JP4060576B2 - Flat battery - Google Patents

Flat battery Download PDF

Info

Publication number
JP4060576B2
JP4060576B2 JP2001355143A JP2001355143A JP4060576B2 JP 4060576 B2 JP4060576 B2 JP 4060576B2 JP 2001355143 A JP2001355143 A JP 2001355143A JP 2001355143 A JP2001355143 A JP 2001355143A JP 4060576 B2 JP4060576 B2 JP 4060576B2
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
negative electrode
winding start
start side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001355143A
Other languages
Japanese (ja)
Other versions
JP2003157902A (en
Inventor
徹也 林
眞 中西
聡 小川
晶夫 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001355143A priority Critical patent/JP4060576B2/en
Publication of JP2003157902A publication Critical patent/JP2003157902A/en
Application granted granted Critical
Publication of JP4060576B2 publication Critical patent/JP4060576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、コイン形電池及びその製造方法に関し、特に、正極板と負極板とをセパレータを介して巻回した巻回構造の極板群を用いて放電電流の増加を図ったコイン形電池に関するものである。
【0002】
【従来の技術】
コイン形電池は、図9に示すように、円盤状に形成された正極ペレット32と負極ペレット33とをセパレータ34を介して対向配置した極板構造のものが一般的に採用されている。このコイン形電池は円形半殻体に形成された封口ケース35内に正極ペレット32と負極ペレット33とをセパレータ34を介して対向配置し、電解液を注入し、封口ケース35の側周部にガスケット36を配設し、この上にキャップケース31を被せ、キャップケース31の開口端を内側に折り曲げるカシメ加工により内部空間を密閉し、コイン形の外観を呈する電池に形成される。
【0003】
上記のような正極ペレット32と負極ペレット33とを1:1で対面させた極板構造では、正極板と負極板とが対極する反応面積が小さいことなどの要因によって大きな放電容量を得ることはできなかった。大きな放電容量を得るには正極板と負極板との対向面積を増加させる必要があり、コイン形電池以外の比較的大型の電池では複数枚の正極板と負極板とをセパレータを介して積層した積層構造や、帯状の正極板と負極板とをセパレータを介して巻回した巻回構造により、反応面積を拡大させて高率放電におけるエネルギー密度の向上を図った構造が広く用いられている。このような積層構造や巻回構造の極板を、コイン形の扁平なケース内に収容することができればコイン形電池の放電容量を増大化させることができる。コイン形のような扁平なケースに巻回構造の極板群を収容した電池は、本願出願人が特願2000−241678号、特願2000−241679号他として提案している。
【0004】
この巻回構造の極板群は、図7に示すように、円形のケースにそれを収容するために、複数の正極積層面17a〜17eを連結片19a〜19dで連結した正極板7と、正極積層面17a〜17eより大きな面積に形成された複数の負極積層面18a〜18fを連結片20a〜20eで連結した負極板8とを、図8に模式的に示すように、セパレータ9を介して扁平に巻回して極板群1に形成している。この極板群1を用いることにより、小型扁平でありながら大きな放電電流を取り出すことができる電池として携帯電子機器等の小型化、高機能化に寄与できるものとなる。
【0005】
【発明が解決しようとする課題】
しかしながら、正極板7と負極板8とを扁平に巻回すると、最も巻き始め側の折り曲げ位置となる正極板7の連結片19a、負極板8の連結片20aでは小さい折り曲げ半径で180度に折り曲げられるため、極板の芯材である集電体に折損が生じる場合がある。特に、正極板7では集電体としてアルミニウム箔が用いられており、破断強度が低いため折損が生じやすくなる。
【0006】
正極板7は、正極集電体の両面に正極活物質層が塗着されたものであり、これが連結片19aで小さい折り曲げ半径で180度に折り曲げられると、内側の正極活物質層は圧縮され、外側の正極活物質層は引き伸ばされるため、正極集電体にも引き伸ばす方向に力が作用して、破断強度が低いアルミニウム箔の正極集電体は破断する恐れがあった。
【0007】
また、扁平形電池をリチウムイオン二次電池として構成した場合に、正極活物質としてコバルト酸リチウム等の遷移金属酸化物が、負極活物質としてリチウムイオンの吸蔵、放出が可能な黒鉛等の炭素材料が用いられる。このような正極活物質及び負極活物質を用いた二次電池では、充電時における黒鉛系材料の電位はリチウム析出が生じる電位とほぼ変わらないような低電位で使用されている。このため充放電サイクルの繰り返し等により負極活物質に劣化が生じた二次電池では、充電時に負極活物質に挿入されるリチウムイオンが電解液と不活性化反応を起こし、負極板8の表面にデンドライト状のリチウム金属が析出する現象が生じ、これに起因する内部短絡により二次電池の安全性及び寿命低下をまねくことが知られている。正極板と負極板とを円筒状に巻回した円筒形電池の場合に比して、本願発明の扁平形電池のように扁平に巻回して極板群を構成した場合に、上記リチウムデンドライトが充放電サイクルが少ない状態で発生することを発見された。
【0008】
極板群が円筒状に巻回されている場合でも、扁平に巻回されている場合でも対向する極板の面積がほぼ等しい状態にあり、正極−負極間の容量はほぼ同一に保たれている。しかし、極板群を扁平に形成した場合には、負極板8の巻き始め側の端部は正極板7の巻き始め側の連結片19aに包み込まれるように対峙しており、前記端部に限定すると正極−負極間の容量バランスは正極側に大きく傾いている。このため、充電時に正極から離脱したリチウムイオンは負極の炭素材料の層間に吸蔵しきれず、過剰なリチウムイオンが負極表面上に析出するとの知見を得た。
【0009】
本発明は扁平に巻回して極板群を構成した場合に生じる上記課題に鑑みて創案されたもので、巻回時の集電体に生じる破断及びリチウムデンドライトの発生を防止する構造を備えた扁平形電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するための本願第1発明は、正極集電体の両面に正極活物質層が形成された正極板材料を用いて複数の正極積層面を連結片で連結して帯状に形成した正極板と、負極集電体の両面に負極活物質層が形成された負極板材料を用いて複数の負極積層面を連結片で連結して帯状に形成した負極板とを、前記正極積層面と前記負極積層面とがセパレータを介して交互に積層されるように前記連結片で折り曲げて扁平に巻回した極板群が、封口ケースにガスケットを介してキャップケースを被せて形成される内部空間に収容されてなる扁平形電池において、前記負極板の巻き始め側端部が最内周部分に配置され、該負極板の巻き始め側端部を包み込むように前記正極板の最も巻き始め側に位置する連結片が配置されて、前記負極板と前記正極板とが巻回されてなり、前記負極板の巻き始め側端部を包み込む前記正極板最も巻き始め側に位置する連結片の内面側に前記連結片の幅より広い絶縁性の樹脂テープが貼着されてなることを特徴とするものである。
【0011】
上記第1発明によれば、正極板と負極板とをセパレータを介して扁平に巻回すると、最も巻き始め側に位置する連結片は小さい折り曲げ半径で折り曲げられることになり、極板の芯材である集電体、特に正極板では集電体にアルミニウム箔を用いた場合に、折り曲げによる引っ張りにより集電体が折損する恐れがあるが、連結片を折り曲げる内面側に樹脂テープが貼着されているので、樹脂テープの厚さ分だけ折り曲げ半径が大きくなり、鋭角に折り曲げられることがなくなるので、正極板の集電体としてアルミニウム箔を用いた場合にも折り曲げによる集電体の折損が防止できる。また、正極板の巻き始め側の連結片は負極板の巻き始め端部を包み込むように配置されるので、端部に限定すれば、この端部は集電体の切断加工によって切断面が露出しているので正極−負極間の容量バランスは正極側に大きく傾き、充電時に正極から離脱したリチウムイオンが負極に吸蔵しきれず、過剰になったリチウム金属が負極表面上に析出する問題点があったが、正極板の連結片に樹脂テープが貼着されていることにより、正極から離脱するリチウムイオンを減少させることができ、対向する負極にリチウム金属が析出することが抑制される。また、たとえ析出があった場合にもテープで強固に絶縁できるので短絡が生じない。
【0012】
上記構成において、樹脂テープは、正極板の巻回方向の約1/2が連結片に粘着しない非粘着面に形成することにより、正極活物質層に樹脂テープが粘着したことによって折り曲げ時に正極活物質層の移動を拘束することがなく、折り曲げ時に連結片内側の正極活物質層は圧縮されて瘤状にならず、集電体に引き延ばし方向の力が加わることが抑制される。
【0013】
また、本願第2発明は、正極集電体の両面に正極活物質層が形成された正極板材料を用いて複数の正極積層面を連結片で連結して帯状に形成した正極板と、負極集電体の両面に負極活物質層が形成された負極板材料を用いて複数の負極積層面を連結片で連結して帯状に形成した負極板とを、前記正極積層面と前記負極積層面とがセパレータを介して交互に積層されるように前記連結片で折り曲げて扁平に巻回た極板群が、封口ケースにガスケットを介してキャップケースを被せて形成される内部空間に収容されてなる扁平形電池において、前記負極板の巻き始め側端部が最内周部分に配置され、該負極板の巻き始め側端部を包み込むように前記正極板の最も巻き始め側に位置する連結片が配置されて、前記負極板と前記正極板とが巻回されてなり、前記負極板の巻き始め側端部を包み込む前記正極板最も巻き始め側に位置する連結片と、これに対向する負極板の巻き始め側端部との間に介在するセパレータに、セパレータに存在する細孔を塞ぐ細孔封止処理が施されてなることを特徴とするものである。
【0014】
上記第2発明によれば、正極板の巻き始め側の連結片は負極板の巻き始め端を包み込むように配置されるので、正極−負極間の容量バランスは正極側に大きく傾き、充電時に正極から離脱したリチウムイオンが負極に吸蔵しきれず、過剰になったリチウム金属が負極表面上に析出する問題点があったが、正極板の連結片に対向する部分のセパレータの細孔を塞ぐことにより、正極から離脱したリチウムイオンがセパレータを通過しないので、負極板の巻き始め端に吸蔵されるリチウムイオンが減少し、負極板にリチウム金属が析出することが抑制される。従って、リチウム金属の析出に起因する充放電サイクル寿命の低下や内部短絡の発生を改善することができる。
【0015】
上記構成における細孔封止処理は、セパレータの一部分に細孔に侵入して、細孔を塞ぐ塗剤を塗布する処理、セパレータの一部分を熱溶融させて細孔を塞ぐ処理、セパレータの一部分に樹脂テープを貼着する処理のいずれかを適用することができる。
【0016】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明し、本発明の理解に供する。尚、以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
【0017】
本実施形態に係るコイン形電池は、図1に示すように、円形半殻体に形成された封口ケース5内に極板群10を収容し、極板群10から引き出された正極リード26をキャップケース4に、負極リード27を封口ケース5にそれぞれ溶接し、封口ケース5内に電解液を注入し、封口ケース5の側周部に配設されたガスケット6上にキャップケース4を被せ、キャップケース4の開口端を内側に折り曲げるカシメ加工により内部空間を封止して構成されたものである。
【0018】
前記極板群10は、図2(a)に示すように、銅箔である負極集電体の両面に負極活物質層を形成した負極板材料を用いて、図2(a)に示すように、6枚の負極積層面23a〜23fを負極連結片25a〜25eで連結し、巻き終り端に負極リード27が形成された負極板12と、アルミニウム箔である正極集電体の両面に正極活物質層を形成した正極板材料を用いて、図2(b)に示すように、負極積層面23a〜23fの面積より小さい面積に形成された5枚の正極積層面22a〜22eを正極連結片24a〜24dで連結し、巻き終り端に正極リード26が形成された正極板11とをセパレータを介して扁平に巻回して構成される。正極積層面22a〜22eと負極積層面23a〜23fとがセパレータを介して交互に積層されるように巻回するために、正極連結片24a〜24d及び負極連結片25a〜25eは、図示するように巻き始め側から巻き終わり側に向けて幅が順次増加するように形成されている。また、負極板12の巻き始め側と巻き終わり側とには小さい径の負極位置ずれ検出孔43、44が形成され、負極位置ずれ検出孔43、44が形成された負極積層面23a、23fに対面する正極板11の正極積層面22a、22b、22eには大きい径の正極位置ずれ検出孔41a、41b、42が形成されており、巻回後に負極位置ずれ検出孔43、44と正極積層面22a、22b、22eの一致をX線検査することにより、扁平に巻回したときの巻きずれが検出できるようにしている。
【0019】
図3は、上記正極板11と負極板12とをセパレータ13を介して扁平に巻回した状態を模式図として示すもので、正極板11の各正極連結片24a〜24dと負極板12の各負極連結片25a〜25eとを折り曲げて巻回することにより、正極積層面22a〜22eと負極積層面23a〜23fとがセパレータ13を介して交互に積層されている。このように正極板11と負極板12とを扁平に巻回したとき、正極板11の巻き始め側に位置する正極連結片24aと、負極板12の巻き始め側に位置する負極連結片25aとは、小さい曲げ半径で180度に折り曲げられることになる。前述したように正極板11の正極集電体として用いられるアルミニウム箔は曲げ強度、引っ張り強度が低く、小さい曲げ半径で折り曲げられると、折り曲げの内側にある正極活物質層が圧縮され、その外側の正極集電体には引っ張り方向の力が加わって破断する恐れがあった。
【0020】
この正極集電体の破断を防止し、加えてデンドライトの発生を抑制し、また絶縁性を高めるために、図2(b)に示すように、正極板11の巻き始め側の正極連結片24aには、これが折り曲げられたときに内側となる面に絶縁性樹脂により形成された樹脂テープ45が貼着されている。樹脂テープ45が貼着された正極連結片24aは、図4に示すように、負極板12の巻き始め端を包み込むように折り曲げられるので小さい折り曲げ半径となり、鋭角に折り曲げられると、正極連結片24aの内側に存在する正極活物質層11bは圧縮され、正極集電体11aであるアルミニウムに引き延ばし方向に力が作用するため、正極集電体11aが破断する恐れがある。しかし、内側に存在する正極活物質層11bの表面に樹脂テープ45が貼着されていることにより、樹脂テープ45の厚さ分だけ正極連結片24aの折り曲げ半径が大きくなり、また、鋭角に折り曲げられることがなくなるので、正極集電体11aの破断を防止し、加えてデンドライトの発生を抑制し、また、絶縁性を高めることができる。
【0021】
樹脂テープ45の貼着は、正極板11の長さ方向の約1/2に粘着面がない状態にすることが好ましく、貼着によって正極活物質層11bを拘束することがなく、正極連結片24aの折り曲げ時に正極活物質層11bが圧縮されて瘤状に膨らむことを規制しない。正極活物質層11bが圧縮されて逃げ場がない状態では、正極集電体12aに引っ張り方向の力が及んで破断させることになるが、粘着面を少なくすることによって正極活物質層11bの動きを規制することがない。樹脂テープ45の粘着面を部分的に無くす方法は、樹脂テープ45に部分的に粘着剤を塗布する方法でも可能であるが、図5に示すように、樹脂テープ45をその一方端から粘着面側に折り返し、約1/2が粘着面どうしで粘着して粘着面を覆ってしまう方法が適している。
【0022】
また、樹脂テープ45は、その材質としてリチウムイオンの透過を阻害するイオン不透過性を有するもので、非水溶媒に対する化学的な安定性を有するものが望ましい。この樹脂テープ45が正極連結片24a上に貼着されていることによって、正極連結片24aから離脱するリチウムイオンを減少させることができる。負極板12の巻き始め側の端部は正極連結片24aに包み込まれているため、容量バランスが正極側に大きく傾き、充電時に正極から離脱したリチウムイオンが負極に吸蔵しきれず、過剰なリチウムイオンがリチウム金属として負極表面上に析出し、リチウム金属の析出に起因する充放電サイクル特性及び安全性の低下が問題となるが、負極板12の端部を包み込む正極連結片24aに樹脂テープ45が貼着されていることにより、正極連結片24aから離脱するリチウムイオンを減少させ、対向する負極板12にリチウム金属が析出することを抑制することができる。
【0023】
上記リチウム金属の析出は、図6に示すように、セパレータ13の負極板12の巻き始め側の端部と正極板11の正極連結片24aとの間に位置する部分47に、細孔封止処理を施すことによっても抑制することができる。セパレータ13は電解液を保持し、イオン導電性を阻害しないため充分な開孔面積を有するポリオレフィン系樹脂による微多孔膜が用いられているので、セパレータ13の負極板12の巻き始め側の端部と正極板11の正極連結片24aとの間に位置する部分の細孔を閉じることにより、正極連結片24aから負極板の端部に移動するリチウムイオンを制限することができ、負極板12上にリチウム金属が析出することを抑制することができる。
【0024】
前記細孔封止処理は、セパレータ13に侵入して、細孔を塞ぐ塗剤をセパレータ13の負極板12の巻き始め側の端部と正極板11の正極連結片24aとの間に位置する部分47に塗布する方法、セパレータ13の負極板12の巻き始め側の端部と正極板11の正極連結片24aとの間に位置する部分47を熱溶融させて細孔を塞ぐ方法、セパレータ13の負極板12の巻き始め側の端部と正極板11の正極連結片24aとの間に位置する部分47に樹脂テープを貼着する方法を適用することができる。但し、これらの細孔封止処理によって正極板11の巻き始め側の正極連結片24aに破断が生じるのを防止する作用は期待できない。
【0025】
【発明の効果】
以上の説明の通り本発明によれば、巻回構造の極板群を用いて扁平形状に二次電池を構成するとき、扁平に極板群を巻回すると巻き始め側の極板の折り曲げ部分に破断が生じる問題を、樹脂テープを貼着する簡単な手段で解決することができる。また、樹脂テープの貼着によりリチウムデンドライトの発生も抑制することができる。このリチウムデンドライトの発生はセパレータの細孔を樹脂テープの貼着や樹脂の塗布などの細孔封止処理によっても抑制することができる。
【図面の簡単な説明】
【図1】扁平形電池の構成を示す断面図。
【図2】(a)は負極板、(b)は正極板を示す展開図。
【図3】極板群の巻回状態を示す模式図。
【図4】樹脂テープの貼着状態を示す部分断面図。
【図5】樹脂テープの貼着方法を示す部分断面図。
【図6】セパレータに細孔封止処理を施した構成を示す部分断面図。
【図7】従来の(a)は負極板、(b)は正極板を示す展開図。
【図8】従来の極板群の巻回状態を示す模式図。
【図9】従来のコイン形電池の断面図。
【符号の説明】
10 極板群
11 正極板
12 負極板
13 セパレータ
22a〜22e 正極積層面
23a〜23f 負極積層面
24a〜24d 正極連結片
25a〜25e 負極連結片
45 樹脂テープ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coin-type battery and a method for manufacturing the same, and more particularly, to a coin-type battery in which a discharge current is increased by using an electrode plate group having a winding structure in which a positive electrode plate and a negative electrode plate are wound via a separator. Is.
[0002]
[Prior art]
As shown in FIG. 9, the coin-type battery generally employs an electrode plate structure in which a positive electrode pellet 32 and a negative electrode pellet 33 formed in a disk shape are arranged to face each other with a separator 34 interposed therebetween. In this coin-type battery, a positive electrode pellet 32 and a negative electrode pellet 33 are arranged to face each other through a separator 34 in a sealing case 35 formed in a circular half-shell, and an electrolyte is injected into the side peripheral portion of the sealing case 35. A gasket 36 is disposed, and a cap case 31 is placed thereon, and the inner space is hermetically sealed by caulking that bends the open end of the cap case 31 inward to form a battery having a coin-shaped appearance.
[0003]
In the electrode plate structure in which the positive electrode pellet 32 and the negative electrode pellet 33 face each other as described above, it is possible to obtain a large discharge capacity due to factors such as a small reaction area between the positive electrode plate and the negative electrode plate. could not. In order to obtain a large discharge capacity, it is necessary to increase the facing area between the positive electrode plate and the negative electrode plate. In a relatively large battery other than a coin-type battery, a plurality of positive electrode plates and negative electrode plates are laminated via a separator. A structure in which the reaction area is expanded and the energy density in high-rate discharge is improved by a laminated structure or a winding structure in which a strip-like positive electrode plate and negative electrode plate are wound via a separator is widely used. If an electrode plate having such a laminated structure or a wound structure can be accommodated in a coin-shaped flat case, the discharge capacity of the coin-shaped battery can be increased. Batteries in which a wound electrode plate group is housed in a flat case like a coin shape have been proposed by the present applicant as Japanese Patent Application Nos. 2000-241678, 2000-241679, and others.
[0004]
As shown in FIG. 7, the electrode plate group of this winding structure includes a positive electrode plate 7 in which a plurality of positive electrode laminated surfaces 17 a to 17 e are connected by connecting pieces 19 a to 19 d in order to accommodate the circular case. As schematically shown in FIG. 8, a separator 9 is interposed between a negative electrode plate 8 in which a plurality of negative electrode laminate surfaces 18 a to 18 f formed in a larger area than the positive electrode laminate surfaces 17 a to 17 e are connected by connecting pieces 20 a to 20 e. The electrode plate group 1 is formed by winding it flatly. By using this electrode group 1, it is possible to contribute to miniaturization and high functionality of portable electronic devices and the like as a battery that can take out a large discharge current while being small and flat.
[0005]
[Problems to be solved by the invention]
However, when the positive electrode plate 7 and the negative electrode plate 8 are wound flatly, the connecting piece 19a of the positive electrode plate 7 and the connecting piece 20a of the negative electrode plate 8 which are the folding positions closest to the winding start are bent at 180 degrees with a small bending radius. Therefore, breakage may occur in the current collector that is the core material of the electrode plate. In particular, the positive electrode plate 7 uses an aluminum foil as a current collector, and breakage tends to occur because of its low breaking strength.
[0006]
The positive electrode plate 7 has a positive electrode active material layer coated on both sides of the positive electrode current collector. When the positive electrode plate 7 is bent at 180 degrees with a small bending radius by the connecting piece 19a, the inner positive electrode active material layer is compressed. Since the outer positive electrode active material layer is stretched, a force acts in the direction of stretching the positive electrode current collector, and the positive electrode current collector of aluminum foil having a low breaking strength may be broken.
[0007]
In addition, when the flat battery is configured as a lithium ion secondary battery, a transition metal oxide such as lithium cobaltate is used as the positive electrode active material, and a carbon material such as graphite capable of inserting and extracting lithium ions as the negative electrode active material. Is used. In a secondary battery using such a positive electrode active material and a negative electrode active material, the potential of the graphite-based material at the time of charging is used at a low potential that is not substantially different from the potential at which lithium deposition occurs. For this reason, in a secondary battery in which the negative electrode active material has deteriorated due to repeated charge / discharge cycles, etc., lithium ions inserted into the negative electrode active material during charging cause an inactivation reaction with the electrolytic solution, and the surface of the negative electrode plate 8 is inactivated. It is known that a phenomenon in which dendritic lithium metal is deposited occurs, and the internal short circuit resulting from the phenomenon causes the safety and life of the secondary battery to decrease. Compared to the case of a cylindrical battery in which a positive electrode plate and a negative electrode plate are wound in a cylindrical shape, when the electrode plate group is configured by flatly winding like the flat battery of the present invention, the lithium dendrite is It was discovered that it occurs with few charge / discharge cycles.
[0008]
Even when the electrode group is wound in a cylindrical shape or in a flat shape, the area of the facing electrode plate is almost equal, and the capacity between the positive electrode and the negative electrode is kept substantially the same. Yes. However, when the electrode plate group is formed flat, the end portion on the winding start side of the negative electrode plate 8 is opposed to be wrapped in the connecting piece 19a on the winding start side of the positive electrode plate 7, and the end portion is opposed to the end portion. When limited, the capacity balance between the positive electrode and the negative electrode is greatly inclined toward the positive electrode side. For this reason, it was found that lithium ions released from the positive electrode during charging could not be occluded between the carbon material layers of the negative electrode, and excess lithium ions were deposited on the negative electrode surface.
[0009]
The present invention was devised in view of the above problems that occur when a flat plate group is formed by winding flatly, and has a structure that prevents breakage and lithium dendrite from occurring in a current collector during winding. An object is to provide a flat battery.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the first invention of the present application uses a positive electrode plate material in which a positive electrode active material layer is formed on both sides of a positive electrode current collector, and a plurality of positive electrode laminate surfaces are connected with connecting pieces to form a strip shape. A positive electrode plate and a negative electrode plate formed in a strip shape by connecting a plurality of negative electrode laminate surfaces with connecting pieces using a negative electrode plate material having negative electrode active material layers formed on both sides of a negative electrode current collector, the positive electrode laminate surface And an electrode plate group formed by covering the sealing case with a cap case via a gasket so that the negative electrode laminate surface and the negative electrode laminate surface are alternately laminated via separators. In the flat battery accommodated in the space, the winding start side end of the negative electrode plate is disposed at the innermost peripheral portion, and the winding start side of the positive electrode plate is wrapped most around the winding start side end of the negative electrode plate A connecting piece located on the negative electrode plate and the It is a plate is wound, the negative electrode plate winding start side end portion most winding start the wider than the width of the connecting piece insulating the inner surface of the coupling piece located on the side of the resin tape of the positive electrode plate encasing the Is characterized by being attached.
[0011]
According to the first aspect of the present invention, when the positive electrode plate and the negative electrode plate are wound flatly via the separator, the connecting piece located on the most winding start side is bent with a small bending radius. In the current collector, especially the positive electrode plate, when the aluminum foil is used for the current collector, the current collector may be broken by pulling due to bending, but a resin tape is stuck on the inner surface side where the connecting piece is folded Therefore, the bending radius is increased by the thickness of the resin tape, and it is not bent at an acute angle. Therefore, even when aluminum foil is used as the current collector of the positive electrode plate, the current collector is not damaged by bending. it can. Further, since the connecting piece on the winding start side of the positive electrode plate is disposed so as to wrap around the winding start end portion of the negative electrode plate, if limited to the end portion, this end portion is exposed to the cut surface of the current collector. As a result, the capacity balance between the positive electrode and the negative electrode is greatly inclined to the positive electrode side, and lithium ions released from the positive electrode during charging cannot be stored in the negative electrode, and excess lithium metal is deposited on the negative electrode surface. However, since the resin tape is adhered to the connecting piece of the positive electrode plate, lithium ions released from the positive electrode can be reduced, and the deposition of lithium metal on the opposing negative electrode is suppressed. Moreover, even if there is precipitation, a short circuit does not occur because it can be firmly insulated with tape.
[0012]
In the above configuration, the resin tape is formed on the non-adhesive surface in which about 1/2 of the winding direction of the positive electrode plate does not adhere to the connecting piece, so that the positive electrode active material is bent when the resin tape adheres to the positive electrode active material layer. The movement of the material layer is not constrained, and the positive electrode active material layer inside the connecting piece is not compressed and formed into a lump shape at the time of bending, and it is suppressed that a force in the extending direction is applied to the current collector.
[0013]
The second invention of the present application also includes a positive electrode plate formed in a strip shape by connecting a plurality of positive electrode laminate surfaces with connecting pieces using a positive electrode plate material having a positive electrode active material layer formed on both surfaces of a positive electrode current collector, and a negative electrode Using the negative electrode plate material in which the negative electrode active material layer is formed on both surfaces of the current collector, the negative electrode plate formed in a strip shape by connecting a plurality of negative electrode laminate surfaces with connecting pieces, the positive electrode laminate surface and the negative electrode laminate surface Doo is electrode plate group that has been the wound flatly folded by a connecting piece to be laminated alternately through the separator, are accommodated in an internal space formed by covering a cap case via a gasket to the sealing case In the flat battery, the winding start side end of the negative electrode plate is disposed at the innermost peripheral portion, and the connection located on the most winding start side of the positive electrode plate so as to wrap around the winding start side end of the negative electrode plate A piece is placed and the negative electrode plate and the positive electrode plate are wound. Becomes, the separator interposed between the the connecting piece located closest to the winding start side of the positive electrode plate encasing winding start side end portion of the negative electrode plate, a winding start-side end portion of the negative electrode plate opposed thereto, the separator It is characterized by being subjected to a pore sealing process for closing the pores existing in the film.
[0014]
According to the second aspect of the invention, since the connecting piece on the winding start side of the positive electrode plate is disposed so as to wrap around the winding start end of the negative electrode plate, the capacity balance between the positive electrode and the negative electrode is greatly inclined toward the positive electrode side, and the positive electrode is charged during charging. Lithium ions released from the anode could not be occluded in the negative electrode, and excess lithium metal was deposited on the negative electrode surface, but by closing the pores of the separator facing the connecting piece of the positive electrode plate, Since the lithium ions released from the positive electrode do not pass through the separator, the lithium ions occluded at the winding start end of the negative electrode plate are reduced, and the deposition of lithium metal on the negative electrode plate is suppressed. Accordingly, it is possible to improve the decrease in charge / discharge cycle life and the occurrence of internal short circuit due to the deposition of lithium metal.
[0015]
The pore sealing process in the above configuration is a process of applying a coating agent that penetrates into a part of the separator and plugs the pores, a process of thermally melting a part of the separator to close the pores, and a part of the separator. Any of the processes of sticking the resin tape can be applied.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
[0017]
As shown in FIG. 1, the coin-type battery according to the present embodiment accommodates the electrode plate group 10 in a sealing case 5 formed in a circular half-shell, and has a positive electrode lead 26 drawn out from the electrode plate group 10. The cap case 4 is welded with the negative electrode lead 27 to the sealing case 5, the electrolyte is injected into the sealing case 5, and the cap case 4 is placed on the gasket 6 disposed on the side periphery of the sealing case 5, The inner space is sealed by caulking that bends the opening end of the cap case 4 inward.
[0018]
As shown in FIG. 2 (a), the electrode plate group 10 uses a negative electrode plate material in which a negative electrode active material layer is formed on both surfaces of a negative electrode current collector that is a copper foil, as shown in FIG. 2 (a). In addition, six negative electrode laminate surfaces 23a to 23f are connected by negative electrode connecting pieces 25a to 25e, and a negative electrode plate 12 having a negative electrode lead 27 formed at the end of winding and a positive electrode on both surfaces of a positive electrode current collector that is an aluminum foil. Using the positive electrode plate material on which the active material layer is formed, as shown in FIG. 2B, the five positive electrode laminate surfaces 22a to 22e formed in an area smaller than the area of the negative electrode laminate surfaces 23a to 23f are connected to the positive electrode. It connects with the piece 24a-24d, and the positive electrode plate 11 in which the positive electrode lead 26 was formed at the end of winding was wound flatly via a separator. In order to wind so that the positive electrode laminated surfaces 22a to 22e and the negative electrode laminated surfaces 23a to 23f are alternately laminated via the separator, the positive electrode connecting pieces 24a to 24d and the negative electrode connecting pieces 25a to 25e are illustrated as shown in the figure. The width is formed so as to increase sequentially from the winding start side to the winding end side. Further, negative electrode position deviation detection holes 43 and 44 having a small diameter are formed on the winding start side and the winding end side of the negative electrode plate 12, and the negative electrode lamination surfaces 23a and 23f on which the negative electrode position deviation detection holes 43 and 44 are formed are formed. The positive electrode laminate surfaces 22a, 22b, and 22e of the positive electrode plate 11 facing each other are formed with large-diameter positive electrode misalignment detection holes 41a, 41b, and 42, and the negative electrode misalignment detection holes 43 and 44 and the positive electrode laminate surface after winding. The X-ray inspection of the coincidence of 22a, 22b and 22e makes it possible to detect the winding deviation when it is wound flat.
[0019]
FIG. 3 schematically shows a state in which the positive electrode plate 11 and the negative electrode plate 12 are flatly wound via the separator 13. Each positive electrode connecting piece 24 a to 24 d of the positive electrode plate 11 and each of the negative electrode plate 12 are shown in FIG. By bending and winding the negative electrode connecting pieces 25 a to 25 e, the positive electrode stacked surfaces 22 a to 22 e and the negative electrode stacked surfaces 23 a to 23 f are alternately stacked via the separator 13. Thus, when the positive electrode plate 11 and the negative electrode plate 12 are wound flatly, the positive electrode connection piece 24a positioned on the winding start side of the positive electrode plate 11, and the negative electrode connection piece 25a positioned on the winding start side of the negative electrode plate 12 Is bent at 180 degrees with a small bending radius. As described above, the aluminum foil used as the positive electrode current collector of the positive electrode plate 11 has low bending strength and tensile strength. When the aluminum foil is bent with a small bending radius, the positive electrode active material layer inside the bending is compressed, The positive electrode current collector may be broken due to the force in the pulling direction.
[0020]
In order to prevent breakage of the positive electrode current collector and to suppress the generation of dendrites and to improve insulation, the positive electrode connecting piece 24a on the winding start side of the positive electrode plate 11, as shown in FIG. Is attached with a resin tape 45 formed of an insulating resin on the inner surface when it is bent. As shown in FIG. 4, the positive electrode connecting piece 24a to which the resin tape 45 is attached is bent so as to wrap around the winding start end of the negative electrode plate 12, so that it has a small bending radius. When the positive electrode connecting piece 24a is bent at an acute angle, the positive electrode connecting piece 24a Since the positive electrode active material layer 11b existing inside is compressed and a force acts in the extending direction on the aluminum that is the positive electrode current collector 11a, the positive electrode current collector 11a may be broken. However, since the resin tape 45 is attached to the surface of the positive electrode active material layer 11b existing inside, the bending radius of the positive electrode connecting piece 24a is increased by the thickness of the resin tape 45, and the positive electrode active material layer 11b is bent at an acute angle. Therefore, the positive electrode current collector 11a can be prevented from being broken, in addition, generation of dendrites can be suppressed, and insulation can be improved.
[0021]
The sticking of the resin tape 45 is preferably in a state where there is no adhesive surface in about ½ of the length direction of the positive electrode plate 11, and the positive electrode active material layer 11b is not restrained by the sticking, and the positive electrode connecting piece The positive electrode active material layer 11b is not restricted from being compressed and swollen in the shape of a bump when being bent at 24a. In a state where the positive electrode active material layer 11b is compressed and there is no escape place, the positive electrode current collector 12a is subjected to a force in the pulling direction to be broken, but the movement of the positive electrode active material layer 11b is reduced by reducing the adhesive surface. There is no regulation. The method of partially eliminating the adhesive surface of the resin tape 45 is also possible by a method of partially applying an adhesive to the resin tape 45, but as shown in FIG. A method of folding back to the side and covering the adhesive surface by adhering about 1/2 of the adhesive surfaces to each other is suitable.
[0022]
Moreover, the resin tape 45 has an ion impermeability that inhibits the permeation of lithium ions as its material, and preferably has a chemical stability against a non-aqueous solvent. By sticking this resin tape 45 on the positive electrode connecting piece 24a, lithium ions released from the positive electrode connecting piece 24a can be reduced. Since the end portion on the winding start side of the negative electrode plate 12 is encased in the positive electrode connecting piece 24a, the capacity balance is greatly inclined to the positive electrode side, and lithium ions released from the positive electrode during charging cannot be occluded in the negative electrode, and excessive lithium ions Is deposited on the surface of the negative electrode as lithium metal, and there is a problem of charge / discharge cycle characteristics and safety deterioration due to the deposition of lithium metal. However, the resin tape 45 is attached to the positive electrode connection piece 24a that wraps the end of the negative electrode plate 12. By sticking, the lithium ion which detach | leaves from the positive electrode connection piece 24a can be decreased, and it can suppress that lithium metal precipitates on the negative electrode plate 12 which opposes.
[0023]
As shown in FIG. 6, the lithium metal is deposited in a pore 47 at a portion 47 located between the end portion of the separator 13 on the winding start side of the negative electrode plate 12 and the positive electrode connecting piece 24 a of the positive electrode plate 11. It can suppress also by processing. Since the separator 13 retains the electrolytic solution and does not hinder ionic conductivity, a microporous film made of a polyolefin resin having a sufficient aperture area is used. Therefore, the end of the separator 13 on the winding start side of the negative electrode plate 12 is used. By closing the pores located between the positive electrode plate 11 and the positive electrode connecting piece 24a, the lithium ions moving from the positive electrode connecting piece 24a to the end of the negative electrode plate can be restricted. It is possible to suppress the precipitation of lithium metal.
[0024]
In the pore sealing process, the coating material that enters the separator 13 and closes the pores is positioned between the end of the separator 13 on the winding start side of the negative electrode plate 12 and the positive electrode connecting piece 24a of the positive electrode plate 11. A method of applying to the portion 47, a method of thermally melting the portion 47 located between the winding start side end of the negative electrode plate 12 of the separator 13 and the positive electrode connecting piece 24a of the positive electrode plate 11, and closing the pores; A method of applying a resin tape to the portion 47 located between the end of the negative electrode plate 12 on the winding start side and the positive electrode connecting piece 24a of the positive electrode plate 11 can be applied. However, the effect of preventing breakage of the positive electrode connecting piece 24a on the winding start side of the positive electrode plate 11 by these pore sealing processes cannot be expected.
[0025]
【The invention's effect】
As described above, according to the present invention, when the secondary battery is configured in a flat shape using the electrode group having a winding structure, when the electrode group is wound in a flat shape, a bent portion of the electrode plate on the winding start side is formed. Can be solved by a simple means of sticking a resin tape. Moreover, generation | occurrence | production of lithium dendrite can also be suppressed by sticking of a resin tape. The generation of this lithium dendrite can also be suppressed by pore sealing treatment such as sticking a resin tape or applying a resin.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a flat battery.
FIG. 2A is a development view showing a negative electrode plate and FIG. 2B showing a positive electrode plate.
FIG. 3 is a schematic diagram showing a winding state of an electrode plate group.
FIG. 4 is a partial cross-sectional view showing a state where a resin tape is attached.
FIG. 5 is a partial cross-sectional view showing a method for attaching a resin tape.
FIG. 6 is a partial cross-sectional view showing a configuration in which a separator is subjected to pore sealing treatment.
7A and 7B are development views showing a conventional negative electrode plate and FIG. 7B a positive electrode plate, respectively.
FIG. 8 is a schematic view showing a winding state of a conventional electrode plate group.
FIG. 9 is a cross-sectional view of a conventional coin battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Electrode plate group 11 Positive electrode plate 12 Negative electrode plate 13 Separator 22a-22e Positive electrode laminated surface 23a-23f Negative electrode laminated surface 24a-24d Positive electrode connection piece 25a-25e Negative electrode connection piece 45 Resin tape

Claims (6)

正極集電体の両面に正極活物質層が形成された正極板材料を用いて複数の正極積層面を連結片で連結して帯状に形成した正極板と、負極集電体の両面に負極活物質層が形成された負極板材料を用いて複数の負極積層面を連結片で連結して帯状に形成した負極板とを、前記正極積層面と前記負極積層面とがセパレータを介して交互に積層されるように前記連結片で折り曲げて扁平に巻回した極板群が、封口ケースにガスケットを介してキャップケースを被せて形成される内部空間に収容されてなる扁平形電池において、
前記負極板の巻き始め側端部が最内周部分に配置され、該負極板の巻き始め側端部を包み込むように前記正極板の最も巻き始め側に位置する連結片が配置されて、前記負極板と前記正極板とが巻回されてなり、
前記負極板の巻き始め側端部を包み込む前記正極板最も巻き始め側に位置する連結片の内面側に前記連結片の幅より広い絶縁性の樹脂テープが貼着されてなることを特徴とする扁平形電池。
Using a positive electrode plate material having a positive electrode active material layer formed on both sides of a positive electrode current collector, a positive electrode plate formed by connecting a plurality of positive electrode laminate surfaces with connecting pieces and formed into a strip shape, and a negative electrode active material on both sides of the negative electrode current collector A negative electrode plate formed by connecting a plurality of negative electrode laminate surfaces with connecting pieces using a negative electrode plate material on which a material layer is formed, and the positive electrode laminate surface and the negative electrode laminate surface are alternately arranged via separators. In the flat battery in which the electrode plate group that is folded flatly by the connecting piece so as to be laminated is accommodated in an internal space formed by covering the sealing case with a cap case via a gasket,
A winding start side end portion of the negative electrode plate is disposed at an innermost peripheral portion, and a connecting piece located at the most winding start side of the positive electrode plate is disposed so as to wrap around the winding start side end portion of the negative electrode plate, The negative electrode plate and the positive electrode plate are wound,
An insulating resin tape wider than the width of the connecting piece is attached to the inner surface side of the connecting piece positioned on the most winding start side of the positive electrode plate that wraps around the winding start side end of the negative electrode plate. Flat battery.
樹脂テープは、正極板の巻回方向の約1/2が連結片に粘着しない非粘着面に形成されてなる請求項1に記載の扁平形電池。  The flat battery according to claim 1, wherein the resin tape is formed on a non-adhesive surface in which about 1/2 of the winding direction of the positive electrode plate does not adhere to the connecting piece. 正極集電体の両面に正極活物質層が形成された正極板材料を用いて複数の正極積層面を連結片で連結して帯状に形成した正極板と、負極集電体の両面に負極活物質層が形成された負極板材料を用いて複数の負極積層面を連結片で連結して帯状に形成した負極板とを、前記正極積層面と前記負極積層面とがセパレータを介して交互に積層されるように前記連結片で折り曲げて扁平に巻回た極板群が、封口ケースにガスケットを介してキャップケースを被せて形成される内部空間に収容されてなる扁平形電池において、
前記負極板の巻き始め側端部が最内周部分に配置され、該負極板の巻き始め側端部を包み込むように前記正極板の最も巻き始め側に位置する連結片が配置されて、前記負極板と前記正極板とが巻回されてなり、
前記負極板の巻き始め側端部を包み込む前記正極板最も巻き始め側に位置する連結片と、これに対向する負極板の巻き始め側端部との間に介在するセパレータに、セパレータに存在する細孔を塞ぐ細孔封止処理が施されてなることを特徴とする扁平形電池。
Using a positive electrode plate material having a positive electrode active material layer formed on both sides of a positive electrode current collector, a positive electrode plate formed by connecting a plurality of positive electrode laminate surfaces with connecting pieces and formed into a strip shape, and a negative electrode active material on both sides of the negative electrode current collector A negative electrode plate formed by connecting a plurality of negative electrode laminate surfaces with connecting pieces using a negative electrode plate material on which a material layer is formed, and the positive electrode laminate surface and the negative electrode laminate surface are alternately arranged via separators. electrode group was wound flatly folded at the connecting piece so as to be stacked in flat-shaped battery comprising housed in an internal space formed by covering a cap case via a gasket to the sealing case,
A winding start side end portion of the negative electrode plate is disposed at an innermost peripheral portion, and a connecting piece located at the most winding start side of the positive electrode plate is disposed so as to wrap around the winding start side end portion of the negative electrode plate, The negative electrode plate and the positive electrode plate are wound,
Present in the separator is a separator interposed between the connecting piece located on the most winding start side of the positive electrode plate that wraps around the winding start side end portion of the negative electrode plate and the winding start side end portion of the negative electrode plate opposed thereto. A flat battery characterized by being subjected to a pore sealing process for closing the pores.
細孔封止処理は、セパレータの一部分の細孔に侵入して、細孔を塞ぐ塗剤を塗布する請求項3に記載の扁平形電池。  The flat battery according to claim 3, wherein the pore sealing treatment is performed by applying a coating agent that penetrates into a part of the pores of the separator and blocks the pores. 細孔封止処理は、セパレータの一部分を熱溶融させて細孔を塞ぐ請求項3に記載の扁平形電池。  The flat battery according to claim 3, wherein the pore sealing process closes the pores by thermally melting a part of the separator. 細孔封止処理は、セパレータの一部分に樹脂テープを貼着する請求項3に記載の扁平形電池。  The flat battery according to claim 3, wherein the pore sealing treatment is performed by attaching a resin tape to a part of the separator.
JP2001355143A 2001-11-20 2001-11-20 Flat battery Expired - Fee Related JP4060576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355143A JP4060576B2 (en) 2001-11-20 2001-11-20 Flat battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355143A JP4060576B2 (en) 2001-11-20 2001-11-20 Flat battery

Publications (2)

Publication Number Publication Date
JP2003157902A JP2003157902A (en) 2003-05-30
JP4060576B2 true JP4060576B2 (en) 2008-03-12

Family

ID=19166890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355143A Expired - Fee Related JP4060576B2 (en) 2001-11-20 2001-11-20 Flat battery

Country Status (1)

Country Link
JP (1) JP4060576B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148844A4 (en) * 2021-07-14 2024-01-17 Contemporary Amperex Technology Co Ltd Electrode assembly, processing method and apparatus, battery cell, battery, and electronic device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201185B2 (en) * 2003-07-11 2008-12-24 日立マクセル株式会社 Coin type non-aqueous secondary battery
JP4744076B2 (en) * 2003-12-09 2011-08-10 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP2005310577A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
JP2005310578A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
JP5554181B2 (en) * 2010-08-30 2014-07-23 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP6782548B2 (en) * 2016-03-11 2020-11-11 セイコーインスツル株式会社 Electrochemical cell and manufacturing method of electrochemical cell
WO2018155248A1 (en) * 2017-02-24 2018-08-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN109088090B (en) * 2018-10-17 2024-03-22 深圳市迪丰能源科技有限公司 Button cell with winding mode and manufacturing method thereof
JP6752862B2 (en) * 2018-11-14 2020-09-09 セイコーインスツル株式会社 Electrochemical cell
CN110112456A (en) * 2019-06-06 2019-08-09 东莞市能优能源科技有限公司 Lap wound battery core and the method for folding battery core and being utilized respectively its production battery
JP7288816B2 (en) * 2019-06-25 2023-06-08 セイコーインスツル株式会社 Electrochemical cell and manufacturing method thereof
JP7304788B2 (en) * 2019-10-07 2023-07-07 セイコーインスツル株式会社 electrochemical cell
WO2021174418A1 (en) * 2020-03-03 2021-09-10 宁德新能源科技有限公司 Battery
CA3171539A1 (en) 2020-08-21 2022-02-24 Contemporary Amperex Technology Co., Limited Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly
WO2023142064A1 (en) * 2022-01-29 2023-08-03 宁德时代新能源科技股份有限公司 Battery cell, battery, electric device, and method and device for manufacturing battery cell
CN116315239B (en) * 2023-05-25 2023-07-25 南京莱迪新能源科技有限公司 Linear thermal conduction type disassembly device and method for lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148844A4 (en) * 2021-07-14 2024-01-17 Contemporary Amperex Technology Co Ltd Electrode assembly, processing method and apparatus, battery cell, battery, and electronic device

Also Published As

Publication number Publication date
JP2003157902A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP4060576B2 (en) Flat battery
JP5527176B2 (en) Non-aqueous electrolyte battery
KR100686813B1 (en) Secondary Battery
JP4497904B2 (en) Lithium secondary battery and manufacturing method thereof
KR100587438B1 (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP3556636B2 (en) Flat secondary battery and method of manufacturing the same
JP4236308B2 (en) Lithium ion battery
JP4031635B2 (en) Electrochemical devices
US20220223948A1 (en) Electrochemical apparatus and electronic apparatus
JP2011216297A (en) Wound electrode group, battery including the same, and method of manufacturing battery
JP2004139961A (en) Manufacturing method of battery and battery
JP2001155779A (en) Nonaqueous electrolyte battery
JP4686807B2 (en) Winding battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP4199839B2 (en) Swirl type lithium ion battery electrode and spiral type lithium ion battery using the same
WO2020004135A1 (en) Nonaqueous electrolyte secondary battery
US20220223982A1 (en) Electrochemical device and electronic device containing the same
KR101222405B1 (en) rechargeable battery having jelly roll type electrode assembly
KR20100005792A (en) Secondary battery and method of producing the same
JPH10308206A (en) Cylindrical non-aqueous electrolyte battery
JP2023523740A (en) Lithium ion secondary electrochemical cell
JP4363558B2 (en) Flat non-aqueous electrolyte secondary battery
KR100659860B1 (en) Electrode for a rechargeable battery and the battery employing the same
JP4018881B2 (en) Electrochemical devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees