JP4062464B2 - Tunnel construction method - Google Patents

Tunnel construction method Download PDF

Info

Publication number
JP4062464B2
JP4062464B2 JP10660699A JP10660699A JP4062464B2 JP 4062464 B2 JP4062464 B2 JP 4062464B2 JP 10660699 A JP10660699 A JP 10660699A JP 10660699 A JP10660699 A JP 10660699A JP 4062464 B2 JP4062464 B2 JP 4062464B2
Authority
JP
Japan
Prior art keywords
deformed
shaft
excavator
engaging portion
pipe element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10660699A
Other languages
Japanese (ja)
Other versions
JP2000297593A (en
Inventor
厳彦 森
英太郎 吉富
研介 中江
直昭 藤本
和夫 香川
繁夫 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP10660699A priority Critical patent/JP4062464B2/en
Publication of JP2000297593A publication Critical patent/JP2000297593A/en
Application granted granted Critical
Publication of JP4062464B2 publication Critical patent/JP4062464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大断面で中距離の地下トンネルを構築する際に好適なトンネル構築工法に関する。
【0002】
【従来の技術】
現在、都市部でのトンネル工事には多くの場合シールド工法が採用されている。
また、短い距離で大きな断面のトンネル工事には、URT(アンダーレイルウェイトンネリング)工法が採用されている。
一方、大断面で100〜300m程度の中距離のトンネルを工事しようとする場合、シールド工法はシールド掘進機が高価格であるため採用されず、上記のURT工法となる。
ここで、URT工法は、断面が四角形の筒状のエレメントを複数用意し、発進立坑において、前端にオーガを配置したエレメントを先頭に後続のエレメントを順次継ぎ足しながら到達立坑まで押し込み、トンネルの外殻に対応する箇所にこのようなエレメントからなる柱体を連続状に形成し、これら柱体をなすエレメントの内部に間詰めコンクリートを充填して土圧壁を形成し、その後、土圧壁の内側を掘削していく工法である。
【0003】
【発明が解決しようとする課題】
しかしながらこのURT工法では、エレメントの前端に配置したオーガにより掘削を行ない、オーガでは円形の孔が掘削されるため、エレメントの四隅は孔が掘削されていない地盤部分に対して無理押しすることになり、トンネル長さは100m前後が限界となる。
そこで、掘削された円形の孔に挿入され易いように、エレメントとして断面が円筒のものを用いることが考えられる。
しかしながら、円筒のエレメントを用いて土圧壁を形成した場合には、互いに隣り合う柱体の間では、エレメントの円形部分と円形部分が接することになるため、それらエレメントの内部に充填される間詰めコンクリートの厚さがなくなるところが生じ、四角形のエレメントを用いる場合に比べ有効桁高を大きく確保することができない。
【0004】
そこで、エレメントとして断面が円筒状の円筒部と、この円筒部の一部が切除され隣に配置されるエレメントの円筒部の部分を重ね合わせることができる係合部とからなる異形管エレメントを用いることが考えられ、このような異形管エレメントを用いれば、掘削された孔への挿入も円滑に行なわれ、また、大きな有効桁高を確保することが可能となる。
しかしながら、このように円筒部と係合部からなる異形管エレメントを発進立坑から押し込もうとすると、発進立坑に設けられた発進坑口は円形でこの発進坑口に配置される止水ゴムも環状に形成されているため、止水上の問題が生じ、エレメントの押し込み時に、止水ゴムと係合部との間から地下水が発進立坑内に侵入し、出水事故につながる虞がある。この問題は、到達立坑の到達坑口においても同様に生じる。
本発明は前記事情に鑑み案出されたものであって、本発明の目的は、円筒部と係合部からなる異形管エレメントを、止水上の問題を生じることなく発進坑口から円滑に押し込むことができるトンネル構築工法を提供することにある。
また、本発明の目的は、円筒部と係合部からなる異形管エレメントを、止水上の問題を生じることなく到達立坑に到達できるようにしたトンネル構築工法を提供することにある。
【0005】
【課題を解決するための手段】
前記目的を達成するため本発明は、発進立坑の発進坑口から円形の孔を掘削する掘削機を到達立坑の到達坑口に向けて押し出し、前記発進立坑で前記掘削機の後端に、両端が開放された中空状のエレメントを順次連結して到達立坑に向けて押し出し、前記掘削機に連結された先頭のエレメントを到達立坑まで到達させ、このように順次連結された多数のエレメントからなる柱体を、発進立坑と到達立坑との間でトンネルの外殻に対応した箇所に連続形成し、これら柱体を構成するエレメントの内部に間詰めコンクリートを充填して土圧壁を形成し、その後、前記土圧壁の内側を掘削するようにしたトンネル構築工法であって、前記エレメントとして、円筒部とこの円筒部の少なくとも一側が切り欠かれた係合部とからなる異形管エレメントを用い、先に形成された柱体をなす異形管エレメントの各係合部に、次に形成する柱体をなす異形管エレメントの各円筒部の一部が収容されるように順次柱体を形成していき、さらに、前記係合部に係合可能で係合部に係合した状態で異形管エレメントの外周部と協働して単一の円筒面をなすサイド管を用意し、前記発進坑口に前記サイド管を取着し、このサイド管に前記係合部をスライドさせつつ発進坑口から前記異形管エレメントを押し出すようにしたことを特徴とする。
また、本発明は、前記サイド管が、前記係合部に前記円筒部の半径方向に移動不能で円筒部の長手方向に移動可能に係合されるように設けられていることを特徴とする。
た、本発明は、前記掘削機に連結された先頭の異形管エレメントの係合部に前記サイド管と同形状の別のサイド管を脱着可能に取り付け、前記先頭のエレメントに前記サイド管を取り付けた状態のままで到達坑口に到達させるようにしたことを特徴とする。
た、本発明は、前記発進坑口および到達坑口は、前記異形管エレメントの外周部とサイド管とで形成される単一の円筒面に接触する環状の止水リングを含んで構成されていることを特徴とする。
【0006】
本発明によれば、掘削機で掘削された孔への異形管エレメントの押し出しが円滑になされ、また、サイド管を用いた簡単な構成により止水上の問題を生じることなく発進立坑から押し出せ、また、到達立坑に到達させることができる。
【0007】
【発明の実施の形態】
以下、本発明に係るトンネル構築工法の実施の形態を図面を参照して説明する。
図1は本発明に係るトンネル構築工法の工事概要の斜視図を示す。
図1において、2は発進立坑、4は到達立坑、6は円形掘削機、8は後続機械、10は発進立坑2の壁2002に設けられた発進坑口、12は異形管エレメント、14はサイド管、16は推進用ジャッキ、18は到達立坑4の壁4002に設けられた到達坑口を示している。
本実施の形態に係る掘進工法は、大断面で100〜300m程度の中距離のトンネル施工に適用するものである。
【0008】
図2(A)は異形管エレメント12にサイド管14が係合した状態の断面図、図2(B)、(C)はそれぞれサイド管14の斜視図、図3は複数の異形管エレメント12を打ち込んだ状態の地盤の断面図を示す。
本実施の形態で用いる異形管エレメント12は、有効桁高が確保できるように、断面が円筒状の円筒部12Aと、この円筒部12Aの一部が切除され窪んだ係合部12Bとからなり、円筒部12Aは中空状で、その内部の空間部がその長手方向の両端において開放されている。前記係合部12Bは隣に配置される異形管エレメント12の円筒部12Aの一部が収容され、かつ、サイド管14が係合できるように構成されている。
前記サイド管14は、円筒部12Aの長手方向から係合部12Bに係合させて用いられるものであり、このように係合させた状態で、サイド管14は円筒部12Aの長手方向にスライド可能、かつ、円筒部12Aの半径方向に移動不能に結合される。そして、このように係合部12Bにサイド管14が係合した状態で、円筒部12Aの外周部とサイド管14の外周部によりほぼ連続した円が形成されるように構成されている。
なお、図2(B)に示すように、サイド管14が係合部12Bに係合される箇所には断面が矩形の止水ゴム22がサイド管14の長手方向に間隔をおいて複数固着され、後述するように止水ゴム22の間のサイド管14部分に、止水材注入口24からグリスなどの止水材26が塗布される。
【0009】
図3において、No1乃至No5は、異形管エレメント12を矩形枠状に打ち込むに際して、その打ち込む順番を示しており、No1で示すように矩形の上辺の中央に最初に打ち込まれる異形管エレメント12と、矩形の右辺の下端に打ち込まれる異形管エレメント12は、円筒部12Aの直径方向において対向する両側部にそれぞれ係合部12Bが形成されている。
また、矩形の右辺の上端に打ち込まれる異形管エレメント12は、2つの係合部12Bが円筒部12Aの周方向に90度の間隔をおいて設けられている。
また、矩形の下辺の中央および矩形枠状の外側に打ち込まれるエレメントとして、円筒のエレメント20が用いられている。
また、2番目以降に打ち込まれる異形管エレメント12は、上記の矩形の下辺の中央および右辺の上下ならびに矩形枠状の外側に打ち込まれるものを除いて、円筒部12Aの一側にのみ係合部12Bが形成されている。
【0010】
このような異形管エレメント12を打ち込むに際して、最初に打ち込む発進立坑2の壁2002箇所に円形状の発進坑口10が設けられ、発進坑口10に、図4(A)および図8(A)に示すように、土砂流出防止用の環状の坑口リング28が取り付けられ、坑口リング28に環状の止水用シールリング、即ち、止水ゴム30が取り付けられる。
そして、図4(B)、図5(A)、(B)に示すように、発進立坑2内に円形掘削機6および後続機械8を配置して駆動させ、推進用ジャッキ16により発進坑口10から押し出して掘進させ、これにより円形掘削機6により円形の孔が掘削されていく。
次に、図5(B)乃至(E)に示しまた図8(B)に示すように、後続機械8の後端に異形管エレメント12を連結して推進用ジャッキ16により発進坑口10から押し出し、次に、この異形管エレメント12に次の異形管エレメント12を連結して推進用ジャッキ16により押し出し、このように発進立坑2内で異形管エレメント12を順次連結して押し出し、到達立坑4まで掘進させる。
【0011】
後続機械8の後端に連結される異形管エレメント12の両側の係合部12Bには、それぞれサイド管14がボルトなどにより予め脱着可能に取着されており、図5(E)に示すように、到達立坑4における止水上の観点からこのサイド管14は到達立坑4に至るまで取着されたまま掘進される。
なお、円形掘削機6および後続機械8を推進用ジャッキ16により発進坑口10から押し出すに際して、円形掘削機6および後続機械8の外周部は円形であり、坑口リング28と止水ゴム30により止水される。
また、後続機械8の後端に連結される異形管エレメント12を発進坑口10から押し出すに際して、異形管エレメント12の両側の係合部12Bにそれぞれサイド管14が係合されており、サイド管14により異形管エレメント12の外周部はほぼ円形となるため、坑口リング28と止水ゴム30により止水される。
【0012】
また、両側の係合部12Bにサイド管14が取着された異形管エレメント12に連結した異形管エレメント12の発進坑口10からの押し出しは、すなわち2番目の異形管エレメント12の押し出しは、サイド管14を円筒部12Aの長手方向から係合部12Bにスライド可能に係合した状態で行い、これにより異形管エレメント12の外周部はほぼ円形となり、坑口リング28と止水ゴム30により止水される。この場合、図2(B)に示すように、止水ゴム22の間のサイド管14部分には、止水材注入口24からグリスなどの止水材26が塗布される。そして、サイド管14が発進坑口10から押し出された状態で、サイド管14をフランジやボルトを用いて発進坑口10に取着する。
これにより、発進坑口10は異形管エレメント12の断面形状に対応した形となり、図7、図8(C)、図9に示すように、発進坑口10に異形管エレメント12を挿入することで、異形管エレメント12とサイド管14とによりそれらの外周が円形になることから、後続の異形管エレメント12を推進用ジャッキ16により押し出す際の止水がなされる。
【0013】
このようにして順次異形管エレメント12が連結されて押し出され、円形掘削機6が到達立坑4に近づいたならば、図14(A)に示すように、到達立坑4の壁4002に到達坑口18を設け、発進坑口10と同様に、到達坑口18に環状の坑口リング28と環状の止水ゴム30を取り付ける。
そして、発進立坑2における異形管エレメント12の押し出しにより、図13(A)、(B)に示し、また、図14(B)に示すように、円形掘削機6が到達坑口18から坑口リング28と止水ゴム30を通って到達立坑4内に突出し、続いて後続機械8が到達立坑4内に突出する。この場合、円形掘削機6および後続機械8の外周部は円形であり、したがって発進立坑2の場合と同様に、到達立坑4内においても坑口リング28と止水ゴム30により止水される。
【0014】
発進立坑2におけるさらなる異形管エレメント12の押し出しにより、2つのサイド管14が取着された先頭の異形管エレメント12の先部が到達坑口18から坑口リング28と止水ゴム30を通って到達立坑4内に露出する。この場合、2つのサイド管14が取着された異形管エレメント12の外周は円形であり、到達立坑4内においても坑口リング28と止水ゴム30により止水される。
【0015】
そして、先頭の異形管エレメント12の先部が到達立坑4内に露出したならば、図13(C)および図14(C)に示すように、到達立坑4内において円形掘削機6および後続機械8を異形管エレメント12から取り外し、次の異形管エレメント12を打ち込むために円形掘削機6および後続機械8を発進立坑2へ移動する。なお、先頭の異形管エレメント12の先部が到達立坑4に到達することで、相互に連結された多数の異形管エレメント12からなり発進立坑2と到達立坑4との間で直線状に延在する柱体31が形成されることになる。
一方、発進立坑2では、先頭の異形管エレメント12の先部が到達立坑4内に露出したならば、発進坑口10から坑口リング28と止水ゴム30を取り外し、さらに、図6(A)、図10(B)、(C)、図11(A)に示すように、次に異形管エレメント12を打ち込む箇所に対応した箇所のサイド管14を異形管エレメント12から取り外し、コーキング材32により異形管エレメント12と発進坑口10との間の隙間および残りのサイド管14と発進坑口18との間の隙間を埋め、これにより止水を行なう。この場合、コーキング材32としては、止水性がありしかもあまり強度が発揮されない材料、たとえば、セメントベントナイトなどが使用される。
【0016】
次に、発進立坑2から次の(図3のNo2)異形管エレメント12を打ち込むに際して、図11(B)に示すように、発進立坑2の壁2002箇所に発進坑口10が設けられ、前記と同様に、発進坑口10に坑口リング28と止水ゴム30が取り付けられる。なお、今回打ち込まれる異形管エレメント12は、係合部12Bが円筒部12Aの一側部にのみ設けられており、最初に打ち込まれた異形管エレメント12の一方の係合部12Bに、今回打ち込まれる異形管エレメント12の円筒部12Aの一部が収容されるように発進坑口10が設けられる。
そして、図6(A)に示すように、発進立坑2内に円形掘削機6および後続機械8を配置して駆動させ、推進用ジャッキ16により発進坑口10から押し出して掘進させる。
次に、図6(B)乃至(E)に示すように、後続機械8の後端に異形管エレメント12を連結して推進用ジャッキ16により発進坑口10から押し出し、次に、この異形管エレメント12に次の異形管エレメント12を連結して推進用ジャッキ16により押し出し、このように異形管エレメント12を発進立坑2内で順次連結しては押し出し、到達立坑4まで掘進させる。なお、今回の円形掘削機6により掘削では、最初に打ち込まれた異形管エレメント12の一方の係合部12Bに対応した部分でオーバーラップして掘削されることになる。
【0017】
最初に打ち込まれた異形管エレメント12の場合と同様に、後続機械8の後端に連結される異形管エレメント12の係合部12Bにはサイド管14がボルトなどにより予め脱着可能に取着されており、図6(E)に示すように、このサイド管14は到達立坑4に至るまで取着されたままで掘進される。
なお、円形掘削機6および後続機械8を推進用ジャッキ16により発進坑口10から押し出すに際して、円形掘削機6および後続機械8の外周部は円形であり、坑口リング28と止水ゴム30により止水される。
また、後続機械8の後端に連結される異形管エレメント12を発進坑口10から押し出すに際して、異形管エレメント12の係合部12Bにサイド管14が係合されており、サイド管14により異形管エレメント12の外周部はほぼ円形となるため、坑口リング28と止水ゴム30により止水される。
【0018】
また、係合部12Bにサイド管14が取着された異形管エレメント12に連結した異形管エレメント12の発進坑口10からの押し出しは、すなわち2番目の異形管エレメント12の押し出しは、前記と同様に、サイド管14を円筒部12Aの長手方向から係合部12Bにスライド可能に係合した状態で行い、これにより異形管エレメント12の外周部はほぼ円形となり、坑口リング28と止水ゴム30により止水される。この場合も前記と同様に、図2(B)に示すように、止水ゴム22の間のサイド管14部分には、止水材注入口24からグリスなどの止水材26が塗布される。
そして、サイド管14が発進坑口10から押し出された状態で、サイド管14をフランジやボルトを用いて発進坑口10に取着する。
これにより、発進坑口10は異形管エレメント12の断面形状に対応した形となり、発進坑口10に異形管エレメント12を挿入することで円形になることから、後続の異形管エレメント12を先行する異形管エレメント12に連結して推進用ジャッキ16により押し出す際の止水がなされる。
【0019】
このようにして順次異形管エレメント12が連結されて押し出され、円形掘削機6が到達立坑4に近づいたならば、図6(D)、図14(D)に示すように、最初に打ち込んだ異形管エレメント12が位置する到達坑口18から坑口リング28と止水ゴム30を取り外し、さらに、第2番目に打ち込まれる異形管エレメント12に対応した箇所のサイド管14を異形管エレメント12から取り外し、コーキング材32により異形管エレメント12と到達坑口18との間の隙間および残りのサイド管14と到達坑口18との間の隙間を埋め、これにより止水を行なう。
さらに、図14(E)に示すように、第2番目に打ち込まれる異形管エレメント12に対応した壁4002箇所に到達坑口18を設け、到達坑口18に環状の坑口リング28と環状の止水ゴム30を取り付ける。
【0020】
そして、発進立坑2における異形管エレメント12の押し出しにより、図14(F)に示すように、円形掘削機6が到達坑口18から坑口リング28と止水ゴム30を通って到達立坑4内に突出し、続いて後続機械8が到達立坑4内に突出する。この場合、円形掘削機6および後続機械8の外周部は円形であり、したがって発進立坑2の場合と同様に、到達立坑4内においても坑口リング28と止水ゴム30により止水される。
発進立坑2におけるさらなる異形管エレメント12の押し出しにより、サイド管14が取着された先頭の異形管エレメント12の先部が到達坑口18から坑口リング28と止水ゴム30を通って到達立坑4内に露出する。この場合、サイド管14が取着された異形管エレメント12の外周は円形であり、到達立坑4内においても坑口リング28と止水ゴム30により止水される。
【0021】
そして、先頭の異形管エレメント12の先部が到達立坑4内に露出したならば、図13(C)および図14(C)に示すように、到達立坑4内において円形掘削機6および後続機械8を異形管エレメント12から取り外し、第3番目の異形管エレメント12を打ち込むために円形掘削機6および後続機械8を発進立坑2へ移動する。これにより、図6(E)に示すように、最初に形成された柱体31に一部が重複した第2番目の柱体31が形成されることになる。
また、先頭の異形管エレメント12の先部が到達立坑4内に露出したならば、発進立坑2では、発進坑口10から坑口リング28と止水ゴム30を取り外し、図11(D)、(E)、(F)に示すように、第3番目に異形管エレメント12を打ち込む箇所に対応した箇所のサイド管14を異形管エレメント12から取り外し、コーキング材32により異形管エレメント12と発進坑口10との間の隙間および残りのサイド管14と発進坑口18との間の隙間を埋め、これにより止水を行ない、第3番目に異形管エレメント12を打ち込む箇所に発進坑口10を設け、発進坑口10に坑口リング28と止水ゴム30を取着する。
このようにして円形掘削機6、後続機械8、異形管エレメント12、サイド管14を用いて発進立坑2から到達立坑4への掘進を行ない、発進立坑2と到達立坑4との間で直線状に延在する柱体31を一部重複させつつ順次形成していく。図12(A)、(B)は発進立坑2において3つの異形管エレメント12が打ち込まれた状態を示しており、最後には図3に示すように矩形枠状に連続する複数の柱体31が形成され、それら各柱体31を構成する異形管エレメント12の内部に間詰めコンクリートが充填されて土圧壁が形成され、その後、土圧壁の内側が掘削されていく。
【0022】
本実施の形態によれば、円形掘削機6で掘削された孔内に異形管エレメント12やサイド管14が押し出されるので、これら異形管エレメント12やサイド管14の押し出しが円滑になされ、大断面で100〜300m程度の中距離のトンネル施工に好適となる。
また、異形管エレメント12は円筒部12Aと係合部12Bとからなり、既に打ち込まれた異形管エレメントの係合部12Bに、円筒部12Aを重ねるように次の異形管エレメント12を打ち込むことで有効桁高を大きく確保することが可能となり、このような係合部12Bを有する異形管エレメント12を、サイド管14を用いるといった簡単な構成により土砂流出や地下水流出などの止水上の問題を生じることなく発進立坑2から押し出すことが可能となり、また、止水上の問題を生じることなく到達立坑4に到達させることが可能となる。
【0023】
【発明の効果】
以上の説明で明らかなように本発明は、発進立坑の発進坑口から円形の孔を掘削する掘削機を到達立坑の到達坑口に向けて押し出し、前記発進立坑で前記掘削機の後端に、両端が開放された中空状のエレメントを順次連結して到達立坑に向けて押し出し、前記掘削機に連結された先頭のエレメントを到達立坑まで到達させ、このように順次連結された多数のエレメントからなる柱体を、発進立坑と到達立坑との間でトンネルの外殻に対応した箇所に連続形成し、これら柱体を構成するエレメントの内部に間詰めコンクリート等を充填して土圧壁を形成し、その後、前記土圧壁の内側を掘削するようにしたトンネル構築工法であって、前記エレメントとして、円筒部とこの円筒部の少なくとも一側が切り欠かれた係合部とからなる異形管エレメントを用い、先に形成された柱体をなす異形管エレメントの各係合部に、次に形成する柱体をなす異形管エレメントの各円筒部の一部が収容されるように順次柱体を形成していき、さらに、前記係合部に係合可能で係合部に係合した状態で異形管エレメントの外周部と協働して単一の円筒面をなすサイド管を用意し、前記発進坑口に前記サイド管を取着し、このサイド管に前記係合部をスライドさせつつ発進坑口から前記異形管エレメントを押し出すようにした。
そのため、円筒部と係合部からなる異形管エレメントを、止水上の問題を生じることなく発進坑口から円滑に押し込むことが可能となる。
また、本発明は、掘削機に連結された先頭の異形管エレメントの係合部にサイド管と同形状の別のサイド管を脱着可能に取り付け、前記先頭のエレメントにサイド管を取り付けた状態のままで到達坑口に到達させるようにした。
そのため、円筒部と係合部からなる異形管エレメントを、止水上の問題を生じることなく到達立坑に到達させることが可能となる。
【図面の簡単な説明】
【図1】本発明に係るトンネル構築工法の工事概要の斜視図である。
【図2】(A)は異形管エレメントにサイド管が係合した状態の断面図、(B)、(C)はそれぞれサイド管の斜視図である。
【図3】トンネルの外殻に対応させ複数の異形管エレメントを打ち込んだ状態の地盤の断面図である。
【図4】(A)、(B)は発進坑口部分の断面図である。
【図5】(A)乃至(E)は第1番目の柱体を形成する際の発進立坑から到達立坑への掘進状態の説明図である。
【図6】(A)乃至(E)は第2番目の柱体を形成する際の発進立坑から到達立坑への掘進状態の説明図である。
【図7】発進坑口から異形管エレメントを押し出す際の説明図である。
【図8】(A)は発進坑口の斜視図、(B)は発進坑口へ円形掘削機、後続機械、先頭の異形管エレメントを押し出す際の斜視図、(C)は発進坑口へ2番目の異形管エレメントを押し出す際の斜視図である。
【図9】サイド管を取着した発進坑口から異形管エレメントを押し出す際の斜視図である。
【図10】(A)乃至(C)は発進坑口からのサイド管を取り外す際の斜視図である。
【図11】(A)乃至(F)は発進坑口を順次形成していく場合の説明図である。
【図12】(A)は3つの発進坑口にそれぞれ異形管エレメントとサイド管が位置している状態の正面図、(B)は同斜視図である。
【図13】(A)乃至(C)は到達立坑に円形掘削機、後続機械、先頭の異形管エレメントが到達した際の斜視図である。
【図14】(A)乃至(F)は到達坑口を順次形成していく場合の説明図である。
【符号の説明】
2 発進立坑
4 到達立坑
6 円形掘削機
10 発進坑口
12 異形管エレメント
12A 円筒部
12B 係合部
14 サイド管
18 到達坑口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tunnel construction method suitable for constructing a medium-distance underground tunnel with a large cross section.
[0002]
[Prior art]
Currently, shield construction methods are often used for tunnel construction in urban areas.
Also, URT (Under Rail Tunneling) method is adopted for tunnel construction with a short distance and large cross section.
On the other hand, when attempting to construct a medium-distance tunnel of about 100 to 300 m with a large cross section, the shield method is not adopted because the shield machine is expensive, and the above URT method is used.
Here, the URT method prepares a plurality of cylindrical elements with a rectangular cross section, and at the starting shaft, pushes the element with the auger at the front end to the leading shaft while sequentially adding the subsequent elements to the reaching shaft, and the outer shell of the tunnel Columns made of such elements are continuously formed at the locations corresponding to, and the earthen walls are formed by filling the interior of the elements that form these columns with padded concrete, and then the inside of the wall It is a method of drilling.
[0003]
[Problems to be solved by the invention]
However, in this URT method, excavation is performed with an auger placed at the front end of the element, and a circular hole is excavated in the auger, so the four corners of the element are forced against the ground part where the hole is not excavated. The tunnel length is limited to around 100m.
Therefore, it is conceivable to use a cylindrical element with a cross section so that it can be easily inserted into the excavated circular hole.
However, when earth pressure walls are formed using cylindrical elements, the circular portions and circular portions of the elements are in contact with each other between adjacent columns, so that the inside of the elements is filled. There are places where the thickness of the stuffed concrete disappears, and it is not possible to ensure a large effective girder height compared to the case of using square elements.
[0004]
Therefore, a deformed tube element comprising a cylindrical portion having a cylindrical cross section as an element and an engaging portion capable of overlapping a portion of the cylindrical portion of the element that is partly cut off and disposed next to the cylindrical portion is used. If such a deformed pipe element is used, insertion into the excavated hole can be performed smoothly, and a large effective girder can be secured.
However, when trying to push the deformed pipe element composed of the cylindrical portion and the engaging portion from the start shaft in this way, the start shaft provided in the start shaft is circular, and the water stop rubber arranged at the start shaft is also annular. Since it is formed, there is a problem of water stoppage, and when the element is pushed in, groundwater may enter the start shaft from between the water stop rubber and the engaging portion, leading to a water discharge accident. This problem also occurs at the reaching shaft entrance of the reaching shaft.
The present invention has been devised in view of the above circumstances, and an object of the present invention is to smoothly push a deformed pipe element composed of a cylindrical portion and an engaging portion from a start shaft without causing a problem in water stoppage. The purpose is to provide a tunnel construction method.
Another object of the present invention is to provide a tunnel construction method in which a deformed pipe element composed of a cylindrical portion and an engaging portion can reach a reach shaft without causing a problem of water stoppage.
[0005]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention pushes an excavator that excavates a circular hole from the start shaft of the start shaft toward the access port of the reach shaft, and both ends are opened to the rear end of the excavator at the start shaft. The hollow elements thus connected are sequentially connected and pushed out toward the reaching shaft, the leading element connected to the excavator is made to reach the reaching shaft, and a column body made up of a number of elements connected in this way is formed. , Continuously formed at the location corresponding to the outer shell of the tunnel between the starting shaft and the reaching shaft, filling the interior of the elements constituting these pillars to form earth pressure walls, A tunnel construction method for excavating the inside of an earth pressure wall, and as the element, a deformed pipe element comprising a cylindrical portion and an engaging portion in which at least one side of the cylindrical portion is cut out. Columns are sequentially formed so that each cylindrical portion of the deformed tube element forming the column to be formed next is accommodated in each engaging portion of the deformed tube element forming the column previously formed. In addition, a side tube having a single cylindrical surface is prepared in cooperation with the outer peripheral portion of the deformed tube element in a state of being engaged with the engaging portion and engaged with the engaging portion. The side pipe is attached to the wellhead, and the deformed pipe element is pushed out from the starting wellhead while sliding the engaging portion on the side pipe.
  Further, the present invention is characterized in that the side tube is provided so as to be engaged with the engaging portion so as not to move in the radial direction of the cylindrical portion but to be movable in the longitudinal direction of the cylindrical portion.The
  MaFurther, in the present invention, another side pipe having the same shape as the side pipe is detachably attached to the engaging portion of the leading deformed pipe element connected to the excavator, and the side pipe is attached to the leading element. It is characterized by the fact that it is allowed to reach the reaching pit with theThe
  MaIn the present invention, the starting well and the reaching well are configured to include an annular water stop ring that contacts a single cylindrical surface formed by the outer peripheral portion of the deformed pipe element and the side pipe. It is characterized by.
[0006]
According to the present invention, the extrusion of the deformed pipe element into the hole excavated by the excavator can be smoothly performed, and the simple structure using the side pipe can be pushed out from the start shaft without causing a problem of water stoppage. Moreover, it can be made to reach | attain a reaching shaft.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a tunnel construction method according to the present invention will be described with reference to the drawings.
FIG. 1 shows a perspective view of the construction outline of the tunnel construction method according to the present invention.
In FIG. 1, 2 is a start shaft, 4 is a reach shaft, 6 is a circular excavator, 8 is a follower machine, 10 is a start port provided on the wall 2002 of the start shaft 2, 12 is a deformed pipe element, and 14 is a side pipe , 16 is a jack for propulsion, and 18 is a reaching pit provided in the wall 4002 of the reaching shaft 4.
The excavation method according to the present embodiment is applied to tunnel construction at a medium distance of about 100 to 300 m with a large cross section.
[0008]
2A is a cross-sectional view of the side tube 14 engaged with the deformed tube element 12, FIGS. 2B and 2C are perspective views of the side tube 14, and FIG. A cross-sectional view of the ground in a state where has been driven.
The deformed tube element 12 used in the present embodiment includes a cylindrical portion 12A having a cylindrical cross section and an engaging portion 12B in which a part of the cylindrical portion 12A is cut and recessed so that an effective digit height can be secured. The cylindrical portion 12A is hollow, and the internal space is open at both ends in the longitudinal direction. The engaging portion 12B is configured such that a part of the cylindrical portion 12A of the deformed tube element 12 disposed adjacent to the engaging portion 12B is accommodated and the side tube 14 can be engaged.
The side tube 14 is used by engaging with the engaging portion 12B from the longitudinal direction of the cylindrical portion 12A, and in this engaged state, the side tube 14 slides in the longitudinal direction of the cylindrical portion 12A. The coupling is possible and immovable in the radial direction of the cylindrical portion 12A. Then, in such a state that the side tube 14 is engaged with the engaging portion 12B, a substantially continuous circle is formed by the outer peripheral portion of the cylindrical portion 12A and the outer peripheral portion of the side tube 14.
As shown in FIG. 2 (B), a plurality of water blocking rubbers 22 having a rectangular cross section are fixed at intervals in the longitudinal direction of the side tube 14 where the side tube 14 is engaged with the engaging portion 12B. Then, as will be described later, a water-stopping material 26 such as grease is applied from the water-stopping material inlet 24 to the side tube 14 between the water-stopping rubbers 22.
[0009]
In FIG. 3, No1 to No5 indicate the order of driving when the deformed tube element 12 is driven into a rectangular frame shape, and as shown by No1, the deformed tube element 12 that is first driven into the center of the upper side of the rectangle; The deformed tube element 12 driven into the lower end of the right side of the rectangle has engaging portions 12B formed on both side portions facing each other in the diameter direction of the cylindrical portion 12A.
Further, in the deformed tube element 12 driven into the upper end of the right side of the rectangle, two engaging portions 12B are provided at intervals of 90 degrees in the circumferential direction of the cylindrical portion 12A.
A cylindrical element 20 is used as an element driven into the center of the lower side of the rectangle and the outside of the rectangular frame shape.
Further, the deformed tube element 12 to be driven in the second and the following is an engaging portion only on one side of the cylindrical portion 12A, except for the one that is driven into the center of the lower side of the rectangle, the upper and lower sides of the right side, and the outside of the rectangular frame shape. 12B is formed.
[0010]
When such a deformed pipe element 12 is driven, a circular start shaft 10 is provided at the wall 2002 of the start shaft 2 to be driven first, and the start shaft 10 is shown in FIGS. 4 (A) and 8 (A). As described above, an annular wellhead ring 28 for preventing sediment discharge is attached, and an annular water-stop seal ring, that is, a water-stopping rubber 30 is attached to the wellhead ring 28.
Then, as shown in FIGS. 4B, 5A, and 5B, the circular excavator 6 and the succeeding machine 8 are arranged and driven in the start shaft 2, and the start well 10 is driven by the propulsion jack 16. The circular hole is excavated by the circular excavator 6.
Next, as shown in FIGS. 5 (B) to 5 (E) and as shown in FIG. 8 (B), the deformed pipe element 12 is connected to the rear end of the succeeding machine 8 and pushed out from the starting well 10 by the propulsion jack 16. Next, the deformed pipe element 12 is connected to the deformed pipe element 12 and extruded by the propulsion jack 16, and the deformed pipe element 12 is sequentially connected and pushed out in the starting shaft 2 in this manner, until the reaching shaft 4 is reached. Dig up.
[0011]
As shown in FIG. 5 (E), side pipes 14 are detachably attached in advance to the engaging portions 12B on both sides of the deformed pipe element 12 connected to the rear end of the succeeding machine 8 by bolts or the like. Further, from the viewpoint of water stoppage at the reaching shaft 4, the side pipe 14 is excavated while being attached up to the reaching shaft 4.
When the circular excavator 6 and the subsequent machine 8 are pushed out from the starting pit 10 by the propulsion jack 16, the outer periphery of the circular excavator 6 and the subsequent machine 8 is circular, and the water is stopped by the pit ring 28 and the water stop rubber 30. Is done.
Further, when the deformed pipe element 12 connected to the rear end of the succeeding machine 8 is pushed out from the start well 10, the side pipes 14 are engaged with the engaging portions 12B on both sides of the deformed pipe element 12, respectively. As a result, the outer peripheral portion of the deformed pipe element 12 becomes substantially circular, and the water is stopped by the wellhead ring 28 and the water stop rubber 30.
[0012]
Further, the extrusion of the deformed pipe element 12 connected to the deformed pipe element 12 having the side pipes 14 attached to the engaging portions 12B on both sides from the starting well 10, that is, the second deformed pipe element 12 is pushed out from the side. The tube 14 is slidably engaged with the engaging portion 12B from the longitudinal direction of the cylindrical portion 12A, whereby the outer peripheral portion of the deformed tube element 12 becomes substantially circular, and the water stop ring 28 and the water stop rubber 30 stop the water. Is done. In this case, as shown in FIG. 2B, a water-stopping material 26 such as grease is applied from the water-stopping material inlet 24 to the side tube 14 portion between the water-stopping rubbers 22. And the side pipe 14 is attached to the start well 10 using a flange and a bolt in the state where the side pipe 14 is pushed out from the start well 10.
Thereby, the start well 10 becomes a shape corresponding to the cross-sectional shape of the deformed pipe element 12, and by inserting the deformed pipe element 12 into the start well 10, as shown in FIG. 7, FIG. 8 (C), FIG. Since the outer periphery of the deformed tube element 12 and the side tube 14 is circular, water is stopped when the succeeding deformed tube element 12 is pushed out by the propulsion jack 16.
[0013]
When the deformed pipe elements 12 are sequentially connected and pushed out in this way and the circular excavator 6 approaches the reaching shaft 4, the reaching port 18 is formed on the wall 4002 of the reaching shaft 4 as shown in FIG. In the same manner as the starting pit 10, an annular pit ring 28 and an annular water stop rubber 30 are attached to the arrival pit 18.
Then, by pushing out the deformed pipe element 12 in the starting shaft 2, as shown in FIGS. 13A and 13B, and as shown in FIG. 14B, the circular excavator 6 moves from the arrival well 18 to the well ring 28. Then, it passes through the water blocking rubber 30 and protrudes into the reaching shaft 4, and then the subsequent machine 8 protrudes into the reaching shaft 4. In this case, the outer peripheral portions of the circular excavator 6 and the succeeding machine 8 are circular, and therefore, the water is stopped by the wellhead ring 28 and the water stop rubber 30 in the reaching shaft 4 as in the case of the starting shaft 2.
[0014]
By further pushing out the deformed pipe element 12 in the start shaft 2, the leading end of the first deformed pipe element 12 to which the two side pipes 14 are attached passes from the arrival well 18 to the well ring 28 and the water stop rubber 30 to reach the reaching shaft. 4 is exposed. In this case, the outer periphery of the deformed pipe element 12 to which the two side pipes 14 are attached is circular, and the water is stopped by the wellhead ring 28 and the water stop rubber 30 even in the reaching shaft 4.
[0015]
Then, if the leading portion of the leading deformed pipe element 12 is exposed in the reaching shaft 4, as shown in FIGS. 13C and 14C, the circular excavator 6 and the subsequent machine in the reaching shaft 4 8 is removed from the deformed pipe element 12, and the circular excavator 6 and the subsequent machine 8 are moved to the start shaft 2 to drive the next deformed pipe element 12. The leading end of the deformed pipe element 12 at the top reaches the reaching shaft 4, and is composed of a number of interconnected deformed tube elements 12 and extends linearly between the start shaft 2 and the reaching shaft 4. The column 31 to be formed is formed.
On the other hand, in the start shaft 2, if the tip part of the leading deformed pipe element 12 is exposed in the arrival shaft 4, the well port ring 28 and the water stop rubber 30 are removed from the start shaft 10, and FIG. 6 (A), 10 (B), (C), and FIG. 11 (A), the side tube 14 at the location corresponding to the location where the deformed tube element 12 is next driven is removed from the deformed tube element 12, and deformed by the caulking material 32. The gap between the pipe element 12 and the start pit 10 and the remaining gap between the side pipe 14 and the start pit 18 are filled, thereby stopping the water. In this case, as the caulking material 32, a material that has water-stopping properties and that does not exhibit much strength, such as cement bentonite, is used.
[0016]
Next, when the next deformed pipe element 12 (No. 2 in FIG. 3) is driven from the start shaft 2, as shown in FIG. 11 (B), the start shaft 10 is provided at the location 2002 on the wall of the start shaft 2, and Similarly, the wellhead ring 28 and the water stop rubber 30 are attached to the starting wellhead 10. The deformed tube element 12 to be driven this time is provided with the engaging portion 12B only on one side of the cylindrical portion 12A, and this time, it is driven to one engaging portion 12B of the deformed tube element 12 that has been driven first. The start well 10 is provided so that a part of the cylindrical portion 12A of the deformed pipe element 12 is accommodated.
Then, as shown in FIG. 6 (A), the circular excavator 6 and the succeeding machine 8 are arranged and driven in the start shaft 2, and are pushed out from the start shaft 10 by the propulsion jack 16 to be excavated.
Next, as shown in FIGS. 6B to 6E, the deformed pipe element 12 is connected to the rear end of the succeeding machine 8 and pushed out from the starting well 10 by the propulsion jack 16, and then the deformed pipe element. Next, the deformed pipe element 12 is connected to 12 and pushed out by the propulsion jack 16, and the deformed pipe element 12 is sequentially connected in the start shaft 2 in this manner and pushed out to reach the reaching shaft 4. In the excavation by the circular excavator 6 this time, the excavation is performed by overlapping at a portion corresponding to one of the engaging portions 12B of the deformed pipe element 12 which is first driven.
[0017]
As in the case of the deformed tube element 12 that is driven in first, the side tube 14 is detachably attached to the engaging portion 12B of the deformed tube element 12 connected to the rear end of the succeeding machine 8 with bolts or the like in advance. As shown in FIG. 6 (E), the side pipe 14 is excavated while being attached to the reaching shaft 4.
When the circular excavator 6 and the subsequent machine 8 are pushed out from the starting pit 10 by the propulsion jack 16, the outer periphery of the circular excavator 6 and the subsequent machine 8 is circular, and the water is stopped by the pit ring 28 and the water stop rubber 30. Is done.
Further, when the deformed pipe element 12 connected to the rear end of the succeeding machine 8 is pushed out from the start shaft 10, the side pipe 14 is engaged with the engaging portion 12 </ b> B of the deformed pipe element 12. Since the outer periphery of the element 12 is substantially circular, the water is stopped by the wellhead ring 28 and the water stop rubber 30.
[0018]
Further, the extrusion of the deformed tube element 12 connected to the deformed tube element 12 having the side tube 14 attached to the engaging portion 12B from the starting well 10, that is, the second deformed tube element 12 is pushed out in the same manner as described above. In addition, the side tube 14 is slidably engaged with the engaging portion 12B from the longitudinal direction of the cylindrical portion 12A, whereby the outer peripheral portion of the deformed tube element 12 becomes substantially circular, and the wellhead ring 28 and the water blocking rubber 30 are formed. To stop the water. In this case as well, as shown in FIG. 2B, a water-stopping material 26 such as grease is applied to the side tube 14 between the water-stopping rubbers 22 from the water-stopping material inlet 24. .
And the side pipe 14 is attached to the start well 10 using a flange and a bolt in the state where the side pipe 14 is pushed out from the start well 10.
As a result, the starting well 10 has a shape corresponding to the cross-sectional shape of the deformed pipe element 12, and is formed into a circular shape by inserting the deformed pipe element 12 into the starting well 10, so that the following deformed pipe element 12 precedes the deformed pipe. Water is stopped when it is connected to the element 12 and pushed out by the propulsion jack 16.
[0019]
If the deformed pipe elements 12 are sequentially connected and pushed out in this way, and the circular excavator 6 approaches the reach shaft 4, it is driven first as shown in FIGS. 6 (D) and 14 (D). The well ring 28 and the water stop rubber 30 are removed from the arrival well 18 where the deformed pipe element 12 is located, and the side pipe 14 corresponding to the deformed pipe element 12 to be driven second is removed from the deformed pipe element 12. The caulking material 32 fills the gap between the deformed pipe element 12 and the arrival well 18 and the remaining gap between the side pipe 14 and the arrival well 18, thereby stopping water.
Furthermore, as shown in FIG. 14 (E), a reaching wellhead 18 is provided at the location of the wall 4002 corresponding to the deformed pipe element 12 to be driven second, an annular wellhead ring 28 and an annular water stop rubber at the reaching wellhead 18. 30 is attached.
[0020]
Then, as shown in FIG. 14 (F), the circular excavator 6 protrudes from the arrival well 18 into the arrival shaft 4 through the well opening 28 and the water stop rubber 30 by the extrusion of the deformed pipe element 12 in the start shaft 2. Subsequently, the succeeding machine 8 protrudes into the reaching shaft 4. In this case, the outer peripheral portions of the circular excavator 6 and the succeeding machine 8 are circular, and therefore, the water is stopped by the wellhead ring 28 and the water stop rubber 30 in the reaching shaft 4 as in the case of the starting shaft 2.
By further pushing out the deformed pipe element 12 in the starting shaft 2, the leading end of the deformed pipe element 12 to which the side pipe 14 is attached passes from the reaching well opening 18 through the well opening ring 28 and the water stop rubber 30 in the reaching shaft 4. Exposed to. In this case, the outer periphery of the deformed pipe element 12 to which the side pipe 14 is attached is circular, and the water is stopped by the wellhead ring 28 and the water stop rubber 30 even in the reaching vertical shaft 4.
[0021]
Then, if the leading portion of the leading deformed pipe element 12 is exposed in the reaching shaft 4, as shown in FIGS. 13C and 14C, the circular excavator 6 and the subsequent machine in the reaching shaft 4 8 is removed from the profile pipe element 12 and the circular excavator 6 and the subsequent machine 8 are moved to the start shaft 2 in order to drive the third profile pipe element 12. As a result, as shown in FIG. 6 (E), the second column 31 partially overlapping the column 31 formed first is formed.
Further, if the tip portion of the leading deformed pipe element 12 is exposed in the reaching shaft 4, the start shaft 2 removes the well port ring 28 and the water stop rubber 30 from the start shaft 10, and FIG. ) And (F), the side pipe 14 corresponding to the place where the deformed pipe element 12 is driven third is removed from the deformed pipe element 12, and the deformed pipe element 12 and the starting well 10 are And a gap between the remaining side pipe 14 and the start well 18 are filled, water is stopped by this, and a start well 10 is provided at the third place where the deformed pipe element 12 is driven. The wellhead ring 28 and the water stop rubber 30 are attached to each other.
In this way, the circular excavator 6, the succeeding machine 8, the deformed pipe element 12, and the side pipe 14 are used for excavation from the start shaft 2 to the arrival shaft 4, and a straight line is formed between the start shaft 2 and the arrival shaft 4. The column bodies 31 extending in the order are sequentially formed while partially overlapping. 12A and 12B show a state in which three deformed pipe elements 12 are driven in the start shaft 2, and finally, a plurality of column bodies 31 that are continuous in a rectangular frame shape as shown in FIG. Are formed, and the inside of the deformed pipe element 12 constituting each column 31 is filled with the interstitial concrete to form the earth pressure wall, and then the inside of the earth pressure wall is excavated.
[0022]
According to the present embodiment, since the deformed pipe element 12 and the side pipe 14 are pushed out into the hole excavated by the circular excavator 6, the deformed pipe element 12 and the side pipe 14 are smoothly pushed out and have a large cross section. Therefore, it is suitable for tunnel construction at a medium distance of about 100 to 300 m.
The deformed tube element 12 includes a cylindrical portion 12A and an engaging portion 12B, and the next deformed tube element 12 is driven so as to overlap the cylindrical portion 12A on the engaging portion 12B of the deformed tube element that has already been driven. A large effective girder height can be ensured, and a problem of water stoppage such as sediment discharge and groundwater outflow occurs due to such a simple structure that the side pipe 14 is used for the deformed pipe element 12 having such an engaging portion 12B. It is possible to push out from the start shaft 2 without any problem, and it is possible to reach the reaching shaft 4 without causing a problem of water stoppage.
[0023]
【The invention's effect】
As is clear from the above description, the present invention pushes an excavator that excavates a circular hole from the starting shaft of the starting shaft toward the reaching shaft of the reaching shaft, Columns consisting of a number of elements that are sequentially connected in this way, with hollow elements that have been opened sequentially connected and pushed out toward the reaching shaft, the leading element connected to the excavator reaching the reaching shaft The body is continuously formed at the location corresponding to the outer shell of the tunnel between the starting shaft and the reaching shaft, and the earth wall is formed by filling the inside of the elements constituting these pillars with interstitial concrete or the like, Thereafter, a tunnel construction method in which the inside of the earth pressure wall is excavated, wherein the element is a deformed pipe element comprising a cylindrical portion and an engaging portion in which at least one side of the cylindrical portion is cut out. Columns are sequentially used so that a part of each cylindrical portion of the deformed tube element forming the column body to be formed next is accommodated in each engaging portion of the deformed tube element forming the column body formed in advance. In addition, a side tube that forms a single cylindrical surface in cooperation with the outer peripheral portion of the deformed tube element in a state that is engageable with the engaging portion and is engaged with the engaging portion is prepared, The side pipe is attached to the start well, and the deformed pipe element is pushed out from the start well while sliding the engaging portion on the side pipe.
Therefore, it becomes possible to smoothly push the deformed pipe element composed of the cylindrical portion and the engaging portion from the start well without causing a problem in water stoppage.
Further, the present invention is a state in which another side pipe having the same shape as the side pipe is detachably attached to the engaging portion of the leading deformed pipe element connected to the excavator, and the side pipe is attached to the leading element. It was made to reach the reaching pit as it is.
Therefore, it becomes possible to allow the deformed pipe element including the cylindrical portion and the engaging portion to reach the reaching shaft without causing a problem of water stoppage.
[Brief description of the drawings]
FIG. 1 is a perspective view of a construction outline of a tunnel construction method according to the present invention.
2A is a cross-sectional view of a state where a side tube is engaged with a deformed tube element, and FIGS. 2B and 2C are perspective views of the side tube, respectively.
FIG. 3 is a sectional view of the ground in a state where a plurality of deformed pipe elements are driven in correspondence with the outer shell of the tunnel.
FIGS. 4A and 4B are cross-sectional views of a start pit portion.
FIGS. 5A to 5E are explanatory views of the state of excavation from the starting shaft to the reaching shaft when forming the first columnar body.
FIGS. 6A to 6E are explanatory views of the state of excavation from the starting shaft to the reaching shaft when forming the second pillar body.
FIG. 7 is an explanatory view when the deformed pipe element is pushed out from the starting shaft.
FIG. 8A is a perspective view of a start pit, FIG. 8B is a perspective view when a circular excavator, a succeeding machine, and a leading deformed pipe element are pushed out to the start pit, and FIG. 8C is a second view to the start pit. It is a perspective view at the time of extruding a deformed pipe element.
FIG. 9 is a perspective view when a deformed pipe element is pushed out from a starting well having a side pipe attached thereto.
FIGS. 10A to 10C are perspective views when a side tube is removed from a start shaft.
FIGS. 11A to 11F are explanatory views in the case of sequentially forming start wellheads.
12A is a front view showing a state in which a deformed pipe element and a side pipe are positioned at three start shafts, respectively, and FIG. 12B is a perspective view thereof.
FIGS. 13A to 13C are perspective views when the circular excavator, the succeeding machine, and the leading deformed pipe element arrive at the reaching shaft.
FIGS. 14A to 14F are explanatory views in the case of sequentially forming the arrival tunnel.
[Explanation of symbols]
2 Starting shaft
4 Reaching shaft
6 Circular excavator
10 Start pit
12 Deformed pipe element
12A cylindrical part
12B engagement part
14 Side tube
18 Arrival wellhead

Claims (4)

発進立坑の発進坑口から円形の孔を掘削する掘削機を到達立坑の到達坑口に向けて押し出し、
前記発進立坑で前記掘削機の後端に、両端が開放された中空状のエレメントを順次連結して到達立坑に向けて押し出し、
前記掘削機に連結された先頭のエレメントを到達立坑まで到達させ、
このように順次連結された多数のエレメントからなる柱体を、発進立坑と到達立坑との間でトンネルの外殻に対応した箇所に連続形成し、これら柱体を構成するエレメントの内部に間詰めコンクリート等を充填して土圧壁を形成し、
その後、前記土圧壁の内側を掘削するようにしたトンネル構築工法であって、
前記エレメントとして、円筒部とこの円筒部の少なくとも一側が切り欠かれた係合部とからなる異形管エレメントを用い、
先に形成された柱体をなす異形管エレメントの各係合部に、次に形成する柱体をなす異形管エレメントの各円筒部の一部が収容されるように順次柱体を形成していき、
さらに、前記係合部に係合可能で係合部に係合した状態で異形管エレメントの外周部と協働して単一の円筒面をなすサイド管を用意し、
前記発進坑口に前記サイド管を取着し、このサイド管に前記係合部をスライドさせつつ発進坑口から前記異形管エレメントを押し出すようにした、
ことを特徴とするトンネル構築工法。
Extrude the excavator that drills a circular hole from the starting shaft of the starting shaft toward the reaching shaft of the reaching shaft,
At the starting end of the excavator, at the rear end of the excavator, the hollow elements having both ends opened are sequentially connected and extruded toward the end shaft,
Let the leading element connected to the excavator reach the reaching shaft,
Columns made up of a number of elements connected in this way are continuously formed at locations corresponding to the outer shell of the tunnel between the starting and reaching shafts, and the interiors of the elements constituting these columns are packed. Filling concrete etc. to form earth wall,
After that, a tunnel construction method for excavating the inside of the earth pressure wall,
As the element, a deformed pipe element comprising a cylindrical portion and an engaging portion in which at least one side of the cylindrical portion is cut out,
Columns are sequentially formed so that each of the engaging portions of the deformed tube element that forms the column body previously formed accommodates a part of each cylindrical portion of the deformed tube element that forms the column body to be formed next. breath,
Further, a side tube that forms a single cylindrical surface in cooperation with the outer peripheral portion of the deformed tube element in a state that is engageable with the engaging portion and is engaged with the engaging portion,
The side pipe is attached to the start well, and the deformed pipe element is pushed out from the start well while sliding the engagement portion on the side pipe.
A tunnel construction method characterized by this.
前記サイド管は、前記係合部に前記円筒部の半径方向に移動不能で円筒部の長手方向に移動可能に係合されるように設けられていることを特徴とする請求項1記載のトンネル構築工法。  2. The tunnel according to claim 1, wherein the side pipe is provided so as to be engaged with the engaging portion so as to be immovable in a radial direction of the cylindrical portion and to be movable in a longitudinal direction of the cylindrical portion. Construction method. 前記掘削機に連結された先頭の異形管エレメントの係合部に前記サイド管と同形状の別のサイド管を脱着可能に取り付け、前記先頭のエレメントに前記サイド管を取り付けた状態のままで到達坑口に到達させるようにしたことを特徴とする請求項1または2記載のトンネル構築工法。Another side pipe having the same shape as the side pipe is detachably attached to the engaging portion of the leading deformed pipe element connected to the excavator, and arrives with the side pipe attached to the leading element. tunnel construction method according to claim 1, wherein in that so as to reach the wellhead. 前記発進坑口および到達坑口は、前記異形管エレメントの外周部とサイド管とで形成される単一の円筒面に接触する環状の止水リングを含んで構成されていることを特徴とする請求項1乃至に何れか1項記載のトンネル構築工法。The start pit and the arrival pit include an annular water stop ring that contacts a single cylindrical surface formed by an outer peripheral portion of the deformed pipe element and a side pipe. The tunnel construction method according to any one of 1 to 3 .
JP10660699A 1999-04-14 1999-04-14 Tunnel construction method Expired - Lifetime JP4062464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10660699A JP4062464B2 (en) 1999-04-14 1999-04-14 Tunnel construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10660699A JP4062464B2 (en) 1999-04-14 1999-04-14 Tunnel construction method

Publications (2)

Publication Number Publication Date
JP2000297593A JP2000297593A (en) 2000-10-24
JP4062464B2 true JP4062464B2 (en) 2008-03-19

Family

ID=14437790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10660699A Expired - Lifetime JP4062464B2 (en) 1999-04-14 1999-04-14 Tunnel construction method

Country Status (1)

Country Link
JP (1) JP4062464B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500428B2 (en) * 2000-11-15 2010-07-14 株式会社フジタ Earth wall and earth wall elements
JP2006045928A (en) * 2004-08-05 2006-02-16 Fujita Corp Soil pressure wall

Also Published As

Publication number Publication date
JP2000297593A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
JPH0462292A (en) Diameter widening method and reducing method of tunnel
GB2264739A (en) Diaphragm wall with liquid tight joints
KR100933230B1 (en) Reinforcing grouting device
JP5787315B2 (en) Precast retaining wall propulsion method
JP4062464B2 (en) Tunnel construction method
JP4625815B2 (en) Non-open-cutting construction method for underground structures
JP3860143B2 (en) Excavator for pipe roof and pipe roof construction method using them
JP4205123B2 (en) Open shield machine
JP4083336B2 (en) How to build a tunnel
JP2004060266A (en) Non-open-cut construction method for underground structure
JP2004060266A5 (en)
JPH0472928B2 (en)
JP2016008377A (en) Rectangular cross-section propulsion method
JPH08144687A (en) Pipe and pipe loop method by use the same
JP2583125B2 (en) Underground cavity construction method and equipment
JP2001146739A (en) Construction method for impervious wall
JPH0548840B2 (en)
JPH1162469A (en) Structure of earth retaining wall in shield pit, and starting and reaching method of shield machine
JPH0654016B2 (en) Underground space construction method
JPH0468188A (en) Execution method of tunnel widening section
JPS59210200A (en) Method of construction of shielding wall of large-sized underground cavity
JP3455157B2 (en) Shoring construction method
JPH04118497A (en) Application process for continuous wall of under ground reinforced concrete
JP2004238981A (en) Method for constructing tunnel
JPH10205280A (en) Tunnel construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term