JP4063183B2 - Method for producing three-dimensional fiber structure - Google Patents

Method for producing three-dimensional fiber structure Download PDF

Info

Publication number
JP4063183B2
JP4063183B2 JP2003330137A JP2003330137A JP4063183B2 JP 4063183 B2 JP4063183 B2 JP 4063183B2 JP 2003330137 A JP2003330137 A JP 2003330137A JP 2003330137 A JP2003330137 A JP 2003330137A JP 4063183 B2 JP4063183 B2 JP 4063183B2
Authority
JP
Japan
Prior art keywords
fiber structure
yarn
dimensional fiber
arrangement
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003330137A
Other languages
Japanese (ja)
Other versions
JP2005097759A (en
Inventor
藤夫 堀
義治 安居
純治 竹内
元基 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2003330137A priority Critical patent/JP4063183B2/en
Publication of JP2005097759A publication Critical patent/JP2005097759A/en
Application granted granted Critical
Publication of JP4063183B2 publication Critical patent/JP4063183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Woven Fabrics (AREA)
  • Looms (AREA)

Description

本発明は、三次元繊維構造体の製造方法に関する。 The present invention relates to the production how the three-dimensional fiber structure.

繊維強化複合材は軽量の構造材料として広く使用されている。繊維強化複合材のうち、三次元織物(三次元繊維構造体)を強化材として使用したものは強度が非常に高く、航空機等の構造材に使用が考えられ、一部使用されている。このような構造材には直線状ではなく、長手方向に湾曲した形状のものも必要となる。例えば、航空機の胴体は円筒状に形成されているため、円弧状に形成された構造材を連結して円環状で使用する用途も多い。   Fiber reinforced composites are widely used as lightweight structural materials. Among fiber reinforced composite materials, those using a three-dimensional woven fabric (three-dimensional fiber structure) as a reinforcing material have very high strength and are considered to be used for structural materials such as aircraft, and are partially used. Such a structural material is not linear but needs to be curved in the longitudinal direction. For example, since the fuselage of an aircraft is formed in a cylindrical shape, there are many applications in which the structural members formed in an arc shape are connected to be used in an annular shape.

円弧状の三次元繊維構造体の製法として、三次元に配向された強化用繊維で織物を平板状に形成した後に、当該三次元織物を所定形状を有する治具に倣わせて成形する方法が開示されている(例えば、特許文献1参照。)。   As a method of manufacturing an arc-shaped three-dimensional fiber structure, there is a method in which after forming a woven fabric into a flat plate shape with reinforcing fibers oriented in three dimensions, the three-dimensional woven fabric is shaped by following a jig having a predetermined shape. (For example, refer to Patent Document 1).

また、扇形や穴付き円板状の複合材の強化用繊維材料として、らせん状織物が提案されている(例えば、特許文献2、特許文献3参照。)。これらのらせん状織物は、半径方向に延びるように配列されたよこ糸の密度がほぼ均一となるように、一部のよこ糸が半径方向の途中において折り返されるように配列されている。特許文献3に開示されたらせん状織物の製造方法では、開口、よこ入れ、筬打ちを基本動作とする製織機構によって製織する際、多数本の経糸61を一本ずつ個別に制御して送り出し、よこ糸62を片側の耳糸から反対方向の折返し点までの距離が段階的に異なる他種類のよこ入れ幅でよこ入れする。そして、図14に示すように、筬63で筬打ちされた後の織物64を、頂角5度以上15度未満のコーン形状に形成され、その大径部が前記片側の耳糸側を向くように配列された複数本の引取ローラ65に千鳥状に巻き付け、経糸61の無緊張下で引取ローラ65を回転して引き取り、織物64を引取ローラ65の小径側に湾曲させる。   In addition, a spiral woven fabric has been proposed as a reinforcing fiber material for a fan-shaped or disk-shaped composite material with a hole (see, for example, Patent Document 2 and Patent Document 3). These spiral woven fabrics are arranged such that some wefts are folded in the middle of the radial direction so that the density of the weft yarns arranged to extend in the radial direction is substantially uniform. In the method of manufacturing a spiral woven fabric disclosed in Patent Document 3, when weaving by a weaving mechanism having basic operations of opening, weft insertion, and punching, a large number of warps 61 are individually controlled one by one, and sent out. The weft thread 62 is wefted with other kinds of weft insertion widths in which the distance from the ear thread on one side to the turning point in the opposite direction varies stepwise. And as shown in FIG. 14, the fabric 64 after being beaten with the scissors 63 is formed into a cone shape with an apex angle of 5 degrees or more and less than 15 degrees, and the large diameter portion faces the one ear thread side. The plurality of take-up rollers 65 arranged in a staggered manner are wound in a zigzag manner, and the take-up roller 65 is rotated and taken up under no tension of the warp 61, so that the fabric 64 is bent toward the small diameter side of the take-up roller 65.

また、曲面部や屈曲部を有する三次元繊維構造体の製造方法として、製造すべき三次元繊維構造体の形状に対応して分解可能に形成された治具を使用し、その治具上に、糸が折り返し状に配列された複数の糸層を積層して積層糸群を形成し、その積層糸群を各糸層と直交する方向に配列される厚さ方向糸で結合する方法がある(例えば、特許文献4参照。)。   In addition, as a method of manufacturing a three-dimensional fiber structure having a curved portion or a bent portion, a jig formed so as to be decomposable in accordance with the shape of the three-dimensional fiber structure to be manufactured is used. There is a method of laminating a plurality of yarn layers in which yarns are folded back to form a laminated yarn group, and joining the laminated yarn groups with thickness direction yarns arranged in a direction orthogonal to each yarn layer (for example, , See Patent Document 4).

積層糸群を厚さ方向糸で結合する方法(以下、積層法と言う場合もある。)では、I形やT形等の異形断面の三次元繊維構造体を直接製造することはできない。しかし、複数の平板状の三次元繊維構造体をステッチで結合させて異形断面の直線状の三次元繊維構造体を製造する方法は知られている(例えば、非特許文献1参照。)。例えば、T形の異形断面の三次元繊維構造体を製造する場合は、図15(a)に示すように、積層法で製造した2枚の平板状の三次元繊維構造体71を準備する。そして、図15(b)に示すように、2枚の三次元繊維構造体71を重ねてその一部にステッチ72を施して両三次元繊維構造体71を接合し、次にステッチ72が施されていない部分を折り曲げ加工することにより図15(c)に示すようにT形断面の三次元繊維構造体Fが得られる。なお、図15(c)に鎖線で示すように、屈曲された部分の形状保持のため、鎖線で示すように第3の三次元繊維構造体71をステッチ72で接合する場合もある。
特開2003−73176号公報(明細書の段落[0007]、[0017],[0018]、図1) 特開昭56−73138号公報(明細書の1,2頁、図1〜3) 特開平2−33346号公報(明細書の2,3頁、図1,2) 特開平11−1843号公報(明細書の段落[0041]〜[0051]、図1,4) (革新航空機技術開発に関する調査研究報告書No.1101 、社団法人 日本航空宇宙工業会 革新航空機技術開発センター、2000年3月、p.20〜23)
In a method of joining laminated yarn groups with thickness direction yarns (hereinafter sometimes referred to as a lamination method), a three-dimensional fiber structure having an irregular cross section such as an I shape or a T shape cannot be directly produced. However, a method of manufacturing a linear three-dimensional fiber structure having an irregular cross section by joining a plurality of flat plate-like three-dimensional fiber structures with stitches is known (for example, see Non-Patent Document 1). For example, when manufacturing a three-dimensional fiber structure with a T-shaped irregular cross section, two flat plate-like three-dimensional fiber structures 71 manufactured by a lamination method are prepared as shown in FIG. Then, as shown in FIG. 15 (b), two three-dimensional fiber structures 71 are overlapped and stitched 72 is applied to a part thereof to join both three-dimensional fiber structures 71, and then stitch 72 is applied. By bending the unfinished portion, a three-dimensional fiber structure F having a T-shaped cross section is obtained as shown in FIG. In addition, as shown by the chain line in FIG. 15C, the third three-dimensional fiber structure 71 may be joined by the stitch 72 as shown by the chain line in order to maintain the shape of the bent portion.
JP 2003-73176 A (paragraphs [0007], [0017], [0018] in FIG. 1, FIG. 1) JP 56-73138 A (pages 1 and 2 of the specification, FIGS. 1 to 3) JP-A-2-33346 (pages 2 and 3 of the specification, FIGS. 1 and 2) Japanese Patent Laid-Open No. 11-1843 (paragraphs [0041] to [0051] of the specification, FIGS. 1 and 4) (Research Report No.1101 on Innovative Aircraft Technology Development, Japan Aerospace Industry Association, Innovative Aircraft Technology Development Center, March 2000, p.20-23)

ところが、特許文献1に開示された三次元繊維構造体の製法のように、直線状の三次元織物を所定形状を有する治具に倣わせて成形する方法では、三次元織物が平板状の場合には曲率が小さい状態に曲げるのは可能であるが、I字状、T字状、L字状等の異形断面の三次元織物の場合は湾曲させるのが難しい。また、炭素繊維やアラミド繊維等のように高強度、高弾性率の繊維で形成された三次元織物の場合は、湾曲させるのがより難しい。   However, in the method of forming a linear three-dimensional fabric by following a jig having a predetermined shape as in the method of manufacturing a three-dimensional fiber structure disclosed in Patent Document 1, the three-dimensional fabric is a flat plate. It is possible to bend to a state where the curvature is small, but it is difficult to bend in the case of a three-dimensional fabric having an irregular cross section such as an I shape, a T shape, or an L shape. Further, in the case of a three-dimensional woven fabric formed of high strength and high elastic modulus fibers such as carbon fiber and aramid fiber, it is more difficult to bend.

また、特許文献2及び特許文献3に開示されたらせん状織物を利用するとともに、非特許文献1に記載された異形断面の三次元繊維構造体の製造方法を適用することにより、異形断面で長手方向に湾曲した三次元繊維構造体を製造することが考えられる。例えば、扇状に切断したらせん状織物を複数枚積層するとともに厚さ方向糸で結合して扇面板状の三次元繊維構造体を形成する。そして、その三次元繊維構造体の一部にステッチを施し、ステッチが施されていない部分を折り曲げ加工することにより異形断面で長手方向に湾曲された三次元繊維構造体が形成される。   In addition, by using the spiral woven fabric disclosed in Patent Document 2 and Patent Document 3 and applying the method for manufacturing a three-dimensional fiber structure having a modified cross section described in Non-Patent Document 1, the cross section is elongated in a modified cross section. It is conceivable to produce a three-dimensional fiber structure curved in the direction. For example, when cut into a fan shape, a plurality of spiral woven fabrics are stacked and joined with a thread in the thickness direction to form a fan-shaped plate-like three-dimensional fiber structure. Then, a part of the three-dimensional fiber structure is stitched, and a portion where the stitch is not applied is bent to form a three-dimensional fiber structure that is curved in the longitudinal direction with an irregular cross section.

しかし、特許文献2及び特許文献3に開示されたらせん状織物は曲率が大きな、即ち曲率半径が小さならせん状織物を対象としており、航空機の構造部材のように曲率半径が数mになるらせん状織物を製織するには織機として非常に大きな装置が必要になるという問題がある。また、らせん状織物は経糸及びよこ糸で形成されているため、三次元繊維構造体として長手方向に沿って配列された糸に対して例えば±45度の角度で配列されるバイアス糸を配列させることができない。従って、強度の要求が大きな複合材の強化材としては物性が不十分となる。   However, the spiral woven fabrics disclosed in Patent Document 2 and Patent Document 3 are intended for spiral woven fabrics having a large curvature, that is, a small curvature radius, and the spiral radii having a curvature radius of several meters, such as aircraft structural members. In order to weave a woven fabric, there is a problem that a very large apparatus is required as a loom. In addition, since the spiral woven fabric is formed of warp and weft, a bias yarn arranged at an angle of ± 45 degrees, for example, is arranged with respect to a yarn arranged along the longitudinal direction as a three-dimensional fiber structure. I can't. Therefore, the physical properties are insufficient as a reinforcing material for composite materials having high strength requirements.

また、扇面板状の三次元繊維構造体を形成する方法として、図16に示すように、x糸67及びy糸68で構成された糸層(さらにバイアス糸からなる糸層を含んでもよい)を厚さ方向糸(図示せず)で結合した三次元織物69から所定の曲率及び幅の扇形状の三次元繊維構造体70を切り出すことが考えられる。しかし、この場合、無駄になる部分が多くなるだけでなく、糸の配列が所定の曲率で湾曲されずに直線状となり、高強度の三次元繊維構造体を得るのが難しい。   Further, as a method of forming a fan-shaped plate-like three-dimensional fiber structure, as shown in FIG. 16, a yarn layer composed of x yarn 67 and y yarn 68 (may further include a yarn layer made of bias yarn) It is conceivable to cut out a fan-shaped three-dimensional fiber structure 70 having a predetermined curvature and width from a three-dimensional woven fabric 69 in which the yarns are connected by a thickness direction thread (not shown). However, in this case, not only is the portion that is wasted increased, but the yarn arrangement is not curved with a predetermined curvature but is linear, making it difficult to obtain a high-strength three-dimensional fiber structure.

本発明は前記の問題に鑑みてなされたものであって、その目的は湾曲した形状の梁や円環状に連結された状態で使用され、長手方向と直交する断面形状が異形状の繊維強化複合材を製造するための適切な強化材として使用することができる三次元繊維構造体を製造する際の三次元繊維構造中間体として適している三次元繊維構造体の製造方法を提供することにある The present invention was made in view of the above problems, purpose of that is used in a state of being connected to the beam and an annular curved shape, the cross-sectional shape perpendicular to the longitudinal direction of the irregular shape fiber to provide a method for producing three-dimensional fiber structure suitable as a three-dimensional fiber structure intermediate in the production of three-dimensional fiber structure that can be used as a suitable reinforcing material for the production of reinforced composite materials It is in .

記目的を達成するため、請求項に記載の発明は、円錐台の周面形状の繊維配列部を有する繊維束配列用治具を使用して、前記繊維束配列用治具の上に、少なくとも前記円錐台の端部と平行に配列される糸からなる糸層を含むように糸層を複数積層して少なくとも2軸配向となる積層糸群を形成する積層糸群形成工程を備えている。また、前記積層糸群を前記繊維束配列用治具に保持した状態で厚さ方向糸で結合する積層糸群結合工程を備え、円錐台筒状三次元繊維構造体を形成した後、該円錐台筒状三次元繊維構造体を周方向と直交する方向に切断して展開することにより扇面板状の三次元繊維構造体を形成する。 To achieve pre-Symbol purpose, a first aspect of the present invention, by using the fiber bundle arranging jig having a fiber array portion of the frustoconical peripheral surface shape, on the fiber bundle arranging jig And a laminated yarn group forming step of forming a laminated yarn group having at least biaxial orientation by laminating a plurality of yarn layers so as to include at least a yarn layer composed of yarns arranged in parallel with the end of the truncated cone. . And a laminated yarn group joining step of joining the laminated yarn groups with thickness direction yarns while being held by the fiber bundle arranging jig, and after forming the truncated cone cylindrical three-dimensional fiber structure, the truncated cone cylinder The fan-shaped plate-like three-dimensional fiber structure is formed by cutting and expanding the three-dimensional fiber structure in a direction perpendicular to the circumferential direction.

