JP4062892B2 - Drainage processing method and apparatus - Google Patents

Drainage processing method and apparatus Download PDF

Info

Publication number
JP4062892B2
JP4062892B2 JP2001151448A JP2001151448A JP4062892B2 JP 4062892 B2 JP4062892 B2 JP 4062892B2 JP 2001151448 A JP2001151448 A JP 2001151448A JP 2001151448 A JP2001151448 A JP 2001151448A JP 4062892 B2 JP4062892 B2 JP 4062892B2
Authority
JP
Japan
Prior art keywords
gas
liquid
ozone
tank
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001151448A
Other languages
Japanese (ja)
Other versions
JP2002346586A (en
Inventor
英斉 安井
元之 依田
道春 菅
隆文 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Kurita Water Industries Ltd
Original Assignee
Mitsui Chemicals Inc
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Kurita Water Industries Ltd filed Critical Mitsui Chemicals Inc
Priority to JP2001151448A priority Critical patent/JP4062892B2/en
Publication of JP2002346586A publication Critical patent/JP2002346586A/en
Application granted granted Critical
Publication of JP4062892B2 publication Critical patent/JP4062892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機性排液の好気的生物処理による排液処理方法および装置に関し、特に汚泥の減量化手段を備えた排液処理方法および装置に関する。
【0002】
【従来の技術】
従来、活性汚泥処理における余剰汚泥を減容化するため、余剰汚泥等の生物汚泥(以下、単に汚泥という場合がある)にオゾンを反応させて汚泥を酸化分解する技術が知られている。この方法では、汚泥を酸化分解により易生物分解性に改質した上で、オゾン処理汚泥を被処理液とともに曝気槽に導入して好気性生物処理を行うため、汚泥を減容化することができる。
オゾン処理では、反応槽中に汚泥含有液を導入し、この汚泥含有液中にオゾン含有ガスを吹き込んで気液接触させ、汚泥を分解する装置が用いられる。このようなオゾン処理装置において、汚泥含有液にオゾン含有ガスを吹込んでオゾン処理を行うと、オゾン処理汚泥が発泡して泡沫が槽外に持出され、周辺が汚染されるなどの問題が生じることがある。
【0003】
このようなオゾン処理液の発泡の問題に対処する装置として、特開平8−267099号には、汚泥のオゾン処理を行うオゾン処理槽と、気液分離を行う気液分離装置と、分離されたオゾン処理汚泥を貯留する貯留槽と、排オゾンガスからオゾンを除去するオゾン除去装置とを備え、気液分離装置の下部が貯留槽の槽内液により液封されているオゾン処理装置が開示されている。
この装置では発泡を積極的に利用してオゾン処理効率を高めるとともに、泡沫が槽外に持ち出されるのを防止することができる。このようなオゾン処理装置において気液分離装置を排液槽または曝気槽の上部に設けて液封状態で使用すると、分離汚泥の移送の必要がなくなる。
【0004】
しかし分離したオゾン処理汚泥を曝気槽に供給すると、曝気に伴って発泡が起こるため、消泡剤を散布して消泡するなどの対処をしなければならない。消泡剤の添加は、運転コストを引き上げるだけではなく、曝気槽の酸素溶解効率の低下を招く。また消泡スプレーの流量によっては、曝気槽へ導入される水量の増大により、曝気槽の次に設けられる沈殿槽の水面積負荷が高くなって、固液分離に悪影響を招くことがあった。
【0005】
【発明が解決しようとする課題】
本発明の課題は、オゾン処理汚泥と排オゾンガスとの気液混合物を低コストで効率よく気液分離してオゾン処理汚泥を曝気槽に供給することができ、しかも安定してオゾン処理汚泥を処理することが可能な排液処理方法および装置を提供することである。
【0006】
【課題を解決するための手段】
本発明は、以下の排液処理方法および排液処理装置である。
(1) 排液槽から供給される有機性排液を曝気槽において活性汚泥の存在下で曝気して好気性処理する好気性処理工程と、
好気性処理工程から引き抜いた汚泥をオゾン処理するオゾン処理工程と、
オゾン処理工程で得られたオゾン処理汚泥と排オゾンガスとの気液混合物を気液分離し、分離汚泥を排液槽および/または曝気槽へ供給する気液分離工程とを有し、
気液分離工程では、気液混合物中のオゾン処理汚泥を自重により曝気槽または曝気槽へ連絡する排液槽内に落下させて排オゾンガスと分離する分離塔であって、下部が曝気槽または排液槽の槽内液により液封されている分離塔と、分離された排オゾンガスを排出する排ガス路とを有する複数の気液分離装置を用い、気液混合物の全量を所定時間毎に特定の気液分離装置に分流するように切換えて気液分離し、それぞれの分離汚泥を排液槽および/または曝気槽の槽内液の流れに沿った互いに異なる位置に供給するようにした排液処理方法。
(2) 気液分離工程は、排液槽上部および/または曝気槽上部に設けられた気液分離装置により行われる上記(1)記載の排液処理方法。
(3) 排液槽から供給される有機性排液を曝気槽において活性汚泥の存在下に曝気して好気性処理する好気性処理系と、
好気性処理系から引き抜いた汚泥をオゾン処理するオゾン処理装置と、
オゾン処理装置で得られたオゾン処理汚泥と排オゾンガスとの気液混合物の全量を特定の気液分離装置に所定時間毎に分流するように切換える分流装置と、
分流装置で分流されたそれぞれの気液混合物を気液分離し、分離汚泥を排液槽および/または曝気槽の槽内液の流れに沿った互いに異なる位置に供給する複数の気液分離装置とを含み、
気液分離装置は、気液混合物中のオゾン処理汚泥を自重により曝気槽または曝気槽へ連絡する排液槽内に落下させて排オゾンガスと分離する分離塔であって、下部が曝気槽または排液槽の槽内液により液封されている分離塔と、分離された排オゾンガスを排出する排ガス路とを有する排液処理装置。
(4) 排液槽上部および/または曝気槽上部に気液分離装置が設けられている上記(3)記載の排液処理装置。
(5) 各気液分離装置どうしは、互いに5m以上離れて設けられている上記(3)または(4)記載の排液処理装置。
【0007】
本発明の排液処理方法は、好気性処理工程において排液槽から供給される有機性排液を曝気槽で活性汚泥の存在下に曝気して好気性処理し、オゾン処理工程において好気性処理工程から引き抜いた汚泥をオゾン処理し、気液分離工程においてオゾン処理工程で得られたオゾン処理汚泥と排オゾンガスとの気液混合物を気液分離し、分離汚泥を排液槽および/または曝気槽へ供給する。この気液分離工程では、気液混合物を複数の気液分離装置に分流して気液分離し、それぞれの分離汚泥を排液槽および/または曝気槽の槽内液の流れに沿って互いに異なる位置に供給する。
【0008】
このような排液処理方法において採用することができる排液処理装置としては、好気性処理系において排液槽から供給される有機性排液を曝気槽において活性汚泥の存在下に曝気して好気性処理し、オゾン処理装置において好気性処理系から引き抜いた汚泥をオゾン処理し、分流装置によってオゾン処理装置から得られたオゾン処理汚泥と排オゾンガスとの気液混合物を分流し、複数の気液分離装置において分流装置で分流されたそれぞれの気液混合物を気液分離し、分離汚泥を排液槽および/または曝気槽の槽内液の流れに沿った互いに異なる位置に供給するような排液処理装置があげられる。この装置を用いた処理により効率的に汚泥の減容化が達成できる。
【0009】
好気性処理工程では、排液槽から供給される有機性排液を曝気槽において活性汚泥の存在下で曝気して好気性処理する。
曝気槽に導入されて曝気される有機性排液は有機性物質を含有する排液であり、例えば工場排液やし尿などである。曝気槽内には活性汚泥が保持されており、曝気槽内へ導入された有機性排液は、曝気されながら活性汚泥中の微生物によって好気的に処理され、分解される。有機性排液は排液槽を介して曝気槽に導入される。ここでいう曝気槽は、返送汚泥の再曝気槽、その他の2次的な曝気槽を含むことができる。また曝気槽内に隔壁を設け、曝気槽内に複数の分画室が形成されるようにすることができる。隔壁は、槽内液の一部が次に連続する分画室に流れ込むことができるように、曝気槽上部や下部等の任意の箇所に、任意の形状のものを設けることができる。隔壁が設けられた場合、槽内液は原水の供給側から処理水の排出側に向かって各分画室を経て排出される。
【0010】
好気性処理工程の汚泥の一部は引き抜かれてオゾン処理工程へ送られる。オゾン処理では、汚泥にオゾン含有ガスを接触させて汚泥を分解する。オゾン処理される汚泥は、余剰汚泥のように生物汚泥を主体とするものが好ましいが、凝集汚泥のように若干の無機物を含むものでもよい。オゾン処理は発泡を抑制してオゾン処理することもできるし、積極的に発泡させてオゾン処理することもできる。なおオゾン処理においては曝気槽から引き抜いた汚泥を、一旦固液分離装置へ導入して固液分離し、分離した汚泥の一部をオゾン処理することもできる。
【0011】
オゾン処理で用いられるオゾン含有ガスとしてはオゾン含有空気、オゾン化酸素などがあげられる。オゾンの導入量は、導入される生物汚泥のVSS重量に対して0.5〜10%、好ましくは1〜5%とするのが望ましい。またオゾン含有ガスの流量は、反応槽のガス線速度として5〜50m/hr、好ましくは10〜30m/hrとするのが望ましい。
【0012】
オゾン処理工程から得られるオゾン処理汚泥と排オゾンガスとが混合した気液混合物は、分流装置によって分流される。分流装置は、例えばオゾン処理槽から延びる気液混合物供給路が2つ以上に分岐し、分岐した供給路がそれぞれ異なる気液分離装置へ連絡するように構成することができる。分流装置によって分流された気液混合物は、気液分離工程へ送られ、気液分離装置によって気液分離される。
【0013】
分流装置の分岐された供給路にはそれぞれ導入量を調節する導入量調節弁が設けられていることが好ましい。導入量調節弁は、気液分離装置内への気液混合物の流入量を調節するバルブである。導入量調節弁を設けることにより、各気液分離装置において気液分離される気液混合物の流量を調節することができる。この場合、気液混合物の全量を複数の気液分離装置のうち、特定の気液分離装置に所定時間毎に切換えて分流するように導入量調節弁を制御することができる。このとき曝気槽における発泡具合をモニタリングしながら、導入量調節弁を制御することできる。
【0014】
気液分離装置で気液分離される気液混合物は、具体的には、排オゾンガス気泡を含むオゾン処理汚泥、オゾン処理汚泥が発泡した泡、泡沫を同伴する排オゾンガス、これらの混合物などであり、このような混合物からオゾン処理汚泥を分離して排液槽および/または曝気槽へ導入する。また気液分離装置にてオゾン処理汚泥から分離された排オゾンガスは排出して処理する。排液槽へ導入されたオゾン処理汚泥は、有機性排液とともに曝気槽へ送られて、また曝気槽へ直接導入されたオゾン処理汚泥は曝気槽内の有機性排液と混合されて曝気される。
【0015】
気液分離装置は、排液槽上部および/または曝気槽上部に設けるのが好ましい。また気液分離装置は、気液混合物中のオゾン処理汚泥を自重により曝気槽または曝気槽へ連絡する排液槽内に落下させて排オゾンガスと分離する分離塔であって、下部が曝気槽または排液槽の槽内液により液封されている分離塔と、分離された排オゾンガスを排出する排ガス路とを有するように構成する
【0016】
気液分離装置では、分離塔は、オゾン処理汚泥と排オゾンガスとの気液混合物を受け入れ、オゾン処理汚泥を自重により曝気槽または排液槽内に落下させ、分離汚泥としてオゾン処理汚泥、分離ガスとして排オゾンガスを得る。自重により落下したオゾン処理汚泥は曝気槽または排液槽の液面部分で槽内液と接触して希釈され、槽内全体に拡散する。分離塔に気液混合物が連続的に導入されると、液面上部にオゾン処理汚泥層が形成されて高さが高くなる場合もあるが、オゾン処理汚泥の量が増加すると自身の自重で押され、槽内液に拡散して高さは低下する。一方、分離された排オゾンガスは分離塔の上部に設けられた排ガス路から排出される。
【0017】
気液混合物は槽内液の液封水面から分離塔上端までの間、すなわち中間部に導入されるが、液封水面から50cm以上、好ましくは100〜150cm高い位置であって、かつ分離塔上端から50cm以上、好ましくは100〜150cm低い位置に導入するのが望ましい。このような位置に導入すると、自重落下による気液分離を効率よく行うことができるとともに、オゾン処理汚泥が排ガス路から塔外へ漏出するのを防止することができる。
【0018】
各気液分離装置は、分離汚泥を排液槽および/または曝気槽の槽内液の流れに沿った互いに異なる位置に供給するように設ける。すなわち、槽内液の流れの方向(排液の供給側から処理液の排出側へ向かう方向)に対して互いに間隔をあけて設けられていればよく、例えば曝気槽の上流部、中流部、下流部等に設けることができる。この場合、各気液分離装置どうしの間隔は好ましくは5m以上、さらに好ましくは10m以上である。このように気液分離装置どうしを間隔をあけて設けることによって、曝気槽の一箇所において多量のオゾン処理汚泥が導入されて発泡が過剰に生じてしまうことを防止できる。
【0019】
気液分離装置は、その全てを曝気槽上部に設置することができる。また気液分離装置はその全てを排液槽上部に設けることもできるが、発泡を効果的に防止するために、排液槽上部と曝気槽上部との両方に設置することが好ましい。
【0020】
曝気槽上部に設ける場合において、曝気槽内に隔壁が設けられて複数の分画室が形成されているとき、各分画室上部に気液分離装置を少なくとも1つずつ設けることが好ましい。この場合、全ての分画室上部に気液分離装置を設けなくてもよく、少なくとも2つ以上の分画室上部に設けることが好ましい。このように、曝気槽内が隔壁で仕切られ、仕切られた各分画室上部に気液分離装置を設けることにより、オゾン処理汚泥を各分画室へ導入することができる。よって排オゾンガスを含んだオゾン処理汚泥が曝気槽の一箇所に集中して導入されることがなく、発泡を確実に抑制することができる。なお、各分画室上部に気液分離装置を設ける場合、気液分離装置どうしの間隔は5m以下であってもかまわない。
さらにこの場合、気液混合物を複数の気液分離装置のうちいずれか1つに順次導入するように導入量調節弁を制御すると、発泡をより確実に防止できるので好ましい。
【0021】
なお気液分離装置を曝気槽に設置する場合、曝気空気が分離塔に進入するのを防止するため、曝気空気の上昇が少ない地点に設置するのが好ましい。また分離塔下端にバッフル板を設け、曝気空気の進入を防止することもできる。また旋回流型の曝気槽に設置する場合には、下向きの水流がある地点に分離塔を設置すると希釈、拡散の効率はさらに向上し、気液分離の効率がさらに向上するとともに、さらに低コストでの処理が可能である。
【0022】
気液分離装置で分離された排オゾンガスはオゾン除去処理することが好ましく、例えば排ガス路を排オゾン除去装置に接続することにより処理することができる。排オゾン除去装置としては、内部に活性炭、触媒などのオゾン除去剤が充填された充填層が形成された装置等が例示できる。
【0023】
本発明においては、分流装置によって気液混合物が分流され、分流されたそれぞれの気液混合物を複数の気液分離装置へ導入して処理するため、従来必要とされていた消泡用のスプレーノズル等の消泡手段は設けなくても、発泡を抑えることができる。ただし気液分離装置の不良が生じて泡や泡沫が分離塔外へ漏出する場合に備えて、分離塔内に消泡水または消泡剤を散布するスプレーノズルなどの消泡手段を設けてもよい。
【0024】
気液分離装置から分離されたオゾン処理汚泥は、排液槽から供給される有機性排液とともに曝気槽において、活性汚泥と混合して曝気して好気性生物処理され、オゾンにより易生物分解性に変換された有機物が分解される。気液分離装置から直接あるいは排液槽を介してオゾン処理汚泥を曝気槽に導入するとともに有機性排液を曝気槽に導入して好気性処理を行うことにより、これらのオゾン処理汚泥および有機性排液中の有機物が生物学的に分解される。これにより汚泥の減容化が達成できる。
【0025】
なお本発明では、好気性処理系において、曝気槽の混合汚泥を固液分離装置へ送って固液分離し、得られる分離汚泥の一部を曝気槽に返送し、またその一部をオゾン処理槽へ送ってオゾン処理し、得られる気液混合物を気液分離装置へ導入する標準活性汚泥法に適用することが好ましい。ただし本発明はこのような排液処理方法に限られず、例えば、固液分離装置は設けずに曝気槽から取り出される汚泥を直接オゾン処理槽へ導入してオゾン処理してもよい。
【0026】
【発明の効果】
本発明の排液処理方法は、気液混合物の気液分離を、気液混合物の全量を所定時間毎に特定の気液分離装置に分流するように切換えて、特定の構成を有する複数の気液分離装置で行い、各気液分離装置は槽内液の流れに沿った互いに異なる位置に設け、気液混合物から分離されたオゾン処理汚泥が排液槽および/または曝気槽の異なる箇所に導入されるようにしたので、オゾン処理汚泥起因の発泡を抑えて、安定してオゾン処理汚泥を生物処理することができ、このため排液を低コストで効率よく好気性処理することができる。
【0027】
本発明の排液処理装置は、分流装置で気液混合物の全量を所定時間毎に特定の気液分離装置に分流するように切換えて分流し、分流された気液混合物を特定の構成を有する複数の気液分離装置で気液分離でき、これらの気液分離装置は槽内液の流れに沿った互いに異なる位置に設けられ、気液混合物から分離されたオゾン処理汚泥が排液槽および/または曝気槽の異なる箇所に導入できるようにしたので、オゾン処理汚泥の発泡を抑えて、安定してオゾン処理汚泥を生物処理することができ、このため排液を低コストで効率よく好気性処理することができる。
【0028】
【発明の実施の形態】
次に本発明の実施例を図面により説明する。図1は、本発明の排液処理装置を用いた排液処理系を示す系統図である。図1において、1は排液処理装置、2a、2bは気液分離装置、10は曝気槽、14は排液槽、20は固液分離槽、30はオゾン処理槽である。
【0029】
図1に示す排液処理系では、排液槽14に集液路14aが連絡し、排液槽14から延びる原水路15が曝気槽10に連絡している。曝気槽10からは連絡路16が延びて固液分離槽20へ連絡している。曝気槽10内には、隔壁11a、11bが設けられ、第1の分画室10aと第2の分画室10bと第3の分画室10cとが形成されている。第1の分画室10a上部には第1の気液分離装置2a、第2の分画室10b上部には第2の気液分離装置2bが設けられている。第1と第2の気液分離装置2a、2bには、分流装置の気液混合物導入路3a、3bが連絡している。気液混合物導入路3a、3bにはオゾン処理槽30から延びるオゾン処理汚泥移送路25が分岐して連絡している。気液混合物導入路3a、3bには導入量調節弁4a、4bが設けられている。
【0030】
固液分離槽20から延びる処理水路21から処理水が取り出される。一方、固液分離槽20から延びる汚泥排出路22から分離汚泥が取り出される。汚泥排出路22は引抜汚泥路24に連絡し、引抜汚泥路24はポンプ23を通ってオゾン処理槽30へ連絡している。また汚泥排出路22は返送汚泥路17にも連絡しており、返送汚泥路17は曝気槽10の第1の分画室10aへ連絡している。
【0031】
第1の気液分離装置2aは、分流装置の気液混合物導入路3aが連絡する分離塔6aと、曝気槽10の液封水面と分離塔6a上端との中間部に位置する気液混合物導入口7aと、分離塔6a上端から延びる排ガス路9aとから構成されている。
【0032】
第1の分画室10aにおいて、第1の気液分離装置2aの分離塔6aの下端は、曝気槽10の槽内液で液封された状態で設置されている。また分離塔6aの下端には、曝気空気の進入を防止するようにバッフル板8aが設けられている。分離塔6aは槽内液が下向きに流れる水流がある地点に設置されている。
【0033】
第1の気液分離装置2aと同様に、第2の気液分離装置2bが、曝気槽10の第2の分画室10b上部に設けられている。第2の気液分離装置2bは、第1の気液分離装置2aと同じ構成を有している。
【0034】
生物汚泥含有液をオゾン処理することによって生じるオゾン処理汚泥と排オゾンガスとの気液混合物は、第1の気液混合物導入路3aを通って第1の気液分離装置2aへ、また第2の気液混合物導入路3bを通って第2の気液分離装置2bへと送られる。第1の気液混合物導入路3aには第1の導入量調節弁4aが、第2の気液混合物導入路3bには第2の導入量調節弁4bが設けられているため、導入量調節弁4a、4bを開閉して気液混合物の流量を制御することができる。
【0035】
第1の気液分離装置2aにおいてオゾン処理汚泥と排オゾンガスとの気液混合物を気液分離するには、気液混合物導入口7aから気液混合物を分離塔6aに連続的に導入し、自重により落下させる。自重により落下したオゾン処理汚泥は第1の分画室10aの液面部分で槽内液と接触して希釈され、槽内全体に拡散する。この場合、分離塔6a下端には、曝気空気の進入を防止するようにバッフル板8aが設けられ、しかも分離塔6aは下向きの水流がある地点に設置されているので、拡散は効率よく進行する。分離塔6aに気液混合物が連続的に導入されると、液面上部にオゾン処理汚泥層が形成されて高さが高くなる場合もあるが、オゾン処理汚泥の量が増加すると自身の自重で押され、槽内液に拡散して高さは低下する。一方、分離された排オゾンガスは排ガス路9aから排出される。
【0036】
第1の気液分離装置2aで分離されたオゾン処理汚泥は、曝気槽10の第1の分画室10aにおいて、原水路15から導入された原水と、第1の分画室10a中の活性汚泥と、返送汚泥路17から返送された返送汚泥と混合され、空気供給路13から供給される空気を散気装置12から散気して好気性生物処理される。このとき、第1の気液分離装置2aから落下したオゾン処理汚泥は第1の分画室10a内で速やかに槽内液で希釈、拡散されて、分解される。この処理液は、隔壁11aの下部を通って曝気槽10の第2の分画室10bへと導入される。
【0037】
第2の気液分離装置2bで分離されたオゾン処理汚泥は、曝気槽10内で、第1の分画室10aから導入された汚泥と、第2の分画室10b中の活性汚泥と混合され、空気供給路13から供給される空気を散気装置12から散気して好気性生物処理される。第1の分画室10aと同様に、第2の気液分離装置2bから落下したオゾン処理汚泥は第2の分画室10b内で速やかに槽内液で希釈、拡散されて、分解される。処理液は第3の分画室10cを経て連絡路16から取り出される。
【0038】
第1と第2の気液分離装置2a、2bには、気液混合物導入路3a、3bに設けられている導入量調節弁4a、4bによって分流された気液混合物が導入される。これら導入量調節弁4a、4bによって、第1と第2の気液分離装置2a、2bにおいて気液分離する気液混合物の導入量を確実に調節することができる。排液処理装置1では、第1の導入量調節弁4aを開放している間、第2の導入量調節弁4bは閉鎖して、気液混合物を第1の気液分離装置2aのみに導入する。所定量の気液混合物が第1の気液分離装置2aに導入された後、今度は第1の導入量調節弁4aを閉鎖し、第2の導入量調節弁4bを開放し、気液混合物を第2の気液分離装置2bへ導入するように制御する。このように、所定時間ずつ導入量調節弁4a、4bの開閉を制御し、第1と第2の気液分離装置2a、2bのどちらか一方に所定量の気液混合物を交互に導入するようにすると、曝気槽10に発泡が生じたとしても、発泡が過剰になる前にオゾン処理汚泥の供給先をもう一方の分画室へと切り替えることにより、曝気槽10における過剰な発泡を抑制できる。また、第1と第2の気液分離装置2a、2bに均等に気液混合物を導入することも可能である。
【0039】
このように排液処理装置1においては、導入量調節弁4a、4bを制御することにより、気液混合物を分流して各気液分離装置2a、2bへ導入できるため、気液分離を安定して行うことができる。その結果、曝気槽10における発泡量を抑えることができ、曝気槽10の生物処理を効率よく安定して行うことができる。また、従来曝気槽で用いられていた消泡水または消泡剤を使用する必要がなく、また使用する場合であってもその使用量は少ない量で十分なので、低コストでの処理が可能である。
【0040】
以上のようにして曝気槽10内で曝気された汚泥は、曝気槽10から延びる連絡路16を通って一部ずつ固液分離槽20へ導入される。固液分離槽20では、沈殿によって分離水と分離汚泥との分離が行われ、分離水は処理水として処理水路21から排出される。一方、分離汚泥は固液分離槽20の下部から延びる汚泥排出路22から取り出される。取り出された汚泥の一部は、汚泥排出路22から分岐する返送汚泥路17を通って、返送汚泥として曝気槽10へ導入される。なお余剰汚泥が生じる場合は余剰汚泥排出路28から排出される。
【0041】
また固液分離槽20で分離された汚泥の一部は、引抜汚泥として、汚泥排出路22から分岐する引抜汚泥路24を通って、ポンプ23によりオゾン処理槽30へ導入される。オゾン発生機31で発生させたオゾンをオゾン供給路32からオゾン処理槽30の下部へ供給し、引抜汚泥と接触させてオゾン処理を行う。これにより引抜汚泥中の汚泥が易生物分解性有機物に変換する。
【0042】
オゾン処理汚泥はオゾン処理汚泥移送路25から、排オゾンガスが混合された状態で第1と第2の気液分離装置2a、2bに導入して気液分離する。この場合、オゾン処理汚泥はオゾン処理槽30に導入するオゾン供給圧力により気液分離装置2a、2bに移送することができるので移送用のポンプなどは不要であり、低コストでの処理が可能である。またガスによるポンプの動作不良もない。気液分離されたオゾン処理汚泥は曝気槽10内で前記のように好気性生物処理され、易生物分解性に変換された有機物は原水の有機物とともに分解される。
【0043】
図2は、本発明の他の実施の形態の排液処理装置を用いた排液処理系を示す系統図である。
図2の排液処理装置1Aにおいては、第1の気液分離装置2aが排液槽14上部、第2の気液分離装置2bが曝気槽10上部に設けられている点で図1に示す排液処理装置1と異なる。
【0044】
排液処理装置1Aでは、排液槽14上部に第1の気液分離装置2aが設けられており、オゾン処理槽30から供給される気液混合物の一部は、オゾン処理汚泥移送路25を通り、さらにオゾン処理汚泥移送路25から分岐する気液混合物導入路3aを通って、第1の気液分離装置2aへ導入される。第1の気液分離装置2aで気液分離されたオゾン処理汚泥は排液槽14内へと導入される。排液槽14へ導入されたオゾン処理汚泥は、排液槽14中の有機性排液と混合され、原水路15を通って曝気槽10へと導入される。
【0045】
またオゾン処理槽30から供給される気液混合物の残りの一部は、オゾン処理汚泥移送路25を通り、さらにオゾン処理汚泥移送路25から分岐する気液混合物導入路3bを通って第2の気液分離装置2bへ導入される。第2の気液分離装置2bで気液分離されたオゾン処理汚泥は曝気槽10内へと導入される。
【0046】
曝気槽10では、その上部に設けられた第2の気液分離装置2bで分離されたオゾン処理汚泥と、原水路15から供給される有機性排液とオゾン処理汚泥の混合物と、返送汚泥路17から供給される返送汚泥と、曝気槽10中の活性汚泥とが混合されて曝気される。処理水は図1に示した排液処理系と同様に固液分離槽20へと送られて、同様に処理される。
【0047】
排液処理装置1Aでは、導入量調節弁4a、4bを制御することにより気液混合物の一部が排液槽14へ供給されるため、オゾン処理汚泥が曝気槽10へ集中することがなく、曝気槽10における発泡を抑制することができる。なお、第1と第2の気液分離装置2a、2bの導入量調節弁4a、4bの制御はどのようなものであってもかまわない。例えば、図1に示す実施の形態のように第1と第2の気液分離装置2a、2bのどちらか一方に順番に気液混合物を導入してもよい。または、第1と第2の気液分離装置2a、2bに均等に気液混合物を導入するように制御してもよい。その他、曝気槽10の発泡量をモニタリングしながら、排液槽14と曝気槽10のどちらか一方における発泡量が増えた時点で、もう一方の槽に設けられた気液分離装置に導入する気液混合物量を増やすなど、適宜調節することが可能である。
【0048】
なお本発明は上記実施の形態に限られない。例えば図1および図2の排液処理系においては固液分離槽20を設けて分離汚泥をオゾン処理しているが、これら実施の形態において曝気槽10から排出される汚泥を直接オゾン処理槽30へ導入してオゾン処理してもよい。この場合、固液分離槽20を設けても設けなくてもよい。また曝気槽10の他に返送汚泥路17上に再曝気槽を設け、この再曝気槽に1つまたは複数の気液分離装置を設置しても前記実施の形態で得られる効果と同様の効果を得ることができる。
【0049】
【実施例】
比較例1
石油化学工場の有機性排液を対象とした図2に示すような排液処理設備(原水流量123m3/hr、CODCr負荷1.87Kg/m3/day)、ただし曝気槽は各分画室の容積が上流側からそれぞれ250m3、500m3、750m3、750m3となるように3つの隔壁で分離され、形成された4つの分画室は直列に並んでいる排液処理設備を用意した。この排液処理設備には気液混合物の分流装置が設けられておらず、気液混合物導入路には導入量調節弁も設けられていない。すなわち気液分離装置を1台だけ排液槽に設け、曝気槽には気液分離装置は設けられていない。
この排液処理設備において処理を開始したところ、オゾン処理汚泥の導入直後より、曝気槽の1段目および2段目の分画室の槽内液表面での発泡が強くなって1段目の分画室の最上面にまで泡が上昇した。したがって、引き続き処理を行うために、消泡剤を原水(排液)あたり5ppm添加し、さらに1段目の分画室に消泡用の工水を常時散布しなければならなかった。
【0050】
実施例1
石油化学工場の有機性排液を対象とした図1に示すような排液処理設備(原水流量123m3/hr、CODCr負荷1.87Kg/m3/day)、ただし曝気槽は各分画室の容積が上流側からそれぞれ250m3、500m3、750m3、750m3となるように3つの隔壁で分離され、形成された4つの分画室は直列に並んでいる排液処理設備を用意した。この排液処理設備では、2段目の分画室に第1の気液分離装置、3段目の分画室に第2の気液分離装置を設けた。ただし導入量調節弁は設けられていない。
この排液処理設備において処理を開始したところ、導入量調節弁が設けられていないため、オゾン処理汚泥は2段目の分画室へ連絡する第1の気液分離装置へ多く流れた。このため、2段目の分画室においてかなりの発泡が生じたものの消泡剤の添加のみで、消泡用の工水の散布は不要であった。
【0051】
実施例2
実施例1の排液処理設備において、気液混合物導入路3a、3bに図1に示すように導入量調節弁4a、4bを設けた気液分離装置を用意し、第1の気液分離装置2aと、第2の気液分離装置2bのそれぞれ交互に気液混合物が導入されるように各導入量調節弁4a、4bを制御しながら実施例1と同様に処理を行った。導入量調節弁の制御では、一方の気液分離装置に気液混合物を5m3導入した後、その気液分離装置の導入量調節弁を閉鎖して、もう一方の気液分離装置の導入量調節弁を開放して同量の気液混合物を導入する操作を繰り返し行った(若しくは0.5時間ごとに導入量調節弁の開閉を行った)。この結果、3段目の分画室へ連絡する第2の気液分離装置にも気液混合物が導入されるようになり、2段目の分画室における過剰な発泡は激減した。したがって、発泡に伴う障害は生ずることなく、比較例1のように消泡剤や工水の散布をする必要がなかった。
【図面の簡単な説明】
【図1】実施形態の排液処理装置を用いた排液処理系を示す系統図である。
【図2】他の実施形態の排液処理装置を用いた排液処理系を示す系統図である。
【符号の説明】
1 排液処理装置
2a 第1の気液分離装置
2b 第2の気液分離装置
3a、3b 気液混合物導入路
4a 第1の導入量調節弁
4b 第2の導入量調節弁
6a、6b 分離塔
7a、7b 気液混合物導入路
8a、8b バッフル板
9a、9b 排ガス路
10 曝気槽
10a 第1の分画室
10b 第2の分画室
11a、11b 隔壁
12 散気装置
13 空気供給路
14 排液槽
14a 集液路
15 原水路
16 連絡路
20 固液分離槽
21 処理水路
22 汚泥排出路
23 ポンプ
24 引抜汚泥路
25 オゾン処理汚泥移送路
28 余剰汚泥排出路
30 オゾン処理槽
31 オゾン発生機
32 オゾン供給路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drainage treatment method and apparatus by aerobic biological treatment of organic drainage, and particularly relates to a drainage treatment method and apparatus provided with sludge reduction means.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in order to reduce the volume of excess sludge in activated sludge treatment, a technique is known in which sludge is oxidized and decomposed by reacting ozone with biological sludge such as excess sludge (hereinafter sometimes simply referred to as sludge). In this method, sludge is reduced to be easily biodegradable by oxidative decomposition, and then the ozone-treated sludge is introduced into the aeration tank together with the liquid to be treated for aerobic biological treatment. it can.
In the ozone treatment, a sludge-containing liquid is introduced into a reaction tank, an ozone-containing gas is blown into the sludge-containing liquid and brought into gas-liquid contact, and a sludge is decomposed. In such an ozone treatment apparatus, when ozone treatment is performed by blowing ozone-containing gas into the sludge-containing liquid, the ozone treatment sludge foams and bubbles are taken out of the tank, and the surroundings are contaminated. Sometimes.
[0003]
As an apparatus for coping with such a problem of foaming of the ozone treatment liquid, Japanese Patent Application Laid-Open No. 8-267099 has separated an ozone treatment tank for performing sludge ozone treatment, and a gas-liquid separation apparatus for performing gas-liquid separation. An ozone treatment device is disclosed that includes a storage tank that stores ozone-treated sludge and an ozone removal device that removes ozone from exhausted ozone gas, and the lower part of the gas-liquid separator is sealed with the liquid in the tank of the storage tank. Yes.
In this apparatus, foaming can be positively used to increase the ozone treatment efficiency, and foam can be prevented from being taken out of the tank. In such an ozone treatment apparatus, when the gas-liquid separator is provided in the upper part of the drainage tank or the aeration tank and used in a liquid-sealed state, it is not necessary to transfer the separated sludge.
[0004]
However, when the separated ozone-treated sludge is supplied to the aeration tank, foaming occurs with the aeration, so it is necessary to take measures such as spraying an antifoaming agent to eliminate the bubbles. The addition of the antifoaming agent not only increases the operating cost, but also causes a decrease in the oxygen dissolution efficiency of the aeration tank. Further, depending on the flow rate of the defoaming spray, the increase in the amount of water introduced into the aeration tank increases the water area load of the precipitation tank provided next to the aeration tank, which may adversely affect solid-liquid separation.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to efficiently separate gas-liquid mixture of ozone-treated sludge and waste ozone gas at low cost and supply ozone-treated sludge to an aeration tank, and stably treat ozone-treated sludge. It is an object of the present invention to provide a drainage treatment method and apparatus that can be used.
[0006]
[Means for Solving the Problems]
  The present invention provides the following drainage treatment method and drainage treatment apparatus.
  (1) an aerobic treatment step in which an organic waste liquid supplied from a drainage tank is aerated in the presence of activated sludge in an aeration tank;
  An ozone treatment process for treating the sludge extracted from the aerobic treatment process with ozone;
  Gas-liquid separation of the gas-liquid mixture of the ozone-treated sludge obtained in the ozone treatment step and the exhausted ozone gas, and the gas-liquid separation step of supplying the separated sludge to the drainage tank and / or the aeration tank,
  In the gas-liquid separation process, A separation tower that separates ozone-treated sludge in the gas-liquid mixture into the aeration tank or drainage tank connected to the aeration tank by its own weight and separates it from the exhaust ozone gas, and the lower part is in the tank of the aeration tank or the drainage tank Using a plurality of gas-liquid separators having a separation tower sealed with liquid and an exhaust gas path for discharging the separated exhaust ozone gas,Gas-liquid mixtureSpecific amount every predetermined timeSplitting into gas-liquid separatorSwitch toThe wastewater treatment method in which the separated liquid sludge is supplied to different positions along the flow of the liquid in the drainage tank and / or the aeration tank.
  (2)  The gas-liquid separation step is performed by the gas-liquid separation device provided in the upper part of the drainage tank and / or the upper part of the aeration tank.(1) NotesThe drainage treatment method listed.
  (3)  An aerobic treatment system for aerobic treatment by aeration of organic waste liquid supplied from the drainage tank in the presence of activated sludge in the aeration tank;
  An ozone treatment device for ozone treatment of sludge extracted from the aerobic treatment system;
  Gas-liquid mixture of ozone-treated sludge and waste ozone gas obtained with an ozone treatment deviceThe total amount of water is stored in a specific gas-liquid separator every predetermined time.DivertTo switchA shunt device;
  A plurality of gas-liquid separation devices for separating each gas-liquid mixture divided by the flow dividing device and supplying separated sludge to different positions along the flow of the liquid in the drainage tank and / or the aeration tank; IncludingSee
  A gas-liquid separator is a separation tower that drops ozone-treated sludge in a gas-liquid mixture into its aeration tank or drainage tank connected to the aeration tank by its own weight and separates it from exhaust ozone gas. It has a separation tower sealed with liquid in the tank of the liquid tank, and an exhaust gas path for discharging the separated exhaust ozone gasDrainage treatment device.
  (4)  The gas-liquid separation device is provided above the drainage tank and / or the aeration tank(3) NotesMounted drainage treatment equipment.
  (5)  The gas-liquid separators are provided at a distance of 5 m or more from each other.(3) or (4)The drainage processing apparatus as described.
[0007]
The drainage treatment method of the present invention aerobically treats the organic drainage supplied from the drainage tank in the aerobic treatment step by aeration in the presence of activated sludge in the aeration tank, and aerobic treatment in the ozone treatment step. The sludge extracted from the process is treated with ozone, and the gas-liquid mixture of the ozone-treated sludge and exhaust ozone gas obtained in the ozone treatment process is gas-liquid separated in the gas-liquid separation process, and the separated sludge is drained and / or aerated. To supply. In this gas-liquid separation step, the gas-liquid mixture is divided into a plurality of gas-liquid separators for gas-liquid separation, and each separated sludge is different from each other along the flow of the liquid in the drainage tank and / or the aeration tank. Feed position.
[0008]
As a drainage treatment apparatus that can be employed in such a drainage treatment method, the organic drainage supplied from the drainage tank in the aerobic treatment system is preferably aerated in the presence of activated sludge in the aeration tank. The sludge extracted from the aerobic treatment system in the ozone treatment device is subjected to ozone treatment, and the gas-liquid mixture of the ozone treatment sludge obtained from the ozone treatment device and the exhaust ozone gas is separated by the flow dividing device, and a plurality of gas liquids are separated. Drainage that separates each gas-liquid mixture diverted by the diversion device in the separation device and supplies the separated sludge to different positions along the flow of the liquid in the drainage tank and / or the aeration tank A processing apparatus is mentioned. The sludge volume can be efficiently reduced by the treatment using this apparatus.
[0009]
In the aerobic treatment step, the organic drainage supplied from the drainage tank is aerobically treated by aeration in the presence of activated sludge in the aeration tank.
The organic waste liquid introduced into the aeration tank and aerated is a waste liquid containing an organic substance, such as factory waste liquid or human waste. Activated sludge is held in the aeration tank, and the organic waste liquid introduced into the aeration tank is aerobically treated and decomposed by microorganisms in the activated sludge while being aerated. Organic drainage is introduced into the aeration tank via the drainage tank. The aeration tank here can include a re-aeration tank of return sludge and other secondary aeration tanks. Moreover, a partition can be provided in an aeration tank, and a some compartment can be formed in an aeration tank. The partition wall can be provided in any shape such as at the upper part or lower part of the aeration tank so that a part of the liquid in the tank can flow into the next continuous compartment. When a partition is provided, the liquid in a tank is discharged | emitted through each fractionation chamber toward the discharge side of a treated water from the supply side of raw | natural water.
[0010]
Part of the sludge from the aerobic treatment process is extracted and sent to the ozone treatment process. In the ozone treatment, the sludge is decomposed by bringing the ozone-containing gas into contact with the sludge. The sludge to be treated with ozone is preferably composed mainly of biological sludge such as surplus sludge, but may contain some inorganic substances such as coagulated sludge. In the ozone treatment, the foaming can be suppressed and the ozone treatment can be performed, or the foaming can be positively performed and the ozone treatment can be performed. In the ozone treatment, the sludge extracted from the aeration tank can be once introduced into the solid-liquid separation device for solid-liquid separation, and a part of the separated sludge can be treated with ozone.
[0011]
Examples of the ozone-containing gas used in the ozone treatment include ozone-containing air and ozonated oxygen. The amount of ozone introduced is desirably 0.5 to 10%, preferably 1 to 5% with respect to the VSS weight of the biological sludge to be introduced. The flow rate of the ozone-containing gas is 5 to 50 m / hr, preferably 10 to 30 m / hr, as the gas linear velocity of the reaction tank.
[0012]
The gas-liquid mixture in which the ozone-treated sludge obtained from the ozone treatment step and the exhaust ozone gas are mixed is divided by the flow dividing device. The diversion device can be configured such that, for example, the gas-liquid mixture supply path extending from the ozone treatment tank branches into two or more, and the branched supply paths communicate with different gas-liquid separators. The gas-liquid mixture divided by the flow dividing device is sent to the gas-liquid separation step, and is separated by the gas-liquid separation device.
[0013]
  It is preferable that an introduction amount adjusting valve for adjusting the introduction amount is provided in each branched supply path of the flow dividing device. The introduction amount adjusting valve is a valve that adjusts the inflow amount of the gas-liquid mixture into the gas-liquid separator. By providing the introduction amount adjusting valve, the flow rate of the gas-liquid mixture separated in each gas-liquid separation device can be adjusted.in this case,Multiple gas-liquid separators for the total amount of gas-liquid mixtureOf particular gas-liquid separatorIt is possible to control the introduction amount adjusting valve so that the flow is switched at predetermined intervals.At this timeControl the introduction amount control valve while monitoring the foaming condition in the aeration tank.Butit can.
[0014]
Specifically, the gas-liquid mixture to be gas-liquid separated by the gas-liquid separator is ozone-treated sludge containing exhausted ozone gas bubbles, bubbles in which the ozone-treated sludge is foamed, exhausted ozone gas accompanied by foam, a mixture thereof, and the like. Then, the ozone-treated sludge is separated from such a mixture and introduced into the drainage tank and / or the aeration tank. The exhaust ozone gas separated from the ozone treatment sludge by the gas-liquid separator is discharged and processed. The ozone-treated sludge introduced into the drainage tank is sent to the aeration tank together with the organic waste liquid, and the ozone-treated sludge introduced directly into the aeration tank is mixed with the organic waste liquid in the aeration tank and aerated. The
[0015]
  The gas-liquid separator is preferably provided in the upper part of the drainage tank and / or the upper part of the aeration tank. AlsoThe gas-liquid separator isA separation tower that separates ozone-treated sludge in the gas-liquid mixture into the aeration tank or drainage tank connected to the aeration tank by its own weight and separates it from the exhaust ozone gas, and the lower part is the liquid in the tank of the aeration tank or drainage tank A separation tower sealed with liquid and an exhaust gas path for discharging the separated exhaust ozone gasConfigure as.
[0016]
  Gas-liquid separatorThenThe separation tower receives a gas-liquid mixture of ozone-treated sludge and exhausted ozone gas, drops the ozone-treated sludge into the aeration tank or drainage tank by its own weight, and obtains ozone-treated sludge as separated sludge and exhausted ozone gas as separated gas . Ozone-treated sludge that has fallen due to its own weight comes into contact with the liquid in the tank at the liquid level of the aeration tank or drainage tank, is diluted, and diffuses throughout the tank. When the gas-liquid mixture is continuously introduced into the separation tower, an ozone-treated sludge layer may be formed on the upper part of the liquid surface, which may increase the height, but if the amount of ozone-treated sludge increases, it will be pushed by its own weight. Then, it diffuses into the liquid in the tank and the height decreases. On the other hand, the separated exhaust ozone gas is discharged from an exhaust gas passage provided in the upper part of the separation tower.
[0017]
The gas-liquid mixture is introduced from the liquid sealing surface of the liquid in the tank to the upper end of the separation tower, that is, in the middle part, but at a position 50 cm or higher, preferably 100 to 150 cm higher than the liquid sealing water surface, and the upper end of the separation tower To 50 cm or more, preferably 100 to 150 cm lower. When introduced at such a position, it is possible to efficiently perform gas-liquid separation by dropping its own weight and to prevent the ozone-treated sludge from leaking out of the tower from the exhaust gas passage.
[0018]
Each gas-liquid separator is provided so that the separated sludge is supplied to different positions along the flow of the liquid in the drainage tank and / or the aeration tank. That is, it is only necessary to be spaced from each other with respect to the flow direction of the liquid in the tank (the direction from the waste liquid supply side to the treatment liquid discharge side), for example, the upstream part of the aeration tank, the midstream part, It can be provided in the downstream portion or the like. In this case, the interval between the gas-liquid separators is preferably 5 m or more, more preferably 10 m or more. Thus, by providing the gas-liquid separators at an interval, it is possible to prevent a large amount of ozone-treated sludge from being introduced at one location of the aeration tank and excessive foaming.
[0019]
All of the gas-liquid separator can be installed in the upper part of the aeration tank. All of the gas-liquid separator can be provided in the upper part of the drainage tank, but in order to effectively prevent foaming, it is preferably installed in both the upper part of the drainage tank and the upper part of the aeration tank.
[0020]
When providing in the upper part of an aeration tank, when a partition is provided in an aeration tank and a plurality of fractionation rooms are formed, it is preferred to provide at least one gas-liquid separation device in the upper part of each fractionation room. In this case, it is not necessary to provide a gas-liquid separation device in the upper part of all the fractionation chambers, and it is preferable to provide them in at least two or more fractionation chambers. In this way, the inside of the aeration tank is partitioned by the partition walls, and the ozonized sludge can be introduced into each fractionation chamber by providing the gas-liquid separation device above each partitioned compartment. Therefore, ozone treatment sludge containing exhaust ozone gas is not concentrated and introduced in one place of the aeration tank, and foaming can be reliably suppressed. In addition, when providing a gas-liquid separator in the upper part of each compartment, the space | interval between gas-liquid separators may be 5 m or less.
Furthermore, in this case, it is preferable to control the introduction amount adjusting valve so that the gas-liquid mixture is sequentially introduced into any one of the plurality of gas-liquid separators, since foaming can be prevented more reliably.
[0021]
When the gas-liquid separator is installed in the aeration tank, it is preferable to install it at a point where the rise of the aerated air is small in order to prevent the aerated air from entering the separation tower. Further, a baffle plate can be provided at the lower end of the separation tower to prevent aeration air from entering. When installing in a swirling flow aeration tank, installing a separation tower at a point with downward water flow further improves the efficiency of dilution and diffusion, further improving the efficiency of gas-liquid separation, and lowering the cost. Can be processed.
[0022]
Exhaust ozone gas separated by the gas-liquid separator is preferably subjected to ozone removal treatment. For example, the waste ozone gas can be treated by connecting an exhaust gas path to the waste ozone removal device. Examples of the exhaust ozone removal device include a device in which a packed bed filled with an ozone removal agent such as activated carbon or a catalyst is formed.
[0023]
In the present invention, the gas-liquid mixture is diverted by the diverter, and each of the diverted gas-liquid mixtures is introduced into a plurality of gas-liquid separators for processing. Foaming can be suppressed without providing a defoaming means such as. However, even in the event that a gas-liquid separation device malfunctions and bubbles and foam leak out of the separation tower, a defoaming means such as a spray nozzle for spraying defoaming water or antifoaming agent may be provided in the separation tower. Good.
[0024]
The ozone-treated sludge separated from the gas-liquid separator is mixed with activated sludge in the aeration tank together with the organic waste liquid supplied from the drainage tank and aerated for aerobic biological treatment, and easily biodegradable by ozone. The organic matter converted into is decomposed. By introducing ozone-treated sludge directly into the aeration tank from the gas-liquid separator or via the drainage tank, and introducing aerobic treatment by introducing the organic drainage liquid into the aeration tank, these ozone-treated sludge and organic Organic matter in the effluent is biologically degraded. Thereby, volume reduction of sludge can be achieved.
[0025]
In the present invention, in the aerobic treatment system, the mixed sludge in the aeration tank is sent to the solid-liquid separation device for solid-liquid separation, and a part of the obtained separated sludge is returned to the aeration tank, and a part thereof is treated with ozone. It is preferable to apply to a standard activated sludge method in which the gas-liquid mixture obtained is sent to a tank, treated with ozone, and introduced into a gas-liquid separator. However, the present invention is not limited to such a drainage treatment method. For example, sludge taken out from an aeration tank may be directly introduced into an ozone treatment tank without performing a solid-liquid separation device, and may be subjected to ozone treatment.
[0026]
【The invention's effect】
  The drainage treatment method of the present invention provides gas-liquid separation of a gas-liquid mixture.To a specific gas-liquid separator every predetermined timeDiversionSwitch to have a specific configurationThe gas-liquid separators are installed at different positions along the flow of the liquid in the tank.TheOzone-treated sludge separated from gas-liquid mixture is introduced into different parts of drainage tank and / or aeration tankBecause I didFurther, the foaming caused by the ozone-treated sludge can be suppressed, and the ozone-treated sludge can be stably biologically treated. Therefore, the waste liquid can be aerobically treated efficiently at low cost.
[0027]
  The drainage treatment apparatus of the present invention is a gas-liquid mixture using a diversion device.Switch the total amount of gas to a specific gas-liquid separator every predetermined timeDivert the diverted gas-liquid mixtureHave a specific configurationGas-liquid separation can be performed by a plurality of gas-liquid separators. These gas-liquid separators are provided at different positions along the flow of the liquid in the tank, and the ozone-treated sludge separated from the gas-liquid mixture is discharged from the drain tank and / or Or can be introduced at different locations in the aeration tankBecause I didIn addition, the ozone-treated sludge can be prevented from foaming, and the ozone-treated sludge can be stably biologically treated. Therefore, the waste liquid can be efficiently aerobically treated at low cost.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a drainage treatment system using the drainage treatment apparatus of the present invention. In FIG. 1, 1 is a drainage treatment apparatus, 2a and 2b are gas-liquid separation apparatuses, 10 is an aeration tank, 14 is a drainage tank, 20 is a solid-liquid separation tank, and 30 is an ozone treatment tank.
[0029]
In the drainage treatment system shown in FIG. 1, the liquid collection path 14 a communicates with the drainage tank 14, and the raw water path 15 extending from the drainage tank 14 communicates with the aeration tank 10. A communication path 16 extends from the aeration tank 10 to communicate with the solid-liquid separation tank 20. In the aeration tank 10, partition walls 11a and 11b are provided, and a first fractionation chamber 10a, a second fractionation chamber 10b, and a third fractionation chamber 10c are formed. A first gas-liquid separator 2a is provided above the first fraction chamber 10a, and a second gas-liquid separator 2b is provided above the second fraction chamber 10b. The first and second gas-liquid separators 2a and 2b are in communication with gas-liquid mixture introduction paths 3a and 3b of the flow dividing device. An ozone treatment sludge transfer path 25 extending from the ozone treatment tank 30 is branched and communicated with the gas-liquid mixture introduction paths 3a and 3b. The gas-liquid mixture introduction paths 3a and 3b are provided with introduction amount control valves 4a and 4b.
[0030]
The treated water is taken out from the treated water channel 21 extending from the solid-liquid separation tank 20. On the other hand, the separated sludge is taken out from the sludge discharge path 22 extending from the solid-liquid separation tank 20. The sludge discharge passage 22 communicates with the extraction sludge passage 24, and the withdrawal sludge passage 24 communicates with the ozone treatment tank 30 through the pump 23. The sludge discharge path 22 also communicates with the return sludge path 17, and the return sludge path 17 communicates with the first fractionation chamber 10 a of the aeration tank 10.
[0031]
The first gas-liquid separation device 2a is configured to introduce a gas-liquid mixture located at an intermediate portion between the separation tower 6a communicated by the gas-liquid mixture introduction path 3a of the flow dividing device and the liquid sealing water surface of the aeration tank 10 and the upper end of the separation tower 6a. The outlet 7a and an exhaust gas passage 9a extending from the upper end of the separation tower 6a are configured.
[0032]
In the first fractionation chamber 10 a, the lower end of the separation tower 6 a of the first gas-liquid separation device 2 a is installed in a state sealed with the liquid in the tank of the aeration tank 10. A baffle plate 8a is provided at the lower end of the separation tower 6a so as to prevent aeration air from entering. The separation tower 6a is installed at a point where there is a water flow in which the liquid in the tank flows downward.
[0033]
Similar to the first gas-liquid separator 2 a, the second gas-liquid separator 2 b is provided in the upper part of the second fractionation chamber 10 b of the aeration tank 10. The second gas-liquid separator 2b has the same configuration as the first gas-liquid separator 2a.
[0034]
A gas-liquid mixture of ozone-treated sludge and waste ozone gas generated by ozone treatment of the biological sludge-containing liquid passes through the first gas-liquid mixture introduction path 3a to the first gas-liquid separation device 2a and also to the second It is sent to the second gas-liquid separator 2b through the gas-liquid mixture introduction path 3b. The first gas-liquid mixture introduction path 3a is provided with the first introduction amount adjustment valve 4a, and the second gas-liquid mixture introduction path 3b is provided with the second introduction amount adjustment valve 4b. The flow rate of the gas-liquid mixture can be controlled by opening and closing the valves 4a and 4b.
[0035]
In order to gas-liquid separate the gas-liquid mixture of ozone-treated sludge and exhaust ozone gas in the first gas-liquid separator 2a, the gas-liquid mixture is continuously introduced into the separation tower 6a from the gas-liquid mixture inlet 7a, To drop. The ozone-treated sludge that has fallen due to its own weight comes into contact with the liquid in the tank at the liquid surface portion of the first fractionation chamber 10a, is diluted, and diffuses throughout the tank. In this case, a baffle plate 8a is provided at the lower end of the separation tower 6a so as to prevent aeration air from entering, and since the separation tower 6a is installed at a point where there is a downward water flow, diffusion proceeds efficiently. . When the gas-liquid mixture is continuously introduced into the separation tower 6a, an ozone-treated sludge layer may be formed on the upper surface of the liquid surface, which may increase the height. However, when the amount of ozone-treated sludge increases, It is pushed and diffuses into the liquid in the tank and the height decreases. On the other hand, the separated exhaust ozone gas is discharged from the exhaust gas passage 9a.
[0036]
The ozone-treated sludge separated by the first gas-liquid separator 2a is the raw water introduced from the raw water channel 15 in the first fractionation chamber 10a of the aeration tank 10, and the activated sludge in the first fractionation chamber 10a. The air is mixed with the return sludge returned from the return sludge passage 17, and the air supplied from the air supply passage 13 is diffused from the aeration device 12 to be subjected to aerobic biological treatment. At this time, the ozone-treated sludge dropped from the first gas-liquid separator 2a is quickly diluted and diffused with the liquid in the tank in the first fractionation chamber 10a and decomposed. This processing liquid is introduced into the second fractionation chamber 10b of the aeration tank 10 through the lower part of the partition wall 11a.
[0037]
The ozone-treated sludge separated by the second gas-liquid separator 2b is mixed with the sludge introduced from the first fractionation chamber 10a and the activated sludge in the second fractionation chamber 10b in the aeration tank 10, Air supplied from the air supply path 13 is diffused from the aeration device 12 and aerobic biological treatment is performed. Similarly to the first fractionation chamber 10a, the ozone-treated sludge that has fallen from the second gas-liquid separator 2b is quickly diluted and diffused with the liquid in the tank in the second fractionation chamber 10b and decomposed. The processing liquid is taken out from the communication path 16 through the third fractionation chamber 10c.
[0038]
The first and second gas-liquid separators 2a and 2b are introduced with the gas-liquid mixture divided by the introduction amount control valves 4a and 4b provided in the gas-liquid mixture introduction paths 3a and 3b. The introduction amount adjusting valves 4a and 4b can reliably adjust the introduction amount of the gas-liquid mixture to be gas-liquid separated in the first and second gas-liquid separation devices 2a and 2b. In the drainage treatment apparatus 1, while the first introduction amount adjustment valve 4a is opened, the second introduction amount adjustment valve 4b is closed and the gas-liquid mixture is introduced only into the first gas-liquid separation device 2a. To do. After a predetermined amount of the gas-liquid mixture has been introduced into the first gas-liquid separator 2a, this time, the first introduction amount adjustment valve 4a is closed, the second introduction amount adjustment valve 4b is opened, and the gas-liquid mixture is opened. Is controlled to be introduced into the second gas-liquid separator 2b. In this way, the opening / closing of the introduction amount adjusting valves 4a, 4b is controlled for each predetermined time so that a predetermined amount of the gas-liquid mixture is alternately introduced into one of the first and second gas-liquid separators 2a, 2b. Then, even if foaming occurs in the aeration tank 10, excessive foaming in the aeration tank 10 can be suppressed by switching the supply destination of the ozone-treated sludge to the other compartment before foaming becomes excessive. It is also possible to introduce the gas-liquid mixture equally into the first and second gas-liquid separators 2a and 2b.
[0039]
As described above, in the drainage treatment apparatus 1, the gas-liquid mixture can be divided and introduced into the gas-liquid separators 2a and 2b by controlling the introduction amount control valves 4a and 4b, so that the gas-liquid separation is stabilized. Can be done. As a result, the amount of foaming in the aeration tank 10 can be suppressed, and biological treatment of the aeration tank 10 can be performed efficiently and stably. In addition, it is not necessary to use antifoaming water or antifoaming agents that have been used in conventional aeration tanks, and even if it is used, a small amount is sufficient, so low-cost processing is possible. is there.
[0040]
The sludge aerated in the aeration tank 10 as described above is introduced into the solid-liquid separation tank 20 part by part through the communication path 16 extending from the aeration tank 10. In the solid-liquid separation tank 20, the separated water and the separated sludge are separated by precipitation, and the separated water is discharged from the treated water channel 21 as treated water. On the other hand, the separated sludge is taken out from a sludge discharge path 22 extending from the lower part of the solid-liquid separation tank 20. Part of the extracted sludge passes through the return sludge passage 17 branched from the sludge discharge passage 22 and is introduced into the aeration tank 10 as return sludge. In addition, when excess sludge arises, it is discharged | emitted from the excess sludge discharge path 28. FIG.
[0041]
A part of the sludge separated in the solid-liquid separation tank 20 is introduced into the ozone treatment tank 30 by the pump 23 through the drawn sludge path 24 branched from the sludge discharge path 22 as drawn sludge. Ozone generated by the ozone generator 31 is supplied from the ozone supply path 32 to the lower part of the ozone treatment tank 30 and is contacted with the extracted sludge to perform ozone treatment. As a result, the sludge in the extracted sludge is converted into readily biodegradable organic matter.
[0042]
The ozone-treated sludge is introduced into the first and second gas-liquid separators 2a and 2b from the ozone-treated sludge transfer path 25 in a state where exhaust ozone gas is mixed, and gas-liquid separation is performed. In this case, the ozone-treated sludge can be transferred to the gas-liquid separators 2a and 2b by the ozone supply pressure introduced into the ozone treatment tank 30, so that a transfer pump or the like is not required and can be processed at low cost. is there. There is no malfunction of the pump due to gas. The gas-liquid separated ozone-treated sludge is subjected to the aerobic biological treatment in the aeration tank 10 as described above, and the organic matter converted to easily biodegradable is decomposed together with the organic matter of the raw water.
[0043]
FIG. 2 is a system diagram showing a drainage treatment system using a drainage treatment apparatus according to another embodiment of the present invention.
The drainage treatment apparatus 1A of FIG. 2 is shown in FIG. 1 in that the first gas-liquid separator 2a is provided at the upper part of the drainage tank 14, and the second gas-liquid separator 2b is provided at the upper part of the aeration tank 10. Different from the drainage treatment apparatus 1.
[0044]
In the drainage treatment apparatus 1A, the first gas-liquid separation device 2a is provided above the drainage tank 14, and a part of the gas-liquid mixture supplied from the ozone treatment tank 30 passes through the ozone treatment sludge transfer path 25. Then, the gas is further introduced into the first gas-liquid separator 2a through the gas-liquid mixture introduction path 3a branched from the ozone treatment sludge transfer path 25. The ozone-treated sludge that has been gas-liquid separated by the first gas-liquid separation device 2 a is introduced into the drainage tank 14. The ozone-treated sludge introduced into the drainage tank 14 is mixed with the organic drainage liquid in the drainage tank 14 and introduced into the aeration tank 10 through the raw water channel 15.
[0045]
Further, the remaining part of the gas-liquid mixture supplied from the ozone treatment tank 30 passes through the ozone-treated sludge transfer path 25, and further passes through the gas-liquid mixture introduction path 3 b branched from the ozone-treated sludge transfer path 25. It is introduced into the gas-liquid separator 2b. The ozone-treated sludge that has been gas-liquid separated by the second gas-liquid separator 2 b is introduced into the aeration tank 10.
[0046]
In the aeration tank 10, the ozone treatment sludge separated by the second gas-liquid separation device 2b provided in the upper part thereof, the mixture of the organic drainage and ozone treatment sludge supplied from the raw water channel 15, and the return sludge passage The return sludge supplied from 17 and the activated sludge in the aeration tank 10 are mixed and aerated. The treated water is sent to the solid-liquid separation tank 20 and treated in the same manner as in the drainage treatment system shown in FIG.
[0047]
In the drainage treatment apparatus 1A, since a part of the gas-liquid mixture is supplied to the drainage tank 14 by controlling the introduction amount control valves 4a and 4b, the ozone treatment sludge does not concentrate on the aeration tank 10, Foaming in the aeration tank 10 can be suppressed. The control of the introduction amount adjusting valves 4a and 4b of the first and second gas-liquid separators 2a and 2b may be any type. For example, the gas-liquid mixture may be introduced into one of the first and second gas-liquid separators 2a and 2b in order as in the embodiment shown in FIG. Or you may control so that a gas-liquid mixture may be equally introduce | transduced into 1st and 2nd gas-liquid separation apparatus 2a, 2b. In addition, while monitoring the amount of foaming in the aeration tank 10, when the amount of foaming in either the drainage tank 14 or the aeration tank 10 increases, the gas introduced into the gas-liquid separation device provided in the other tank It is possible to adjust appropriately such as increasing the amount of the liquid mixture.
[0048]
The present invention is not limited to the above embodiment. For example, in the drainage treatment system of FIG. 1 and FIG. 2, the solid-liquid separation tank 20 is provided to treat the separated sludge with ozone. In these embodiments, the sludge discharged from the aeration tank 10 is directly treated with the ozone treatment tank 30. It may be introduced into the ozone treatment. In this case, the solid-liquid separation tank 20 may or may not be provided. In addition to the aeration tank 10, even if a re-aeration tank is provided on the return sludge passage 17, and one or a plurality of gas-liquid separation devices are installed in the re-aeration tank, the same effect as that obtained in the above embodiment is obtained. Can be obtained.
[0049]
【Example】
Comparative Example 1
Drainage treatment facility (raw water flow rate 123m) as shown in Fig. 2 for organic wastewater of petrochemical factoryThree/ Hr, CODCrLoad 1.87Kg / mThree/ Day) However, in the aeration tank, the volume of each compartment is 250 m from the upstream side.Three500mThree750mThree750mThreeThe four waste compartments separated by three partition walls so as to be prepared were prepared as a drainage treatment facility arranged in series. This drainage treatment facility is not provided with a gas-liquid mixture diversion device, and the gas-liquid mixture introduction path is not provided with an introduction amount adjusting valve. That is, only one gas-liquid separator is provided in the drainage tank, and no gas-liquid separator is provided in the aeration tank.
When treatment was started in this drainage treatment facility, immediately after the introduction of the ozone treatment sludge, foaming on the liquid surface in the tank in the first and second stage compartments of the aeration tank became stronger and the first stage fraction was removed. Bubbles rose to the top of the room. Therefore, in order to continue the treatment, it was necessary to add 5 ppm of the defoaming agent per raw water (drainage) and to spray the defoaming working water constantly into the first-stage fractionation chamber.
[0050]
Example 1
Wastewater treatment equipment (raw water flow rate 123m) as shown in Fig. 1 for organic wastewater at a petrochemical factoryThree/ Hr, CODCrLoad 1.87Kg / mThree/ Day) However, in the aeration tank, the volume of each compartment is 250 m from the upstream side.Three500mThree750mThree750mThreeThe four waste compartments separated by three partition walls so as to be prepared were prepared as a drainage treatment facility arranged in series. In this drainage treatment facility, a first gas-liquid separation device is provided in the second-stage fractionation chamber, and a second gas-liquid separation device is provided in the third-stage fractionation chamber. However, no introduction amount control valve is provided.
When the treatment was started in this drainage treatment facility, since the introduction amount control valve was not provided, the ozone treatment sludge flowed to the first gas-liquid separator connected to the second-stage fractionation chamber. For this reason, although considerable foaming occurred in the second-stage fractionation chamber, only the addition of an antifoaming agent was required, and spraying of defoaming industrial water was unnecessary.
[0051]
Example 2
In the waste liquid treatment facility of the first embodiment, a gas-liquid separation device is provided in which gas-liquid mixture introduction paths 3a, 3b are provided with introduction amount control valves 4a, 4b as shown in FIG. The processing was performed in the same manner as in Example 1 while controlling the introduction amount adjusting valves 4a and 4b so that the gas-liquid mixture was alternately introduced into 2a and the second gas-liquid separator 2b. In the control of the introduction amount adjusting valve, 5 m of the gas-liquid mixture is placed in one gas-liquid separator.ThreeAfter the introduction, the operation of introducing the same amount of gas-liquid mixture was repeated by closing the introduction amount control valve of the gas-liquid separation device and opening the introduction amount control valve of the other gas-liquid separation device ( Alternatively, the introduction amount control valve was opened and closed every 0.5 hour). As a result, the gas-liquid mixture was also introduced into the second gas-liquid separation device connected to the third-stage compartment, and excessive foaming in the second-stage compartment was drastically reduced. Therefore, there was no obstacle associated with foaming, and there was no need to spray an antifoaming agent or industrial water as in Comparative Example 1.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a drainage treatment system using a drainage treatment apparatus of an embodiment.
FIG. 2 is a system diagram showing a drainage treatment system using a drainage treatment apparatus according to another embodiment.
[Explanation of symbols]
1 Wastewater treatment equipment
2a First gas-liquid separator
2b Second gas-liquid separator
3a, 3b Gas-liquid mixture introduction path
4a First introduction amount adjustment valve
4b Second introduction amount adjustment valve
6a, 6b Separation tower
7a, 7b Gas-liquid mixture introduction path
8a, 8b baffle plate
9a, 9b Exhaust gas passage
10 Aeration tank
10a First compartment
10b Second compartment
11a, 11b Bulkhead
12 Air diffuser
13 Air supply path
14 Drainage tank
14a Collection channel
15 Raw waterway
16 connection
20 Solid-liquid separation tank
21 treatment channel
22 Sludge discharge channel
23 Pump
24 Extracted sludge path
25 Ozone-treated sludge transfer path
28 Excess sludge discharge channel
30 Ozone treatment tank
31 Ozone generator
32 Ozone supply path

Claims (5)

排液槽から供給される有機性排液を曝気槽において活性汚泥の存在下で曝気して好気性処理する好気性処理工程と、
好気性処理工程から引き抜いた汚泥をオゾン処理するオゾン処理工程と、
オゾン処理工程で得られたオゾン処理汚泥と排オゾンガスとの気液混合物を気液分離し、分離汚泥を排液槽および/または曝気槽へ供給する気液分離工程とを有し、
気液分離工程では、気液混合物中のオゾン処理汚泥を自重により曝気槽または曝気槽へ連絡する排液槽内に落下させて排オゾンガスと分離する分離塔であって、下部が曝気槽または排液槽の槽内液により液封されている分離塔と、分離された排オゾンガスを排出する排ガス路とを有する複数の気液分離装置を用い、気液混合物の全量を所定時間毎に特定の気液分離装置に分流するように切換えて気液分離し、それぞれの分離汚泥を排液槽および/または曝気槽の槽内液の流れに沿った互いに異なる位置に供給するようにした排液処理方法。
An aerobic treatment step in which the organic drainage supplied from the drainage tank is aerated in the presence of activated sludge in the aeration tank;
An ozone treatment process for treating the sludge extracted from the aerobic treatment process with ozone;
Gas-liquid separation of the gas-liquid mixture of the ozone-treated sludge obtained in the ozone treatment step and the exhausted ozone gas, and the gas-liquid separation step of supplying the separated sludge to the drainage tank and / or the aeration tank,
In the gas-liquid separation process, the ozone-treated sludge in the gas-liquid mixture is dropped into the aeration tank or the drainage tank connected to the aeration tank by its own weight and separated from the exhausted ozone gas. Using a plurality of gas-liquid separators having a separation tower sealed with the liquid in the tank of the liquid tank and an exhaust gas passage for discharging the separated exhaust ozone gas, the total amount of the gas-liquid mixture is specified every predetermined time. Liquid-liquid separation by switching to gas-liquid separation device to separate the gas and liquid, and supplying each separated sludge to different positions along the liquid flow in the liquid drainage tank and / or aeration tank Method.
気液分離工程は、排液槽上部および/または曝気槽上部に設けられた気液分離装置により行われる請求項1記載の排液処理方法。Gas-liquid separation step, drainage processing method according to claim 1 Symbol placement performed by the drainage tank top and / or aeration tank gas-liquid separator provided in the upper part. 排液槽から供給される有機性排液を曝気槽において活性汚泥の存在下に曝気して好気性処理する好気性処理系と、
好気性処理系から引き抜いた汚泥をオゾン処理するオゾン処理装置と、
オゾン処理装置で得られたオゾン処理汚泥と排オゾンガスとの気液混合物の全量を特定の気液分離装置に所定時間毎に分流するように切換える分流装置と、
分流装置で分流されたそれぞれの気液混合物を気液分離し、分離汚泥を排液槽および/または曝気槽の槽内液の流れに沿った互いに異なる位置に供給する複数の気液分離装置とを含み、
気液分離装置は、気液混合物中のオゾン処理汚泥を自重により曝気槽または曝気槽へ連絡する排液槽内に落下させて排オゾンガスと分離する分離塔であって、下部が曝気槽または排液槽の槽内液により液封されている分離塔と、分離された排オゾンガスを排出する排ガス路とを有する排液処理装置。
An aerobic treatment system for aerobic treatment by aeration of organic waste liquid supplied from the drainage tank in the presence of activated sludge in the aeration tank;
An ozone treatment device for ozone treatment of sludge extracted from the aerobic treatment system;
A flow dividing device that switches the total amount of the gas-liquid mixture of the ozone-treated sludge and the exhaust ozone gas obtained by the ozone treatment device to a specific gas-liquid separation device every predetermined time ;
A plurality of gas-liquid separation devices for separating each gas-liquid mixture separated by the flow dividing device and supplying separated sludge to different positions along the flow of the liquid in the drainage tank and / or the aeration tank; only including,
The gas-liquid separator is a separation tower that drops ozone-treated sludge in a gas-liquid mixture into its aeration tank or drainage tank connected to the aeration tank by its own weight and separates it from exhaust ozone gas. A waste liquid treatment apparatus having a separation tower sealed with a liquid in a liquid tank and an exhaust gas passage for discharging the separated exhaust ozone gas .
排液槽上部および/または曝気槽上部に気液分離装置が設けられている請求項記載の排液処理装置。The drainage treatment apparatus according to claim 3 , wherein a gas-liquid separation device is provided in the upper part of the drainage tank and / or the upper part of the aeration tank. 各気液分離装置どうしは、互いに5m以上離れて設けられている請求項3または4記載の排液処理装置。The drainage treatment apparatus according to claim 3 or 4 , wherein the gas-liquid separators are provided at a distance of 5 m or more from each other.
JP2001151448A 2001-05-21 2001-05-21 Drainage processing method and apparatus Expired - Fee Related JP4062892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151448A JP4062892B2 (en) 2001-05-21 2001-05-21 Drainage processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151448A JP4062892B2 (en) 2001-05-21 2001-05-21 Drainage processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2002346586A JP2002346586A (en) 2002-12-03
JP4062892B2 true JP4062892B2 (en) 2008-03-19

Family

ID=18996291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151448A Expired - Fee Related JP4062892B2 (en) 2001-05-21 2001-05-21 Drainage processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4062892B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296852A (en) * 2004-04-13 2005-10-27 Sumiju Kankyo Engineering Kk Facilities and method for biological treatment
JP5183538B2 (en) * 2009-03-19 2013-04-17 日成プラント株式会社 Surplus sludge reduction device
CN104671592B (en) * 2015-01-26 2016-08-17 常州大学 Waste gas and PO wastewater comprehensive treatment system
CN105417602B (en) * 2015-11-23 2018-02-13 河南心连心化肥有限公司 Large granule urea plant liquid waste treating apparatus and processing method
CN111053984A (en) * 2020-02-19 2020-04-24 山东岱佑医药科技有限公司 Device for blocking transmission of diseases such as new coronavirus through droplet

Also Published As

Publication number Publication date
JP2002346586A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP3831949B2 (en) Biological treatment method and apparatus for organic drainage
US20020190404A1 (en) Gas/liquid contact chamber and a contaminated water treatment system incorporating said chamber
US11643345B2 (en) Method for treating organic wastewater, and device for treating organic wastewater
JP4062892B2 (en) Drainage processing method and apparatus
JP3697729B2 (en) Biological sludge ozone treatment equipment
JP4082556B2 (en) Nitrogen removal equipment in membrane separation type oxidation ditch
JP6278796B2 (en) Deodorization device
KR102038046B1 (en) Hydrogen sulfide removing equipment for reforming biogas
JP5335756B2 (en) Membrane treatment equipment
JPH0813359B2 (en) Wastewater treatment equipment containing nitrogen
JP6352025B2 (en) Purification system and method for removing odor in gas to be treated
JP4608726B2 (en) Biological treatment equipment
KR100469317B1 (en) System for Advanced Wastewater Treatment using ozone
JP2001259674A (en) Treating device and treating method of sewage
KR101155134B1 (en) apparatus and method for removing hydrogen sulfide of underwater
KR101836561B1 (en) Concentrated Organic Waste Water Purifying System
JP2002126774A (en) Sewage treatment apparatus and method
JPH09290286A (en) Waste water treating device
JPH08267099A (en) Ozonetreatment equipment for biological sludge
KR200305457Y1 (en) System for Advanced Wastewater Treatment using ozone
JPH1085550A (en) Digestive gas treating device and digestive gas treatment
JPS583691A (en) Apparatus for treating water with ozone
KR102108482B1 (en) Filterless type oxidation processing device for waste water
JPH07232184A (en) Ozone treating device for biological sludge
JP2002224689A (en) Waste water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4062892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees