-08-26 2007-05-23 Shiseido Company, Limited Ion introduction unit employing piezoelectric bimorph element
JP2007208883A (en) * 2006-02-06 2007-08-16 Nec Tokin Corp Piezoelectric vibrating unit and panel speaker
JP2007221532A (en) * 2006-02-17 2007-08-30 Nec Tokin Corp Acoustic vibration generating element
CN100386902C (en) * 2004-04-09 2008-05-07 清华大学 Piezoelectric driving element having multilayer piezoelectric composite membrane structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505539A (en) * 2003-09-11 2007-03-08 ニュー トランスデューサーズ リミテッド Electromechanical force transducer
CN100386902C (en) * 2004-04-09 2008-05-07 清华大学 Piezoelectric driving element having multilayer piezoelectric composite membrane structure
EP1787677A1 (en) * 2004-08-26 2007-05-23 Shiseido Company, Limited Ion introduction unit employing piezoelectric bimorph element
US7531940B2 (en) 2004-08-26 2009-05-12 Shiseido Co., Ltd. Ion introducer employing piezoelectric bimorph element
EP1787677A4 (en) * 2004-08-26 2011-03-23 Shiseido Co Ltd Ion introduction unit employing piezoelectric bimorph element
JP2007208883A (en) * 2006-02-06 2007-08-16 Nec Tokin Corp Piezoelectric vibrating unit and panel speaker
JP4688687B2 (en) * 2006-02-06 2011-05-25 Necトーキン株式会社 Piezoelectric vibration unit and panel speaker
JP2007221532A (en) * 2006-02-17 2007-08-30 Nec Tokin Corp Acoustic vibration generating element

Similar Documents

Publication Publication Date Title
JP5512834B2 (en) Pre-strain of electroactive polymer
JP4289511B2 (en) Piezoelectric actuator
KR101594827B1 (en) Piezoelectric element, piezoelectric vibration module, and manufacturing method of these
US20200314555A1 (en) Electro-active loudspeaker
WO2021199800A1 (en) Multilayer piezoelectric element
TW202137783A (en) Laminated piezoelectric element and electroacoustic transducer
US8159113B2 (en) Ultrasonic actuator with power supply electrode arrangement
CN109863762B (en) Electrostatic transducer
JP5134431B2 (en) Pronunciation
JP2004087662A (en) Piezoelectric element
JP7429506B2 (en) Vibration panels and electronic equipment
JP2004159403A (en) Piezoelectric actuator
JP2013039016A (en) Energy conversion module
US11362261B2 (en) Multi-layer piezoelectric ceramic component and piezoelectric device
JP6882096B2 (en) Piezoelectric power generator
US8008840B2 (en) Drive unit
KR20210009976A (en) Ultrasonic sensor having laminaged type piezoelectric ceramic layer
JPH06275884A (en) Piezoelectric element
WO2023021944A1 (en) Piezoelectric element and piezoelectric speaker
WO2023157532A1 (en) Piezoelectric element, and electro-acoustic converter
JPS59115580A (en) Bimorph supporting structure
KR20190122090A (en) Piezoelectric device, piezoelectric actuator including the device, and piezoelectric module including the actuator
KR20190127126A (en) Piezoelectric device, piezoelectric actuator including the device, and piezoelectric module including the actuator
JPH11136963A (en) Piezoelectric power supply device
JPH06275885A (en) Piezoelectric element and its manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101