この発明では、繊維束配列用治具の円錐台の周面をなす形状の繊維配列部上に、少なくとも前記円錐台の端部と平行に配列される糸からなる糸層を含む複数の糸層が積層されて少なくとも2軸配向となる積層糸群が形成される。そして、配列された積層糸群が繊維束配列用治具に保持された状態で厚さ方向糸により結合されて、扇面板状部を有する三次元繊維構造体が形成される。従って、扇面板状部を有する三次元繊維構造体を構成する糸(繊維束)のうち、三次元繊維構造体の長手方向に沿って延びる繊維束(0度配列糸)を配列する際、繊維束に加わる張力を高めることで繊維束を繊維配列部上に容易に押圧することができる。その結果、繊維束を扁平な状態で、繊維配列部上に精度良く、同方向に平行に配列することができ、繊維束を高い繊維体積含有率の三次元繊維構造体が得られるように配列するのが容易になり、この三次元繊維構造体を強化材とした複合材の物性が向上する。   In the present invention, a plurality of yarn layers including a yarn layer made of yarns arranged at least in parallel with an end portion of the truncated cone on a fiber arrangement portion having a shape forming the peripheral surface of the truncated cone of the fiber bundle arranging jig. Are laminated to form a laminated yarn group having at least biaxial orientation. Then, the arranged laminated yarn groups are joined by the thickness direction yarns while being held by the fiber bundle arranging jig to form a three-dimensional fiber structure having a fan-like plate-like portion. Therefore, among the yarns (fiber bundles) constituting the three-dimensional fiber structure having the fan-shaped plate-like portion, when arranging the fiber bundles (0 degree arrangement yarn) extending along the longitudinal direction of the three-dimensional fiber structure, the fibers By increasing the tension applied to the bundle, the fiber bundle can be easily pressed onto the fiber arrangement portion. As a result, the fiber bundles can be arranged in a flat state on the fiber arrangement part with high accuracy and in parallel in the same direction, and the fiber bundles can be arranged so as to obtain a three-dimensional fiber structure having a high fiber volume content. It becomes easy to do, and the physical property of the composite material which used this three-dimensional fiber structure as a reinforcing material improves.

請求項に記載の発明は、円錐台の周面又は円錐台の周面の一部をなす形状の繊維配列部を有する繊維束配列用治具を使用して、前記繊維束配列用治具の上に、少なくとも前記円錐台の端部と平行に配列される糸からなる糸層を含むように糸層を複数積層して少なくとも2軸配向となる積層糸群を形成する積層糸群形成工程を備えている。また、前記積層糸群を前記繊維束配列用治具に保持した状態で一方向へ間欠的に移動させて所定の位置において厚さ方向糸で順次結合する積層糸群結合工程を備えている。そして、前記積層糸群結合工程において前記厚さ方向糸で結合された積層糸群を順次前記繊維束配列用治具から取り外した後、所定の長さに切断して扇面板状の三次元繊維構造体を形成する。 The invention according to claim 2 uses the fiber bundle arranging jig having a fiber arrangement portion having a shape that forms a peripheral surface of the truncated cone or a part of the peripheral surface of the truncated cone. A laminated yarn group forming step of forming a laminated yarn group having at least biaxial orientation by laminating a plurality of yarn layers so as to include at least a yarn layer composed of yarns arranged in parallel with an end of the truncated cone. ing. In addition, there is provided a laminated yarn group joining step in which the laminated yarn group is intermittently moved in one direction while being held by the fiber bundle arranging jig and sequentially joined with a thickness direction yarn at a predetermined position. Then, after the laminated yarn group joined by the thickness direction yarn in the laminated yarn group joining step is sequentially removed from the fiber bundle arranging jig, it is cut to a predetermined length and a fan-like plate-like three-dimensional fiber structure Form.

この発明では、請求項に記載の発明の製造方法と異なり、0度配列糸が所定曲率で配列された扇面板状の三次元繊維構造体を連続的に製造することができ、扇面板状の三次元繊維構造体を効率良く製造することができる。 In this invention, unlike the manufacturing method of the invention described in claim 1 , a fan-shaped plate-like three-dimensional fiber structure in which 0-degree arranged yarns are arranged with a predetermined curvature can be continuously produced. The three-dimensional fiber structure can be produced efficiently.

請求項に記載の発明は、請求項に記載の発明において、前記繊維束配列用治具から順次取り外された前記厚さ方向糸で結合された積層糸群を扇面板状部が連続する形状の帯状三次元繊維構造体として保管した後、所定長さに切断して扇面板状の三次元繊維構造体を形成する。この発明では、繊維束配列用治具から順次取り外された積層糸群を直ちに所定長さに切断して扇面板状の三次元繊維構造体とするのではなく、帯状三次元繊維構造体として保管した後、所定の長さに切断されて扇面板状の三次元繊維構造体が形成される。従って、長さの異なる三次元繊維構造体を自由に製造することができる。 A third aspect of the present invention is the invention according to the second aspect , wherein the fan-like plate-like portion is a continuous shape of the laminated yarn group joined by the thickness direction yarns sequentially removed from the fiber bundle arranging jig. After being stored as a belt-like three-dimensional fiber structure, it is cut to a predetermined length to form a fan-like plate-like three-dimensional fiber structure. In this invention, the laminated yarn group sequentially removed from the fiber bundle arranging jig is not immediately cut into a predetermined length and stored as a fan-like plate-like three-dimensional fiber structure, but stored as a band-like three-dimensional fiber structure. Then, it is cut into a predetermined length to form a fan-like plate-like three-dimensional fiber structure. Therefore, three-dimensional fiber structures having different lengths can be freely produced.

請求項に記載の発明は、請求項〜請求項のいずれか一項に記載の発明において、前記繊維配列部に対して前記円錐台の端部と平行に配列される糸は当該糸層を構成する全ての糸が同時に配列される。この発明では、円錐台の端部と平行に配列される糸を複数回に分けて配列する場合に比較して、効率良く、しかも互いに精度良く平行となるように配列するのが容易となる。 The invention according to claim 4 is the invention according to any one of claims 1 to 3 , wherein the yarn arranged parallel to the end of the truncated cone with respect to the fiber arrangement portion is the yarn. All the yarns that make up the layer are arranged simultaneously. In the present invention, it is easier to arrange the yarns arranged in parallel with the end of the truncated cone in a plurality of times and efficiently and in parallel with each other with high accuracy.

請求項に記載の発明は、長手方向と直交する断面形状が異形状で、長手方向に沿って湾曲形成された三次元繊維構造体の製造方法である。この製造方法では、請求項〜請求項のいずれか一項に記載の製造方法で製造された三次元繊維構造体を三次元繊維構造中間体として使用する。そして、前記三次元繊維構造中間体を複数厚さ方向に積層した状態で、少なくとも該三次元繊維構造中間体の一方の円弧状周縁部を残して結合糸により結合する三次元繊維構造中間体結合工程と、前記結合糸により結合されなかった円弧状周縁部を扇面板状部と直角に折り曲げる折り曲げ工程とを備えている。 Invention of Claim 5 is a manufacturing method of the three-dimensional fiber structure by which the cross-sectional shape orthogonal to a longitudinal direction was unusual shape, and was curvedly formed along the longitudinal direction. In this manufacturing method, to use the claims 1 to three-dimensional fiber structure produced by the production method according to any one of claims 4 as a three-dimensional fiber structure intermediates. Then, in a state where a plurality of the three-dimensional fiber structure intermediates are laminated in the thickness direction, at least one arcuate peripheral edge of the three-dimensional fiber structure intermediate is left, and the three-dimensional fiber structure intermediate bonds are bonded by a bonding thread. And a bending step of bending the arc-shaped peripheral edge portion that has not been joined by the joining yarn at a right angle with the fan plate-like portion.

この発明では、扇面板状の三次元繊維構造中間体が複数厚さ方向に積層された状態で、少なくとも該三次元繊維構造中間体の一方の円弧状周縁部を残して結合糸により結合される。その後、結合糸により結合されなかった円弧状周縁部が扇面板状部に対して直角に折り曲げられることにより、長手方向と直交する断面形状が異形状の三次元繊維構造体が形成される。従って、扇面板状の三次元繊維構造中間体を構成する糸(繊維束)のうち、三次元繊維構造中間体の長手方向に沿って延びる糸を精度良く、同方向に平行に配列することができ、三次元繊維構造体を強化材とした複合材の物性が向上する。   In this invention, in a state where a plurality of fan-plate-like three-dimensional fiber structure intermediates are stacked in the thickness direction, at least one arc-shaped peripheral edge of the three-dimensional fiber structure intermediate is left and bonded by the binding yarn. . Thereafter, the arc-shaped peripheral edge portion that is not joined by the joining yarn is bent at a right angle with respect to the fan-shaped plate-like portion, thereby forming a three-dimensional fiber structure having a different cross-sectional shape perpendicular to the longitudinal direction. Therefore, among the yarns (fiber bundles) constituting the fan-shaped plate-like three-dimensional fiber structure intermediate, the yarns extending along the longitudinal direction of the three-dimensional fiber structure intermediate can be accurately arranged in parallel in the same direction. The physical properties of the composite material using the three-dimensional fiber structure as a reinforcing material can be improved.

求項〜請求項に記載の発明によれば、長手方向と直交する断面形状が異形状で、長手方向に沿って湾曲形成された三次元繊維構造体を製造する際の三次元繊維構造中間体として適している扇面板状の三次元繊維構造体を簡単に製造することができる。また、請求項に記載の発明によれば、長手方向と直交する断面形状が異形状で、長手方向に沿って湾曲形成された三次元繊維構造体を簡単に製造することができる According to the invention described in Motomeko 1 to claim 4, in cross-sectional shape different shape perpendicular to the longitudinal direction, three-dimensional fiber in the production of three-dimensional fiber structure which is curved along the longitudinal direction A fan-plate-shaped three-dimensional fiber structure suitable as a structural intermediate can be easily produced. In addition, according to the fifth aspect of the present invention, a three-dimensional fiber structure having a different cross-sectional shape orthogonal to the longitudinal direction and being curved along the longitudinal direction can be easily manufactured .

(第1の実施形態)
以下、本発明をI形(I字状)の断面形状の三次元繊維構造体に具体化した第1の実施形態を図1〜図5に従って説明する。
(First embodiment)
A first embodiment in which the present invention is embodied in a three-dimensional fiber structure having an I-shaped (I-shaped) cross-sectional shape will be described below with reference to FIGS.

図1(a)は三次元繊維構造体11の模式斜視図、(b)は配列糸の配列状態を示す三次元繊維構造中間体の模式斜視図、(c)は厚さ方向糸の配列状態を示す三次元繊維構造中間体の模式斜視図、(d)及び(e)は製造途中の三次元繊維構造体の模式斜視図である。図2は繊維束配列用治具の模式斜視図、図3(a)は繊維束配列用治具の断面を示し(b)のA−A線における模式断面図、(b)は(a)のB−B線における模式断面図である。図4(a)は配列角度−45度の繊維束の配列状態を示す模式斜視図、(b)は配列角度90度の繊維束の配列状態を示す模式斜視図、図5(a)は配列角度0度の繊維束の配列状態を示す模式斜視図、(b)は配列角度+45度の繊維束の配列状態を示す模式斜視図である。   1A is a schematic perspective view of a three-dimensional fiber structure 11, FIG. 1B is a schematic perspective view of a three-dimensional fiber structure intermediate showing an arrangement state of arranged yarns, and FIG. 1C is an arrangement state of thickness direction yarns. The schematic perspective view of the three-dimensional fiber structure intermediate body which shows these, (d) And (e) is a schematic perspective view of the three-dimensional fiber structure in the middle of manufacture. FIG. 2 is a schematic perspective view of a fiber bundle arranging jig, FIG. 3A is a schematic cross-sectional view taken along line AA in FIG. 3B, and FIG. It is a schematic cross section in the BB line. 4A is a schematic perspective view showing an arrangement state of fiber bundles having an arrangement angle of −45 degrees, FIG. 4B is a schematic perspective view showing an arrangement state of fiber bundles having an arrangement angle of 90 degrees, and FIG. FIG. 5 is a schematic perspective view showing an arrangement state of fiber bundles having an angle of 0 degrees, and (b) is a schematic perspective view showing an arrangement state of fiber bundles having an arrangement angle of +45 degrees.

図1(a)に示すように、三次元繊維構造体11は、長手方向と直交する断面形状が異形状で、長手方向に沿って湾曲形成されている。三次元繊維構造体11は、I形の断面形状に対応して、板状部としての1個の扇面板状部11aと、扇面板状部11aの下端において扇面板状部11aと直角を成すように両側に形成された板状部11bと、扇面板状部11aの上端において扇面板状部11aと直角を成すように両側に形成された板状部11cとから構成されている。即ち、三次元繊維構造体11は互いに直角を成す複数の板状部を有する異形断面に形成されている。そして、三次元繊維構造体11は、長手方向に沿って一定の曲率で湾曲形成されている。湾曲の状態は使用目的によって異なるが、例えば航空機の胴体の構造材として使用する場合、曲率半径が数m(2〜5m)程度となる。   As shown to Fig.1 (a), the cross-sectional shape orthogonal to a longitudinal direction has a different shape, and the three-dimensional fiber structure 11 is curvedly formed along the longitudinal direction. The three-dimensional fiber structure 11 corresponds to the I-shaped cross-sectional shape, and forms a right angle with the fan face plate portion 11a at the lower end of the fan face plate portion 11a as one fan face plate portion 11a. In this way, the plate-like portion 11b is formed on both sides, and the plate-like portion 11c is formed on both sides so as to be perpendicular to the fan-side plate-like portion 11a at the upper end of the fan-like plate-like portion 11a. That is, the three-dimensional fiber structure 11 is formed in a modified cross section having a plurality of plate-like portions that are perpendicular to each other. And the three-dimensional fiber structure 11 is curvedly formed with a fixed curvature along the longitudinal direction. Although the state of curvature varies depending on the purpose of use, for example, when used as a structural material for an aircraft fuselage, the radius of curvature is about several meters (2 to 5 m).

三次元繊維構造体11の各部の寸法は、例えば航空機の胴体の環状部を構成する構造材に使用する場合、扇面板状部11aの高さHが70〜120mm、板状部11bの幅Wが15〜40mmに形成される。また、長さLは環状部を構成する構造材の数及び曲率半径によって変化するが、曲率半径が5m、個数を4個とすれば、約8mに形成される。   The dimensions of each part of the three-dimensional fiber structure 11 are such that, for example, when used for a structural material constituting an annular part of an aircraft fuselage, the height H of the fan-shaped plate-like part 11a is 70 to 120 mm and the width W of the plate-like part 11b. Is formed to 15 to 40 mm. Further, the length L varies depending on the number of the structural members constituting the annular portion and the radius of curvature, but if the radius of curvature is 5 m and the number is 4, the length L is formed to be about 8 m.

三次元繊維構造体11は、その両端部が、複数の三次元繊維構造体を長手方向の端部同士で連結した際に、円環を形成可能な形状に形成されている。三次元繊維構造体11は、その両端面の延長部の成す角度の二等分線が三次元繊維構造体11の中心を通過するように形成されている。   The both ends of the three-dimensional fiber structure 11 are formed in a shape that can form a ring when a plurality of three-dimensional fiber structures are connected to each other in the longitudinal direction. The three-dimensional fiber structure 11 is formed such that the bisector of the angle formed by the extension portions of both end faces passes through the center of the three-dimensional fiber structure 11.

三次元繊維構造体11は、同心の円弧状に配列された0度配列糸からなる糸層を含む少なくとも2軸配向(この実施形態では、4軸配向)となる積層糸群が厚さ方向糸で結合されて形成された扇面板状の三次元繊維構造中間体12(三次元繊維構造体)から構成されている。そして、三次元繊維構造中間体12が、複数厚さ方向に積層された状態で一部が結合糸(ステッチ)13により結合されるとともに、三次元繊維構造中間体12の円弧状周縁部が扇面板状部11aと直角に両側に折り曲げられている。   In the three-dimensional fiber structure 11, a layered yarn group having at least biaxial orientation (in this embodiment, 4-axis orientation) including a yarn layer made of 0-degree arranged yarns arranged in concentric arcs is a thickness direction yarn. It is comprised from the fan-plate-shaped three-dimensional fiber structure intermediate body 12 (three-dimensional fiber structure) formed by combining. A part of the three-dimensional fiber structure intermediate body 12 is laminated by a binding thread (stitch) 13 in a state where a plurality of the three-dimensional fiber structure intermediate bodies 12 are laminated in the thickness direction. It is bent on both sides at right angles to the face plate portion 11a.

図1(b)に示すように、三次元繊維構造中間体12を構成する積層糸群14は、0度配列糸15と、90度配列糸16と、+45度配列糸17と、−45度配列糸18とから構成されている。0度配列糸15は同一中心の円弧を構成するように、即ち同心の円弧状に、互いに平行に配列されている。90度配列糸16は0度配列糸15と直交するように配列されており、+45度配列糸17は0度配列糸15に対して+45度の角度で配列されており、−45度配列糸18は0度配列糸15に対して−45度の角度で配列されている。即ち、扇面板状部11a内では、積層糸群14の各糸層の配列糸角度は前記同心の円弧状に配列された0度配列糸15に対して一定である。   As shown in FIG.1 (b), the laminated yarn group 14 which comprises the three-dimensional fiber structure intermediate body 12 is the 0 degree | times arrangement | sequence thread | yarn 15, the 90 degree arrangement | sequence thread | yarn 16, the +45 degree | times arrangement thread | yarn 17, and the -45 degree | times arrangement | sequence. And the yarn 18. The 0-degree array yarns 15 are arranged in parallel to each other so as to form an arc having the same center, that is, in a concentric arc shape. The 90-degree array yarn 16 is arranged so as to be orthogonal to the 0-degree array yarn 15, and the + 45-degree array yarn 17 is arranged at an angle of +45 degrees with respect to the 0-degree array yarn 15. 18 are arranged at an angle of −45 degrees with respect to the 0-degree array yarn 15. That is, in the fan-shaped plate-like portion 11a, the arrangement yarn angle of each yarn layer of the laminated yarn group 14 is constant with respect to the 0 degree arrangement yarn 15 arranged in the concentric arc shape.

そして、図1(c)に示すように、積層糸群14が厚さ方向糸zで結合されて三次元繊維構造中間体12が構成されている。各配列糸15〜18には炭素繊維製の繊維束が使用され、厚さ方向糸zにはポリアラミド繊維製の繊維束が使用されている。炭素繊維製の繊維束は炭素繊維の無撚りのマルチフィラメントからなり、マルチフィラメントはフィラメント数が3000〜24000本程度である。   And as shown in FIG.1 (c), the lamination thread group 14 is couple | bonded by the thickness direction thread | z, and the three-dimensional fiber structure intermediate body 12 is comprised. A carbon fiber fiber bundle is used for each of the arranged yarns 15 to 18, and a polyaramid fiber fiber bundle is used for the thickness direction yarn z. The fiber bundle made of carbon fiber is composed of carbon fiber non-twisted multifilaments, and the number of multifilaments is about 3000 to 24000 filaments.

次に三次元繊維構造体11の製造方法について説明する。
三次元繊維構造体11の製造方法は、積層糸群形成工程と、三次元繊維構造中間体形成工程(積層糸群結合工程)と、三次元繊維構造中間体結合工程と、折り曲げ工程とを備えている。
Next, the manufacturing method of the three-dimensional fiber structure 11 is demonstrated.
The manufacturing method of the three-dimensional fiber structure 11 includes a laminated yarn group forming step, a three-dimensional fiber structure intermediate forming step (laminated yarn group joining step), a three-dimensional fiber structure intermediate joining step, and a bending step. .

先ず三次元繊維構造中間体12としての三次元繊維構造体の製造に使用する繊維束配列用治具の構成を説明する。繊維束配列用治具は積層糸群形成工程と、三次元繊維構造中間体形成工程とに使用される。   First, the configuration of a fiber bundle arranging jig used for manufacturing a three-dimensional fiber structure as the three-dimensional fiber structure intermediate 12 will be described. The fiber bundle arranging jig is used for the laminated yarn group forming step and the three-dimensional fiber structure intermediate forming step.

図3(a),(b)に示すように、繊維束配列用治具19は、ベースプレート20上に立設された支柱21に対して、繊維配列部としての円錐台筒状の支持プレート22がブラケット23を介して固定されている。支持プレート22は、その両端部の周長が形成すべき扇面板状の三次元繊維構造中間体12の両端の円弧部の長さと等しくなるように形成されている。図2に示すように、支持プレート22には一箇所にその幅方向に沿って延びる開口部22aが形成されている。   As shown in FIGS. 3A and 3B, the fiber bundle arranging jig 19 has a truncated cone-shaped support plate 22 as a fiber arranging portion with respect to a column 21 erected on the base plate 20. Is fixed via a bracket 23. The support plate 22 is formed so that the peripheral lengths of both end portions thereof are equal to the lengths of the arc portions at both ends of the fan-plate-like three-dimensional fiber structure intermediate body 12 to be formed. As shown in FIG. 2, the support plate 22 is formed with an opening 22a extending along the width direction at one place.

支持プレート22の一端(この実施形態では上端)側には、小径の支持リング24が支柱21に対してアーム部24aで支持された状態で、支柱21及び支持プレート22に対して回転可能に支持されている。支持プレート22の他端(この実施形態では下端)側には、大径の支持リング25がベースプレート20上に設けられた支持筒26上において支持筒26及び支持プレート22に対して回転可能に支持されている。   On one end (upper end in this embodiment) side of the support plate 22, a small-diameter support ring 24 is supported by the arm portion 24 a with respect to the support column 21 so as to be rotatable with respect to the support column 21 and the support plate 22. Has been. On the other end (lower end in this embodiment) side of the support plate 22, a large-diameter support ring 25 is rotatably supported with respect to the support tube 26 and the support plate 22 on a support tube 26 provided on the base plate 20. Has been.

支持リング24,25の外径はそれぞれ支持プレート22の端部の外径とほぼ同じに形成されている。両支持リング24,25の内面には内歯車24b,25aが形成されている。両内歯車24b,25aは、径及び歯数が同じに形成されている。ベースプレート20上には、両支持リング24,25の内側の位置に回転軸27が上下方向に延びるように配設されている。回転軸27には内歯車24bに歯噛する歯車28と、内歯車25aに歯噛する歯車29とが一体回転可能に固定されている。回転軸27は図示しない、歯車あるいは巻き掛け伝動機構等を介してモータにより回転駆動されるようになっている。即ち、両支持リング24,25は回転軸27の回転に伴い歯車28,29を介して同じ回転速度で回転されるようになっている。なお、回転軸27の上端は、支持リング24と干渉しない高さに設定されている。また、内歯車24b,25aの歯の図示を省略している。   The outer diameters of the support rings 24 and 25 are formed to be approximately the same as the outer diameter of the end portion of the support plate 22. Internal gears 24 b and 25 a are formed on the inner surfaces of the support rings 24 and 25. Both internal gears 24b and 25a are formed with the same diameter and the same number of teeth. On the base plate 20, a rotary shaft 27 is disposed at a position inside the support rings 24 and 25 so as to extend in the vertical direction. A gear 28 that meshes with the internal gear 24b and a gear 29 that meshes with the internal gear 25a are fixed to the rotary shaft 27 so as to be integrally rotatable. The rotating shaft 27 is driven to rotate by a motor via a gear or a winding transmission mechanism (not shown). That is, both the support rings 24 and 25 are rotated at the same rotational speed via the gears 28 and 29 as the rotary shaft 27 rotates. The upper end of the rotating shaft 27 is set to a height that does not interfere with the support ring 24. Also, illustration of the teeth of the internal gears 24b, 25a is omitted.

図2に示すように、支持リング24,25には多数のピン30が、支持リング24,25の外側に向かって突出するようにそれぞれ所定ピッチで固定されている。両支持リング24,25にはそれぞれ同数のピン30が固定されており、各ピン30の固定位置は、繊維束配列用治具19の外周面を扇面状に展開した状態で、両支持リング24,25のピン30が扇面の周縁の曲率中心を通る直線上に存在するように設定されている。支持プレート22、支持リング24,25及びピン30が円錐台の周面をなす形状の繊維配列部を構成する。   As shown in FIG. 2, a large number of pins 30 are fixed to the support rings 24, 25 at a predetermined pitch so as to protrude toward the outside of the support rings 24, 25. The same number of pins 30 are fixed to the support rings 24 and 25, respectively. The fixing positions of the pins 30 are the support rings 24 in a state where the outer peripheral surface of the fiber bundle arranging jig 19 is developed in a fan shape. , 25 pins 30 are set to exist on a straight line passing through the center of curvature of the peripheral edge of the fan surface. The support plate 22, the support rings 24 and 25, and the pin 30 constitute a fiber array portion having a shape that forms the peripheral surface of the truncated cone.

なお、図3(a),(b)ではピン30の図示を省略している。また、最終的に製造する複合材が、航空機の胴体フレームに使用され、その曲率半径が5mとすれば、扇面板状の三次元繊維構造中間体12の曲率半径も5mとなる。そして、例えば、4個の複合材で円環を構成するとすれば、複合材の長さは7.85mとなり、それに対応する三次元繊維構造中間体12を製造するのに必要な繊維束配列用治具19は、支持リング24の半径が1.25m、支持リング25の半径が1.29mとなる。一方、三次元繊維構造中間体12の幅は0.15m程度である。しかし、各図において、三次元繊維構造中間体12の長さと幅の比や、繊維束配列用治具19の径と幅の比は、実際の値と異なる値で図示している。   In addition, illustration of the pin 30 is abbreviate | omitted in FIG. 3 (a), (b). Moreover, if the composite material finally manufactured is used for the fuselage frame of an aircraft and the curvature radius is 5 m, the curvature radius of the fan-plate-shaped three-dimensional fiber structure intermediate body 12 is also 5 m. For example, if a ring is formed by four composite materials, the length of the composite material is 7.85 m, and the fiber bundle arrangement necessary for manufacturing the corresponding three-dimensional fiber structure intermediate 12 is used. The jig 19 has a radius of the support ring 24 of 1.25 m and a radius of the support ring 25 of 1.29 m. On the other hand, the width of the three-dimensional fiber structure intermediate 12 is about 0.15 m. However, in each figure, the ratio of the length and width of the three-dimensional fiber structure intermediate 12 and the ratio of the diameter and width of the fiber bundle arranging jig 19 are shown as values different from the actual values.

次に繊維束配列用治具19を使用した三次元繊維構造中間体12の形成方法を説明する。先ず繊維束配列用治具19の外周面に糸層を複数積層して4軸配向となる積層糸群14を形成する。糸層には、図5(b)に示すように、支持プレート22の周方向とほぼ+45度の角度を成すように配列される+45度配列糸17により構成された+45度配列糸層31、図4(b)に示すように、支持プレート22の周方向と直交する方向に配列される90度配列糸16により構成された90度配列糸層32がある。また、糸層には、図5(a)に示すように、支持プレート22の周方向に沿って配列される0度配列糸15により構成された0度配列糸層33、図4(a)に示すように、支持プレート22の周方向とほぼ−45度の角度を成すように配列される−45度配列糸18により構成された−45度配列糸層34がある。   Next, a method for forming the three-dimensional fiber structure intermediate 12 using the fiber bundle arranging jig 19 will be described. First, a plurality of yarn layers are laminated on the outer peripheral surface of the fiber bundle arranging jig 19 to form a laminated yarn group 14 having a four-axis orientation. As shown in FIG. 5B, the yarn layer includes a +45 degree arrangement yarn layer 31 constituted by +45 degree arrangement yarns 17 arranged so as to form an angle of approximately +45 degrees with the circumferential direction of the support plate 22. As shown in FIG. 4B, there is a 90-degree array yarn layer 32 constituted by 90-degree array yarns 16 arranged in a direction orthogonal to the circumferential direction of the support plate 22. Further, as shown in FIG. 5 (a), the thread layer includes a 0 degree array thread layer 33 constituted by 0 degree array threads 15 arranged along the circumferential direction of the support plate 22, and FIG. 4 (a). As shown in FIG. 4, there is a −45 degree arrangement yarn layer 34 constituted by a −45 degree arrangement yarn 18 arranged so as to form an angle of about −45 degrees with the circumferential direction of the support plate 22.

90度配列糸16、+45度配列糸17及び−45度配列糸18は、それぞれ支持リング24,25のピン30に係止された状態で折り返すようにして配列される。但し、図示の都合上、図4(a),(b)、図5(b)では、各配列糸16〜18がピン30に係止された部分の図示を省略している。各配列糸16〜18は、一端が支持リング24,25の一方に固定された状態で配列が開始される。0度配列糸15は、一端が支持プレート22に固定された状態で配列が開始される。0度配列糸15は、全ての糸が同時に配列される。   The 90-degree array yarn 16, the + 45-degree array yarn 17, and the -45-degree array yarn 18 are arrayed so as to be folded back while being locked to the pins 30 of the support rings 24 and 25, respectively. However, for convenience of illustration, in FIGS. 4A, 4 </ b> B, and 5 </ b> B, illustration of portions where the respective array yarns 16 to 18 are locked to the pins 30 is omitted. The arrangement of the arrangement yarns 16 to 18 is started in a state where one end is fixed to one of the support rings 24 and 25. The arrangement of the 0-degree arrangement yarn 15 is started with one end fixed to the support plate 22. In the 0 degree arrangement yarn 15, all the yarns are arranged at the same time.

各配列糸16〜18は、1本の糸を順次、支持リング24,25のピン30に係止された状態で折り返すよう配列しても、複数本の糸をピン30の配列ピッチに対応した間隔で供給可能なヘッドを使用して同時に配列してもよい。各配列糸16〜18がピン30に係止された状態で折り返す際には、前記ヘッドは配列糸の本数に対応した距離周方向に沿って移動した後、折り返す。   Each of the arranged yarns 16 to 18 corresponds to the arrangement pitch of the pins 30 even if one yarn is arranged so that the yarns are sequentially folded back while being locked to the pins 30 of the support rings 24 and 25. You may arrange simultaneously using the head which can be supplied at intervals. When the array yarns 16 to 18 are folded in a state of being locked to the pins 30, the head is folded after moving along the circumferential direction of the distance corresponding to the number of the array yarns.

各糸層31〜34の配置順序には特に制限はないが、+45度配列糸層31と−45度配列糸層34との間に90度配列糸層32及び0度配列糸層33が配置される構成が好ましい。   The arrangement order of the thread layers 31 to 34 is not particularly limited, but the 90 degree arrangement yarn layer 32 and the 0 degree arrangement yarn layer 33 are arranged between the +45 degree arrangement yarn layer 31 and the −45 degree arrangement yarn layer 34. The configuration is preferred.

各糸層31〜34が所定層(例えば、各糸層31〜34が2層ずつ)積層されて繊維束配列用治具19上に積層糸群14が形成された後、積層糸群14を繊維束配列用治具19に保持した状態で厚さ方向糸zによる積層糸群14の各糸層の結合が行われる。厚さ方向糸zによる結合、即ち厚さ方向糸zの積層糸群14への挿入は、基本的には本願出願人が先に提案した特許文献4に記載の装置と同様に構成された厚さ方向糸挿入装置を使用して行われる。厚さ方向糸挿入装置は、厚さ方向糸挿入針35が一列に固定された針支持体36を、支持プレート22の開口部22aと対応する位置において往復移動可能に構成されている。針支持体36は厚さ方向糸挿入針35が繊維束配列用治具19に保持された積層糸群14と係合不能な待機位置と、針孔(図示せず)が積層糸群14の反対側となる位置まで積層糸群14を貫通する作用位置とに移動される。   After the respective yarn layers 31 to 34 are laminated in a predetermined layer (for example, two each of the yarn layers 31 to 34) and the laminated yarn group 14 is formed on the fiber bundle arranging jig 19, the laminated yarn group 14 is turned into a fiber bundle. The yarn layers of the laminated yarn group 14 are joined by the thickness direction yarn z while being held by the arrangement jig 19. Thickness direction yarn z, that is, insertion of thickness direction yarn z into laminated yarn group 14 is basically the same thickness as the device described in Patent Document 4 previously proposed by the present applicant. This is done using a directional thread insertion device. The thickness direction thread insertion device is configured to be able to reciprocate a needle support 36 on which thickness direction thread insertion needles 35 are fixed in a row at a position corresponding to the opening 22 a of the support plate 22. The needle support 36 has a standby position where the thickness direction thread insertion needle 35 cannot be engaged with the laminated yarn group 14 held by the fiber bundle arranging jig 19, and a needle hole (not shown) on the opposite side of the laminated yarn group 14. Is moved to a working position penetrating the laminated yarn group 14 to a position.

そして、針支持体36の往動により、厚さ方向糸挿入針35が積層糸群14を貫通して、厚さ方向糸zの厚さ方向糸挿入針35に保持されている部分が積層糸群14の裏側から突出する状態となる。その状態から針支持体36が僅かに復動され、厚さ方向糸挿入針35に連なる各厚さ方向糸zがループ状となる。その状態で各厚さ方向糸zのループ部に耳糸(抜け止め糸)が挿通された後、針支持体36が待機位置まで復動され、厚さ方向糸zが折り返し状に挿入される。   Then, the forward movement of the needle support 36 causes the thickness direction thread insertion needle 35 to penetrate the laminated thread group 14, and the portion of the thickness direction thread z held by the thickness direction thread insertion needle 35 is the laminated thread group 14. It will be in the state which protrudes from the back side. From this state, the needle support 36 is slightly moved back, and each thickness direction thread z connected to the thickness direction thread insertion needle 35 becomes a loop shape. In this state, after the ear thread (retaining thread) is inserted into the loop portion of each thickness direction thread z, the needle support 36 is moved back to the standby position, and the thickness direction thread z is inserted in a folded shape. .

次に両支持リング24,25が厚さ方向糸zの1ピッチ分回動され、積層糸群14が開口部22aに対して同じ距離移動される。その状態で再び針支持体36が前記と同様に駆動され、次の箇所に厚さ方向糸zが折り返し状に挿入される。以下、両支持リング24,25の回動と、針支持体36の往復移動とが交互に行われ、両支持リング24,25が1回転した後、針支持体36の往復移動が終了した時点で、積層糸群14への厚さ方向糸zの挿入作業、即ち積層糸群14の結合作業が完了し、円錐台筒状三次元繊維構造体が形成される。   Next, both the support rings 24 and 25 are rotated by one pitch of the thickness direction yarn z, and the laminated yarn group 14 is moved by the same distance with respect to the opening 22a. In this state, the needle support 36 is again driven in the same manner as described above, and the thickness direction thread z is inserted in a folded manner at the next location. Thereafter, the rotation of the support rings 24 and 25 and the reciprocation of the needle support 36 are alternately performed, and the reciprocation of the needle support 36 is completed after the two support rings 24 and 25 are rotated once. Thus, the operation of inserting the thickness direction yarn z into the laminated yarn group 14, that is, the joining operation of the laminated yarn group 14, is completed, and the truncated cone cylindrical three-dimensional fiber structure is formed.

前記ヘッドにより各配列糸15〜18の配列が行なわれる段階が積層糸群形成工程となる。また、積層糸群14が開口部22aと対応する位置で厚さ方向糸挿入針35によって厚さ方向糸zの挿入が行なわれ、積層糸群14が厚さ方向糸zにより結合される段階が三次元繊維構造中間体形成工程(積層糸群結合工程)となる。   The stage in which the arranged yarns 15 to 18 are arranged by the head is a laminated yarn group forming step. Further, the stage in which the thickness direction thread z is inserted by the thickness direction thread insertion needle 35 at the position corresponding to the opening portion 22a and the layered thread group 14 is joined by the thickness direction thread z is three-dimensional. This is a fiber structure intermediate forming step (laminated yarn group binding step).

次に積層糸群14が一箇所で90度配列糸16の配列方向に沿って切断される。即ち、円錐台筒状三次元繊維構造体が周方向と直交する方向に切断された後、各配列糸16〜18のピン30に係止された部分が順次取り外されて、展開されることにより三次元繊維構造中間体12の形成が完了する。   Next, the laminated yarn group 14 is cut in one place along the arrangement direction of the 90-degree arrangement yarns 16. That is, after the truncated cone-shaped cylindrical three-dimensional fiber structure is cut in a direction orthogonal to the circumferential direction, the portions locked to the pins 30 of the array yarns 16 to 18 are sequentially removed and deployed. The formation of the three-dimensional fiber structure intermediate 12 is completed.

次に三次元繊維構造中間体結合工程が実施される。三次元繊維構造中間体結合工程では、図1(d)に示すように、2枚の三次元繊維構造中間体12が厚さ方向に積層された状態で、三次元繊維構造中間体12の両方の円弧状周縁部を残して結合糸13により結合される。   Next, a three-dimensional fiber structure intermediate bonding step is performed. In the three-dimensional fiber structure intermediate bonding step, as shown in FIG. 1D, both of the three-dimensional fiber structure intermediates 12 are stacked in a state where two three-dimensional fiber structure intermediates 12 are laminated in the thickness direction. These are joined by the joining yarn 13 leaving the arc-shaped peripheral edge.

次に折り曲げ工程が実施される。折り曲げ工程では、図1(e)に示すように、結合糸13により結合されなかった円弧状周縁部が扇面板状部11aと直角に折り曲げられる。円弧状周縁部は、扇面板状部11aに対して両側に直角に突出するように折り曲げられる。そして、両側に折り曲げられた部分に、別の三次元繊維構造中間体12が結合糸13によって結合され、板状部11b,11cが構成される。以上により図1(a)に示す三次元繊維構造体11の製造が完了する。   Next, a bending process is performed. In the bending step, as shown in FIG. 1 (e), the arc-shaped peripheral edge that is not joined by the joining yarn 13 is bent at a right angle to the fan-shaped plate-like part 11a. The arc-shaped peripheral edge portion is bent so as to project at right angles to both sides with respect to the fan-shaped plate-like portion 11a. And the other three-dimensional fiber structure intermediate body 12 is couple | bonded by the coupling | bonding thread | yarn 13 at the part bent on both sides, and plate-shaped part 11b, 11c is comprised. Thus, the manufacture of the three-dimensional fiber structure 11 shown in FIG.

前記のように形成された三次元繊維構造体11に、熱硬化性樹脂が含浸、硬化されることにより、異形断面でしかも長手方向に湾曲した形状の複合材が形成され、軽量、高強度、高剛性の構造材として例えば航空機の胴体の環状部を構成するように使用される。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、ビニルエステル樹脂等が使用される。   The three-dimensional fiber structure 11 formed as described above is impregnated with a thermosetting resin and cured to form a composite material having a deformed cross section and a shape curved in the longitudinal direction. As a highly rigid structural material, for example, it is used so as to constitute an annular portion of an aircraft fuselage. As the thermosetting resin, an epoxy resin, an unsaturated polyester resin, a phenol resin, a polyimide resin, a vinyl ester resin, or the like is used.

この実施の形態では以下の効果を有する。
(1) 三次元繊維構造体11は、長手方向と直交する断面形状が異形状で、長手方向に沿って湾曲形成され、その両端部が、複数の三次元繊維構造体11を長手方向の端部同士で連結した際に、円環を形成可能な形状に形成されている。従って、三次元繊維構造体11に樹脂等のマトリックスを含浸、硬化させて繊維強化複合材を製造すれば、湾曲した形状の梁や円環状に連結された状態で使用される繊維強化複合材として好適に使用することができる。
This embodiment has the following effects.
(1) The cross-sectional shape orthogonal to the longitudinal direction of the three-dimensional fiber structure 11 is different, and is curved and formed along the longitudinal direction. Both end portions of the three-dimensional fiber structure 11 are end portions in the longitudinal direction. When the parts are connected to each other, the ring is formed into a shape that can be formed. Therefore, if a fiber reinforced composite material is manufactured by impregnating and curing a matrix such as a resin in the three-dimensional fiber structure 11, a fiber reinforced composite material used in a state of being connected to a curved beam or an annular shape. It can be preferably used.

(2) 三次元繊維構造体11は、扇面板状で、かつ該扇面の両端部の延長線の成す角度の二等分線が扇面を二等分する形状の三次元繊維構造中間体12が、複数厚さ方向に積層された状態で一部が結合糸13により結合されている。三次元繊維構造中間体12は同心の円弧状に配列された0度配列糸15からなる0度配列糸層33を含む少なくとも2軸配向となる積層糸群14が厚さ方向糸zで結合されて形成されている。そして、三次元繊維構造中間体12の円弧状周縁部が扇面板状部11aと直角に折り曲げ形成されている。従って、三次元繊維構造体11に樹脂等のマトリックスを含浸、硬化させて繊維強化複合材を製造すれば、湾曲した形状の梁や円環状に連結された状態で使用される繊維強化複合材として好適に使用することができる。   (2) The three-dimensional fiber structure 11 has a fan-like plate shape, and a three-dimensional fiber structure intermediate 12 having a shape in which a bisector of an angle formed by extension lines at both ends of the fan face bisects the fan face. In addition, a part is bonded by the bonding yarn 13 while being stacked in a plurality of thickness directions. The three-dimensional fiber structure intermediate 12 is formed by joining at least biaxially oriented laminated yarn groups 14 including a 0 degree arrangement yarn layer 33 composed of 0 degree arrangement yarns 15 arranged in a concentric circular arc shape with a thickness direction yarn z. Is formed. And the circular-arc-shaped peripheral part of the three-dimensional fiber structure intermediate body 12 is bend | folded and formed at right angles to the fan-shaped plate-shaped part 11a. Therefore, if a fiber reinforced composite material is manufactured by impregnating and curing a matrix such as a resin in the three-dimensional fiber structure 11, a fiber reinforced composite material used in a state of being connected to a curved beam or an annular shape. It can be preferably used.

(3) 三次元繊維構造体11は直角を成す複数の板状部11b,11c及び扇面板状部11aを有する異形断面に形成されている。従って、三次元繊維構造体11を強化材とした複合材を梁等の構造材に使用すると、矩形断面の場合に比較して同じ重量であれば曲げモーメントが大きくなり、同じ曲げモーメントの構造材とする場合には軽量化できる。   (3) The three-dimensional fiber structure 11 is formed in a modified cross section having a plurality of plate-like portions 11b and 11c and a fan-like plate-like portion 11a that form a right angle. Therefore, when a composite material using the three-dimensional fiber structure 11 as a reinforcing material is used for a structural material such as a beam, the bending moment is increased if the weight is the same as in the case of a rectangular cross section. In this case, the weight can be reduced.

(4) 三次元繊維構造体11はI形の異形断面に形成されている。従って、三次元繊維構造体11は、航空機の胴体の構造材に使用する繊維強化複合材の強化材として好適である。   (4) The three-dimensional fiber structure 11 is formed in an I-shaped cross section. Therefore, the three-dimensional fiber structure 11 is suitable as a reinforcing material for a fiber-reinforced composite material used for a structural material of an aircraft fuselage.

(5) 複合材は、三次元繊維構造体11を強化材とし、熱硬化性樹脂をマトリックスとして構成されている。従って、マトリックスも炭素化されたカーボン/カーボン複合材に比較して耐熱性は劣るが、航空機の構造材としては十分な耐熱性を有し、カーボン/カーボン複合材に比較して製造が容易で、コストも安くなる。   (5) The composite material is configured using the three-dimensional fiber structure 11 as a reinforcing material and a thermosetting resin as a matrix. Therefore, although the matrix is also inferior in heat resistance compared to carbonized carbon / carbon composites, it has sufficient heat resistance as an aircraft structural material and is easier to manufacture than carbon / carbon composites. The cost is also cheaper.

(6) 扇面板状の三次元繊維構造中間体12を複数厚さ方向に積層した状態で、該三次元繊維構造中間体12の円弧状周縁部を残して結合糸13により結合し、その後、結合糸13により結合されなかった円弧状周縁部を扇面板状部11aと直角に折り曲げることにより、三次元繊維構造体11を形成する。従って、異形断面で長手方向に湾曲した三次元繊維構造体11を、三次元ブレーダや三次元織機で製造するより、容易に形成することができる。   (6) In a state where a plurality of fan-shaped plate-like three-dimensional fiber structure intermediate bodies 12 are laminated in the thickness direction, the three-dimensional fiber structure intermediate body 12 is bonded by the binding yarn 13 leaving the arc-shaped peripheral edge, The three-dimensional fiber structure 11 is formed by bending the arc-shaped peripheral edge not joined by the joining yarn 13 at a right angle to the fan-shaped plate-like part 11a. Therefore, the three-dimensional fiber structure 11 curved in the longitudinal direction with a deformed cross section can be formed more easily than manufacturing with a three-dimensional brader or a three-dimensional loom.

(7) 円錐台状の繊維配列部を有する繊維束配列用治具19を使用し、その繊維束配列用治具19の上に、4軸配向となる積層糸群14を形成し、その積層糸群14を厚さ方向糸zで結合して円錐台筒状の三次元繊維構造体を形成する。従って、扇面板状の三次元繊維構造中間体12を構成する糸(繊維束)のうち、三次元繊維構造中間体12の長手方向に沿って延びる糸(0度配列糸15)を配列する際、繊維束に加わる張力を高めることで繊維束を繊維配列部上(支持プレート22の表面)に容易に押圧することができる。その結果、繊維束を扁平な状態で、繊維配列部上に精度良く、同方向に平行に配列することができ、繊維束を高い繊維体積含有率の三次元繊維構造体が得られるように配列するのが容易になり、この三次元繊維構造体11を強化材とした複合材の物性が向上する。   (7) Using a fiber bundle arranging jig 19 having a frustoconical fiber arrangement portion, a laminated yarn group 14 having a four-axis orientation is formed on the fiber bundle arranging jig 19, and the laminated yarn group 14 are joined by a thickness direction thread z to form a three-dimensional fiber structure having a truncated cone shape. Therefore, among the yarns (fiber bundles) constituting the fan-shaped plate-like three-dimensional fiber structure intermediate body 12, the yarns extending along the longitudinal direction of the three-dimensional fiber structure intermediate body 12 (0 degree arrangement yarn 15) are arranged. By increasing the tension applied to the fiber bundle, the fiber bundle can be easily pressed onto the fiber array portion (the surface of the support plate 22). As a result, the fiber bundles can be arranged in a flat state on the fiber arrangement part with high accuracy and in parallel in the same direction, and the fiber bundles can be arranged so as to obtain a three-dimensional fiber structure having a high fiber volume content. It becomes easy to do, and the physical property of the composite material which used this three-dimensional fiber structure 11 as a reinforcing material improves.

(8) 各糸層31〜34は同時に配列する必要がないため、各配列糸15〜18を配列する配列ヘッドを各配列糸15〜18毎に設ける必要がない。従って、配列ヘッドを共用することで部品点数を少なくできる。   (8) Since the yarn layers 31 to 34 need not be arranged at the same time, it is not necessary to provide an arrangement head for arranging the arrangement yarns 15 to 18 for each of the arrangement yarns 15 to 18. Therefore, the number of parts can be reduced by sharing the arrangement head.

(9) 繊維配列部に対して円錐台の端部と平行に配列される糸(0度配列糸15)は0度配列糸層33を構成する全ての糸が同時に配列される。従って、円錐台の端部と平行に配列される糸を複数回に分けて配列する場合に比較して、効率良く、しかも互いに精度良く平行となるように配列するのが容易となる。   (9) With respect to the yarn arranged in parallel to the end of the truncated cone with respect to the fiber arrangement portion (0 degree arrangement yarn 15), all the threads constituting the 0 degree arrangement yarn layer 33 are arranged at the same time. Therefore, as compared with the case where the yarns arranged in parallel with the end of the truncated cone are arranged in a plurality of times, it is easy to arrange the yarns so as to be parallel to each other with high accuracy and accuracy.

(第2の実施形態)
次に第2の実施形態を図6及び図7に従って説明する。この実施の形態では、三次元繊維構造中間体12の製造方法が前記第1の実施形態と異なっており、三次元繊維構造中間体12から三次元繊維構造体11を製造する工程は前記第1の実施形態と同じである。つまり、三次元繊維構造中間体結合工程と折り曲げ工程は同じである。前記第1の実施形態では、円錐台筒状の三次元繊維構造体を形成した後、一箇所で切断して展開することで扇面板状の三次元繊維構造中間体12を1個ずつ製造した。それに対して、この実施形態では、扇面板状が連続する形状の帯状三次元繊維構造体を形成するとともに、その帯状三次元繊維構造体を所定の長さに切断して三次元繊維構造中間体12を形成する点が前記第1の実施形態と大きく異なっている。第1の実施形態と同一部分は同一符号を付して詳しい説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, the manufacturing method of the three-dimensional fiber structure intermediate 12 is different from that of the first embodiment, and the step of manufacturing the three-dimensional fiber structure 11 from the three-dimensional fiber structure intermediate 12 is the first step. This is the same as the embodiment. That is, the three-dimensional fiber structure intermediate bonding process and the bending process are the same. In the first embodiment, after forming a truncated cone-shaped three-dimensional fiber structure, the fan-plate-shaped three-dimensional fiber structure intermediates 12 are manufactured one by one by cutting and developing at one place. . On the other hand, in this embodiment, a three-dimensional fiber structure intermediate body is formed by forming a band-shaped three-dimensional fiber structure having a continuous fan-like plate shape and cutting the band-shaped three-dimensional fiber structure into a predetermined length. 12 is greatly different from the first embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図6は帯状三次元繊維構造体の製造時において0度配列糸15を配列している状態の模式斜視図であり、図7は各糸層31〜34が2層ずつ積層された帯状三次元繊維構造体を形成する際の各配列糸15〜18の配列状態を示す模式展開図である。なお、帯状三次元繊維構造体は、実際は湾曲しているが図示の都合上、直線状に図示している。   FIG. 6 is a schematic perspective view showing a state in which the 0-degree array yarns 15 are arranged at the time of manufacturing the belt-like three-dimensional fiber structure, and FIG. 7 is a belt-like three-dimensional structure in which each of the yarn layers 31 to 34 is laminated. It is a model expanded view which shows the arrangement | sequence state of each arrangement | sequence thread 15-18 at the time of forming a fiber structure. In addition, although the strip | belt-shaped three-dimensional fiber structure is curved actually, it is illustrated in linear form on account of illustration.

この実施形態で使用される繊維束配列用治具19は、基本的に前記第1の実施形態で使用されるものと同じであるが、所定の層数積層されるとともに厚さ方向糸zで結合された積層糸群14を順次ピン30から取り外すのを容易とするため、ピン30の長さをあまり長くしない。また、厚さ方向糸zで結合された積層糸群14を順次ピン30から取り外すガイドが必要に応じて設けられる。   The fiber bundle arranging jig 19 used in this embodiment is basically the same as that used in the first embodiment except that a predetermined number of layers are stacked and the thickness direction yarn z is used. In order to make it easier to sequentially remove the combined laminated yarn group 14 from the pin 30, the length of the pin 30 is not so long. In addition, a guide for sequentially removing the laminated yarn group 14 joined by the thickness direction yarn z from the pin 30 is provided as necessary.

この実施形態では、準備段階を除き、各糸層31〜34を構成する各配列糸15〜18の配列が同時に、それぞれ所定の領域において行われる。従って、前記実施形態の場合と異なり、各糸層31〜34の各配列糸15〜18毎に配列ヘッドが設けられる。そして、0度配列糸15を配列する配列ヘッドは所定位置に保持され、90度配列糸16、+45度配列糸17及び−45度配列糸18を配列する配列ヘッドは、それぞれ所定位置で往復移動される。   In this embodiment, the arrangement of the array yarns 15 to 18 constituting each of the yarn layers 31 to 34 is simultaneously performed in a predetermined region, except for the preparation stage. Therefore, unlike the case of the above-described embodiment, an array head is provided for each array thread 15-18 of each thread layer 31-34. The arrangement head that arranges the 0-degree arrangement yarn 15 is held at a predetermined position, and the arrangement heads that arrange the 90-degree arrangement yarn 16, the + 45-degree arrangement yarn 17 and the -45-degree arrangement yarn 18 reciprocate at the predetermined positions, respectively. Is done.

図7に示すように、各配列糸15〜18の配列に必要な領域毎に、各配列糸15〜18を供給するための配列ヘッド43a,43b,42a,42b,44a,44b,45a,45bが配置される。配列ヘッド42a,42bは+45度配列糸17を配列し、配列ヘッド43a,43bは0度配列糸15を配列し、配列ヘッド44a,44bは90度配列糸16を配列し、配列ヘッド45a,45bは−45度配列糸18を配列する。   As shown in FIG. 7, the arrangement heads 43a, 43b, 42a, 42b, 44a, 44b, 45a, 45b for supplying the arrangement yarns 15-18 for each area necessary for the arrangement of the arrangement yarns 15-18 are shown. Is placed. The arrangement heads 42a and 42b arrange the +45 degree arrangement yarn 17, the arrangement heads 43a and 43b arrange the 0 degree arrangement yarn 15, the arrangement heads 44a and 44b arrange the 90 degree arrangement yarn 16, and the arrangement heads 45a and 45b. Arranges the -45 degree arrangement yarn 18.

配列ヘッド43a,43bは複数本の0度配列糸15を同時に配列するが、他の配列ヘッド42a,42b,44a,44b,45a,45bは+45度配列糸17、90度配列糸16、−45度配列糸18をそれぞれ1本ずつ配列可能に構成されている。   The arrangement heads 43a and 43b arrange a plurality of 0-degree arrangement yarns 15 at the same time, while the other arrangement heads 42a, 42b, 44a, 44b, 45a, and 45b are + 45-degree arrangement yarns 17, 90-degree arrangement yarns 16, and -45. Each of the degree array yarns 18 can be arranged one by one.

この実施形態では次のようにして帯状三次元繊維構造体41が形成される。先ず、準備段階とし、1層目の−45度配列糸18の配列が開口部22aの近傍から開始され、配列ヘッド45aが所定の配列領域と対応する位置に配置される。次に1層目の90度配列糸16の配列が開口部22aの近傍から開始され、配列ヘッド44aが所定の配列領域と対応する位置に配置される。次に1層目の0度配列糸15の配列が開口部22aの近傍から開始され、配列ヘッド43aが所定の配列領域と対応する位置に配置される。次に1層目の+45度配列糸17の配列が開口部22aの近傍から開始され、配列ヘッド42aが所定の配列領域と対応する位置に配置される。次に2層目の−45度配列糸18の配列が開口部22aの近傍から開始され、配列ヘッド45bが所定の配列領域と対応する位置に配置される。次に2層目の90度配列糸16の配列が開口部22aの近傍から開始され、配列ヘッド44bが所定の配列領域と対応する位置に配置される。次に2層目の0度配列糸15の配列が開口部22aの近傍から開始され、配列ヘッド43bが所定の配列領域と対応する位置に配置される。次に2層目の+45度配列糸17の配列が開口部22aの近傍から開始され、配列ヘッド42bが所定の配列領域と対応する位置に配置される。   In this embodiment, the strip-shaped three-dimensional fiber structure 41 is formed as follows. First, as a preparation stage, the arrangement of the first-45-degree arrangement yarn 18 is started from the vicinity of the opening 22a, and the arrangement head 45a is arranged at a position corresponding to a predetermined arrangement area. Next, the arrangement of the 90-degree arrangement yarn 16 of the first layer is started from the vicinity of the opening 22a, and the arrangement head 44a is arranged at a position corresponding to a predetermined arrangement area. Next, the arrangement of the 0-degree arrangement yarn 15 of the first layer is started from the vicinity of the opening 22a, and the arrangement head 43a is arranged at a position corresponding to a predetermined arrangement area. Next, the arrangement of the first +45 degree arrangement yarns 17 starts from the vicinity of the opening 22a, and the arrangement head 42a is arranged at a position corresponding to a predetermined arrangement area. Next, the arrangement of the −45 degree arrangement yarn 18 of the second layer is started from the vicinity of the opening 22a, and the arrangement head 45b is arranged at a position corresponding to a predetermined arrangement area. Next, the arrangement of the 90-degree arrangement yarn 16 of the second layer is started from the vicinity of the opening 22a, and the arrangement head 44b is arranged at a position corresponding to a predetermined arrangement area. Next, the arrangement of the 0-degree arrangement yarn 15 of the second layer is started from the vicinity of the opening 22a, and the arrangement head 43b is arranged at a position corresponding to a predetermined arrangement area. Next, the arrangement of the +45 degree arrangement yarns 17 in the second layer is started from the vicinity of the opening 22a, and the arrangement head 42b is arranged at a position corresponding to a predetermined arrangement area.

なお、各配列糸15〜18の端部は、図示しない端部固定部材に固定される。前記端部固定部材は、初期状態には開口部22aの近くに配置され、製織が開始されると間欠的に移動されて、製織された帯状三次元繊維構造体41を巻き取る巻き取り部に固定されるようになっている。   In addition, the edge part of each arrangement | sequence thread 15-18 is fixed to the edge part fixing member which is not shown in figure. The end fixing member is disposed near the opening 22a in an initial state, and is moved intermittently when weaving is started, and is taken up by a winding unit that winds up the woven belt-like three-dimensional fiber structure 41. It is supposed to be fixed.

前記準備段階が終了した後、帯状三次元繊維構造体41の製織が開始される。製織開始により、両支持リング24,25が間欠的に駆動されるとともに、各配列ヘッド42a〜45a,42b〜45bにより各配列糸15〜18の配列が各配列領域において行われる。そして、2層目の+45度配列糸17の配列領域で+45度配列糸17が配列された部分が、各配列糸15〜18が2層ずつ合計8層の糸層で構成された積層糸群14となり、当該部分が開口部22aと対応する状態で厚さ方向糸挿入針35によって厚さ方向糸zの挿入が行われ、積層糸群14が厚さ方向糸zにより結合される。   After the preparation step is completed, weaving of the band-shaped three-dimensional fiber structure 41 is started. When weaving is started, the support rings 24 and 25 are intermittently driven, and the array yarns 15 to 18 are arrayed in the array regions by the array heads 42a to 45a and 42b to 45b. A portion where the +45 degree arrangement yarns 17 are arranged in the arrangement region of the +45 degree arrangement yarns 17 in the second layer is a laminated yarn group 14 in which each of the arrangement yarns 15 to 18 is composed of a total of eight yarn layers. Thus, the thickness direction thread z is inserted by the thickness direction thread insertion needle 35 in a state where the portion corresponds to the opening 22a, and the laminated yarn group 14 is joined by the thickness direction thread z.

各配列ヘッド42a〜45a,42b〜45bにより各配列糸15〜18の配列が各配列領域において行われる段階が積層糸群形成工程となる。また、積層糸群14に開口部22aと対応する位置で厚さ方向糸挿入針35によって厚さ方向糸zの挿入が行われ、積層糸群14が厚さ方向糸zにより結合される段階が積層糸群結合工程となる。   A stage in which the arrangement yarns 15 to 18 are arranged in the arrangement regions by the arrangement heads 42a to 45a and 42b to 45b is a laminated yarn group forming process. In addition, the stage in which the thickness direction thread z is inserted by the thickness direction thread insertion needle 35 at the position corresponding to the opening 22a in the layered thread group 14 and the layered thread group 14 is joined by the thickness direction thread z is the layered thread group. It becomes a joining process.

積層糸群14は、厚さ方向糸zの挿入が完了するまではピン30に係止された状態に保持され、厚さ方向糸zの挿入が完了した後、順次ピン30との係合が解除される。炭素繊維は殆ど伸びないため、ピン30に係止されていた配列糸16〜18がピン30から取り外されても、帯状三次元繊維構造体41はちぢまず、帯状三次元繊維構造体41を順次取り外しても支障はない。   The laminated yarn group 14 is held in a state of being locked to the pin 30 until the insertion of the thickness direction yarn z is completed, and the engagement with the pin 30 is sequentially released after the insertion of the thickness direction yarn z is completed. Is done. Since the carbon fibers hardly extend, even if the array yarns 16 to 18 locked to the pins 30 are removed from the pins 30, the band-shaped three-dimensional fiber structures 41 do not flicker, and the band-shaped three-dimensional fiber structures 41 are sequentially formed. There is no problem even if it is removed.

両支持リング24,25は、厚さ方向糸zの挿入作業が行われている時に停止されるように間欠的に駆動される。製織された帯状三次元繊維構造体41は図示しない巻き取り部によって巻き取られる。即ち、帯状三次元繊維構造体41は、厚さ方向糸zによる結合が終了した部分から順次繊維束配列用治具19から取り外されて巻取り部に巻き取られる。なお、帯状三次元繊維構造体41をピン30から外す箇所には図示しない取り外しガイドが設けられている。   Both the support rings 24 and 25 are driven intermittently so as to be stopped when the thickness direction thread z is being inserted. The woven belt-like three-dimensional fiber structure 41 is wound up by a winding unit (not shown). That is, the strip-shaped three-dimensional fiber structure 41 is sequentially removed from the fiber bundle arranging jig 19 from the portion where the joining with the thickness direction thread z is completed, and is wound around the winding portion. A removal guide (not shown) is provided at a position where the strip-shaped three-dimensional fiber structure 41 is removed from the pin 30.

この実施形態では第1の実施形態の(1)〜(7)及び(9)と同様な効果を有する他に次の効果を有する。
(10) 三次元繊維構造中間体12の形成が、扇面板状部が連続する形状の帯状三次元繊維構造体41を形成するとともに、厚さ方向糸zによる結合が終了した部分から帯状三次元繊維構造体41を順次繊維束配列用治具46から取り外し、その後、帯状三次元繊維構造体41を所定の長さに切断することにより行われる。従って、所定曲率の扇面板状の三次元繊維構造中間体12を効率良く製造することができ、ひいては長手方向と直交する断面形状が異形状で、長手方向に沿って湾曲形成された三次元繊維構造体11を効率良く製造することができる。
This embodiment has the following effects in addition to the same effects as (1) to (7) and (9) of the first embodiment.
(10) The formation of the three-dimensional fiber structure intermediate 12 forms the band-shaped three-dimensional fiber structure 41 having a shape in which the fan-shaped plate-like portions are continuous, and the band-shaped three-dimensional from the portion where the bonding by the thickness direction thread z is completed. The fiber structure 41 is sequentially removed from the fiber bundle arranging jig 46, and then the band-shaped three-dimensional fiber structure 41 is cut into a predetermined length. Therefore, the fan-plate-shaped three-dimensional fiber structure intermediate body 12 having a predetermined curvature can be efficiently manufactured, and the cross-sectional shape perpendicular to the longitudinal direction is different, and the three-dimensional fiber is curved along the longitudinal direction. The structure 11 can be manufactured efficiently.

(11) 帯状三次元繊維構造体41を形成する際、厚さ方向糸zによる結合が終了した部分から帯状三次元繊維構造体41を順次繊維束配列用治具19から取り外すとともに巻き取り部で巻き取る。従って、長尺の帯状三次元繊維構造体41を形成して保管しておき、必要に応じて順次切断して三次元繊維構造中間体12を製造することができる。また、長さの異なる三次元繊維構造中間体12を自由に製造することができる。   (11) When forming the belt-like three-dimensional fiber structure 41, the belt-like three-dimensional fiber structure 41 is sequentially removed from the fiber bundle arranging jig 19 from the portion where the joining by the thickness direction thread z is completed, and at the winding part Wind up. Therefore, the long strip-shaped three-dimensional fiber structure 41 can be formed and stored, and the three-dimensional fiber structure intermediate body 12 can be manufactured by sequentially cutting as necessary. Moreover, the three-dimensional fiber structure intermediate body 12 from which length differs can be manufactured freely.

(12) 0度配列糸15を配列する配列ヘッド43a,43bは、準備段階以後は、一定位置に保持されていればよく、他の配列糸16〜18を配列する配列ヘッド42a,42b,44a,44b,45a,45bは準備段階以後は、所定の配列領域と対応する位置を移動すればよく、移動のために大きなスペースを確保する必要がない。   (12) The arrangement heads 43a and 43b for arranging the 0-degree arrangement yarn 15 need only be held at a fixed position after the preparation stage. The arrangement heads 42a, 42b and 44a for arranging the other arrangement yarns 16 to 18 are sufficient. , 44b, 45a, 45b need only be moved to a position corresponding to a predetermined array area after the preparation stage, and it is not necessary to secure a large space for the movement.

(第3の実施形態)
次に第3の実施形態を図8及び図9に従って説明する。この実施の形態では、扇面板状部が連続する形状の帯状三次元繊維構造体41を形成し、その帯状三次元繊維構造体41を所定の長さに切断して三次元繊維構造中間体12を形成する点は前記第2の実施形態と同じであるが、繊維束配列用治具の構成が大きく異なっている。図8は繊維束配列用治具の要部模式斜視図、図9は同じく繊維束配列用治具の一組のベルトの間で切断した模式断面図である。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. In this embodiment, a belt-like three-dimensional fiber structure 41 having a shape in which fan-like plate-like portions are continuous is formed, and the belt-like three-dimensional fiber structure 41 is cut into a predetermined length to obtain a three-dimensional fiber structure intermediate 12. Is the same as the second embodiment, but the configuration of the fiber bundle arranging jig is greatly different. FIG. 8 is a schematic perspective view of a main part of the fiber bundle arranging jig, and FIG. 9 is a schematic cross-sectional view cut between a pair of belts.

繊維束配列用治具19では、支持プレート22に対して支持リング24,25が相対回転可能に設けられているが、この実施形態の繊維束配列用治具46では、両支持リング24,25間の繊維配列部が両支持リング24,25と同期して回転される。また、前記繊維配列部に規制ピンが設けられている点が第2の実施形態と異なっている。第2の実施形態と同一部分は同一符号を付して詳しい説明を省略する。   In the fiber bundle arranging jig 19, support rings 24 and 25 are provided to be rotatable relative to the support plate 22. In the fiber bundle arranging jig 46 of this embodiment, both the support rings 24 and 25 are provided. The fiber arrangement portion in between is rotated in synchronization with both support rings 24 and 25. Moreover, the point from which the regulation pin is provided in the said fiber arrangement | sequence part differs from 2nd Embodiment. The same parts as those of the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

この実施形態においては、両支持リング24,25の間に設けられる繊維配列部は、両支持リング24,25のほぼ半周の部分と対応する箇所に設けられている。繊維配列部は図8に示すように、一組の無端状のベルト47a,47b間に上下方向に延びるように所定間隔で固定されたプレート48を備え、各プレート48には規制ピン49が突設されている。図9に示すように、ベルト47a,47bは、それぞれ駆動プーリ50、被動プーリ51及びガイドプレート52に巻き掛けられ、駆動プーリ50の回転に伴ってほぼ半円状の周回軌道を描くように構成されている。両ベルト47a,47bは両支持リング24,25と同期してそれぞれ同じ速度で駆動されるようになっている。なお、図では規制ピン49を分かり易く、ピン30より大きく図示しているが、実際は規制ピン49が駆動プーリ50の近くで積層糸群14から離脱し易いように短く形成されている。   In this embodiment, the fiber array portion provided between the support rings 24 and 25 is provided at a position corresponding to a substantially half-circular portion of the support rings 24 and 25. As shown in FIG. 8, the fiber array portion includes plates 48 fixed at predetermined intervals so as to extend in the vertical direction between a pair of endless belts 47a and 47b. It is installed. As shown in FIG. 9, the belts 47 a and 47 b are wound around the driving pulley 50, the driven pulley 51 and the guide plate 52, respectively, and are configured to draw a substantially semicircular circular orbit as the driving pulley 50 rotates. Has been. Both belts 47a and 47b are driven at the same speed in synchronism with both support rings 24 and 25, respectively. In the drawing, the regulation pin 49 is easy to understand and is shown larger than the pin 30, but actually, the regulation pin 49 is formed short so as to be easily separated from the laminated yarn group 14 near the drive pulley 50.

両支持リング24,25の間には、両ベルト47a,47bの周回領域以外の部分に、円錐台筒をほぼ半分に切断した形状の支持プレート53が、支柱21に支持された状態で配設されている。支持プレート53には駆動プーリ50の近くに厚さ方向糸挿入針35が侵入可能な開口部53aが形成されている。開口部53aの位置は、開口部53aと対応する箇所を移動する積層糸群14からは規制ピン49が離脱されており、積層糸群14の上下両端はピン30に係止された状態に保持され、厚さ方向糸zが開口部53aにおいて積層糸群14に挿入された後、ピン30が積層糸群14から離脱し易い位置に設定されている。   Between the support rings 24 and 25, a support plate 53 having a shape obtained by cutting the truncated cone into a half is disposed in a portion supported by the support column 21 at a portion other than the circulation region of the belts 47 a and 47 b. Has been. In the support plate 53, an opening 53 a through which the thickness direction thread insertion needle 35 can enter is formed near the drive pulley 50. The position of the opening 53a is such that the regulation pin 49 is detached from the laminated yarn group 14 that moves in a position corresponding to the opening 53a, and the upper and lower ends of the laminated yarn group 14 are held in a state of being locked to the pins 30, After the thickness direction thread z is inserted into the laminated yarn group 14 at the opening 53a, the pin 30 is set at a position where it can be easily detached from the laminated yarn group 14.

また、図9では理解を容易にする為、プレート48および支持プレート53が支柱21と同じく垂直に配置され、支持リング25の周面上にプレート48が動くように図示しているが、実際にはプレート48および支持プレート53は円錐台筒の側面を形成している為、支柱21に対して傾いて配置されている。   For ease of understanding, FIG. 9 shows that the plate 48 and the support plate 53 are arranged vertically like the support column 21 and the plate 48 moves on the peripheral surface of the support ring 25. Since the plate 48 and the support plate 53 form the side surface of the truncated cone, the plate 48 and the support plate 53 are inclined with respect to the column 21.

この実施形態では、第2の実施形態と同様に、準備段階が行われて8箇所に配列ヘッド42a〜45a,42b〜45bが配置された状態で、支持リング24,25が間欠的に回転されるとともに、支持リング24,25の停止中に厚さ方向糸zの積層糸群14への挿入が行われる。そして、支持リング24,25の回転と同期して両ベルト47a,47bが共に移動される。   In this embodiment, as in the second embodiment, the support rings 24 and 25 are intermittently rotated with the arrangement heads 42a to 45a and 42b to 45b being arranged at eight positions, as in the second embodiment. At the same time, the thickness direction thread z is inserted into the laminated yarn group 14 while the support rings 24 and 25 are stopped. Then, both belts 47a and 47b are moved in synchronization with the rotation of the support rings 24 and 25.

従って、この実施形態では第2の実施形態と同様な効果を有する他に次の効果を有する。
(13) 両支持リング24,25間に配設された繊維配列部を構成するプレート48が両支持リング24,25の回転と同期して移動される。従って、前記第2の実施形態や第1の実施形態と異なり、積層糸群14が繊維配列部の表面上を摺動することがなく、積層糸群14の繊維配列部と対向する位置にある繊維束が毛羽立つのを防止することができる。
Therefore, this embodiment has the following effects in addition to the same effects as those of the second embodiment.
(13) The plate 48 constituting the fiber array portion disposed between the support rings 24 and 25 is moved in synchronization with the rotation of the support rings 24 and 25. Therefore, unlike the second embodiment and the first embodiment, the laminated yarn group 14 does not slide on the surface of the fiber arrangement portion, and the fiber bundle is in a position facing the fiber arrangement portion of the lamination yarn group 14. Can prevent fluffing.

(14) 0度配列糸15に張力を加えて0度配列糸15を繊維配列部に圧接させて配列させる際、プレート48の傾斜角度によっては0度配列糸15が上方にずれる虞がある。しかし、繊維配列部(プレート48)に規制ピン49が突設されているためそのような虞がなく、0度配列糸15を所定の位置に精度良く配列することができる。   (14) When the 0-degree array yarn 15 is tensioned and the 0-degree array yarn 15 is arranged in pressure contact with the fiber array portion, the 0-degree array yarn 15 may be displaced upward depending on the inclination angle of the plate 48. However, since the regulation pin 49 protrudes from the fiber array portion (plate 48), there is no such a possibility, and the 0-degree array yarn 15 can be accurately arrayed at a predetermined position.

なお、実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 第2及び第3の実施形態のように帯状三次元繊維構造体41を連続的に形成する方法において、積層糸群14を移動させる構成として、一組の支持リング24,25を使用する構成に代えて、図10に示すように、無端状のベルト54で構成してもよい。図10は図9に対応する模式断面図である。両ベルト54は、駆動プーリ55、被動プーリ56及びガイドプレート57に巻き掛けられ、駆動プーリ55の回転に伴ってほぼ半円状の周回軌道を描くように構成されている。ベルト54の外周面には一定間隔でピン58がベルト54と垂直に突設されている。ガイドプレート57はピン58が所定の曲面に沿って移動可能な曲率の円弧状に形成されている。両ベルト54は同期してそれぞれ円弧部を同じ角速度で駆動されるようになっている。この構成では、支持リング24,25を使用する構成に比較して繊維束配列用治具46を小型化できる。
In addition, embodiment is not limited to the above, For example, you may actualize as follows.
In the method of continuously forming the band-shaped three-dimensional fiber structure 41 as in the second and third embodiments, the configuration in which the pair of support rings 24 and 25 are used as the configuration for moving the laminated yarn group 14 is used. Instead, an endless belt 54 may be used as shown in FIG. FIG. 10 is a schematic cross-sectional view corresponding to FIG. Both belts 54 are wound around a drive pulley 55, a driven pulley 56, and a guide plate 57, and are configured to draw a substantially semicircular orbit as the drive pulley 55 rotates. Pins 58 are provided on the outer peripheral surface of the belt 54 so as to protrude perpendicularly to the belt 54 at regular intervals. The guide plate 57 is formed in an arc shape with a curvature that allows the pin 58 to move along a predetermined curved surface. Both belts 54 are driven in synchronism with the arc portion at the same angular velocity. In this configuration, the fiber bundle arranging jig 46 can be downsized as compared with the configuration using the support rings 24 and 25.

○ 繊維束配列用治具19として支持プレート22が円錐台筒状に限らず、図11(a)に示すように、円錐台筒状部の上側に支持リング24と同径の円筒部22bが形成され、下側に支持リング25と同径の円筒部22cが形成された形状としてもよい。また、図11(b)に示すように、円錐台筒状部の下側に支持リング25と同径の円筒部22cが形成された形状としてもよい。図11(a)に示す形状の繊維束配列用治具19を使用した場合は、図12に示す形状、即ち扇面状部12aの両周縁に帯状部12bを有する形状の三次元繊維構造中間体12が得られる。この場合、円筒部22b,22cと対応する部分の、扇状の部分の対応する周縁と平行に延びる円弧の長さは等しくなる。従って、円筒部22b,22cと対応する部分を扇面板状部11aと直角に折り曲げることにより、フランジ部の長さが一定な三次元繊維構造体11を得ることができる。   ○ The support plate 22 is not limited to the truncated cone shape as the fiber bundle arranging jig 19, and as shown in FIG. 11A, a cylindrical portion 22 b having the same diameter as the support ring 24 is formed on the upper side of the truncated cone shape. It is good also as a shape formed and the cylindrical part 22c of the same diameter as the support ring 25 was formed in the lower side. Moreover, as shown in FIG.11 (b), it is good also as a shape by which the cylindrical part 22c of the same diameter as the support ring 25 was formed under the truncated cone cylindrical part. When the fiber bundle arranging jig 19 having the shape shown in FIG. 11A is used, the three-dimensional fiber structure intermediate having the shape shown in FIG. 12, that is, the shape having the belt-like portions 12b on both peripheral edges of the fan-like portion 12a. 12 is obtained. In this case, the lengths of the arcs extending in parallel with the corresponding peripheral edges of the fan-shaped portions of the portions corresponding to the cylindrical portions 22b and 22c are equal. Therefore, the three-dimensional fiber structure 11 having a constant flange length can be obtained by bending the portions corresponding to the cylindrical portions 22b and 22c at a right angle to the fan-shaped plate-like portion 11a.

○ 三次元繊維構造体11の断面形状はI字状に限らず、図13(a)に示すように、JとTとが組み合わされたJ/T形としたり、図13(b)に示すように、T字状としたり、その他、L字状、H字状等、扇面板状部11aと直角を成す屈曲部を有する形状であってもよい。   ○ The cross-sectional shape of the three-dimensional fiber structure 11 is not limited to an I-shape, and as shown in FIG. 13A, a J / T shape in which J and T are combined, or as shown in FIG. As described above, the shape may be a T shape, or may have a bent portion that is perpendicular to the fan-shaped plate-like portion 11a, such as an L shape or an H shape.

○ 扇面板状部11aに対して直角に折り曲げられた板状部11b,11cに別の三次元繊維構造中間体12を重ねて結合糸13で結合しなくてもよい。しかし、別の三次元繊維構造中間体12を結合した方が三次元繊維構造体11の形状が安定するとともに強度が高くなる。   O Another three-dimensional fiber structure intermediate body 12 may be overlapped on the plate-like portions 11b and 11c bent at a right angle with respect to the fan-like plate-like portion 11a and not bonded by the bonding yarn 13. However, the combination of another three-dimensional fiber structure intermediate 12 stabilizes the shape of the three-dimensional fiber structure 11 and increases the strength.

〇 板状部11b,11cは扇面板状部11aに対して直角に折り曲げられた構成に限らず、扇面板状部11aに対して斜めになるように折り曲げられた構成でもよい。
○ 配列糸15〜18の配列順序は、帯状三次元繊維構造体41を連続的に形成する場合には、0度配列糸15以外の配列糸16〜18が最初に配列されればよく、繊維束配列用治具19を使用してバッチ操作的に三次元繊維構造中間体12を形成する場合は配列順序は自由である。しかし、4軸配向の場合、+45度配列糸17と−45度配列糸18との間に0度配列糸15及び90度配列糸16が配列されるのが好ましい。
The plate-like parts 11b and 11c are not limited to the structure bent at a right angle with respect to the fan-like plate-like part 11a, but may be bent at an angle with respect to the fan-like plate-like part 11a.
The arrangement sequence of the array yarns 15 to 18 is that the array yarns 16 to 18 other than the 0-degree array yarn 15 may be arranged first when the belt-like three-dimensional fiber structure 41 is continuously formed. When the three-dimensional fiber structure intermediate 12 is formed by batch operation using the bundle arranging jig 19, the arrangement order is arbitrary. However, in the case of the 4-axis orientation, it is preferable that the 0 degree arrangement yarn 15 and the 90 degree arrangement yarn 16 are arranged between the +45 degree arrangement yarn 17 and the −45 degree arrangement yarn 18.

○ 三次元繊維構造体11を構成する扇面板状部11a及び板状部11b,11cは、同心の円弧状に配列された0度配列糸15からなる糸層33を含む少なくとも2軸配向となる積層糸群14が厚さ方向糸で結合されて形成されていればよい。例えば、積層糸群14は、0度配列糸15と、90度配列糸16とで面内2軸配向としたり、0度配列糸15、+45度配列糸17及び−45度配列糸18で3軸配向としてもよい。積層糸群14の配向をどのようにするかは、三次元繊維構造体11を強化材とする複合材に要求される強度によって決められ、4軸配向が全ての方向に対して強度が高くなる。   The fan-shaped plate-like portion 11a and the plate-like portions 11b and 11c constituting the three-dimensional fiber structure 11 are at least biaxially oriented including the yarn layer 33 composed of the 0-degree arranged yarns 15 arranged in a concentric arc shape. It is only necessary that the laminated yarn group 14 is formed by being joined by a thickness direction yarn. For example, in the laminated yarn group 14, the 0-degree arranged yarn 15 and the 90-degree arranged yarn 16 are in-plane biaxial orientation, or the 0-degree arranged yarn 15, the + 45-degree arranged yarn 17 and the -45-degree arranged yarn 18 are triaxial. It is good also as orientation. The orientation of the laminated yarn group 14 is determined by the strength required for the composite material using the three-dimensional fiber structure 11 as a reinforcing material, and the 4-axis orientation increases in strength in all directions.

○ 第1の実施形態のように、円錐台の周面全体が繊維配列部を構成する治具を使用してバッチ操作で三次元繊維構造中間体12を形成する場合、繊維束配列用治具19として複数の三次元繊維構造中間体12を形成可能な大きさのものを使用して、一度に複数の三次元繊維構造中間体12を形成するようにしてもよい。   ○ When the three-dimensional fiber structure intermediate 12 is formed by batch operation using a jig in which the entire circumferential surface of the truncated cone constitutes a fiber arrangement part as in the first embodiment, a fiber bundle arrangement jig A plurality of three-dimensional fiber structure intermediates 12 may be formed at a time using a size that can form a plurality of three-dimensional fiber structure intermediates 12 as 19.

○ 第2及び第3の実施形態のように帯状三次元繊維構造体41を連続的に形成する方法において、帯状三次元繊維構造体41を巻き取り部に巻き取って保管せずに、帯状三次元繊維構造体41が所定長さ形成された段階で切断し、順次三次元繊維構造中間体12を形成するようにしてもよい。帯状三次元繊維構造体41を巻き取り部に巻き取って保管する場合は、帯状三次元繊維構造体41に不要な曲げ力が作用した状態で保管されるため、好ましくない。しかし、三次元繊維構造中間体12の状態で保管すればそのようなことがない。   ○ In the method of continuously forming the band-shaped three-dimensional fiber structure 41 as in the second and third embodiments, the band-shaped three-dimensional fiber structure 41 is wound around the winding portion and stored without being wound. The original fiber structure 41 may be cut at a stage where a predetermined length is formed, and the three-dimensional fiber structure intermediate body 12 may be sequentially formed. When the strip-shaped three-dimensional fiber structure 41 is wound around the winding portion and stored, the strip-shaped three-dimensional fiber structure 41 is stored in a state where an unnecessary bending force is applied to the strip-shaped three-dimensional fiber structure 41, which is not preferable. However, if it is stored in the state of the three-dimensional fiber structure intermediate 12, such a situation does not occur.

○ 第2及び第3の実施形態のように帯状三次元繊維構造体41を連続的に形成する方法において、配列ヘッド42a,42b,44a,44b,45a,45bとして配列糸を1本ずつ配列する構成に限らず、複数本同時に配列する構成としてもよい。   In the method of continuously forming the strip-shaped three-dimensional fiber structure 41 as in the second and third embodiments, the array yarns are arrayed one by one as the array heads 42a, 42b, 44a, 44b, 45a, 45b. It is good also as a structure which arranges not only a structure but two or more simultaneously.

○ 第2及び第3の実施形態のように帯状三次元繊維構造体41を連続的に形成する方法において、準備段階で各層の配列糸が各配列ヘッドによって開口部22a(53a)の近傍から所定の配列領域と対応する位置まで配列されてから製織が開始されるが、この方法に限らない。各配列ヘッドが所定の配列領域から配列を始めつつ、製織が開始されても良い。この場合、帯状三次元繊維構造体41の織りはじめ側の端部は積層が不完全となるが、途中から完全な積層な帯状三次元繊維構造体41が得られる。従って準備段階が不要となる。   In the method of continuously forming the strip-shaped three-dimensional fiber structure 41 as in the second and third embodiments, the arrangement yarns of each layer are predetermined from the vicinity of the opening 22a (53a) by the arrangement heads at the preparation stage. Weaving is started after being arranged up to the position corresponding to the arrangement region of the above, but the method is not limited to this. Weaving may be started while each array head starts arraying from a predetermined array region. In this case, the end of the belt-shaped three-dimensional fiber structure 41 at the beginning of weaving is incompletely laminated, but a completely laminated belt-like three-dimensional fiber structure 41 is obtained from the middle. Therefore, a preparation stage is not necessary.

○ 第3の実施例において両支持リング24,25の間に設けられる繊維配列部は、両支持リング24,25のほぼ半周部分に限らない。各配列ヘッドによる配列が可能であれば、半周以上でも以下でもよい。   (Circle) the fiber arrangement | sequence part provided between both the support rings 24 and 25 in a 3rd Example is not restricted to the substantially half circumference part of both the support rings 24 and 25. FIG. If the arrangement by each arrangement head is possible, it may be more than half or less.

○ 各配列糸15〜18を配列する際、配列糸を構成する繊維束を拡げながら配列するのが好ましい。配列糸15〜18として炭素繊維を使用する場合、太い糸(繊維本数の多い糸)を使用するのが製造時間の短縮、コストの低減に有利であるが。太い糸(例えば、繊維本数が12000本を超える糸)を使用する場合は、糸を拡げながら配列する必要がある。   ○ When arranging the arranged yarns 15 to 18, it is preferable to arrange the arranged yarns while expanding the fiber bundles constituting the arranged yarns. When carbon fibers are used as the array yarns 15 to 18, using thick yarns (yarns having a large number of fibers) is advantageous in reducing manufacturing time and cost. When using a thick thread (for example, a thread having more than 12,000 fibers), it is necessary to arrange the threads while expanding them.

○ 第1〜第3の実施形態において、両支持リング24,25に突設されるピン30の数あるいは、別の実施形態において、両ベルト54に設けられるピン58の数は必ずしも等しくなくてもよい。90度配列糸16が0度配列糸15と直交する状態で配列されるのが三次元繊維構造体11を強化材とした複合材の物性の面では好ましいが、要求性能によっては直交状態からずれていてもよく、その場合は両支持リング24,25のピン30の数は等しくなくてもよい。また、ピン58の数も同様である。   In the first to third embodiments, the number of pins 30 protruding from both support rings 24 and 25 or the number of pins 58 provided to both belts 54 in other embodiments may not necessarily be equal. Good. It is preferable in terms of the physical properties of the composite material using the three-dimensional fiber structure 11 as a reinforcing material that the 90-degree array yarn 16 is arranged in a state orthogonal to the 0-degree array yarn 15, but depending on the required performance, it may deviate from the orthogonal state. In this case, the number of pins 30 of both support rings 24 and 25 may not be equal. The number of pins 58 is also the same.

〇 扇面板状部11a内で、積層糸群14の各糸層の配列糸角度は同心の円弧状に配列された0度配列糸15に対して一定でなくてもよい。
○ 繊維束として炭素繊維に限らず、複合材の用途に応じてボロン繊維、炭化ケイ素繊維等の無機繊維を使用したり、アラミド繊維、超高分子量ポリエチレン繊維等の高強度・高弾性率の有機繊維の無撚りマルチフィラメントを使用してもよい。
In the fan-shaped plate-like portion 11a, the arrangement yarn angle of each yarn layer of the laminated yarn group 14 may not be constant with respect to the 0 degree arrangement yarn 15 arranged in a concentric arc shape.
○ Fiber bundles are not limited to carbon fibers, but use inorganic fibers such as boron fibers and silicon carbide fibers depending on the use of the composite, organic materials with high strength and high modulus such as aramid fibers and ultrahigh molecular weight polyethylene fibers. Fiber untwisted multifilaments may be used.

○ 厚さ方向糸zとしてアラミド繊維の他に、炭素繊維、ガラス繊維、ポリエステル繊維を使用してもよい。ポリエステル繊維はアラミド繊維、炭素繊維、ガラス繊維に比較して強度が弱いが、結合強度が要求されない条件で使用することができる。   In addition to the aramid fiber, carbon fiber, glass fiber, or polyester fiber may be used as the thickness direction thread z. Polyester fibers are weaker than aramid fibers, carbon fibers, and glass fibers, but can be used under conditions that do not require bond strength.

○ 炭素繊維や炭化ケイ素繊維等の無機繊維は一般に折り曲げに弱いため、三次元繊維構造中間体12を炭素繊維や炭化ケイ素繊維等の無機繊維で形成し、その三次元繊維構造中間体12を結合する結合糸13にアラミド繊維やポリエステル繊維、超高分子量ポリエチレン繊維等の高強度・高弾性率の有機繊維を使用してもよい。ポリエステル繊維はアラミド繊維や超高分子量ポリエチレン繊維等に比較して強度が弱いが、結合強度が要求されない条件で使用することができる。   ○ Inorganic fibers such as carbon fibers and silicon carbide fibers are generally vulnerable to bending, so the three-dimensional fiber structure intermediate 12 is formed of inorganic fibers such as carbon fibers and silicon carbide fibers, and the three-dimensional fiber structure intermediate 12 is bonded. For the binding yarn 13 to be used, an organic fiber having a high strength and a high elastic modulus such as an aramid fiber, a polyester fiber or an ultrahigh molecular weight polyethylene fiber may be used. Polyester fibers are weaker than aramid fibers and ultrahigh molecular weight polyethylene fibers, but can be used under conditions that do not require bond strength.

○ 複合材として、耐熱性の要求が高い場合は、炭素繊維で製造した三次元繊維構造体11を使用し、樹脂を含浸、硬化させた後、焼成してカーボン/カーボン複合材を形成すればよい。   ○ If the heat resistance requirement is high as a composite material, use a three-dimensional fiber structure 11 made of carbon fiber, impregnate and cure the resin, and then fire it to form a carbon / carbon composite material Good.

○ 複合材のマトリックス樹脂として、用途によっては熱硬化性樹脂ではなく熱可塑性樹脂を使用してもよい。しかし、マトリックス樹脂として熱硬化性樹脂を使用する方が、熱可塑性樹脂を使用した場合よりも高強度な複合材を製造できる。   As a composite matrix resin, a thermoplastic resin may be used instead of a thermosetting resin depending on the application. However, the use of a thermosetting resin as the matrix resin can produce a higher-strength composite material than when a thermoplastic resin is used.

以下の技術的思想(発明)は前記実施の形態から把握できる。
(1) 記繊維束配列用治具から取り外された前記帯状三次元繊維構造体を順次所定の長さに切断して三次元繊維構造中間体を形成する三次元繊維構造体の製造方法
The following technical idea (invention) can be understood from the embodiment.
(1) A method of manufacturing a pre-Symbol fiber bundle arranging for the band three-dimensional fiber structure that has been removed from the jig successively cut into a predetermined length three-dimensional fiber structure intermediate to form three-dimensional fiber structure.

(2) 記繊維束配列用治具は、円錐台の両端と対応する位置に互いに同期して同じ回転速度で間欠的に回転されるとともに配列糸が係止されるピンが突設された支持リングと、両支持リングの間に配設された円錐台筒状の繊維束配列部とを備えている三次元繊維構造体の製造方法2 before Symbol fiber bundle arranging jig are pins projecting an array yarn while being intermittently rotated at the same rotation speed in synchronization with each other at positions corresponding to both ends of the truncated cone is locked A method for manufacturing a three-dimensional fiber structure, comprising: a support ring; and a frustoconical cylindrical fiber bundle array disposed between the support rings.

(3) 記繊維束配列部は前記両支持リングと同じ速度で移動可能に設けられている三次元繊維構造体の製造方法。 (3) pre-Symbol fiber bundle arranging unit manufacturing method of three-dimensional fiber structure which is movable at the same speed as the two support rings.

(a)は第1の実施形態の三次元繊維構造体の模式斜視図、(b),(c)は三次元繊維構造中間体の模式斜視図、(d),(e)は製造途中の三次元繊維構造体の模式斜視図。(A) is a schematic perspective view of the three-dimensional fiber structure of 1st Embodiment, (b), (c) is a schematic perspective view of a three-dimensional fiber structure intermediate body, (d), (e) is in the middle of manufacture. The model perspective view of a three-dimensional fiber structure. 繊維束配列用治具の模式斜視図。The model perspective view of the jig for fiber bundle arrangement | sequence. (a)は繊維束配列用治具の(b)のA−A線における模式断面図、(b)は(a)のB−B線における模式断面図。(A) is a schematic cross section in the AA line of (b) of the jig for fiber bundle arrangement | sequence, (b) is a schematic cross section in the BB line of (a). (a)は配列角度−45度の繊維束の配列状態を示す模式斜視図、(b)は配列角度90度の繊維束の配列状態を示す模式斜視図。(A) is a model perspective view which shows the arrangement state of the fiber bundle of arrangement angle -45 degree | times, (b) is a model perspective view which shows the arrangement state of the fiber bundle of arrangement angle 90 degree | times. (a)は配列角度0度の繊維束の配列状態を示す模式斜視図、(b)は配列角度+45度の繊維束の配列状態を示す模式斜視図。(A) is a schematic perspective view which shows the arrangement state of the fiber bundle of arrangement angle 0 degree, (b) is a schematic perspective view which shows the arrangement state of the fiber bundle of arrangement angle +45 degree | times. 第2の実施形態の繊維束配列用治具の模式斜視図。The model perspective view of the jig for fiber bundle arrangement | sequence of 2nd Embodiment. 各配列糸の配列状態を示す模式展開図。The model expanded view which shows the arrangement | sequence state of each arrangement | sequence thread. 第3の実施形態の繊維束配列用治具の模式斜視図。The model perspective view of the jig for fiber bundle arrangement | sequence of 3rd Embodiment. 同じく繊維束配列用治具の一組のベルトの間で切断した模式断面図。The schematic cross section similarly cut | disconnected between a pair of belts of the fiber bundle arrangement | sequence jig | tool. 別の実施形態の図9に対応する模式断面図。The schematic cross section corresponding to FIG. 9 of another embodiment. (a),(b)は別の実施形態の繊維束配列用治具の模式斜視図。(A), (b) is a model perspective view of the jig | tool for fiber bundle arrangement | sequence of another embodiment. 別の実施形態の三次元繊維構造中間体の模式平面図(展開図)。The schematic plan view (development figure) of the three-dimensional fiber structure intermediate body of another embodiment. (a),(b)は別の実施形態の三次元繊維構造体の模式斜視図。(A), (b) is a model perspective view of the three-dimensional fiber structure of another embodiment. らせん状織物の製造装置の平面図。The top view of the manufacturing apparatus of a helical fabric. (a)〜(c)は異形断面の三次元繊維構造体の製造方法を示す模式斜視図。(A)-(c) is a model perspective view which shows the manufacturing method of the three-dimensional fiber structure of an irregular cross section. 平板状の三次元繊維構造体を扇面状に切断した状態の模式図。The schematic diagram of the state which cut | disconnected the flat three-dimensional fiber structure in the fan surface shape.

符号の説明Explanation of symbols

L…長さ、z…厚さ方向糸、11…三次元繊維構造体、11a…扇面板状部、11b,11c…板状部、12…三次元繊維構造中間体、13…結合糸、14…積層糸群、15…0度配列糸、19,46…繊維束配列用治具、31〜34…糸層、41…帯状三次元繊維構造体。   L: Length, z: Thickness direction yarn, 11: Three-dimensional fiber structure, 11a: Fan plate, 11b, 11c: Plate, 12: Three-dimensional fiber structure intermediate, 13: Bond yarn, 14 ... Laminated yarn group, 15 ... 0 degree arrangement yarn, 19,46 ... Fiber bundle arrangement jig, 31-34 ... Yarn layer, 41 ... Striped three-dimensional fiber structure.

Claims (5)

円錐台の周面形状の繊維配列部を有する繊維束配列用治具を使用して、前記繊維束配列用治具の上に、少なくとも前記円錐台の端部と平行に配列される糸からなる糸層を含むように糸層を複数積層して少なくとも2軸配向となる積層糸群を形成する積層糸群形成工程と、  Using a fiber bundle arranging jig having a fiber arrangement portion in the shape of a peripheral surface of a truncated cone, the yarn bundle arranged on the fiber bundle arranging jig at least in parallel with the end portion of the truncated cone A laminated yarn group forming step of forming a laminated yarn group having at least biaxial orientation by laminating a plurality of yarn layers so as to include a yarn layer;
前記積層糸群を前記繊維束配列用治具に保持した状態で厚さ方向糸で結合する積層糸群結合工程と  A laminated yarn group joining step of joining the laminated yarn groups with thickness direction yarns while being held by the fiber bundle arranging jig;
を備え、With
円錐台筒状三次元繊維構造体を形成した後、該円錐台筒状三次元繊維構造体を周方向と直交する方向に切断して展開することにより扇面板状の三次元繊維構造体を形成する三次元繊維構造体の製造方法。  After forming the truncated cone-shaped cylindrical three-dimensional fiber structure, the fan-shaped plate-shaped three-dimensional fiber structure is formed by cutting and expanding the truncated cone-shaped cylindrical three-dimensional fiber structure in a direction perpendicular to the circumferential direction. A method for manufacturing a three-dimensional fiber structure.
円錐台の周面又は円錐台の周面の一部をなす形状の繊維配列部を有する繊維束配列用治具を使用して、前記繊維束配列用治具の上に、少なくとも前記円錐台の端部と平行に配列される糸からなる糸層を含むように糸層を複数積層して少なくとも2軸配向となる積層糸群を形成する積層糸群形成工程と、Using a fiber bundle arranging jig having a fiber arrangement part having a shape that forms a part of the peripheral surface of the truncated cone or a part of the circumferential surface of the truncated cone, and at least on the fiber bundle arranging jig A laminated yarn group forming step of forming a laminated yarn group having at least biaxial orientation by laminating a plurality of yarn layers so as to include a yarn layer composed of yarns arranged in parallel with the ends;
前記積層糸群を前記繊維束配列用治具に保持した状態で一方向へ間欠的に移動させて所定の位置において厚さ方向糸で順次結合する積層糸群結合工程と  A laminated yarn group joining step in which the laminated yarn group is intermittently moved in one direction while being held by the fiber bundle arranging jig and sequentially joined with a thickness direction yarn at a predetermined position;
を備え、With
前記積層糸群結合工程において厚さ方向糸で結合された積層糸群を順次前記繊維束配列用治具から取り外した後、所定の長さに切断して扇面板状の三次元繊維構造体を形成する三次元繊維構造体の製造方法。  After the laminated yarn group joined by the thickness direction yarn in the laminated yarn group joining step is sequentially removed from the fiber bundle arranging jig, it is cut into a predetermined length to form a fan-plate-like three-dimensional fiber structure. A method for producing a three-dimensional fiber structure.
前記繊維束配列用治具から順次取り外された前記厚さ方向糸で結合された積層糸群を扇面板状部が連続する形状の帯状三次元繊維構造体として保管した後、所定の長さに切断して扇面板状の三次元繊維構造体を形成する請求項2に記載の三次元繊維構造体の製造方法 After storing the laminated yarn group joined by the thickness direction yarns sequentially removed from the fiber bundle arranging jig as a belt-like three-dimensional fiber structure having a continuous fan-like plate-like portion, it is cut to a predetermined length. The method for producing a three-dimensional fiber structure according to claim 2, wherein a fan-like plate-like three-dimensional fiber structure is formed . 前記繊維配列部に対して前記円錐台の端部と平行に配列される糸は当該糸層を構成する全ての糸が同時に配列される請求項1〜請求項3のいずれか一項に記載の三次元繊維構造体の製造方法。The yarn arranged in parallel to the end of the truncated cone with respect to the fiber arrangement portion, all the yarns constituting the yarn layer are arranged at the same time. A method for producing a three-dimensional fiber structure. 長手方向と直交する断面形状が異形状で、長手方向に沿って湾曲形成された三次元繊維構造体の製造方法であって、The cross-sectional shape orthogonal to the longitudinal direction is an irregular shape, a manufacturing method of a three-dimensional fiber structure that is curved along the longitudinal direction,
請求項1〜請求項4のいずれか一項に記載の製造方法で製造された三次元繊維構造体を三次元繊維構造中間体とし、該三次元繊維構造中間体を複数厚さ方向に積層した状態で、少なくとも該三次元繊維構造中間体の一方の円弧状周縁部を残して結合糸により結合する三次元繊維構造中間体結合工程と、  The three-dimensional fiber structure manufactured by the manufacturing method according to any one of claims 1 to 4 is used as a three-dimensional fiber structure intermediate, and the three-dimensional fiber structure intermediate is laminated in a plurality of thickness directions. A three-dimensional fiber structure intermediate bonding step in which at least one arcuate peripheral edge of the three-dimensional fiber structure intermediate is left and bonded by a bonding thread;
前記結合糸により結合されなかった円弧状周縁部を折り曲げる折り曲げ工程と  A bending step of bending the arc-shaped peripheral edge that is not joined by the binding yarn;
を備えた三次元繊維構造体の製造方法。The manufacturing method of the three-dimensional fiber structure provided with.
JP2003330137A 2003-09-22 2003-09-22 Method for producing three-dimensional fiber structure Expired - Fee Related JP4063183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330137A JP4063183B2 (en) 2003-09-22 2003-09-22 Method for producing three-dimensional fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330137A JP4063183B2 (en) 2003-09-22 2003-09-22 Method for producing three-dimensional fiber structure

Publications (2)

Publication Number Publication Date
JP2005097759A JP2005097759A (en) 2005-04-14
JP4063183B2 true JP4063183B2 (en) 2008-03-19

Family

ID=34459196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330137A Expired - Fee Related JP4063183B2 (en) 2003-09-22 2003-09-22 Method for producing three-dimensional fiber structure

Country Status (1)

Country Link
JP (1) JP4063183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021243867A1 (en) * 2020-06-03 2021-12-09 上海飞机制造有限公司 Manufacturing method for aircraft bulkhead

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088029A1 (en) 2008-01-11 2009-07-16 Toray Industries, Inc. Reinforcing fiber base of curved shape, layered product employing the same, preform, fiber-reinforced resin composite material, and processes for producing these
DE102008017573A1 (en) * 2008-04-07 2010-04-15 Airbus Deutschland Gmbh Method for producing a FVW / FRP component from rovings with a molding tool and mold for carrying out the method
DE102010015199B9 (en) * 2010-04-16 2013-08-01 Compositence Gmbh Fiber guiding device and apparatus for constructing a three-dimensional preform
FR2960818B1 (en) * 2010-06-04 2012-07-20 Snecma FIBROUS STRUCTURE FORMING A FLANGE AND A FLANGE
JP5945209B2 (en) 2012-10-25 2016-07-05 株式会社Ihi Cylindrical case and manufacturing method of cylindrical case
JP6018877B2 (en) 2012-10-25 2016-11-02 株式会社Ihi Cylindrical case and manufacturing method of cylindrical case
JP6935782B2 (en) 2018-04-27 2021-09-15 株式会社豊田自動織機 Fiber structure, fiber reinforced composite material, and method for manufacturing fiber structure
CN113858650B (en) * 2020-06-30 2024-05-24 中国航发商用航空发动机有限责任公司 Method for manufacturing composite material annular piece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021243867A1 (en) * 2020-06-03 2021-12-09 上海飞机制造有限公司 Manufacturing method for aircraft bulkhead

Also Published As

Publication number Publication date
JP2005097759A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP6474813B2 (en) Method and means for weaving 3D fabric, 3D fabric product and use thereof
US6107220A (en) Rapid fabric forming
US5809805A (en) Warp/knit reinforced structural fabric
JP5548624B2 (en) Multi-directional reinforced shape woven preform for composite structures
US4325999A (en) Bias fabric
ES2300541T3 (en) MOLDING MATERIAL.
JP4063183B2 (en) Method for producing three-dimensional fiber structure
KR100498947B1 (en) Fabric structure, method for forming fabric structure and fabric forming device
JP6935782B2 (en) Fiber structure, fiber reinforced composite material, and method for manufacturing fiber structure
WO2021014851A1 (en) Fiber structure and fiber-reinforced composite
JPS61138743A (en) Reinforcing material for fiber reinforced resin and its production
JP2004167761A (en) Multi-axial reinforcing fiber sheet and its manufacturing method
JP2000328392A (en) Three-dimensional fiber structure
EP0845552A2 (en) Carrier tape and fabric for rapier loom
JP7016010B2 (en) Manufacturing method and manufacturing equipment for diagonal woven fabrics
US20230243077A1 (en) Method and device for producing an annular multiaxial laid fabric and an annular object produced therewith
US8341980B2 (en) Integrated multiaxial articles: method, apparatus and fabrics
JPH10130994A (en) Carrier tape for rapier loom and fiber structure
JPH06207345A (en) Reinforcing three-dimensional woven fabric for composite material and its production
WO2012014605A1 (en) Fiber substrate and fiber-reinforced composite material
CA2593334C (en) Rapid fabric forming
Jan Development of 3D Braiding Concept for Multi-Axial Textile Preforms
JPH02307949A (en) Three-dimensional woven fabric for reinforcing beam-like composite material and production thereof
JPH07324252A (en) Columnar fiber structure and fiber-reinforced composite material
JPH03287835A (en) Reinforcing three-dimensional cloth for composite material and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees