JP4061544B2 - Treatment method of plant-derived waste - Google Patents

Treatment method of plant-derived waste Download PDF

Info

Publication number
JP4061544B2
JP4061544B2 JP2003319988A JP2003319988A JP4061544B2 JP 4061544 B2 JP4061544 B2 JP 4061544B2 JP 2003319988 A JP2003319988 A JP 2003319988A JP 2003319988 A JP2003319988 A JP 2003319988A JP 4061544 B2 JP4061544 B2 JP 4061544B2
Authority
JP
Japan
Prior art keywords
plant
derived
raw material
waste
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003319988A
Other languages
Japanese (ja)
Other versions
JP2005081332A (en
Inventor
弘之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA FOUNDATION FOR TRADE AND INDUSTRY
Original Assignee
OSAKA FOUNDATION FOR TRADE AND INDUSTRY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA FOUNDATION FOR TRADE AND INDUSTRY filed Critical OSAKA FOUNDATION FOR TRADE AND INDUSTRY
Priority to JP2003319988A priority Critical patent/JP4061544B2/en
Publication of JP2005081332A publication Critical patent/JP2005081332A/en
Application granted granted Critical
Publication of JP4061544B2 publication Critical patent/JP4061544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Description

本発明は、超臨界水および亜臨界水の少なくとも一方を用いた植物由来廃棄物の処理方法に関する。   The present invention relates to a method for treating plant-derived waste using at least one of supercritical water and subcritical water.

石油や石炭等の化石燃料を含めた多くの資源は、現状の使用方法では、いずれ枯渇していくことは極めて明らかであり、代替エネルギーの開発が急がれている。近年急速に注目されはじめた代替エネルギーとして、バイオマスエネルギーがあげられる。代表的なバイオマスである木材から、バイオマスエネルギーを生産する方法としては、生物的プロセスに関するものや、物理的プロセスに関するもの等、多様な方法があげられる(例えば、非特許文献1参照)。   Many resources, including fossil fuels such as oil and coal, will be exhausted over time, and there is an urgent need to develop alternative energy. Biomass energy is an alternative energy that has begun to attract attention in recent years. As a method for producing biomass energy from wood, which is a representative biomass, there are various methods such as those relating to biological processes and those relating to physical processes (for example, see Non-Patent Document 1).

前記生物学的プロセスとしては、具体的には、例えば、ブラジル等で行われているアルコール発酵があげられるが、わが国では成功例がないと考えられる。木材のような硬い物質等をアルコール発酵により処理する場合、糖化プロセスが前流に必要となり、経済性が成り立たなくなるからである。また、前記物理的プロセスとしては、具体的には、例えば、木材をチップ化し、そのチップを園芸用に用いたり、合板に使用することがあげられる。前記園芸用のチップは、安価であり将来大量に発生する建築廃木材、間伐材、剪定枝等を吸収できない。また、前記チップを用いた合板は、高価ではあるが、これも大量発生する前記木材等を処理することができない。いずれにしても、大量処理が可能な現在の方法としては、焼却処理しかなく、極めて負経済であり、環境にも悪影響を及ぼしかねない。
木質科学研究所 木悠会偏:「木材何でも小辞典」(2001) 講談社、ブルーバックス
Specific examples of the biological process include alcohol fermentation performed in Brazil and the like, but it is considered that there is no successful example in Japan. This is because when a hard substance such as wood is treated by alcohol fermentation, a saccharification process is required in the upstream and economic efficiency is not realized. Further, as the physical process, specifically, for example, wood is chipped and the chip is used for gardening or used for plywood. The horticultural chips are inexpensive and cannot absorb building waste wood, thinned wood, pruned branches, etc., which will be generated in large quantities in the future. Moreover, although the plywood using the chip is expensive, it cannot treat the wood and the like that are generated in large quantities. In any case, the only current method capable of mass processing is incineration, which is extremely negative and can adversely affect the environment.
National Institute for Wood Science Kiso Association: “Small Dictionary of Wood Everything” (2001) Kodansha, Bluebacks

そこで、本発明は、環境への負担およびコストの負担が小さく、有価物質の生成が可能な、実用的で優れた植物由来廃棄物の処理方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a practical and excellent method for treating plant-derived waste, which can reduce the burden on the environment and the cost, and can generate valuable substances.

前記目的を達成するために、本発明の植物由来原料の第1の製造方法は、植物由来廃棄物を超臨界水及び亜臨界水の少なくとも一方により分解処理して植物由来原料とする工程を含む植物由来原料の製造方法であって、分解処理条件が、処理温度が473〜700K、処理圧力が0.79〜30MPa、処理時間が0.5分〜1時間の条件であり、前記植物由来廃棄物が、不溶性の木質廃棄物及びリグニンの少なくとも一方であり、前記植物由来原料が、多孔構造を有する低密度炭素材及びタール状油状成分を内部に含む固体の少なくとも一方である。本発明の植物由来原料の第2の製造方法は、植物由来廃棄物を超臨界水及び亜臨界水の少なくとも一方により分解処理して植物由来原料とする工程を含む植物由来原料の製造方法であって、分解処理条件が、処理温度が473〜700K、処理圧力が0.79〜30MPa、処理時間が0.5分〜1時間の条件であり、前記植物由来廃棄物が、不溶性の木質廃棄物であり、前記分解処理工程において、植物由来廃棄物を分解処理して固油相に変換し、前記固油相を分離してタール状油状成分を内部に含む固体を得る製造方法である。本発明の植物由来原料の第3の製造方法は、植物由来廃棄物を超臨界水及び亜臨界水の少なくとも一方により分解処理して植物由来原料とする工程を含む植物由来原料の製造方法であって、分解処理条件が、処理温度が473〜700K、処理圧力が0.79〜30MPa、処理時間が0.5分〜1時間の条件であり、前記植物由来廃棄物が、リグニンであり、前記植物由来原料が、多孔構造を有する低密度炭素材である。本発明の植物由来原料の第4の製造方法は、植物由来廃棄物を超臨界水及び亜臨界水の少なくとも一方により分解処理して植物由来原料とする工程を含む植物由来原料の製造方法であって、前記植物由来廃棄物が、不溶性の木質廃棄物であり、前記植物由来原料が、タール状の油状物質である。

In order to achieve the above object, the first method for producing a plant-derived raw material of the present invention includes a step of decomposing plant-derived waste with at least one of supercritical water and subcritical water to obtain a plant-derived raw material. A method for producing a plant-derived raw material, wherein the decomposition treatment conditions are a treatment temperature of 473 to 700 K, a treatment pressure of 0.79 to 30 MPa, a treatment time of 0.5 minutes to 1 hour, and the plant-derived waste The material is at least one of insoluble woody waste and lignin, and the plant-derived material is at least one of a low-density carbon material having a porous structure and a solid containing a tar-like oily component therein. The second method for producing a plant-derived raw material of the present invention is a method for producing a plant-derived raw material including a step of decomposing a plant-derived waste with at least one of supercritical water and subcritical water to obtain a plant-derived raw material. The decomposition treatment conditions are a treatment temperature of 473 to 700 K, a treatment pressure of 0.79 to 30 MPa, a treatment time of 0.5 minutes to 1 hour, and the plant-derived waste is insoluble woody waste. In the decomposition treatment step, the plant-derived waste is decomposed and converted into a solid oil phase, and the solid oil phase is separated to obtain a solid containing a tar-like oily component therein. The third method for producing a plant-derived raw material of the present invention is a method for producing a plant-derived raw material including a step of decomposing plant-derived waste with at least one of supercritical water and subcritical water to obtain a plant-derived raw material. The decomposition treatment conditions are a treatment temperature of 473 to 700 K, a treatment pressure of 0.79 to 30 MPa, a treatment time of 0.5 minutes to 1 hour, the plant-derived waste is lignin, The plant-derived material is a low-density carbon material having a porous structure. The fourth method for producing a plant-derived raw material of the present invention is a method for producing a plant-derived raw material including a step of decomposing plant-derived waste with at least one of supercritical water and subcritical water to obtain a plant-derived raw material. The plant-derived waste is an insoluble woody waste, and the plant-derived material is a tar-like oily substance.

本発明者は、主要なバイオマスである植物由来材料を、より有効利用できる実用的な処理方法について、超臨界水および亜臨界水の少なくとも一方を用いて行う着想を得て鋭意研究を重ねた。その結果、超臨界水および亜臨界水の少なくとも一方による分解処理であれば、前記植物由来材料を固相、水相、油相および気相へ分解でき、前記各相から有機酸をはじめとする種々の有価物質を生成できることを見出し本発明に想到した。   The present inventor has earnestly researched a practical treatment method that can more effectively use plant-derived materials, which are the main biomass, by using at least one of supercritical water and subcritical water. As a result, if the decomposition treatment is performed with at least one of supercritical water and subcritical water, the plant-derived material can be decomposed into a solid phase, an aqueous phase, an oil phase, and a gas phase, and organic acids and the like can be obtained from each phase. The inventors have found that various valuable substances can be generated and have arrived at the present invention.

本発明の処理方法は、また、環境への負担も小さく、ランニングコストも安価にできるから、植物由来廃棄物の資源化が可能となる実用的で優れた処理方法である。本発明によれば、例えば、有価有用物質である有機酸等を得ることができる。さらに、本発明の処理後の水溶性分解物を用いたメタン発酵や、本発明で得られるタール状の油状物質により、例えば、石油代替化が可能となる。   The treatment method of the present invention is a practical and excellent treatment method that can reduce the burden on the environment and reduce the running cost, and thus can make the plant-derived waste a resource. According to the present invention, for example, an organic acid that is a valuable useful substance can be obtained. Furthermore, methane fermentation using the water-soluble decomposition product after the treatment according to the present invention and tar-like oily substance obtained according to the present invention enable, for example, petroleum substitution.

本発明における植物由来廃棄物としては、特に制限なく、例えば、わらや木質の廃棄物等があげられ、前記木質の廃棄物としては、例えば、木材やリグニン等があげられ、前記木材としては、例えば、樹皮、大鋸屑、建築廃材、間伐材、木材粉砕物等の種々の廃木材およびこれらの粉末状粉砕物があげられる。   The plant-derived waste in the present invention is not particularly limited, and examples thereof include straw and wood waste, and the wood waste includes, for example, wood and lignin. As the wood, Examples thereof include various kinds of waste wood such as bark, large sawdust, building waste, thinned wood, and pulverized wood, and powdered pulverized materials thereof.

本発明における超臨界水は、臨界点(647.4K、22.1MPa)以上の状態、すなわち、臨界温度および臨界圧力以上の状態の水であり、本発明における亜臨界水は、臨界点より低い温度、圧力の水のことである。前記超臨界水は、液体と蒸気との区別がつかなくなり、気液の境界面が消失する状態であって、気体分子と同様の大きな運動エネルギーと、液体に匹敵する高い分子密度を備える。一方、前記亜臨界水では、蒸発と凝縮が繰り返される。   The supercritical water in the present invention is water at a critical point (647.4 K, 22.1 MPa) or higher, that is, water at a critical temperature or higher than the critical pressure, and the subcritical water in the present invention is lower than the critical point. It is water of temperature and pressure. The supercritical water is in a state in which the liquid and vapor cannot be distinguished from each other and the interface between the gas and liquid disappears, and has a large kinetic energy similar to that of gas molecules and a high molecular density comparable to that of the liquid. On the other hand, evaporation and condensation are repeated in the subcritical water.

本発明における処理方法としては、亜臨界水を用いた処理方法が好ましい。亜臨界水は、超臨界水に比べて加水分解能力に優れるから種々の有用物を生成でき、また、超臨界水に比べて分解力が劣るから有用物を無機物まで分解してしまうことなく取り出すことができる。また、前記加水分解反応の多くは発熱反応であるため、この発熱を利用すれば、例えば、ランニングコストも十分に安価とすることができる。さらに、亜臨界水の条件は、超臨界水の条件よりも温和であるため、安全であり、処理装置も安価とすることが可能である。また、温度が700K程度までの超臨界水であっても、酸化剤等を混入せずに前記亜臨界水処理と同様に処理するのであれば、本発明に好ましく用いることができる。前記超臨界水処理であれば、酸化はほとんど起こらず熱分解がおこり、さらに、装置に対する劣化作用も従来公知の超臨界水酸化よりも穏やかだからである。   The treatment method in the present invention is preferably a treatment method using subcritical water. Subcritical water is superior in hydrolytic ability compared to supercritical water, so it can produce various useful materials. In addition, subcritical water is inferior in decomposition power to supercritical water. be able to. In addition, since most of the hydrolysis reactions are exothermic reactions, for example, running costs can be sufficiently reduced by using this exothermic reaction. Furthermore, since the subcritical water conditions are milder than the supercritical water conditions, the subcritical water conditions are safe and the processing apparatus can be made inexpensive. Further, even supercritical water having a temperature up to about 700 K can be preferably used in the present invention if it is treated in the same manner as the subcritical water treatment without mixing an oxidizing agent or the like. This is because, in the supercritical water treatment, oxidation hardly occurs and thermal decomposition occurs, and further, the deterioration effect on the apparatus is gentler than conventionally known supercritical water oxidation.

本発明の超臨界水および亜臨界水の少なくとも一方を用いた処理方法において、その処理温度は、例えば、473K〜700Kであって、好ましくは、573K〜673Kであって、より好ましくは、600K〜673Kである。また、その処理圧力は、例えば、1MPa〜30MPaであって、好ましくは、8.6MPa〜23MPaであり、より好ましくは、12MPa〜23MPaである。また、その処理時間としては、例えば、0.5分〜1時間であって、好ましくは、0.5分〜20あって、より好ましくは、0.5分〜5分である。   In the treatment method using at least one of supercritical water and subcritical water of the present invention, the treatment temperature is, for example, 473 K to 700 K, preferably 573 K to 673 K, more preferably 600 K to 673K. The treatment pressure is, for example, 1 MPa to 30 MPa, preferably 8.6 MPa to 23 MPa, and more preferably 12 MPa to 23 MPa. The treatment time is, for example, 0.5 minutes to 1 hour, preferably 0.5 minutes to 20 minutes, and more preferably 0.5 minutes to 5 minutes.

本発明の分解処理の工程は、例えば、バッチ式で行ってもよく、連続式で行っても良い。前記バッチ式で行う場合、例えば、ステンレス鋼等の材質から形成された耐圧耐熱反応器に、前記植物由来廃棄物と水を入れて密閉し、この反応器を所定の温度に加熱して前記反応器内を高温高圧とすれば、前記反応器内部の水が亜臨界水または超臨界水となり、本発明の分解処理工程を行うことができる。また、実用の観点からは、前記連続式処理が好ましい。   The decomposition treatment step of the present invention may be performed, for example, in a batch method or a continuous method. When the batch method is used, for example, the plant-derived waste and water are sealed in a pressure and heat resistant reactor formed of a material such as stainless steel, and the reactor is heated to a predetermined temperature and the reaction is performed. If the inside of the reactor is at high temperature and high pressure, the water inside the reactor becomes subcritical water or supercritical water, and the decomposition treatment step of the present invention can be performed. Further, from the viewpoint of practical use, the continuous treatment is preferable.

本発明に用いる植物由来廃棄物の大きさは、亜臨界水もしくは超臨界水で処理する反応管に入り、連続式処理の場合、詰まりの原因にならない程度であれば、特に制限されないが、処理時間を短くでき、管の詰まりを抑制できる等の点より、直径5mm程度が好ましく、より好ましくは、粉状である。   The size of the plant-derived waste used in the present invention is not particularly limited as long as it enters a reaction tube that is treated with subcritical water or supercritical water and does not cause clogging in the case of continuous treatment. From the standpoint that the time can be shortened and the clogging of the tube can be suppressed, the diameter is preferably about 5 mm, and more preferably powdery.

本発明の処理方法で、前記植物由来廃棄物を分解処理すると、固相、水相、油相、気相の組成物を含む混合物を得ることができる。処理反応後の混合物では、前記気相以外は、その密度差から、前記混合物中で水相と固油相の二つ層が形成する。前記固油相は、固相の組成物と油相の組成物の混合物である。   When the plant-derived waste is decomposed by the treatment method of the present invention, a mixture containing a solid phase, an aqueous phase, an oil phase, and a gas phase composition can be obtained. In the mixture after the treatment reaction, two layers of an aqueous phase and a solid oil phase are formed in the mixture from the density difference except for the gas phase. The solid oil phase is a mixture of a solid phase composition and an oil phase composition.

前記混合物中の水相と固油相を分離して得る方法としては、特に制限されず、前記遠心分離器を用いる方法のほか、例えば、自然沈降による密度差分離等の方法があげられ、これらの中でも、好ましくは、遠心分離器を用いる方法である。   The method for obtaining the aqueous phase and the solid oil phase in the mixture by separating them is not particularly limited, and examples thereof include methods such as density difference separation by natural sedimentation, in addition to the method using the centrifuge. Among them, the method using a centrifuge is preferable.

また、前記固油相から、固相および油相を分離して得る方法としては、特に制限されず、例えば、ヘキサン等により油相のみを抽出する方法等があげられる。   Further, the method for obtaining the solid phase and the oil phase from the solid oil phase is not particularly limited, and examples thereof include a method for extracting only the oil phase with hexane or the like.

前記水相に含まれる組成物としては、例えば、有機酸や糖等があげられる。前記有機酸としては、例えば、グリコール酸、乳酸、酢酸、ギ酸、レブリン酸、プロピオン酸、リンゴ酸およびコハク酸等があげられ、これらの中でも、前記植物由来廃棄物が、木材やリグニンである場合、収率が大きな有機酸としては、グリコール酸、乳酸、酢酸およびギ酸等があげられる。前記糖としては、例えば、セロトリオース(グルコースが3つ結合したもの)、セロビオース(グルコースが2つ結合したもの)、グルコース、フルクトースおよびエリトロース(グルコースの分解生成物)等があげられ、これらの中でも、前記植物由来廃棄物が、木材である場合、収率の大きな糖としては、セロビオース、グルコース、フルクトースおよびエリトロース等があげられる。   Examples of the composition contained in the aqueous phase include organic acids and sugars. Examples of the organic acid include glycolic acid, lactic acid, acetic acid, formic acid, levulinic acid, propionic acid, malic acid, and succinic acid. Among these, the plant-derived waste is wood or lignin. Examples of organic acids having a large yield include glycolic acid, lactic acid, acetic acid, and formic acid. Examples of the sugar include cellotriose (one with three glucose bonds), cellobiose (two glucose bonds), glucose, fructose and erythrose (glucose degradation products). Among these, When the plant-derived waste is wood, examples of sugars having a high yield include cellobiose, glucose, fructose, and erythrose.

前記水相に含まれる、前記の有機酸や糖等を、それぞれについて分離精製する方法としては、特に限定されず、従来公知の方法により行うことができる。具体的には、例えば、イオン交換分離、吸着分離、蒸留・蒸発、塩析、膜分離、抽出等であって、これらの中でも好ましくは、イオン交換分離、吸着分離、塩析、膜分離であり、より好ましくは、イオン交換分離、吸着分離、膜分離である。   The method for separating and purifying the organic acid, sugar, and the like contained in the aqueous phase is not particularly limited and can be performed by a conventionally known method. Specifically, for example, ion exchange separation, adsorption separation, distillation / evaporation, salting out, membrane separation, extraction, etc. Among these, ion exchange separation, adsorption separation, salting out, membrane separation are preferable. More preferred are ion exchange separation, adsorption separation, and membrane separation.

本発明の処理方法に用いる植物由来廃棄物が、例えば、大鋸屑等の不溶性の木質廃棄物である場合、固油相に含まれる油相は、タール状の油状物質である。前記油相の収率は、前記固相の収率が減少するにともない増加する。前記気相も、前記固相の収率の減少にともない発生し、前記水相に含まれる前記有機酸の収率増加も、前記固相の収率減少と相関する。このような前記固相の収率減少、ならびに、前記油相、前記気相および前記有機酸の収率増加は、反応温度および反応温度に依存し、その条件としては、例えば、反応時間が1分の場合、473K〜673K、であって、好ましくは、573K〜673Kであって、より好ましくは、603K〜643Kである。また、例えば、反応時間が5分の場合、473K〜673Kであって、好ましくは、553K〜673Kであって、より好ましくは、603K〜643Kである。   When the plant-derived waste used in the treatment method of the present invention is, for example, insoluble woody waste such as large sawdust, the oil phase contained in the solid oil phase is a tar-like oily substance. The yield of the oil phase increases as the yield of the solid phase decreases. The gas phase is also generated with a decrease in the yield of the solid phase, and an increase in the yield of the organic acid contained in the aqueous phase correlates with a decrease in the yield of the solid phase. Such a decrease in the yield of the solid phase and an increase in the yield of the oil phase, the gas phase, and the organic acid depend on the reaction temperature and the reaction temperature. For example, the reaction time is 1 In the case of minutes, 473K to 673K, preferably 573K to 673K, and more preferably 603K to 643K. For example, when the reaction time is 5 minutes, it is 473K to 673K, preferably 553K to 673K, and more preferably 603K to 643K.

前記固油相から分離された固相は、多孔構造を有する低密度炭素材を含む。また、前記気相には、例えば、メタンや水素が含まれる。 The solid phase is separated from said solid oil phase comprises a low density carbon material having a porous structure. The gas phase includes, for example, methane and hydrogen.

一方、本発明の処理方法に用いる植物由来廃棄物が、例えば、可溶性リグニン等の可溶性の廃棄物である場合、油相の収率は、水相の収率が減少するにともない増加する。また、固相および気相も、前記水相の収率の減少にともない発生する。前記リグニンを本発明の方法で処理すると、固相が急激に増加することがあるが、この固相は、タール状油状成分を内部に含む固体である。このタール状油状成分を内部に含む固体は、直径が約2〜3μmの真球の炭化物であり、例えば、息がかかっただけで舞い上がるような極めて軽量の多孔性の物質である。このような前記水相の収率減少、ならびに、前記油相、前記固相および前記気相の収率増加は、反応温度および反応温度に依存し、その条件は、前述の条件と同様である。   On the other hand, when the plant-derived waste used in the treatment method of the present invention is soluble waste such as soluble lignin, the yield of the oil phase increases as the yield of the aqueous phase decreases. A solid phase and a gas phase are also generated as the yield of the aqueous phase decreases. When the lignin is treated by the method of the present invention, the solid phase may increase rapidly, and this solid phase is a solid containing a tar-like oily component therein. The solid containing the tar-like oily component is a true spherical carbide having a diameter of about 2 to 3 μm, and is, for example, a very lightweight porous substance that rises up just by breathing. Such a decrease in the yield of the aqueous phase and an increase in the yield of the oil phase, the solid phase and the gas phase depend on the reaction temperature and the reaction temperature, and the conditions are the same as those described above. .

発明は、以上のような方法により、有用物を含む植物由来原料の製造方法を提供できる。その生成量は、例えば、処理温度、処理圧力、処理時間等により変化し、適宜その調整が可能であるから、条件設定により、各相から、様々な組合せで種々の有用物を得ることができる。前記植物由来原料としては、例えば、有機酸、糖、タール状の油状物質、多孔構造を有する低密度炭素材、タール状油状成分を内部に含む固体等があげられ、前記有機酸としては、例えば、グリコール酸、乳酸、酢酸、ギ酸、レブリン酸、プロピオン酸、リンゴ酸、コハク酸等があげられ、前記糖としては、例えば、セロトリオース、セロビオース、グルコース、フルクトース、エリトロース等があげられる。これらを精製したものは、それぞれ、有価物質として様々な用途に使用でき、例えば、前記乳酸は、生分解性プラスチックの原材料として有用である。また、前記タール状の油状物質は、例えば、重油代替品とみなすことができる。   Invention can provide the manufacturing method of the plant-derived raw material containing a useful substance by the above methods. The amount of production varies depending on, for example, the processing temperature, processing pressure, processing time, etc., and can be adjusted as appropriate, so that various useful products can be obtained in various combinations from each phase by setting conditions. . Examples of the plant-derived raw material include organic acids, sugars, tar-like oily substances, low-density carbon materials having a porous structure, solids containing tar-like oily components therein, and the organic acids include, for example, Glycolic acid, lactic acid, acetic acid, formic acid, levulinic acid, propionic acid, malic acid, succinic acid and the like, and examples of the sugar include cellotriose, cellobiose, glucose, fructose, erythrose and the like. Each of these purified products can be used as a valuable material in various applications. For example, the lactic acid is useful as a raw material for biodegradable plastics. The tar-like oily substance can be regarded as a heavy oil substitute, for example.

また、本発明の処理方法によれば、前記植物由来原料以外にも、植物由来廃棄物からさらに植物由来原料を製造できる。前記前記植物由来原料としては、例えば、前記の固相、水相、気相、固油相等があげられる。前記水相は、酢酸等の有機酸を含むから、例えば、メタン発酵を利用したメタンガスの製造方法に使用できる。回収されるそのメタンガスは、例えば、ガスボイラーによる熱への変換、ガス発電による電力への変換、燃料電池の水素の供給源等、多方面に利用でき、石油エネルギーの代替化が可能となる。   Moreover, according to the processing method of this invention, a plant-derived raw material can be further manufactured from a plant-derived waste other than the said plant-derived raw material. Examples of the plant-derived raw material include the solid phase, aqueous phase, gas phase, solid oil phase, and the like. Since the said water phase contains organic acids, such as an acetic acid, it can be used for the manufacturing method of the methane gas using methane fermentation, for example. The recovered methane gas can be used for various purposes, for example, conversion to heat by a gas boiler, conversion to electric power by gas power generation, hydrogen supply source of a fuel cell, and the like, and substitution of petroleum energy becomes possible.

以下に、実施例を用いて本発明をさらに具体的に説明する。なお、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.

以下に示すように、木質廃棄物の分解処理をバッチ法により行い、得られた混合物から、水相、固相および油相を分離回収し、各成分に含まれる組成物等の分析を行った。   As shown below, woody waste was decomposed by the batch method, and the aqueous phase, solid phase and oil phase were separated and recovered from the resulting mixture, and the composition contained in each component was analyzed. .

(木質廃棄物)
試料として用いた木質廃棄物は、木材の切断時に発生する大鋸屑状の木材(木名:ヒノキとスプース)の混合物、木材の粉末状粉砕物(木名:ベイツガ)およびリグニン(ナカライテスク社製)であった。前記木材の化学組成を下記表1に示す。ここで、ヘミセルロースとは、ペントサン、マンナン、ガラクタンの合計値をいう。
(Wood waste)
The wood waste used as a sample is a mixture of large sawdust (wood: cypress and spus) generated when cutting wood, pulverized pulverized wood (tree: Batesga) and lignin (manufactured by Nacalai Tesque) Met. The chemical composition of the wood is shown in Table 1 below. Here, hemicellulose means the total value of pentosan, mannan and galactan.

(表1) 木材の化学組成(%)
樹種 セルロース ヘミセルロース リグニン その他
ヒノキ 54.5 16.5 29.0 0
スプース 42.0 26.1 28.0 3.9
ベイツカ 51.6 15.5 30.4 2.5
前記木材は、それぞれ、323Kで3日間乾燥し、その重量変化により含水率を求めたところ、約8%であった。したがって、前記条件で乾燥した前記木材試料は、含水率0%の試料とみなして使用した。
(Table 1) Chemical composition of wood (%)
Tree Species Cellulose Hemicellulose Lignin Other
Cypress 54.5 16.5 29.0 0
Spush 42.0 26.1 28.0 3.9
Bateska 51.6 15.5 30.4 2.5
Each of the woods was dried at 323 K for 3 days, and the moisture content was determined by its weight change. Therefore, the wood sample dried under the above conditions was used as a sample having a moisture content of 0%.

(反応器)
分解処理に使用したバッチ式反応器の概略を図1に示す。この反応器は、パイプ1の両端にキャップ2がそれぞれ取り付けられた構造である。図1において、d1は、前記パイプ1の外径を示し、d2は、前記パイプ1の内径を示し、d3は、前記キャップ2の内接円の直径を示す。また、長さL1が前記キャップ2間の最短距離を表し、長さL2が前記反応器の全長を表す。
(Reactor)
An outline of the batch reactor used for the decomposition treatment is shown in FIG. This reactor has a structure in which a cap 2 is attached to each end of a pipe 1. In FIG. 1, d 1 indicates the outer diameter of the pipe 1, d 2 indicates the inner diameter of the pipe 1, and d 3 indicates the diameter of the inscribed circle of the cap 2. The length L 1 represents the shortest distance between the caps 2 and the length L 2 represents the total length of the reactor.

前記反応器は、外経d1が10.0mm、内径d2が8.0mmのステンレス鋼(材質:SUS316製)のパイプを旋盤を用いて約150mmの長さに切りそろえたパイプ1を用いて作製した。亜臨界処理中の反応器内容物の漏れを防ぎ、密閉性を高めるため、前記パイプ1の切り口は、なめらかになるように削り、その切り口の外側と内側の面取りを行った。その後、切り出した前記パイプ1を洗浄し、そのパイプ1の先端それぞれにキャップ2(SWAGELOK社製、商品名SS-600-C)を取り付けた。前記キャップ2の取り付けは、まず、手締めで閉めて、そして、モンキーレンチを用いて1周と90度回転させて行った。このように前記キャップ2を前記パイプ1に固定し、反応器を作製したところ、全長L2は、165mmであり、前記キャップ2間の最短距離L1は、120mmであった。前記反応器の内容積は、その反応器内に、298Kに設定した空気恒温装置(SANYO社製、商品名INCUBATOR MIR-251)内に1日放置した298Kの脱気水を入れ、質量を測り、水の密度(ρ=996.95 kg/m3)を用いて算出しところ、約8.0×10-63であった。 The reactor uses a pipe 1 obtained by cutting a pipe made of stainless steel (material: SUS316) having an outer diameter d 1 of 10.0 mm and an inner diameter d 2 of 8.0 mm into a length of about 150 mm using a lathe. Produced. In order to prevent leakage of the reactor contents during the subcritical process and to improve the sealing performance, the cut end of the pipe 1 was cut so as to be smooth and chamfered on the outside and inside of the cut end. Thereafter, the cut out pipe 1 was washed, and a cap 2 (trade name SS-600-C, manufactured by SWAGELOK) was attached to each end of the pipe 1. The cap 2 was attached by first closing it by hand and rotating it by one turn and 90 degrees using a monkey wrench. Thus the cap 2 is fixed to the pipe 1, were manufactured reactor, total length L 2 is 165mm, the shortest distance L 1 between the cap 2 was 120 mm. The internal volume of the reactor was measured by weighing 298K deaerated water left in the reactor for 1 day in an air thermostat (manufactured by SANYO, trade name INCUBATOR MIR-251) set at 298K. The water density (ρ = 996.95 kg / m 3 ) was calculated to be about 8.0 × 10 −6 m 3 .

(圧力および水の仕込み量の推算)
亜臨界領域での前記反応器内の圧力は、水の飽和蒸気圧に等しいと考え、下記表2の飽和蒸気圧表から各温度における飽和蒸気圧を参照した。ここで、亜臨界状態において、前記反応器内は、図2のようになっていると仮定する。すなわち、前記反応器容積V[m3]と、前記反応器内での水相部分の占める体積V1[m3]、気相部分の占める体積V2[m3]および試料の占める体積VZ[m3]との関係は、V=V1+V2+VZとなると仮定する。そうすると、水の仕込み量mW[kg]は、下記式(1)を用いて推算できる。
W+m・w=V11+V22 ・・(1)
上記式(1)において、ν1は、水相での水の比容積[m3/kg]であり、ν2は、気相での水の比容積[m3/kg]であり、mは、試料の仕込み量[kg-wet]であり、wは、含水率である。
(Estimation of pressure and water charge)
The pressure in the reactor in the subcritical region was considered to be equal to the saturated vapor pressure of water, and the saturated vapor pressure at each temperature was referred from the saturated vapor pressure table in Table 2 below. Here, in the subcritical state, it is assumed that the inside of the reactor is as shown in FIG. That is, the reactor volume V [m 3 ], the volume V 1 [m 3 ] occupied by the aqueous phase portion in the reactor, the volume V 2 [m 3 ] occupied by the gas phase portion, and the volume V occupied by the sample. The relationship with Z [m 3 ] is assumed to be V = V 1 + V 2 + V Z. Then, the amount of water charged m W [kg] can be estimated using the following formula (1).
m W + m · w = V 1 / ν 1 + V 2 / ν 2 (1)
In the above formula (1), ν 1 is the specific volume of water in the water phase [m 3 / kg], ν 2 is the specific volume of water in the gas phase [m 3 / kg], m Is the sample charge [kg-wet], and w is the water content.

(表2) 飽和蒸気圧表
温度 温度 飽和蒸気圧 飽和蒸気圧 比容積(水) 比容積(水蒸気)
[℃] [K] [Kg/cm 2 ] [MPa] [m 3 /kg] [m 3 /kg]
170 443.15 8.076 0.7920243 0.00111445 0.24255300
180 453.15 10.224 1.0026319 0.00112752 0.19380000
190 463.15 12.799 1.2551531 0.00114150 0.15631600
200 473.15 15.855 1.5548444 0.00115649 0.12716000
210 483.15 19.454 1.9077857 0.00117260 0.10423900
220 493.15 23.656 2.3198611 0.00118995 0.08603780
230 503.15 28.528 2.7976411 0.00120872 0.07144980
240 513.15 34.138 3.3477942 0.00122908 0.05965440
250 523.15 40.560 3.9775772 0.00125129 0.05003740
260 533.15 47.869 4.6943453 0.00127563 0.04213380
270 543.15 56.144 5.5058456 0.00130250 0.03558800
280 553.15 65.468 6.4202176 0.00133239 0.03012600
290 563.15 75.929 7.4460913 0.00136594 0.02553510
300 573.15 87.621 8.5926848 0.00140406 0.02164870
310 583.15 100.650 9.8703932 0.00144797 0.01833390
320 593.15 115.120 11.2894155 0.00149950 0.01547980
330 603.15 131.160 12.8624021 0.00156147 0.01298940
340 613.15 148.930 14.6050438 0.00163871 0.01078040
350 623.15 168.610 16.5349926 0.00174112 0.00879910
360 633.15 190.430 18.6748036 0.00189590 0.00693980
370 643.15 214.690 21.0538969 0.00221360 0.00497270
374.2 647.3 225.560 22.1198797 0.00317000 0.00317000
(ソルトバス)
分解処理中、前記反応器を高温の一定温度に保つための恒温槽として、ソルトバス(Thomas Kagaku Co.Ltd.製)を使用した。前記ソルトバス内の熱媒体として、硝酸カリウムと亜硝酸ナトリウムを1:1の割合で混ぜた配合塩(融点413K)を使用した。使用した塩の量は、0.018m3であった。このソルトバスの温度範囲は453Kから773Kであり、温度安定度は±0.5Kである。温度調節は、PID制御方式のデジタル温度指示調節器で行った。
(Table 2) Saturated vapor pressure surface temperature Temperature Saturated vapor pressure Saturated vapor pressure Specific volume (water) Specific volume (water vapor)
[℃] [K] [Kg / cm 2 ] [MPa] [m 3 / kg] [m 3 / kg]
170 443.15 8.076 0.7920243 0.00111445 0.24255300
180 453.15 10.224 1.0026319 0.00112752 0.19380000
190 463.15 12.799 1.2551531 0.00114150 0.15631600
200 473.15 15.855 1.5548444 0.00115649 0.12716000
210 483.15 19.454 1.9077857 0.00117260 0.10423900
220 493.15 23.656 2.3198611 0.00118995 0.08603780
230 503.15 28.528 2.7976411 0.00120872 0.07144980
240 513.15 34.138 3.3477942 0.00122908 0.05965440
250 523.15 40.560 3.9775772 0.00125129 0.05003740
260 533.15 47.869 4.6943453 0.00127563 0.04213380
270 543.15 56.144 5.5058456 0.00130250 0.03558800
280 553.15 65.468 6.4202176 0.00133239 0.03012600
290 563.15 75.929 7.4460913 0.00136594 0.02553510
300 573.15 87.621 8.5926848 0.00140406 0.02164870
310 583.15 100.650 9.8703932 0.00144797 0.01833390
320 593.15 115.120 11.2894155 0.00149950 0.01547980
330 603.15 131.160 12.8624021 0.00156147 0.01298940
340 613.15 148.930 14.6050438 0.00163871 0.01078040
350 623.15 168.610 16.5349926 0.00174112 0.00879910
360 633.15 190.430 18.6748036 0.00189590 0.00693980
370 643.15 214.690 21.0538969 0.00221360 0.00497270
374.2 647.3 225.560 22.1198797 0.00317000 0.00317000
(Salt bath)
During the decomposition treatment, a salt bath (manufactured by Thomas Kagaku Co. Ltd.) was used as a thermostatic bath for keeping the reactor at a high temperature and constant temperature. As a heat medium in the salt bath, a mixed salt (melting point 413 K) in which potassium nitrate and sodium nitrite were mixed at a ratio of 1: 1 was used. The amount of salt used was 0.018 m 3 . The temperature range of this salt bath is 453K to 773K, and the temperature stability is ± 0.5K. The temperature was adjusted with a digital temperature indicating controller using a PID control system.

(反応器内の脱酸素)
分解処理をする試料および水を反応器に充填する前に、この反応器内を、あらかじめ、Arで置換した。その後、試料および水を充填し、前記反応器を密閉する前に、再びArを約30秒流して脱酸素を行い、この反応器を密閉した。
(Deoxygenation in the reactor)
Before charging the sample to be decomposed and water into the reactor, the inside of the reactor was replaced with Ar in advance. Then, before filling the sample and water and sealing the reactor, Ar was allowed to flow again for about 30 seconds to perform deoxidation, and the reactor was sealed.

(分解処理)
分解処理の概略を、図3に示す。前述のように試料を充填し、密閉した反応器3を、矢 印Aの下方向に移動させて、所定温度(473〜700K)で安定しているソルトバス 4に投入した。所定時間(0.5分〜1時間)の後、前記反応器1を、矢印Aの上方向 に移動させて、前記ソルトバス4からすみやかに取り出し、さらに、矢印BおよびCの 方向にすみやかに移動させ、大量の冷却水5中に投入して急冷した。なお、この分解処 理においては、前記ソルトバス4の温度を反応温度、前記反応器3が前記ソルトバス4 内にある時間を反応時間とした。
(Disassembly)
An outline of the decomposition process is shown in FIG. The reactor 3 filled with the sample as described above and sealed was moved downward in the direction of the arrow A and charged into a salt bath 4 that was stable at a predetermined temperature (473 to 700 K). After a predetermined time (0.5 minutes to 1 hour), the reactor 1 is moved in the upward direction of the arrow A, and is quickly taken out from the salt bath 4 and further promptly in the directions of the arrows B and C. It was moved and poured into a large amount of cooling water 5 to quench it. In this decomposition treatment, the temperature of the salt bath 4 was taken as the reaction temperature, and the time during which the reactor 3 was in the salt bath 4 was taken as the reaction time.

(油相、水相および固相の分離回収)
前述のように分解処理後に得られる、固相、水相、油相を含む混合物から、それぞれの成分を、以下のようにして分離回収した。
(Separation and recovery of oil phase, water phase and solid phase)
From the mixture containing the solid phase, the aqueous phase, and the oil phase obtained after the decomposition treatment as described above, the respective components were separated and recovered as follows.

まず、前記反応器の混合物を、内容積8.0×10-63の試験管Dに取り出し、その試験管Dを、遠心分離器(KUBOTA社製、商品名KN-70)にセットし、回転数2500rmpで15分間遠心分離を行った。その結果、前記試験管D内の混合物は、その質量差から、上層に、水(水相)の層が形成され、下層に固形(固油相)の層が形成された。 First, the reactor mixture is taken out into a test tube D having an internal volume of 8.0 × 10 −6 m 3 , and the test tube D is set in a centrifuge (trade name KN-70, manufactured by KUBOTA). The mixture was centrifuged at 2500 rpm for 15 minutes. As a result, in the mixture in the test tube D, a water (aqueous phase) layer was formed in the upper layer and a solid (solid oil phase) layer was formed in the lower layer due to the mass difference.

水相の分離のため、まず、約2.0×10-63の超純水を、前記反応器に加えてよく振り、前記反応器内壁に残った混合物を取り出し、前記試験管Dに加えた。前記試験管Dを、前記遠心分離器を用いて同様に遠心分離を行い、その結果形成された層状の水相を、パスツールピペットを使用して取り出し、内容積250×10-63のメスフラスコEに移した。この操作を7〜8回繰り返し、反応器および試験管D内の水相を、メスフラスコEに分離回収した。 In order to separate the aqueous phase, first, about 2.0 × 10 −6 m 3 of ultrapure water is added to the reactor and shaken well. The mixture remaining on the inner wall of the reactor is taken out and put into the test tube D. added. The test tube D is centrifuged in the same manner using the centrifuge, and the layered aqueous phase formed as a result is taken out using a Pasteur pipette and has an internal volume of 250 × 10 −6 m 3 . Transfer to volumetric flask E. This operation was repeated 7 to 8 times, and the aqueous phase in the reactor and test tube D was separated and collected in a volumetric flask E.

次に、油相の分離のため、前記試験管D内および前記反応器内に残された固油相を、333Kで1日乾燥し残った水分を蒸発させた後、前記試験管Dおよび前記反応器に、約2.0×10-63のアセトンを加えてよく振り、前述と同様に遠心分離を行い、黒く着色したアセトン相を、パスツールピペットで取り出し、内容積約300×10-63のサンプル瓶Fに移した。この操作を7〜8回繰り返し、反応器および試験管D内のタール状油相を、アセトンに溶解した状態でサンプル瓶Fに分離回収した。そして、前記試験管Dには、前記固相が、分離回収された。 Next, in order to separate the oil phase, the solid oil phase remaining in the test tube D and the reactor is dried at 333 K for 1 day to evaporate the remaining water, and then the test tube D and the About 2.0 × 10 −6 m 3 of acetone is added to the reactor and shaken well, followed by centrifugation as described above, and the black colored acetone phase is removed with a Pasteur pipette and the internal volume is about 300 × 10 The sample was transferred to a -6 m 3 sample bottle F. This operation was repeated 7 to 8 times, and the tar-like oil phase in the reactor and the test tube D was separated and collected in the sample bottle F in a state dissolved in acetone. The solid phase was separated and collected in the test tube D.

分離回収された前記水相は、最終的に250×10-63に希釈した後、ポア径0.02〜3μmのメンブレンフィルターでろ過し、水相中に混入した残渣を除去した。前記メンブレンフィルターを333Kで3日間乾燥させた後、前記残渣は、前記固相と併せて質量を測定した。前記固相は、333Kで3日間乾燥した後、質量を測定した。また、前記アセトンに溶解したタール状油相は、風乾によりアセトンを蒸発させた後、前記タール状油相質量を測定した。 The aqueous phase separated and recovered was finally diluted to 250 × 10 −6 m 3 and then filtered through a membrane filter having a pore diameter of 0.02 to 3 μm to remove residues mixed in the aqueous phase. After the membrane filter was dried at 333 K for 3 days, the residue was weighed together with the solid phase. The solid phase was dried at 333 K for 3 days, and the mass was measured. Further, the tar-like oil phase dissolved in the acetone was subjected to air drying to evaporate acetone, and then the mass of the tar-like oil phase was measured.

(各相の収率)
前記固相、油相、水相の収率を、下記式(2)〜(4)で定義する固相残存率YS[kg/kg-乾燥試料]、油相収率Yoil[kg/kg-乾燥試料]、および水相中の全有機炭素量(TOC)収率YTOCw[kg/kg-乾燥試料]として求めた。
S =固相乾燥質量/仕込み試料乾燥質量 (2)
oil =油相乾燥重量/仕込み試料乾燥質量 (3)
TOCw=全有機炭素量/仕込み試料乾燥重量 (4)
前記TOCは、TOC分析器(Shimadzu社製、商品名TOC-500)により測定した。TOC分析器は、TC(全炭素量)と無機炭素濃度(IC)との差からTOCを求める装置である。測定は、高純度空気ボンベからのキャリアーガスの流量を2.5×10-63で流し、RANGEを×10に設定して行った。TCの標準溶液として、約250ppmのフタル酸水素カリウム、ICの標準溶液として、約250ppmの炭酸水素ナトリウムと炭酸ナトリウムの混合溶液を使用した。検量範囲内にするため、試料溶液は20〜40倍に希釈して測定した。ここで、前記無機炭素には、例えば、CO,CO2,CS2,CCl4,MI 2CO3,KCN,KNCO,KNCS等が含まれる。
(Yield of each phase)
The solid phase residual ratio Y S [kg / kg-dried sample] defined by the following formulas (2) to (4), the oil phase yield Y oil [kg / kg-dried sample], and total organic carbon content (TOC) yield Y TOCw [kg / kg-dried sample] in the aqueous phase .
Y S = solid phase dry mass / prepared sample dry mass (2)
Y oil = oil phase dry weight / prepared sample dry mass (3)
Y TOCw = total organic carbon / prepared sample dry weight (4)
The TOC was measured with a TOC analyzer (trade name TOC-500, manufactured by Shimadzu). The TOC analyzer is a device that calculates TOC from the difference between TC (total carbon content) and inorganic carbon concentration (IC). The measurement was performed with the carrier gas flow rate from the high-purity air cylinder at 2.5 × 10 −6 m 3 and the RANGE set to × 10. As a standard solution of TC, about 250 ppm of potassium hydrogen phthalate was used, and as a standard solution of IC, a mixed solution of about 250 ppm of sodium bicarbonate and sodium carbonate was used. In order to make it within the calibration range, the sample solution was diluted 20 to 40 times and measured. Here, examples of the inorganic carbon include CO, CO 2 , CS 2 , CCl 4 , M I 2 CO 3 , KCN, KNCO, and KNCS.

ヒノキとスプースの混合物およびベイツガを試料として、反応温度473K、503K、523K、543K、563K、583K、613K、643Kおよび673K、反応時間1分または5分で反応した場合の固相残存率、水相中のTOC収率、および油相収率を求めた結果を、それぞれ、図4〜7に示す。図4〜7に示すとおり、反応温度が高くなるにつれ、固相が減少し、油相および水相の収率が増加した。一方、リグニンを試料として、同様の条件で反応し各収率を求めた結果を図8〜9に示す。図8〜9に示すとおり、反応温度が高くなるにつれ、固相の収率である固相残存率および油相の収率が増加し、水相の収率であるTOC収率が減少した。   Using a mixture of cypress and spusse and Batesuga as samples, the solid phase residual ratio when the reaction temperature is 473K, 503K, 523K, 543K, 563K, 583K, 613K, 643K and 673K, reaction time is 1 minute or 5 minutes, water phase The results of determining the TOC yield and the oil phase yield are shown in FIGS. As shown in FIGS. 4-7, as the reaction temperature increased, the solid phase decreased and the yields of the oil phase and the aqueous phase increased. On the other hand, the results obtained by reacting under the same conditions using lignin as a sample and determining the yields are shown in FIGS. As shown in FIGS. 8 to 9, as the reaction temperature increased, the solid phase residual ratio, which is the yield of the solid phase, and the yield of the oil phase increased, and the TOC yield, which was the yield of the aqueous phase, decreased.

(固相の元素成分割合)
固相の各元素成分の割合は、CHNS/Oアナライザ(PerkinElmerJapan製、商品名:PE2400SeriesII、キャリアガス:ヘリウム)を用いて測定した。ヒノキとスプースの混合物およびベイツガリを試料として、反応温度473K、503K、523K、543K、563K、583K、613K、643Kおよび673K、反応時間1分または5分で反応させた場合の固相残存率および固相中の各元素成分の割合を、図10〜13に示す。なお、得られた固相には、多孔構造を有する低密度炭素材が含まれていた。図10〜13に示すとおり、反応温度が高くなり、固相残存率が減少すると、炭素、酸素および水素の割合が減少し、窒素および硫黄の割合が増加した。一方、リグニンを試料として、同様の条件で反応し各割合を求めた結果を図14〜15に示す。なお、得られた固相は、タール状油状成分を内部に含む固体であった。図14〜15に示すとおり、600K付近で固相の収率が増加するが、その固相の各元素成分の割合と、試料として用いたリグニンの各元素成分とを比較すると、炭素の割合はほぼ変化がなかったが、水素の割合は減少し、窒素および硫黄の割合は増加していた。
(Element component ratio of solid phase)
The ratio of each element component in the solid phase was measured using a CHNS / O analyzer (manufactured by PerkinElmer Japan, trade name: PE2400Series II, carrier gas: helium). Using a mixture of cypress and spusy and Batesari as a sample, the solid phase residual ratio and solidity when reacted at reaction temperatures of 473K, 503K, 523K, 543K, 563K, 583K, 613K, 643K and 673K at a reaction time of 1 minute or 5 minutes The ratio of each element component in a phase is shown to FIGS. Note that the obtained solid phase contained a low-density carbon material having a porous structure. As shown in FIGS. 10 to 13, when the reaction temperature was increased and the solid phase residual ratio was decreased, the ratio of carbon, oxygen and hydrogen was decreased, and the ratio of nitrogen and sulfur was increased. On the other hand, the results obtained by reacting under the same conditions using lignin as a sample and determining the ratios are shown in FIGS. The obtained solid phase was a solid containing a tar-like oily component therein. As shown in FIGS. 14 to 15, the yield of the solid phase increases near 600 K. When the ratio of each element component of the solid phase is compared with each element component of lignin used as a sample, the ratio of carbon is There was little change, but the proportion of hydrogen decreased and the proportion of nitrogen and sulfur increased.

(水相に含まれる有機酸の収率)
水相に含まれる有機酸の収率Yα[kg/kg-乾燥試料]を、下記式(5)のように定義してその値を求めた。
Yα=水相中の酸αの質量/仕込み試料乾燥質量
=Mα・Cα-M・VL/m(1-w) ・・(5)
上記式(5)において、Mαは、酸αの分子量[kg/mol]であり、Cα-Mは、酸αの濃度の測定値[mol/m3]であり、VLは、希釈後の水相の全体積[m3]であり、mは、試料仕込み量[kg-wet]であり、wは、含水率である。
(Yield of organic acid contained in aqueous phase)
The yield Yα [kg / kg-dried sample] of the organic acid contained in the aqueous phase was defined as the following formula (5) and the value was determined.
Yα = mass of acid α in aqueous phase / dry weight of charged sample = Mα · Cα -M · V L / m (1-w) (5)
In the above formula (5), Mα is the molecular weight [kg / mol] of acid α, Cα -M is the measured value [mol / m 3 ] of the concentration of acid α, and VL is the value after dilution. The total volume of the aqueous phase [m 3 ], m is the sample charge [kg-wet], and w is the water content.

前記有機酸の濃度(Cα-M)は、高速液体クロマトグラフ有機酸分析システム(HPLC:Shimadzu社製、商品名LC-10A、分離法:イオン排除クロマトグラフィー、検出法:ポストカラムpH緩衝化電気伝導度検出法)を用いて定量分析した。 The concentration of the organic acid (C α -M ) was determined using a high performance liquid chromatographic organic acid analysis system (HPLC: manufactured by Shimadzu, trade name LC-10A, separation method: ion exclusion chromatography, detection method: post-column pH buffered electricity Quantitative analysis was performed using a conductivity detection method).

水相中に含まれる有機酸の収率について、ヒノキとスプースの混合物およびベイツガリを試料として、反応温度473K、503K、523K、543K、563K、583K、613K、643Kおよび673K、反応時間1分または5分で反応させた場合の結果を、図16〜19に示す。図16〜19に示すとおり、主に、グリコール酸、乳酸、酢酸およびギ酸が生成した。試料としてヒノキとスプースの混合物を使用した場合、グリコール酸、乳酸および酢酸は、673Kで、それぞれ、最大収率0.044、0.026および0.034[kg/kg-乾燥試料]を示し、ギ酸は、583Kで最大収率0.014[kg/kg-乾燥試料]を示した。また、試料としてベイツガを使用した場合、グリコール酸および酢酸は、673Kで、それぞれ、最大収率0.059および0.036[kg/kg-乾燥試料]を示し、乳酸およびギ酸は、613Kで、それぞれ、最大収率0.021および0.016[kg/kg-乾燥試料]を示した。一方、リグニンを試料として、同様の条件で反応し各収率を求めた結果を図20〜21に示す。図20〜21に示すとおり、主に、グリコール酸、乳酸、酢酸およびギ酸が生成したが、反応温度が高くなるにつれその収率が増加するのは、酢酸のみであった。   Regarding the yield of the organic acid contained in the aqueous phase, the reaction temperature was 473K, 503K, 523K, 543K, 563K, 583K, 613K, 643K and 673K, the reaction time was 1 minute or 5 The result at the time of making it react in minutes is shown to FIGS. As shown in FIGS. 16 to 19, mainly glycolic acid, lactic acid, acetic acid and formic acid were produced. When a mixture of hinoki and spusse was used as a sample, glycolic acid, lactic acid and acetic acid had a maximum yield of 0.044, 0.026 and 0.034 [kg / kg-dried sample] at 673 K, respectively. Formic acid showed a maximum yield of 0.014 [kg / kg-dried sample] at 583K. Also, when Batesuga was used as a sample, glycolic acid and acetic acid showed maximum yields of 0.059 and 0.036 [kg / kg-dried sample] at 673K, respectively, and lactic acid and formic acid were 613K, Maximum yields of 0.021 and 0.016 [kg / kg-dried sample] were shown, respectively. On the other hand, the results obtained by reacting under the same conditions using lignin as a sample and obtaining the yields are shown in FIGS. As shown in FIGS. 20 to 21, glycolic acid, lactic acid, acetic acid, and formic acid were mainly produced, but it was only acetic acid that increased in yield as the reaction temperature increased.

(水相に含まれる糖の収率)
水相に含まれる糖の収率Yβ[kg/kg-乾燥試料]を、下記式(6)のように定義してその値を求めた。
Yβ=水相中の糖βの質量/仕込み試料乾燥質量
=Mβ・Cβ-M・VL/m(1-w) ・・(6)
上記式(6)において、Mβは、糖βの分子量[kg/mol]であり、Cβ-Mは、糖βの濃度の測定値[mol/m3]であり、VLは、希釈後の水相の全体積で[m3]あり、mは、試料仕込み量[kg-wet]であり、wは、含水率である。
(Yield of sugar contained in aqueous phase)
The yield Yβ [kg / kg-dried sample] of the sugar contained in the aqueous phase was defined as the following formula (6) and the value was determined.
Yβ = mass of sugar β in aqueous phase / dry weight of charged sample = Mβ · Cβ- M · V L / m (1-w) (6)
In the above formula (6), Mβ is the molecular weight [kg / mol] of sugar β, Cβ -M is the measured value [mol / m 3 ] of the concentration of sugar β, and VL is the value after dilution. The total volume of the aqueous phase is [m 3 ], m is the sample charge [kg-wet], and w is the water content.

前記糖βの濃度(Cβ-M)は、日本分光高速液体クロマトグラフ糖分析システム(HPLC:日本分光社製、商品名HSS-1500、示差屈折系:偏光型)を用いて定量分析した。 The sugar β concentration (Cβ -M ) was quantitatively analyzed using a JASCO high performance liquid chromatographic sugar analysis system (HPLC: manufactured by JASCO Corporation, trade name HSS-1500, differential refraction system: polarization type).

水相中に含まれる糖の収率について、ヒノキとスプースの混合物およびベイツガリを試料として、反応温度473K、503K、523K、543K、563K、583K、613K、643Kおよび673K、反応時間1分または5分で反応させた場合の結果を、図22〜25に示す。図22〜25に示すとおり、主に、セロビオース、グルコース、フルクトースおよびエリトロースが生成した。試料としてヒノキとスプースの混合物を使用した場合、セロビオース、グルコースおよびフルクトースは、583K付近で、それぞれ、最大収率0.0077、0.01および0.014[kg/kg-乾燥試料]を示し、エリトロースは、613Kで、最大収率0.014[kg/kg-乾燥試料]を示した。また、試料としてベイツガを使用した場合、前記4糖に加え、セロトリオースも生成され、セロトリオース、セロビオース、グルコース、フルクトースおよびエリトロースは、583K付近で、それぞれ、最大収率0.01、0.013、0.012、0.012および0.011[kg/kg-乾燥試料]を示した。   Regarding the yield of sugar contained in the aqueous phase, using a mixture of hinoki and spusse and Batesari as samples, reaction temperatures 473K, 503K, 523K, 543K, 563K, 583K, 613K, 643K and 673K, reaction time 1 minute or 5 minutes The result at the time of making it react by is shown to FIGS. As shown in FIGS. 22 to 25, cellobiose, glucose, fructose and erythrose were mainly produced. When a mixture of hinoki and spusse was used as a sample, cellobiose, glucose and fructose showed maximum yields of 0.0057, 0.01 and 0.014 [kg / kg-dried sample] at around 583 K, respectively. The erythrose had a maximum yield of 0.014 [kg / kg-dried sample] at 613K. In addition, when Batesuga is used as a sample, cellotriose is also generated in addition to the above-mentioned tetrasaccharides, and cellotriose, cellobiose, glucose, fructose, and erythrose have a maximum yield of 0.01, 0.013, 0.0 at around 583K, respectively. 0.012, 0.012, and 0.011 [kg / kg-dried sample] were shown.

本発明の処理方法による水溶性低分子有価物とタール状の油状物質の短時間での生成は、例えば、経済性が高く、高速高効率の資源・エネルギー化プロセスとなりうる。また、現在大量に焼却処分されている廃木材等を考慮すれば、本願発明は、例えば、廃木材等の石油代替化にとどまらず、二酸化炭素の削減、二酸化炭素の持続的な蓄積効果、新規産業群の発生と雇用の促進等にも貢献できる。   The production of water-soluble low-molecular valuables and tar-like oily substances in a short time by the treatment method of the present invention can be, for example, a highly economical, high-speed, high-efficiency resource / energy conversion process. In addition, considering waste wood that is currently incinerated in large quantities, the present invention is not limited to, for example, substituting petroleum for waste wood and the like. It can also contribute to the generation of industries and promotion of employment.

図1は、本発明の一実施例で使用した反応器の概略図である。FIG. 1 is a schematic view of a reactor used in one embodiment of the present invention. 図2は、亜臨界状態にある反応器内の状態を説明する図である。FIG. 2 is a diagram illustrating a state in the reactor in the subcritical state. 図3は、本発明の分解処理の工程の一例を説明する図である。FIG. 3 is a diagram for explaining an example of the steps of the decomposition process of the present invention. 図4は、本発明の一実施例における各相の収率の一例を示すグラフである。FIG. 4 is a graph showing an example of the yield of each phase in one example of the present invention. 図5は、本発明のその他の実施例における各相の収率の一例を示すグラフである。FIG. 5 is a graph showing an example of the yield of each phase in other examples of the present invention. 図6は、本発明のさらにその他の実施例における各相の収率の一例を示すグラフである。FIG. 6 is a graph showing an example of the yield of each phase in still another example of the present invention. 図7は、本発明のさらにその他の実施例における各相の収率の一例を示すグラフである。FIG. 7 is a graph showing an example of the yield of each phase in still another example of the present invention. 図8は、本発明のさらにその他の実施例における各相の収率の一例を示すグラフである。FIG. 8 is a graph showing an example of the yield of each phase in still another example of the present invention. 図9は、本発明のさらにその他の実施例における各相の収率のその他の例を示すグラフである。FIG. 9 is a graph showing another example of the yield of each phase in still another example of the present invention. 図10は、本発明の一実施例のおける固相の元素成分割合の一例を示すグラフである。FIG. 10 is a graph showing an example of the ratio of elemental components in the solid phase in one example of the present invention. 図11は、本発明のその他の実施例のおける固相の元素成分割合の一例を示すグラフである。FIG. 11 is a graph showing an example of the ratio of elemental components in the solid phase in other examples of the present invention. 図12は、本発明のさらにその他の実施例のおける固相の元素成分割合の一例を示す図である。FIG. 12 is a diagram showing an example of the ratio of elemental components in the solid phase in still another example of the present invention. 図13は、本発明のさらにその他の実施例のおける固相の元素成分割合の一例を示す図である。FIG. 13 is a diagram showing an example of the ratio of elemental components in the solid phase in still another example of the present invention. 図14は、本発明のさらにその他の実施例のおける固相の元素成分割合の一例を示す図である。FIG. 14 is a diagram showing an example of the ratio of elemental components in the solid phase in still another example of the present invention. 図15は、本発明のさらにその他の実施例のおける固相の元素成分割合の一例を示す図である。FIG. 15 is a diagram showing an example of the ratio of elemental components in the solid phase in still another example of the present invention. 図16は、本発明の一実施例における水相中の有機酸の収率の一例を示すグラフである。FIG. 16 is a graph showing an example of the yield of organic acid in the aqueous phase in one example of the present invention. 図17は、本発明のその他の実施例における水相中の有機酸の収率の一例を示すグラフである。FIG. 17 is a graph showing an example of the yield of organic acid in the aqueous phase in other examples of the present invention. 図18は、本発明のさらにその他の実施例における水相中の有機酸の収率の一例を示すグラフである。FIG. 18 is a graph showing an example of the yield of organic acid in the aqueous phase in still another example of the present invention. 図19は、本発明のさらにその他の実施例における水相中の有機酸の収率の一例を示すグラフである。FIG. 19 is a graph showing an example of the yield of the organic acid in the aqueous phase in still another example of the present invention. 図20は、本発明のさらにその他の実施例における水相中の有機酸の収率の一例を示すグラフである。FIG. 20 is a graph showing an example of the yield of organic acid in the aqueous phase in still another example of the present invention. 図21は、本発明のさらにその他の実施例における水相中の有機酸の収率の一例を示すグラフである。FIG. 21 is a graph showing an example of the yield of organic acid in the aqueous phase in still another example of the present invention. 図22は、本発明の一実施例における水相中の糖の収率の一例を示すグラフである。FIG. 22 is a graph showing an example of the yield of sugar in the aqueous phase in one example of the present invention. 図23は、本発明のその他の実施例における水相中の糖の収率の一例を示すグラフである。FIG. 23 is a graph showing an example of the yield of sugar in the aqueous phase in other examples of the present invention. 図24は、本発明のさらにその他の実施例における水相中の糖の収率の一例を示すグラフである。FIG. 24 is a graph showing an example of the sugar yield in the aqueous phase in yet another example of the present invention. 図25は、本発明のさらにその他の実施例における水相中の糖の収率の一例を示すグラフである。FIG. 25 is a graph showing an example of the yield of sugar in the aqueous phase in still another example of the present invention.

符号の説明Explanation of symbols

1. 反応器のパイプ
2. 反応器のキャップ
3. 反応器
4. ソルトバス
5. 冷却水
1 パイプの外径
2 パイプの内径
3 ボルトの内接円の直径
1 反応器のキャップ間の最短の長さ
2 反応器の全長
1. 1. Reactor pipe 2. Cap of reactor Reactor 4. 4. Salt bath Cooling water d 1 pipe outer diameter d 2 pipe inner diameter d 3 bolt inscribed circle diameter L 1 minimum length between reactor caps L 2 reactor total length

Claims (6)

植物由来廃棄物を超臨界水及び亜臨界水の少なくとも一方により分解処理して植物由来原料とする工程を含む植物由来原料の製造方法であって、
分解処理条件が、処理温度が473〜700K、処理圧力が0.79〜30MPa、処理時間が0.5分〜1時間の条件であり、
前記植物由来廃棄物が、不溶性の木質廃棄物及びリグニンの少なくとも一方であり、
前記植物由来原料が、多孔構造を有する低密度炭素材及びタール状油状成分を内部に含む固体の少なくとも一方である、植物由来原料の製造方法。
A method for producing a plant-derived raw material comprising a step of decomposing plant-derived waste with at least one of supercritical water and subcritical water to obtain a plant-derived raw material,
The decomposition treatment conditions are the treatment temperature is 473 to 700 K, the treatment pressure is 0.79 to 30 MPa, the treatment time is 0.5 minutes to 1 hour,
The plant-derived waste is at least one of insoluble woody waste and lignin;
A method for producing a plant-derived raw material, wherein the plant-derived raw material is at least one of a solid containing a low-density carbon material having a porous structure and a tar-like oily component therein.
植物由来廃棄物を超臨界水及び亜臨界水の少なくとも一方により分解処理して植物由来原料とする工程を含む植物由来原料の製造方法であって、
分解処理条件が、処理温度が473〜700K、処理圧力が0.79〜30MPa、処理時間が0.5分〜1時間の条件であり、
前記植物由来廃棄物が、不溶性の木質廃棄物であり、
前記分解処理工程において、植物由来廃棄物を分解処理して固油相に変換し、前記固油相を分離してタール状油状成分を内部に含む固体を得る、植物由来原料の製造方法。
A method for producing a plant-derived raw material comprising a step of decomposing plant-derived waste with at least one of supercritical water and subcritical water to obtain a plant-derived raw material,
The decomposition treatment conditions are the treatment temperature is 473 to 700 K, the treatment pressure is 0.79 to 30 MPa, the treatment time is 0.5 minutes to 1 hour,
The plant-derived waste is insoluble woody waste;
A method for producing a plant-derived raw material, wherein in the decomposition treatment step, plant-derived waste is decomposed and converted into a solid oil phase, and the solid oil phase is separated to obtain a solid containing a tar-like oily component therein.
前記不溶性の木質廃棄物が、大鋸屑である請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the insoluble woody waste is large sawdust. 植物由来廃棄物を超臨界水及び亜臨界水の少なくとも一方により分解処理して植物由来原料とする工程を含む植物由来原料の製造方法であって、
分解処理条件が、処理温度が473〜700K、処理圧力が0.79〜30MPa、処理時間が0.5分〜1時間の条件であり、
前記植物由来廃棄物が、リグニンであり、
前記植物由来原料が、多孔構造を有する低密度炭素材である、植物由来原料の製造方法。
A method for producing a plant-derived raw material comprising a step of decomposing plant-derived waste with at least one of supercritical water and subcritical water to obtain a plant-derived raw material,
The decomposition treatment conditions are the treatment temperature is 473 to 700 K, the treatment pressure is 0.79 to 30 MPa, the treatment time is 0.5 minutes to 1 hour,
The plant-derived waste is lignin;
A method for producing a plant-derived raw material, wherein the plant-derived raw material is a low-density carbon material having a porous structure.
植物由来廃棄物を超臨界水及び亜臨界水の少なくとも一方により分解処理して植物由来原料とする工程を含む植物由来原料の製造方法であって、
分解処理条件が、処理温度が473〜700K、処理圧力が0.79〜30MPa、処理時間が0.5分〜1時間の条件であり、
前記植物由来廃棄物が、不溶性の木質廃棄物であり、
前記植物由来原料が、タール状の油状物質である、植物由来原料の製造方法。
A method for producing a plant-derived raw material comprising a step of decomposing plant-derived waste with at least one of supercritical water and subcritical water to obtain a plant-derived raw material,
The decomposition treatment conditions are the treatment temperature is 473 to 700 K, the treatment pressure is 0.79 to 30 MPa, the treatment time is 0.5 minutes to 1 hour,
The plant-derived waste is insoluble woody waste;
A method for producing a plant-derived raw material, wherein the plant-derived raw material is a tar-like oily substance.
前記分解処理が、連続式で行われる請求項1から5のいずれか一項に記載の製造方法。The manufacturing method according to claim 1, wherein the decomposition treatment is performed continuously.
JP2003319988A 2003-09-11 2003-09-11 Treatment method of plant-derived waste Expired - Fee Related JP4061544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319988A JP4061544B2 (en) 2003-09-11 2003-09-11 Treatment method of plant-derived waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319988A JP4061544B2 (en) 2003-09-11 2003-09-11 Treatment method of plant-derived waste

Publications (2)

Publication Number Publication Date
JP2005081332A JP2005081332A (en) 2005-03-31
JP4061544B2 true JP4061544B2 (en) 2008-03-19

Family

ID=34418769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319988A Expired - Fee Related JP4061544B2 (en) 2003-09-11 2003-09-11 Treatment method of plant-derived waste

Country Status (1)

Country Link
JP (1) JP4061544B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718803B2 (en) * 2004-07-13 2011-07-06 パナソニック電工株式会社 Method for producing organic acids from woody materials
JP2007146079A (en) * 2005-11-30 2007-06-14 Matsushita Electric Ind Co Ltd Molding material and molded motor using biomass as raw material
JP2007223990A (en) * 2006-02-27 2007-09-06 Chikuno Shokuhin Kogyo Kk Antioxidant composition
JP4666378B2 (en) * 2006-05-29 2011-04-06 パナソニック株式会社 Decomposition method for woody waste
JP2007330931A (en) * 2006-06-16 2007-12-27 Daiwa House Ind Co Ltd Organic waste-treating method
JP5180492B2 (en) * 2007-03-08 2013-04-10 公立大学法人大阪府立大学 Method for producing organic acid
JP2011161377A (en) * 2010-02-10 2011-08-25 Osaka Prefecture Univ Method for decomposition and utilization of bagasse
CN103403192B (en) * 2010-11-01 2015-06-17 瑞恩麦特克斯股份有限公司 Process for controlled liquefaction of a biomass feedstock by treatment in hot compressed water
SE535702C2 (en) * 2011-04-15 2012-11-13 Reac Fuel Ab Process for the treatment of organic material to produce methane gas
EP2776591B1 (en) 2011-11-08 2020-03-18 Renmatix, Inc. Liquefaction of biomass at low ph
NZ596549A (en) * 2011-11-21 2014-05-30 Carbonscape Ltd Apparatus and method for processing biomass
EP3747262B1 (en) * 2018-01-29 2023-02-22 G-8 International Trading Co., Ltd. Production method for iron fulvate solution, iron hydroxide fulvate solution, and polysilica iron fulvate solution
JP7030257B2 (en) * 2018-01-29 2022-03-07 G-8 International Trading 株式会社 Method for manufacturing iron fulvic acid solution
JP7030259B2 (en) * 2018-01-29 2022-03-07 G-8 International Trading 株式会社 Method for manufacturing fulvic acid polysilica iron solution
JP7030258B2 (en) * 2018-01-29 2022-03-07 G-8 International Trading 株式会社 Method for manufacturing iron fulvic acid hydroxide solution
US20210070794A1 (en) * 2018-01-29 2021-03-11 G-8 International Trading Co., Ltd. Production methods for iron fulvate solution, iron hydroxide fulvate solution and polysilica-iron fulvate solution

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166789A (en) * 1984-09-11 1986-04-05 Agency Of Ind Science & Technol Liquefaction of cellulosic biomass under supercritical conditions
JPS6173793A (en) * 1984-09-20 1986-04-15 Agency Of Ind Science & Technol High-efficiency liquefaction of cellulosic biomass
JP3042076B2 (en) * 1990-09-08 2000-05-15 株式会社神戸製鋼所 Method for selective hydrolysis of natural or synthetic polymer compounds
JP4424763B2 (en) * 1998-04-09 2010-03-03 サントリーホールディングス株式会社 Process for producing aromatic compounds by supercritical water treatment
JP2001062424A (en) * 1999-08-27 2001-03-13 Shinko Pantec Co Ltd Process and equipment for chemical recycling treatment
JP2002060763A (en) * 2000-08-15 2002-02-26 Toyota Motor Corp Fuel generator from combustible waste for on-board internal combustion engine
JP2002105466A (en) * 2000-09-29 2002-04-10 Osaka Gas Co Ltd Manufacturing method of fuel gas
JP2002113348A (en) * 2000-10-10 2002-04-16 Ishikawajima Harima Heavy Ind Co Ltd Treating apparatus of organic waste from animal and vegetable residue by hydrothermal reaction
JP4683748B2 (en) * 2001-03-07 2011-05-18 ヤンマー株式会社 Reactor reaction equipment with supercritical water or subcritical water
JP2002332265A (en) * 2001-05-10 2002-11-22 Toyohashi University Of Technology Method for producing amino acid mixture having different composition by using high-temperature high- pressure water reaction
JP2003094011A (en) * 2001-09-27 2003-04-02 Ishikawajima Harima Heavy Ind Co Ltd Treating method for organic waste and equipment therefor
JP3901984B2 (en) * 2001-10-25 2007-04-04 日揮株式会社 Biomass water slurry and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005081332A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP4061544B2 (en) Treatment method of plant-derived waste
US10093638B2 (en) Utilizing a multiphase reactor for the conversion of biomass to produce substituted furans
Torget et al. Optimization of reverse-flow, two-temperature, dilute-acid pretreatment to enhance biomass conversion to ethanol
Yue et al. Characteristics and potential values of bio-oil, syngas and biochar derived from Salsola collina Pall. in a fixed bed slow pyrolysis system
JP6316321B2 (en) Method for producing carbon-enriched biomass material
Cuevas et al. Furfural removal from liquid effluents by adsorption onto commercial activated carbon in a batch heterogeneous reactor
Hu et al. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane
JP2009013094A (en) Production method of glycol
Zeng et al. Effect of potassium hydroxide activation in the desulfurization process of activated carbon prepared by sewage sludge and corn straw
JP2018070465A (en) Organic composition, method of manufacturing organic composition, and fuel
JPWO2004037731A1 (en) Methane gas manufacturing method
JP4919253B2 (en) Biological organic resource processing method and system
Boukis et al. Gasification of wet biomass in supercritical water. Results of pilot plant experiments
JP5207510B2 (en) Method for producing formic acid by wet oxidation of biomass
JP4748409B2 (en) Industrial raw material production method from wood
Onfray et al. Biomass-derived carbon-based electrodes for electrochemical sensing: a review
Supee et al. Hydrothermal carbonization of biomass: a commentary
JPWO2009004938A1 (en) Method for producing monosaccharide and / or water-soluble polysaccharide and method for producing sulfonic acid group-containing carbonaceous material
JP4726035B2 (en) Production method of sugar and solid fuel using biomass as raw material
JP2007319068A (en) Method for producing monosaccharide and furfural
Basha et al. Activated Carbon from Coconut Shell: Synthesis and Its Commercial Applications-A Recent Review
CN113444550B (en) Method for preparing biological oxygen-containing fuel based on catalysis of biomass sugar by sludge incineration ash
Li et al. Dissolution kinetics of calcium ions in hydrothermal demineralization of eucalyptus
US20210269889A1 (en) Lignocellulosic biomass treatment methods and systems for production of biofuels and biochemicals
Li et al. Production of levulinic acid and furfural from biomass hydrolysis through a demonstration project

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees