JP4060349B2 - Method for manufacturing hydrogen generator - Google Patents

Method for manufacturing hydrogen generator Download PDF

Info

Publication number
JP4060349B2
JP4060349B2 JP2007531529A JP2007531529A JP4060349B2 JP 4060349 B2 JP4060349 B2 JP 4060349B2 JP 2007531529 A JP2007531529 A JP 2007531529A JP 2007531529 A JP2007531529 A JP 2007531529A JP 4060349 B2 JP4060349 B2 JP 4060349B2
Authority
JP
Japan
Prior art keywords
cylinder
spacer
flow path
hydrogen generator
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007531529A
Other languages
Japanese (ja)
Other versions
JPWO2007125870A1 (en
Inventor
豊 吉田
裕二 向井
猛 富澤
和忠 桃田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP4060349B2 publication Critical patent/JP4060349B2/en
Publication of JPWO2007125870A1 publication Critical patent/JPWO2007125870A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0465Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being concentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/00849Stationary elements outside the bed, e.g. baffles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49361Tube inside tube

Description

本発明は、水素生成装置の製造方法に関する。特に、内筒、外筒ならびに前記内筒及び外筒の間に配設されたスペーサーを有する、水素生成装置の製造方法に関する。   The present invention relates to a method for manufacturing a hydrogen generator. In particular, the present invention relates to a method for manufacturing a hydrogen generator having an inner cylinder, an outer cylinder, and a spacer disposed between the inner cylinder and the outer cylinder.

燃料電池発電装置用の水素生成装置としては、天然ガス、LPG、ガソリン、ナフサ、灯油またはメタノール等の炭化水素化合物である原料を、水蒸気を用いて改質し、水素主体の改質ガスを生成する水素生成装置が一般的に用いられている。   Hydrogen generators for fuel cell power generators use hydrogen to reform raw materials that are hydrocarbon compounds such as natural gas, LPG, gasoline, naphtha, kerosene, or methanol to produce hydrogen-based reformed gas A hydrogen generator is generally used.

この水素生成装置は、水を蒸発させる水蒸発部、及び水蒸発と原料ガスとを600〜800℃程度の高温で反応させて改質ガスを生成する改質部を有して構成されている。   This hydrogen generator has a water evaporating section for evaporating water, and a reforming section for generating a reformed gas by reacting water evaporation with a raw material gas at a high temperature of about 600 to 800 ° C. .

水素生成装置は、一般的に、内筒、外筒ならびに前記内筒及び外筒の間に配設されたスペーサーを有し、該スペーサーによって規定された流路に水及び原料が供給され、該流路が加熱されて、水蒸気を含む原料ガスが生成される水蒸発部と、触媒を有し、該触媒が加熱されて、前記水蒸気を含む原料ガスから水素を含む改質ガスが生成される改質部と、を備えている。   The hydrogen generator generally has an inner cylinder, an outer cylinder, and a spacer disposed between the inner cylinder and the outer cylinder, and water and raw materials are supplied to a flow path defined by the spacer, The flow path is heated to have a water evaporation section in which a raw material gas containing water vapor is generated and a catalyst, and the catalyst is heated to generate a reformed gas containing hydrogen from the raw material gas containing water vapor. And a reforming section.

特許文献1の(実施の形態2)及び[図1]には、水または水蒸気の流路がスペーサーによって構成された水蒸発部が開示されている。流路の構成によって、水が水蒸発部に滞留している時間が長くなる。また、流路がらせん状に構成されることによって、滞留する水の周方向の分布が均一化される。したがって、燃焼ガスから水への伝熱量が増えるため、水蒸気改質反応に供される水蒸気量を増大させることができる。つまり、原料の転化率を高めることができ、改質ガス中の水素量を増大させることができる。
特開2003−252604号公報
(Embodiment 2) and [FIG. 1] of Patent Document 1 disclose a water evaporation section in which a flow path of water or water vapor is constituted by a spacer. Due to the configuration of the flow path, the time during which the water stays in the water evaporation section becomes longer. Further, since the flow path is formed in a spiral shape, the distribution of the staying water in the circumferential direction is made uniform. Therefore, since the amount of heat transfer from the combustion gas to water increases, the amount of steam provided for the steam reforming reaction can be increased. That is, the conversion rate of the raw material can be increased, and the amount of hydrogen in the reformed gas can be increased.
JP 2003-252604 A

ところで、外筒と内筒との間に配設されるスペーサーは内筒及び外筒の両者に接合させるとより効果的である。すなわち、内筒あるいは外筒とスペーサーとの間に間隙があると、水が流路から脱漏してしまい、水の水蒸発部における滞在時間が短くなる。また、流路がらせん状に構成されている場合には、周方向の温度分布が不均一となり、水蒸気量の増大が抑制されてしまう。   By the way, it is more effective if the spacer disposed between the outer cylinder and the inner cylinder is joined to both the inner cylinder and the outer cylinder. That is, if there is a gap between the inner cylinder or the outer cylinder and the spacer, water leaks from the flow path, and the residence time of the water in the water evaporation section is shortened. Moreover, when the flow path is formed in a spiral shape, the temperature distribution in the circumferential direction becomes non-uniform, and an increase in the amount of water vapor is suppressed.

他方で、スペーサーが接合された一方の筒を他方の筒に圧入するという方法も考えられるが、外筒及び内筒と流路規定部材との間の間隙を完全に塞ぐことは困難であった。   On the other hand, a method of press-fitting one cylinder joined with a spacer into the other cylinder is also conceivable, but it is difficult to completely close the gap between the outer cylinder and the inner cylinder and the flow path defining member. .

また、内筒及び外筒の二重筒間の空間は狭いので、溶接あるいはロウ付けといった接合手段によってスペーサーと筒壁との間を気密的に接合する作業は困難であった。また、仮に作業性の困難を克服したとしても、ロウ付けあるいは溶接といった接合手段は、接合部への加熱を要するので、熱影響による変形が内筒あるいは外筒に生じ、水素生成装置の製作精度が低下するという問題が残る。また、溶接あるいはロウ付けにはコストと労力とがかかり量産性の面からも改善の余地が残る。   In addition, since the space between the double cylinders of the inner cylinder and the outer cylinder is narrow, it has been difficult to hermetically join the spacer and the cylinder wall by a joining means such as welding or brazing. Even if the workability is overcome, the joining means such as brazing or welding requires heating of the joint, so that deformation due to the heat occurs in the inner cylinder or the outer cylinder, and the production accuracy of the hydrogen generator is increased. The problem remains. Also, welding or brazing is costly and labor intensive, leaving room for improvement in terms of mass productivity.

本発明は、上記のような課題を解決するためになされたもので、量産性に優れた水素生成装置の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a hydrogen generator excellent in mass productivity.

上記課題を解決するために、第1の本発明の水素生成装置の製造方法は、内筒、外筒ならびに前記内筒及び外筒の間に配設されたスペーサーを有し、該スペーサーによって規定された流路に水及び原料が供給され、該流路が加熱されて、水蒸気を含む原料ガスが生成される水蒸発部と、
触媒を有し、該触媒が加熱されて、前記水蒸気を含む原料ガスから水素を含む改質ガスが生成される改質部と、を備える、水素生成装置の製造方法の製造方法であって、
前記内筒と外筒との間に前記スペーサーを配設する配設工程と、
前記内筒を拡管して、前記スペーサーによって規定された流路を形成する拡管工程と、を有する。このように構成すると、水素生成装置の生産方法の量産性を向上させることができる。
In order to solve the above problems, a method for producing a hydrogen generator of the first aspect of the present invention includes an inner cylinder, an outer cylinder, and a spacer disposed between the inner cylinder and the outer cylinder, and is defined by the spacer. Water and a raw material are supplied to the flow path, and the flow path is heated to generate a raw material gas containing water vapor;
A reforming unit that has a catalyst and is heated to generate a reformed gas containing hydrogen from the raw material gas containing steam,
An arrangement step of arranging the spacer between the inner cylinder and the outer cylinder;
Expanding the inner cylinder to form a flow path defined by the spacer. If comprised in this way, the mass-productivity of the production method of a hydrogen generator can be improved.

第2の本発明の水素生成装置の製造方法は、前記スペーサーが、らせん状の棒材であり、前記内筒と外筒との間にらせん状の流路が形成されるとよい。このように構成すると、水蒸発部の周方向の温度の不均一性を抑制することができる。   In the method for producing a hydrogen generator according to the second aspect of the present invention, the spacer may be a spiral rod, and a spiral flow path may be formed between the inner cylinder and the outer cylinder. If comprised in this way, the nonuniformity of the temperature of the circumferential direction of a water evaporation part can be suppressed.

第3の本発明の水素生成装置の製造方法は、前記棒材は、断面が円形又は楕円形の棒であるとよい。このように構成すると、外筒及び内筒の損傷を抑制することができる。   In the method for producing a hydrogen generator according to the third aspect of the present invention, the bar may be a bar having a circular or elliptical cross section. If comprised in this way, damage to an outer cylinder and an inner cylinder can be suppressed.

第4の本発明の水素生成装置の製造方法は、前記スペーサーによって規定された前記流路の断面積が、該流路の上流側より下流側の方が大きくなっているとよい。このように構成すると、水の蒸発による圧力変動の影響を緩和することができる。   In the method for producing a hydrogen generator according to the fourth aspect of the present invention, the cross-sectional area of the flow path defined by the spacer is preferably larger on the downstream side than on the upstream side of the flow path. If comprised in this way, the influence of the pressure fluctuation by evaporation of water can be relieved.

第5の本発明の水素生成装置の製造方法は、前記配設工程は、前記外筒の内周面に前記スペーサーを仮設する第1工程と、
前記第1工程の後に前記スペーサーの内周側に前記内筒を配置する第2工程と、を有するとよい。このように構成すると、第3工程をより容易、かつ第3工程における損傷の発生を抑制することができる。
In the method for producing a hydrogen generator of the fifth aspect of the present invention, the disposing step includes a first step of temporarily installing the spacer on an inner peripheral surface of the outer cylinder,
It is good to have the 2nd process of arranging the inner cylinder on the inner circumference side of the spacer after the 1st process. If comprised in this way, generation | occurrence | production of the damage in a 3rd process can be suppressed more easily and a 3rd process.

第6の本発明の水素生成装置の製造方法は、前記配設工程は、前記内筒の外周面に前記スペーサーを仮設する第1工程と、
前記第1工程の後に前記スペーサーの外周側に前記外筒を配置する第2工程と、を有するとよい。このように構成すると、第1工程S1を容易に実施することができる。
In the method for manufacturing a hydrogen generator according to the sixth aspect of the present invention, the disposing step includes a first step of temporarily installing the spacer on the outer peripheral surface of the inner cylinder,
It is good to have the 2nd process of arranging the outer cylinder on the perimeter side of the spacer after the 1st process. If comprised in this way, 1st process S1 can be implemented easily.

第7の本発明の水素生成装置の製造方法は、前記内筒の材質が前記外筒の材質に比べて延伸性に富んでいるとよい。このように構成すると、第3工程S3において、棒材を外筒及び内筒の間により強い力で接合させることができる。   In the method for manufacturing a hydrogen generator according to the seventh aspect of the present invention, it is preferable that the material of the inner cylinder is richer in stretchability than the material of the outer cylinder. If comprised in this way, in 3rd process S3, a bar can be joined by stronger force between an outer cylinder and an inner cylinder.

以上のように、本発明の水素生成装置の製造方法は、水素生成装置の製造方法の量産性を向上させることができるという効果を奏する。   As described above, the method for manufacturing a hydrogen generator according to the present invention has the effect of improving the mass productivity of the method for manufacturing a hydrogen generator.

以下、本発明を実施するための最良の形態について図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施形態)
図1は、本発明の実施形態の水素生成装置の構成を模式的に示す断面図である。図1に示すように、本実施形態の水素生成装置100は、円柱体の改質部1と、改質部1の外周側に配設される円筒状の水蒸発部2と、改質部1と水蒸発部2との間に配設される円筒状の断熱壁13と、改質部1及び水蒸発部2の上方を覆うカバー4と、を有して構成される。改質部1と水蒸発部2とは底壁29を共有して構成されている。
(Embodiment)
FIG. 1 is a cross-sectional view schematically showing a configuration of a hydrogen generator according to an embodiment of the present invention. As shown in FIG. 1, the hydrogen generator 100 of this embodiment includes a columnar reforming unit 1, a cylindrical water evaporation unit 2 disposed on the outer peripheral side of the reforming unit 1, and a reforming unit. 1 and the water evaporation part 2, and the cylindrical heat insulation wall 13 and the cover 4 which covers the upper part of the modification part 1 and the water evaporation part 2 are comprised. The reforming unit 1 and the water evaporation unit 2 are configured to share the bottom wall 29.

改質部1は、燃焼ガスを発生するバーナ16が底壁29の中心に配設され、バーナ16に覆い被さるようにして有蓋円筒状の改質室10が配設されて、構成されている。   The reforming unit 1 is configured such that a burner 16 that generates combustion gas is disposed at the center of the bottom wall 29, and a covered cylindrical reforming chamber 10 is disposed so as to cover the burner 16. .

改質室10は、バーナ16と同軸上に配設されている。燃焼室17は、改質室10の蓋部下面及び内周面と、バーナ16を有する底面とによって区画されて形成されている。燃焼室17には円筒状の輻射体61がバーナ16と同軸上に配設されている。輻射体61と改質室10の内周面との間に形成された筒状の空間には、燃焼ガス流路12の第1部分12Aが構成されている。このような構成によって、燃焼室17で発生した燃焼熱を、効率的に改質室10に輻射することができる。また、燃焼室17から流出する燃焼ガスの保有熱を効率的に改質室10に伝達することができる。   The reforming chamber 10 is disposed coaxially with the burner 16. The combustion chamber 17 is defined by a lower surface and an inner peripheral surface of the lid portion of the reforming chamber 10 and a bottom surface having the burner 16. A cylindrical radiator 61 is disposed coaxially with the burner 16 in the combustion chamber 17. In a cylindrical space formed between the radiator 61 and the inner peripheral surface of the reforming chamber 10, a first portion 12A of the combustion gas channel 12 is configured. With such a configuration, the combustion heat generated in the combustion chamber 17 can be efficiently radiated to the reforming chamber 10. Further, the retained heat of the combustion gas flowing out from the combustion chamber 17 can be efficiently transmitted to the reforming chamber 10.

改質室10には、水蒸気改質触媒が充填されている触媒層が収容されている。改質室10の蓋部中央には水蒸発部2上部から延びる連絡流路26が接続されている。このような構成によって、水蒸発部2から連絡流路26を経由して供給される水蒸気を含む原料ガスは、改質室10内上部に導かれ、改質室10内を下方へと流通する。そして、水蒸気を含む原料ガスは、改質室10内において、燃焼室からの加熱による触媒作用によって水蒸気改質反応を起こし、水素を含む改質ガスが生成される。   The reforming chamber 10 accommodates a catalyst layer filled with a steam reforming catalyst. A communication channel 26 extending from the upper part of the water evaporation unit 2 is connected to the center of the lid of the reforming chamber 10. With such a configuration, the raw material gas containing water vapor supplied from the water evaporation unit 2 via the communication channel 26 is guided to the upper part in the reforming chamber 10 and flows downward in the reforming chamber 10. . The raw material gas containing water vapor undergoes a water vapor reforming reaction in the reforming chamber 10 by a catalytic action by heating from the combustion chamber, and a reformed gas containing hydrogen is generated.

また、改質室10の外周面には改質ガス流路11が形成されている。改質ガス流路11は、改質室10の下端から外周面に沿って改質室10の上端まで延び、さらに改質ガス排出口27にまで延びて形成されている。このような構成によって、改質室10において生成された改質ガスは、改質室10下端から改質ガス流路11を経由して、改質ガス排出口27から水素生成装置100の外部へと排出される。   A reformed gas channel 11 is formed on the outer peripheral surface of the reforming chamber 10. The reformed gas channel 11 extends from the lower end of the reforming chamber 10 to the upper end of the reforming chamber 10 along the outer peripheral surface, and further extends to the reformed gas discharge port 27. With such a configuration, the reformed gas generated in the reforming chamber 10 passes from the lower end of the reforming chamber 10 via the reformed gas flow path 11 to the outside of the hydrogen generator 100 from the reformed gas discharge port 27. And discharged.

一方、改質室10の下方から外周側及び上方にかけて燃焼ガス流路12の第2部分12Bが形成されている。燃焼ガス流路の第2部分12Bは、バーナ16を有する底壁29と改質室10の底面との間隙から、改質ガス流路11の外周に沿って改質室10の上端まで延び、断熱壁13の上方から断熱壁13の外側の水蒸発部2へと延びて形成されている。このような構成によって、燃焼ガスは、改質ガス流路11内の改質ガスの温度低下を抑制し、水蒸発部2の熱源として利用される。そして、燃焼ガスは水蒸発部2を経由した後、改質部1及び水蒸発部2の上方のカバー4内に進入し、カバー4に形成された燃焼ガス排出口15から水素生成装置100の外部へと排出される。   On the other hand, a second portion 12B of the combustion gas passage 12 is formed from the lower side of the reforming chamber 10 to the outer peripheral side and the upper side. The second portion 12B of the combustion gas channel extends from the gap between the bottom wall 29 having the burner 16 and the bottom surface of the reforming chamber 10 to the upper end of the reforming chamber 10 along the outer periphery of the reforming gas channel 11. The heat insulating wall 13 is formed so as to extend from above the water evaporating part 2 outside the heat insulating wall 13. With such a configuration, the combustion gas suppresses the temperature drop of the reformed gas in the reformed gas passage 11 and is used as a heat source for the water evaporation unit 2. The combustion gas passes through the water evaporation unit 2 and then enters the cover 4 above the reforming unit 1 and the water evaporation unit 2, and the combustion gas discharge port 15 formed in the cover 4 causes the hydrogen generator 100 to It is discharged outside.

水蒸発部2は、外周上部に原料入口19及び水入口20が形成され、内周上部に燃焼ガス流路の第2部分12Bが接続されている。   In the water evaporation section 2, a raw material inlet 19 and a water inlet 20 are formed at the upper outer periphery, and a second portion 12B of the combustion gas flow path is connected to the upper inner periphery.

水蒸発部2は、外周筒54及び内周筒50の間に第1仕切り筒51、第2仕切り筒52及び第3仕切り筒53を有する、多重筒構造を有している。   The water evaporation unit 2 has a multiple cylinder structure having a first partition cylinder 51, a second partition cylinder 52, and a third partition cylinder 53 between the outer peripheral cylinder 54 and the inner peripheral cylinder 50.

外周筒54は、水素生成装置100の外周面を形成している。外周筒54の下端には、水素生成装置100の底部を構成する底壁29が形成されている。そして、外周筒54の上端には、水素生成装置100の蓋部を構成するカバー4が形成されている。外周筒54の上部には、原料入口19及び水入口20が形成されている。   The outer peripheral cylinder 54 forms the outer peripheral surface of the hydrogen generator 100. A bottom wall 29 that forms the bottom of the hydrogen generator 100 is formed at the lower end of the outer cylinder 54. And the cover 4 which comprises the cover part of the hydrogen generator 100 is formed in the upper end of the outer periphery cylinder 54. As shown in FIG. A raw material inlet 19 and a water inlet 20 are formed in the upper part of the outer peripheral tube 54.

内周筒50は、断熱壁13の外周に沿って形成されており、下端が底板29の縁部に全周に及んで接合されて、上端は断熱壁13の上端付近まで延びている。なお、断熱壁13が、気密性のある材料である場合には、内周筒50を不要とすることもできる。   The inner peripheral cylinder 50 is formed along the outer periphery of the heat insulating wall 13, the lower end is joined to the edge of the bottom plate 29 over the entire periphery, and the upper end extends to the vicinity of the upper end of the heat insulating wall 13. In addition, when the heat insulation wall 13 is an airtight material, the inner peripheral cylinder 50 can be omitted.

第1仕切り筒51は、内周筒50の外周側に配設され、内周筒50との間に燃焼ガス室流路の第3部分12Cが形成されている。第1仕切り筒51の上端は、内周側に延びて、改質室10の上端に全周に及んで接合している。第1仕切り筒51の下端は、底壁29と少なくとも一部が離隔している。このような構成によって、改質室10の上端まで延びた燃焼ガス流路12の第2部分12Bが断熱壁13の上方から燃焼ガス流路の第3部分12Cに接続されている。すなわち、燃焼ガスは燃焼ガス流路の第3部分12C内を上方から下方へと流通し、第1仕切り筒51の下端から外周側へと流出するようになる。   The first partition cylinder 51 is disposed on the outer peripheral side of the inner peripheral cylinder 50, and the third portion 12 </ b> C of the combustion gas chamber flow path is formed between the first partition cylinder 51 and the inner peripheral cylinder 50. The upper end of the first partition tube 51 extends to the inner peripheral side and is joined to the upper end of the reforming chamber 10 over the entire periphery. The lower end of the first partition cylinder 51 is at least partially separated from the bottom wall 29. With such a configuration, the second portion 12B of the combustion gas passage 12 extending to the upper end of the reforming chamber 10 is connected to the third portion 12C of the combustion gas passage from above the heat insulating wall 13. That is, the combustion gas flows from the upper part to the lower part in the third portion 12C of the combustion gas flow path, and flows out from the lower end of the first partition cylinder 51 to the outer peripheral side.

第2仕切り筒52は、第1仕切り筒51の外周側に配設され、第1仕切り筒51との間に燃焼ガス流路の第4部分12Dが形成されている。燃焼ガス流路の第4部分12Dの上端は開放されている。ここでは、第2仕切り筒52の上端は、外周側に延びて、外周筒54に全周に及んで接合している。第2仕切り筒52の下端は、底壁29に全周に及んで接合している。このような構成によって、第1仕切り筒51の下端まで延びた燃焼ガス流路12が燃焼ガス流路の第3部分12Cに接続されている。すなわち、第1仕切り筒51の下端から流出してくる燃焼ガスは、第2燃焼ガス室61内を下方から上方へと流通し、第2仕切り筒52の上端からカバー4内の空間へ流出する。   The second partition cylinder 52 is disposed on the outer peripheral side of the first partition cylinder 51, and a fourth portion 12 </ b> D of the combustion gas flow path is formed between the second partition cylinder 52 and the first partition cylinder 51. The upper end of the fourth portion 12D of the combustion gas flow path is open. Here, the upper end of the second partition tube 52 extends to the outer peripheral side and is joined to the outer peripheral tube 54 over the entire periphery. The lower end of the second partition cylinder 52 is joined to the bottom wall 29 over the entire circumference. With such a configuration, the combustion gas passage 12 extending to the lower end of the first partition cylinder 51 is connected to the third portion 12C of the combustion gas passage. That is, the combustion gas flowing out from the lower end of the first partition tube 51 flows from the lower combustion gas chamber 61 upward to the upper side, and flows out from the upper end of the second partition tube 52 into the space in the cover 4. .

第3仕切り筒53は、外周筒54と第2仕切り筒52の間に配設され、外周筒54との間に第1蒸発室18が形成され、第2仕切り筒52との間に第2蒸発室22が形成されている。第1水蒸発室18及び第2水蒸発室22の上端は封止されている。ここでは、第2仕切り筒52の上端は、外周側に延びて、外周筒54に全周に及んで接合している。第2仕切り筒52の下端は、底壁29に全周に及んで接合している。また、第3仕切り筒53の上端は、外周側に延びてして、外周筒54に全周に及んで接合している。第3仕切り筒53の下端は、底壁29と少なくとも一部が離隔している。このような構成によって、原料入口19及び水入口20から供給される流体が、第1蒸発室18内を下方に流通し、第3仕切り筒53の下端から第2蒸発室22の下端へと流通する原料ガス流路が形成される。   The third partition tube 53 is disposed between the outer peripheral tube 54 and the second partition tube 52, the first evaporation chamber 18 is formed between the outer peripheral tube 54, and the second partition tube 52 is between the second partition tube 52 and the second partition tube 52. An evaporation chamber 22 is formed. The upper ends of the first water evaporation chamber 18 and the second water evaporation chamber 22 are sealed. Here, the upper end of the second partition tube 52 extends to the outer peripheral side and is joined to the outer peripheral tube 54 over the entire periphery. The lower end of the second partition cylinder 52 is joined to the bottom wall 29 over the entire circumference. Further, the upper end of the third partition tube 53 extends to the outer peripheral side and is joined to the outer peripheral tube 54 over the entire periphery. The lower end of the third partition cylinder 53 is at least partially separated from the bottom wall 29. With such a configuration, the fluid supplied from the raw material inlet 19 and the water inlet 20 flows downward in the first evaporation chamber 18 and flows from the lower end of the third partition tube 53 to the lower end of the second evaporation chamber 22. A raw material gas flow path is formed.

また、第2蒸発室22の上部には、改質室10の蓋部中央に接合して延びる連絡流路26が形成されている。連絡流路26はダクト状あるいは筒状の部材によって構成されている。このような構造によって、原料ガスは、第2蒸発室22の下端から上方へと流通し、連絡流路26から改質室10の上部へと流通する。   In addition, a communication channel 26 is formed in the upper part of the second evaporation chamber 22 so as to be joined to the center of the lid portion of the reforming chamber 10. The communication channel 26 is configured by a duct-like or cylindrical member. With such a structure, the source gas flows upward from the lower end of the second evaporation chamber 22 and flows from the communication channel 26 to the upper portion of the reforming chamber 10.

なお、第2仕切り筒52は、第2蒸発室22と燃焼ガス流路の第4部分12Dとの隔壁となり、燃焼ガスの余熱が、第1蒸発室18及び第2蒸発室22に伝熱される。   The second partition cylinder 52 serves as a partition wall between the second evaporation chamber 22 and the fourth portion 12D of the combustion gas flow path, and the remaining heat of the combustion gas is transferred to the first evaporation chamber 18 and the second evaporation chamber 22. .

ここで、第1蒸発室18には、棒材(スペーサー)31が、外周筒54及び第3仕切り筒53の双方に接合して配設されている。この棒材31の配設によって、第1蒸発室18内の原料と水の流路30が形成されている。また、流路30の形成によって、原料と水とが第1蒸発室18に滞在する時間を延長させることができるので、燃焼ガスから原料と水への伝熱量が増え、より効率的に水を蒸発させることができる。   Here, in the first evaporation chamber 18, a bar (spacer) 31 is disposed so as to be joined to both the outer peripheral cylinder 54 and the third partition cylinder 53. By providing the bar 31, a flow path 30 for the raw material and water in the first evaporation chamber 18 is formed. Moreover, since the time for which the raw material and water stay in the first evaporation chamber 18 can be extended by forming the flow path 30, the amount of heat transfer from the combustion gas to the raw material and water is increased, and water can be more efficiently supplied. Can be evaporated.

また、棒材31はらせん状の棒材である。したがって、第1蒸発室18内の原料と水との流路30がらせん状に構成される。このような構成によって、滞留する原料と水との周方向の分布の不均一性が抑制される。   The bar 31 is a spiral bar. Therefore, the flow path 30 between the raw material and water in the first evaporation chamber 18 is formed in a spiral shape. With such a configuration, uneven distribution in the circumferential direction between the remaining raw material and water is suppressed.

また、流路30の断面積は、上流側より下流側で大きくなっている。流路30の下流部分では、水が水蒸気に変わり体積が膨張して流路圧損が大きくなる。流路圧損が大きくなると、水を供給するための水供給器の出力が影響を受けて水の供給量が不安定になり、改質器での水素生成量が変動してしまう。あるいは、流路圧損の増大に伴って、水の供給量が減少すると、改質器で水蒸気改質が十分に行えなくなり、原料中の炭素が析出して流路閉塞を起こし、運転が継続できない状態になる可能性もある。   Moreover, the cross-sectional area of the flow path 30 is larger on the downstream side than on the upstream side. In the downstream portion of the flow path 30, the water is changed to water vapor, the volume is expanded, and the flow path pressure loss is increased. When the flow path pressure loss becomes large, the output of the water supply device for supplying water is affected, the water supply amount becomes unstable, and the hydrogen generation amount in the reformer fluctuates. Alternatively, if the supply amount of water decreases with an increase in flow path pressure loss, steam reforming cannot be performed sufficiently in the reformer, carbon in the raw material precipitates and the flow path is blocked, and the operation cannot be continued. There is also the possibility of entering a state.

そこで、流路30の断面積が、上流側より下流側の方を大きくすることにより、水の蒸発による流路30における圧力変動の影響を緩和することができる。   Therefore, by making the cross-sectional area of the flow channel 30 larger on the downstream side than on the upstream side, the influence of pressure fluctuations in the flow channel 30 due to water evaporation can be mitigated.

棒材31の断面は円形、楕円形、多角形のいずれでもよい。   The cross section of the bar 31 may be circular, elliptical or polygonal.

また、第2蒸発室22内にも、らせん状の棒材を配設してもよい。このような構成によって、第2蒸発室22内を通過する水蒸気の滞留時間を長くすることができるので、原料の温度をより高くすることができる。   In addition, a spiral bar may be disposed in the second evaporation chamber 22. With such a configuration, the residence time of the water vapor that passes through the second evaporation chamber 22 can be increased, so that the temperature of the raw material can be further increased.

以上のように構成された本実施形態の水素生成装置100の動作を説明する。   Operation | movement of the hydrogen generator 100 of this embodiment comprised as mentioned above is demonstrated.

バーナ16で生じた燃焼ガスは、改質室10、改質ガス流路11、燃焼ガス流路12を順次加熱しながら、カバー4内に流出し、燃焼ガス排出口15から水素生成装置100の外部へ排出される。   The combustion gas generated in the burner 16 flows out into the cover 4 while heating the reforming chamber 10, the reformed gas channel 11, and the combustion gas channel 12 in order, and from the combustion gas discharge port 15, It is discharged outside.

水Yが水入口20から供給され、原料Xが原料入口19から供給される。原料X及び水Yは第1蒸発室18及び第2蒸発室内を流通し、燃焼ガス流路の第3及び第4部分12C、12Dからの伝熱によって、水が気化して水蒸気を含む原料ガスが生成される。また、原料が液体である場合は原料も気化する。ここで水入口20は、第1蒸発室18、すなわち、外周筒54のできる限り上方に設けられていることが望ましい。このようにすると、水Yの第1蒸発室18内滞留時間が長くなるので、より効率的に蒸気を生成することができる。また、第1蒸発室18内には液相の水と飽和水蒸気とが流れているので、水素生成装置100の外周面の温度、すなわち外周筒54の温度はおよそ100℃以下に低温化することができる。そして、水素生成装置100周囲への放熱量を小さくすることができるので、水素生成装置100の熱効率が向上する。   Water Y is supplied from the water inlet 20, and the raw material X is supplied from the raw material inlet 19. The raw material X and the water Y circulate in the first evaporation chamber 18 and the second evaporation chamber, and the raw material gas containing water vapor is vaporized by the heat transfer from the third and fourth portions 12C and 12D of the combustion gas flow path. Is generated. Further, when the raw material is liquid, the raw material is also vaporized. Here, the water inlet 20 is desirably provided as high as possible in the first evaporation chamber 18, that is, the outer peripheral tube 54. If it does in this way, since the residence time in the 1st evaporation chamber 18 of the water Y becomes long, a vapor | steam can be produced | generated more efficiently. Further, since liquid-phase water and saturated water vapor flow in the first evaporation chamber 18, the temperature of the outer peripheral surface of the hydrogen generator 100, that is, the temperature of the outer peripheral cylinder 54 is lowered to about 100 ° C. or less. Can do. And since the amount of heat radiation to the periphery of the hydrogen generator 100 can be reduced, the thermal efficiency of the hydrogen generator 100 is improved.

水蒸発部2で生成された水蒸気を含む原料ガスは、第2蒸発室22から連絡流路26を経由して改質室10に供給される。改質室10において、水蒸気改質触媒の触媒作用による水蒸気改質反応によって原料ガスは水素を含む改質ガスに改質される。なお、この水蒸気改質反応は700℃程度の高温で生じる吸熱反応であり、輻射筒61からの輻射熱及び燃焼ガスからの伝熱を利用して行われる。このようにして生成された改質ガスは改質ガス流路11を通過して改質ガス排出口27から外部へ排出される。   The raw material gas containing water vapor generated in the water evaporation unit 2 is supplied from the second evaporation chamber 22 to the reforming chamber 10 via the communication channel 26. In the reforming chamber 10, the raw material gas is reformed into a reformed gas containing hydrogen by a steam reforming reaction by the catalytic action of the steam reforming catalyst. The steam reforming reaction is an endothermic reaction that occurs at a high temperature of about 700 ° C., and is performed using radiant heat from the radiant cylinder 61 and heat transfer from the combustion gas. The reformed gas generated in this way passes through the reformed gas channel 11 and is discharged from the reformed gas outlet 27 to the outside.

水素生成装置100から排出された改質ガスは、さらに一酸化炭素濃度が低減されて、アノードガスとして燃料電池101に供給される。なお、一酸化炭素の低減には、一般的には変成反応や一酸化炭素選択酸化反応が利用される。   The reformed gas discharged from the hydrogen generator 100 is further reduced in carbon monoxide concentration and supplied to the fuel cell 101 as anode gas. In order to reduce carbon monoxide, generally, a transformation reaction or a carbon monoxide selective oxidation reaction is used.

ここで、水素生成装置100の製造方法のうち、本発明の特徴である第1蒸発室18の製造方法を説明する。   Here, the manufacturing method of the 1st evaporation chamber 18 which is the characteristics of this invention among the manufacturing methods of the hydrogen generator 100 is demonstrated.

なお、第1蒸発室18の製造方法において、外周筒54が外筒に相当し、第3仕切り筒53が内筒に相当する。   In the method for manufacturing the first evaporation chamber 18, the outer peripheral cylinder 54 corresponds to the outer cylinder, and the third partition cylinder 53 corresponds to the inner cylinder.

図2は、第1蒸発室の製造工程を示すフロー図である。   FIG. 2 is a flowchart showing the manufacturing process of the first evaporation chamber.

第1工程S1では、棒材31を所定の位置に仮設する。   In the first step S1, the bar 31 is temporarily installed at a predetermined position.

図3は、第1工程を模式的に示した断面図である。   FIG. 3 is a cross-sectional view schematically showing the first step.

なお、図3乃至図10においては、便宜的に流路30の断面積が均一な状態で示している。棒材31のらせん間隔を調節することによって、流路30の断面積が上流側より下流側で大きくなっている状態で本製造方法を実施できる。   3 to 10, for the sake of convenience, the cross-sectional area of the flow path 30 is shown in a uniform state. By adjusting the helical interval of the bar 31, this manufacturing method can be carried out in a state where the cross-sectional area of the flow path 30 is larger on the downstream side than on the upstream side.

図3に示すように、ここでは、外周筒54の内径にほぼ一致する外径を有するらせん状に屈曲している棒材31が予め用意される。そして、棒材31が、外周筒(外筒)54の中に挿入され、外周筒54の内周面にらせん状に仮設される。ここでは、棒材31の全長において数カ所がスポット溶接または点付け溶接によって外周筒54の内周面に接合されている。接合は、らせん状棒材31の1周ごとに1箇所行うことが接合の確実性と加工の容易性を両立させる上で合理的である。また拡管後の応力の分布も均一になるので理想的である。図中、符号201は外周筒54の中心軸を示す。   As shown in FIG. 3, here, a rod 31 bent in a spiral shape having an outer diameter substantially matching the inner diameter of the outer peripheral cylinder 54 is prepared in advance. Then, the bar 31 is inserted into the outer peripheral cylinder (outer cylinder) 54 and temporarily installed in a spiral manner on the inner peripheral surface of the outer peripheral cylinder 54. Here, several places in the entire length of the bar 31 are joined to the inner peripheral surface of the outer peripheral cylinder 54 by spot welding or spot welding. It is reasonable that the joining is performed at one place for each round of the spiral rod 31 in order to achieve both the joining reliability and the ease of processing. It is also ideal because the stress distribution after tube expansion is uniform. In the figure, reference numeral 201 denotes the central axis of the outer peripheral cylinder 54.

第2工程S2では、第3仕切り筒(内筒)53と外周筒(外筒)54とを同軸上の二重筒状に配置する。   In the second step S2, the third partition tube (inner tube) 53 and the outer tube (outer tube) 54 are arranged in a coaxial double tube shape.

図4は、第2工程を模式的に示した断面図である。   FIG. 4 is a cross-sectional view schematically showing the second step.

図4に示すように、第3仕切り筒53が棒材31を有する外周筒54の内周側に配置される。第3仕切り筒53と外周筒54とは台103に支持されて配置される。また、第3仕切り筒53と外周筒54とは同軸上(中心軸201上)に位置するように配置される。   As shown in FIG. 4, the third partition cylinder 53 is disposed on the inner peripheral side of the outer peripheral cylinder 54 having the bar 31. The third partition cylinder 53 and the outer peripheral cylinder 54 are supported by the base 103 and arranged. Further, the third partition cylinder 53 and the outer peripheral cylinder 54 are disposed so as to be coaxially (on the central axis 201).

第1工程S1及び第2工程S2によって、第3仕切り筒53と外周筒54との間に棒材31が配設される。すなわち、第1工程S1及び第2工程S2によって配設工程が構成される。   The bar 31 is disposed between the third partition cylinder 53 and the outer peripheral cylinder 54 by the first process S1 and the second process S2. That is, the disposing step is constituted by the first step S1 and the second step S2.

第3工程(拡管工程)S3では、第3仕切り筒(内筒)53が拡管される。   In the third step (expansion step) S3, the third partition tube (inner tube) 53 is expanded.

図5は、第3工程を模式的に示した断面図である。   FIG. 5 is a cross-sectional view schematically showing the third step.

図5に示すように、第3仕切り筒53が拡管具Eによって内側から押圧されて拡管される。   As shown in FIG. 5, the third partition tube 53 is pressed and expanded from the inside by the tube expansion tool E.

ここでは、拡管具Eは円錐台形の先端を有する。そして、拡管具Eの先端が第3仕切り筒53の中心軸201上を円錐台頂上を前にして移動して、第3仕切り筒53内に進入し、それによって第3仕切り筒53が拡管される。   Here, the tube expander E has a frustoconical tip. Then, the tip of the tube expander E moves on the center axis 201 of the third partition tube 53 with the top of the truncated cone facing forward, and enters the third partition tube 53, whereby the third partition tube 53 is expanded. The

拡管具Eの円錐台の底面径は、棒材31が外周筒54と第3仕切り筒53との両者に接合した状態において、第3仕切り筒53の筒内径とほぼ一致する寸法となっている。具体的には、第3工程の試験的実施によって好適な寸法が見出される。すなわち、棒材31が外周筒54と第3仕切り筒53との隙間が埋まる程度にまで接合するような拡管具Eの寸法が好適である。   The bottom diameter of the truncated cone of the expansion tool E is a dimension that substantially matches the cylinder inner diameter of the third partition cylinder 53 in a state where the bar 31 is joined to both the outer peripheral cylinder 54 and the third partition cylinder 53. . Specifically, suitable dimensions are found by trial execution of the third step. That is, the dimension of the tube expansion tool E is preferable such that the bar 31 is joined to such an extent that the gap between the outer peripheral tube 54 and the third partition tube 53 is filled.

第3工程S3によって、第1蒸発室18内にらせん状の流路が形成される。   A spiral flow path is formed in the first evaporation chamber 18 by the third step S3.

また、拡管具Eは第3仕切り筒53の円形断面を維持したまま、ほぼ均等に筒径を拡幅させる。したがって、外周筒54及び第3仕切り筒53の全周方向において確実に棒材31と接合させることができる。すなわち、らせん状の流路からの流体の脱漏が抑制される。   Further, the tube expansion tool E widens the tube diameter substantially uniformly while maintaining the circular cross section of the third partition tube 53. Therefore, the rod 31 can be reliably joined in the entire circumferential direction of the outer peripheral cylinder 54 and the third partition cylinder 53. That is, the leakage of the fluid from the spiral channel is suppressed.

ここで、第1工程S1において、棒材31は先に外筒54の内側に配設することによって、第3工程S3を、つまり、内筒53の拡管作業を、容易にすることができる。つまり、棒材31を内筒に配設する場合(変形例2参照)に比べて、内筒53の変形量を小さくすることができるので、第3工程S3における消費エネルギーを小さくすることができ、かつ変形に伴う棒材31の損傷(割れ)の発生を回避することができる。   Here, in the first step S <b> 1, the rod 31 is first disposed inside the outer cylinder 54, thereby facilitating the third step S <b> 3, that is, the tube expansion work of the inner cylinder 53. That is, since the amount of deformation of the inner cylinder 53 can be reduced compared to the case where the bar 31 is disposed in the inner cylinder (see Modification 2), the energy consumption in the third step S3 can be reduced. Further, it is possible to avoid the occurrence of damage (cracking) of the bar 31 due to deformation.

また、内筒53及び外筒54には剛性の異なる材質を用い、内筒53には外筒54に比べて延伸性に富む材料を用いると良い。例えば、内筒53及び外筒54をステンレス鋼で構成する場合、内筒53には延伸性に富むオーステナイト系ステンレス鋼を用い、外筒54には内筒53に比べて剛性の高いオーステナイト系ステンレス鋼に比べ安価なフェライト系ステンレスを用いるとよい。これによって、第3工程S3において、外筒54の内筒53への反力が大きくなるので、棒材31を外筒54及び内筒53の間により強い力で接合させることができる。     In addition, it is preferable to use materials having different rigidity for the inner cylinder 53 and the outer cylinder 54, and to use a material rich in extensibility as compared with the outer cylinder 54 for the inner cylinder 53. For example, when the inner cylinder 53 and the outer cylinder 54 are made of stainless steel, the inner cylinder 53 is made of austenitic stainless steel having high extensibility, and the outer cylinder 54 is austenitic stainless steel having higher rigidity than the inner cylinder 53. It is better to use ferritic stainless steel that is cheaper than steel. Thereby, in the third step S3, the reaction force of the outer cylinder 54 to the inner cylinder 53 is increased, so that the bar 31 can be joined between the outer cylinder 54 and the inner cylinder 53 with a stronger force.

さらに、第3工程は、溶接作業やロウ付け作業に比べて容易であるので、量産性に優れている。   Furthermore, since the third step is easier than welding and brazing operations, it is excellent in mass productivity.

なお、棒材31の断面は円形あるいは楕円形が好適である。このように構成すると、棒材31は外周筒54及び第3仕切り筒53との圧接面に角部を有さないので、外周筒54及び第3仕切り筒53の筒壁の応力集中が抑制され、外周筒54及び第3仕切り筒53の損傷を抑制することができる。   The cross section of the bar 31 is preferably a circle or an ellipse. If comprised in this way, since the bar 31 does not have a corner | angular part in the press-contact surface with the outer periphery cylinder 54 and the 3rd partition cylinder 53, the stress concentration of the cylinder wall of the outer periphery cylinder 54 and the 3rd partition cylinder 53 is suppressed. Further, damage to the outer peripheral cylinder 54 and the third partition cylinder 53 can be suppressed.

また、台103は、第3工程S3の途上において撤去される。これによって、拡管具Eと台103との干渉が防止され、拡管具Eは第3仕切り筒53を貫通することができる。   Moreover, the stand 103 is removed in the middle of the third step S3. As a result, interference between the tube expander E and the base 103 is prevented, and the tube expander E can penetrate the third partition tube 53.

そして、順不同に、第3仕切り筒53及び外周筒54の上端側が全周に及んで接合される工程と、外周筒54の下端側が全周に及んで底壁29に接合される工程と、外周筒54の上部には原料入口19及び水入口20が形成される工程とが行われて、第1蒸発室18が形成される。   And, in a random order, the step of joining the upper end side of the third partition cylinder 53 and the outer peripheral cylinder 54 over the entire circumference, the process of joining the lower end side of the outer peripheral cylinder 54 over the entire circumference, and joining the bottom wall 29; A process of forming the raw material inlet 19 and the water inlet 20 is performed at the upper part of the tube 54 to form the first evaporation chamber 18.

[変形例1]
本変形例は、第3工程において、拡管具Eと第3仕切り筒53との間に割り子金型Kを介在させたものである。
[Modification 1]
In the third modification, a split mold K is interposed between the tube expander E and the third partition tube 53 in the third step.

図6は、第3工程の変形例1を模式的に示した断面図であって、拡管前の状態を示している。図7は、図6の拡管後の状態を示した図である。   FIG. 6 is a cross-sectional view schematically showing Modification 1 of the third step, showing a state before the tube expansion. FIG. 7 is a view showing a state after the tube expansion in FIG. 6.

図6に示すように、割り子金型(以下、単に金型という)Kは、所定数の分割片(割り子)で構成されている。これらの分割片は、所定の円周上に周方向に所定の間隔で配置された状態で、その全体(その包絡面)が円筒形状を成すように形成されている。この円筒形状においては、外径が第3仕切り筒53の内径とほぼ同じであり、かつ内面が拡管具Eの円錐面と同じテーパの逆円錐状を成している。   As shown in FIG. 6, a split mold (hereinafter simply referred to as a mold) K is composed of a predetermined number of divided pieces (splits). These divided pieces are formed so as to form a cylindrical shape as a whole (its envelope surface) in a state of being arranged on the predetermined circumference at predetermined intervals in the circumferential direction. In this cylindrical shape, the outer diameter is substantially the same as the inner diameter of the third partition cylinder 53, and the inner surface forms an inverted conical shape having the same taper as the conical surface of the tube expansion device E.

第2工程S2において、金型Kの前記所定数の分割片が、外周筒54及び第3仕切り筒53と共に台103上に配置される(図6参照)。また、金型Kは、第3仕切り筒53の内周面に接しかつ周方向において前記所定の間隔を有するように配置される。   In the second step S2, the predetermined number of divided pieces of the mold K are arranged on the table 103 together with the outer peripheral cylinder 54 and the third partition cylinder 53 (see FIG. 6). Further, the mold K is disposed so as to contact the inner peripheral surface of the third partition tube 53 and to have the predetermined interval in the circumferential direction.

次いで、第3工程S3において、図6に示すように、金型K(所定数の分割片)の中に拡管具Eが進入する。そして、図7に示すように、拡管具Eの円錐面が金型Kの各分割片の内面に接触する。拡管具Eは、この円錐面を各分割片の内面を押圧して、金型Kを外周方向に押し出しながら進む。これにより、仕切り筒53が拡管される。本変形例よれば、より広い面において金型Kが第3仕切り筒53を押圧するので、第3仕切り筒53をより迅速に拡管することができる。   Next, in the third step S3, as shown in FIG. 6, the tube expansion tool E enters the mold K (a predetermined number of divided pieces). Then, as shown in FIG. 7, the conical surface of the tube expander E contacts the inner surface of each divided piece of the mold K. The tube expansion tool E advances while pushing the conical surface against the inner surface of each divided piece to push the mold K in the outer peripheral direction. Thereby, the partition cylinder 53 is expanded. According to this modification, since the mold K presses the third partition tube 53 on a wider surface, the third partition tube 53 can be expanded more quickly.

[変形例2]
第1工程S1において、棒材31を第3仕切り筒53の外周面に配設することもできる。
[Modification 2]
In the first step S <b> 1, the bar 31 can be disposed on the outer peripheral surface of the third partition tube 53.

図8は、変形例2の第1工程を模式的に示した断面図である。   FIG. 8 is a cross-sectional view schematically showing the first step of the second modification.

図8に示すように、第3仕切り筒53の外径にほぼ一致する外径を有するらせん状に屈曲している棒材31が予め用意される。そして、棒材31が、仕切り筒53の外周面にらせん状に仮設される。ここでは、棒材31の全長において数カ所がスポット溶接または点付け溶接によって第3仕切り筒53の外周面に接合されている。これによって、第1工程S1において棒材31への接近が容易になるので、第1工程S1を容易に実施することができる。   As shown in FIG. 8, a bar 31 bent in a spiral shape having an outer diameter substantially matching the outer diameter of the third partition cylinder 53 is prepared in advance. Then, the bar 31 is temporarily installed on the outer peripheral surface of the partition cylinder 53 in a spiral shape. Here, several places in the entire length of the bar 31 are joined to the outer peripheral surface of the third partition cylinder 53 by spot welding or spot welding. This facilitates the approach to the bar 31 in the first step S1, so that the first step S1 can be easily performed.

図9は、変形例2の第2工程を模式的に示した断面図である。   FIG. 9 is a cross-sectional view schematically showing the second step of the second modification.

図9に示すように、外周筒54が棒材31を有する第3仕切り筒53の外周側に配置される。第3仕切り筒53と外周筒54とは台103に支持されて配置される。また、第3仕切り筒53と外周筒54とは同軸上(中心軸201上)に位置するように配置される。   As shown in FIG. 9, the outer peripheral tube 54 is disposed on the outer peripheral side of the third partition tube 53 having the bar 31. The third partition cylinder 53 and the outer peripheral cylinder 54 are supported by the base 103 and arranged. Further, the third partition cylinder 53 and the outer peripheral cylinder 54 are disposed so as to be coaxially (on the central axis 201).

図10は、変形例2の第3工程を模式的に示した断面図である。   FIG. 10 is a cross-sectional view schematically showing the third step of the second modification.

図10に示すように、第3仕切り筒53が、拡管具Eによって、内側から押圧されて拡管され、棒材31もらせん径を拡大するように変形される。そして、棒材31が外周筒54と第3仕切り筒53とに接合する。ここで、棒材31は、外周筒54及び第3仕切り筒53に接合して支持されるので、拡管時に仮設用のスポット溶接または点付け溶接が外れても構わない。   As shown in FIG. 10, the third partition tube 53 is pressed and expanded from the inside by the tube expansion tool E, and the bar 31 is also deformed to increase the spiral diameter. Then, the bar 31 is joined to the outer peripheral cylinder 54 and the third partition cylinder 53. Here, since the bar 31 is joined to and supported by the outer peripheral tube 54 and the third partition tube 53, the temporary spot welding or spot welding may be removed during the tube expansion.

なお、この方法は、延伸性に富む(伸び率が大きい)材料を棒材31に用いた場合に特に有効である。   This method is particularly effective when a material rich in stretchability (high elongation) is used for the bar 31.

以上、本発明の実施形態を詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、本発明の水素生成装置は、第2蒸発室22内にも、第1蒸発室18と同様にして、らせん状の流路を構成することができる。   As mentioned above, although embodiment of this invention was described in detail, this invention is not limited to the said embodiment. For example, the hydrogen generating apparatus of the present invention can form a spiral flow path in the second evaporation chamber 22 in the same manner as the first evaporation chamber 18.

すなわち、第2蒸発室22の製造方法において、第3仕切り筒53が外筒に相当し、第2仕切り筒52が内筒に相当する。   That is, in the manufacturing method of the second evaporation chamber 22, the third partition cylinder 53 corresponds to the outer cylinder, and the second partition cylinder 52 corresponds to the inner cylinder.

具体的には、外周側の第1蒸発室18にらせん状の流路が構成された後に、第1工程S1として、らせん状の棒材が、第3仕切り筒53の内周面あるいは第2仕切り筒52の外周面に仮設される。   Specifically, after the spiral flow path is formed in the first evaporation chamber 18 on the outer peripheral side, the spiral bar is used as the inner peripheral surface of the third partition cylinder 53 or the second as the first step S1. Temporarily provided on the outer peripheral surface of the partition tube 52.

そして、第2工程S2として、第3仕切り筒53の内周側に第2仕切り筒52が配置される。   Then, as the second step S <b> 2, the second partition cylinder 52 is disposed on the inner peripheral side of the third partition cylinder 53.

そして、第2仕切り筒52が拡管されて、第2蒸発室22にらせん状の流路が形成される。   Then, the second partition cylinder 52 is expanded, and a spiral flow path is formed in the second evaporation chamber 22.

また、上述の実施形態では、水蒸発部2である第1蒸発室18において原料及び水が供給されて、改質部1へと流通するようにと構成されている。すなわち、水蒸発部においては水及び原料が気化して水蒸気含む原料ガスが生成される。これに対して、原料が水蒸発部2を経由せずに、他の経路を経て改質部1に流通するように構成することもできる。この場合、第1蒸発室18には水のみが供給されるように構成される。すなわち、水蒸発部においては水が気化して水蒸気が生成される。   In the above-described embodiment, the raw material and water are supplied in the first evaporation chamber 18 which is the water evaporation unit 2 and is distributed to the reforming unit 1. That is, in the water evaporation part, the water and the raw material are vaporized and the raw material gas containing water vapor is generated. On the other hand, it can also be configured such that the raw material does not pass through the water evaporation unit 2 but flows to the reforming unit 1 through another path. In this case, the first evaporation chamber 18 is configured to be supplied with only water. That is, in the water evaporation section, water is vaporized and water vapor is generated.

本発明は、量産性を向上させることができる水素生成装置の製造方法として有用である。   The present invention is useful as a method for manufacturing a hydrogen generator capable of improving mass productivity.

図1は、本発明の実施形態の水素生成装置の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration of a hydrogen generator according to an embodiment of the present invention. 図2は、第1蒸発室の製造工程を示すフロー図である。FIG. 2 is a flowchart showing the manufacturing process of the first evaporation chamber. 図3は、第1工程を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing the first step. 図4は、第2工程を模式的に示した断面図である。FIG. 4 is a cross-sectional view schematically showing the second step. 図5は、第3工程を模式的に示した断面図である。FIG. 5 is a cross-sectional view schematically showing the third step. 図6は、第3工程の変形例1を模式的に示した断面図であって、拡管前の状態を示している。FIG. 6 is a cross-sectional view schematically showing Modification 1 of the third step, showing a state before the tube expansion. 図7は、図6の拡管後の状態を示した図である。FIG. 7 is a view showing a state after the tube expansion in FIG. 6. 図8は、変形例2の第1工程を模式的に示した断面図である。FIG. 8 is a cross-sectional view schematically showing the first step of the second modification. 図9は、変形例2の第2工程を模式的に示した断面図である。FIG. 9 is a cross-sectional view schematically showing the second step of the second modification. 図10は、変形例2の第3工程を模式的に示した断面図である。FIG. 10 is a cross-sectional view schematically showing the third step of the second modification.

符号の説明Explanation of symbols

1 改質部
2 水蒸発部
4 カバー
10 改質室
11 改質ガス流路
12 燃焼ガス流路
12A 第1部分
12B 第2部分
12C 第3部分
12D 第4部分
13 断熱材
15 燃焼ガス排出口
16 バーナ
17 燃焼室
18 第1蒸発室
19 原料入口
20 水入口
22 第2蒸発室
26 連絡流路
27 改質ガス排出口
29 底壁
30 流路
31 棒材
50 内周筒
51 第1仕切り筒
52 第2仕切り筒
53 第3仕切り筒
54 外周筒
61 輻射筒
100 水素生成装置
101 燃料電池
103 台
1 reforming section 2 water evaporation section 4 cover 10 reforming chamber 11 reforming gas flow path 12 combustion gas flow path 12A first part 12B second part 12C third part 12D fourth part 13 heat insulating material 15 combustion gas discharge port 16 Burner 17 Combustion chamber 18 First evaporation chamber 19 Raw material inlet 20 Water inlet 22 Second evaporation chamber 26 Connecting flow path 27 Reformed gas discharge port 29 Bottom wall 30 Flow path 31 Bar material 50 Inner peripheral cylinder 51 First partition cylinder 52 First 2-partition cylinder 53 Third-partition cylinder 54 Outer cylinder 61 Radiation cylinder 100 Hydrogen generator 101 Fuel cell 103

Claims (7)

内筒、外筒ならびに前記内筒及び外筒の間に配設されたスペーサーを有し、該スペーサーによって規定された流路に水が供給され、該流路が加熱されて、水蒸気が生成される水蒸発部と、
改質触媒を有し、前記水蒸気及び原料が該改質触媒に流通することで水素を含む改質ガスが生成される改質部と、を備える、水素生成装置の製造方法であって、
前記内筒と外筒との間に前記スペーサーを配設する配設工程と、
前記内筒を拡管して、前記スペーサーによって規定された流路を形成する拡管工程と、
を有する、水素生成装置の製造方法。
An inner cylinder, an outer cylinder, and a spacer disposed between the inner cylinder and the outer cylinder, water is supplied to a flow path defined by the spacer, and the flow path is heated to generate water vapor. A water evaporation part,
A reforming unit that has a reforming catalyst, and wherein the steam and the raw material are circulated to the reforming catalyst to generate a reformed gas containing hydrogen.
A disposing step of disposing the spacer between the inner cylinder and the outer cylinder;
Expanding the inner cylinder to form a flow path defined by the spacer; and
A method for manufacturing a hydrogen generator.
前記スペーサーが、らせん状の棒材であり、前記内筒と外筒との間にらせん状の流路が形成される、請求項1に記載の水素生成装置の製造方法。  The method for manufacturing a hydrogen generator according to claim 1, wherein the spacer is a spiral rod, and a spiral flow path is formed between the inner cylinder and the outer cylinder. 前記棒材は、断面が円形又は楕円形の棒である、請求項2に記載の水素生成装置の製造方法。  The method of manufacturing a hydrogen generator according to claim 2, wherein the bar is a bar having a circular or elliptical cross section. 前記スペーサーによって規定された前記流路の断面積が、該流路の上流側より下流側の方が大きくなっている、請求項1に記載の水素生成装置の製造方法。  The method for manufacturing a hydrogen generator according to claim 1, wherein a cross-sectional area of the flow path defined by the spacer is larger on the downstream side than on the upstream side of the flow path. 前記配設工程は、前記外筒の内周面に前記スペーサーを仮設する第1工程と、
前記第1工程の後に前記スペーサーの内周側に前記内筒を配置する第2工程と、を有する、請求項1に記載の水素生成装置の製造方法。
The arranging step includes a first step of temporarily installing the spacer on the inner peripheral surface of the outer cylinder,
The method for manufacturing a hydrogen generator according to claim 1, further comprising a second step of arranging the inner cylinder on an inner peripheral side of the spacer after the first step.
前記配設工程は、前記内筒の外周面に前記スペーサーを仮設する第1工程と、
前記第1工程の後に前記スペーサーの外周側に前記外筒を配置する第2工程と、を有する、請求項1に記載の水素生成装置の製造方法。
The arrangement step includes a first step of temporarily installing the spacer on the outer peripheral surface of the inner cylinder,
The method for manufacturing a hydrogen generator according to claim 1, further comprising a second step of arranging the outer cylinder on an outer peripheral side of the spacer after the first step.
前記内筒の材質が前記外筒の材質に比べて延伸性に富んでいる、請求項1に記載の水素生成装置の製造方法。  The method for manufacturing a hydrogen generator according to claim 1, wherein a material of the inner cylinder is richer in stretchability than a material of the outer cylinder.
JP2007531529A 2006-04-26 2007-04-23 Method for manufacturing hydrogen generator Active JP4060349B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006121449 2006-04-26
JP2006121449 2006-04-26
PCT/JP2007/058747 WO2007125870A1 (en) 2006-04-26 2007-04-23 Process for producing hydrogen generator

Publications (2)

Publication Number Publication Date
JP4060349B2 true JP4060349B2 (en) 2008-03-12
JPWO2007125870A1 JPWO2007125870A1 (en) 2009-09-10

Family

ID=38655395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007531529A Active JP4060349B2 (en) 2006-04-26 2007-04-23 Method for manufacturing hydrogen generator

Country Status (4)

Country Link
US (1) US20090133259A1 (en)
JP (1) JP4060349B2 (en)
CN (1) CN101432225B (en)
WO (1) WO2007125870A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348633A (en) * 2009-03-09 2012-02-08 松下电器产业株式会社 Hydrogen generation apparatus, method for manufacturing same, and fuel cell system utilizing same
EP2823527A1 (en) * 2012-03-08 2015-01-14 Helbio Societé Anonyme Hydrogen and Energy Production Systems Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
US8992850B2 (en) * 2012-05-31 2015-03-31 Dana Canada Corporation Floating catalyst/regenerator
EP2707326B1 (en) * 2012-06-25 2017-04-05 Panasonic Intellectual Property Management Co., Ltd. Fuel processor

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1059354A (en) * 1912-10-01 1913-04-22 Heinrich Ehrhardt Method of producing tubes.
US2535470A (en) * 1943-11-11 1950-12-26 Grinnell Corp Method of flaring tubing
US2703921A (en) * 1949-04-14 1955-03-15 Brown Fintube Co Method of making internally finned tubes
US2693026A (en) * 1950-02-17 1954-11-02 Modine Mfg Co Method of making concentric tubes with radial fins
US2966373A (en) * 1959-02-02 1960-12-27 Ici Ltd Tubular inserts
US3339631A (en) * 1966-07-13 1967-09-05 James A Mcgurty Heat exchanger utilizing vortex flow
US3636607A (en) * 1969-12-30 1972-01-25 United Aircraft Prod Method of making a heat exchange tube
US3730229A (en) * 1971-03-11 1973-05-01 Turbotec Inc Tubing unit with helically corrugated tube and method for making same
US3785363A (en) * 1972-04-07 1974-01-15 J Machado Cleaning apparatus for automobiles with indirect heat exchange for heating the cleaning fluid
US3982910A (en) * 1974-07-10 1976-09-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hydrogen-rich gas generator
US3977068A (en) * 1975-07-14 1976-08-31 Balcke-Durr Aktiengesellschaft Device and method for expansion-swaging tubes into the bores of a tube plate
US4069573A (en) * 1976-03-26 1978-01-24 Combustion Engineering, Inc. Method of securing a sleeve within a tube
US4123220A (en) * 1976-03-31 1978-10-31 Ford, Bacon & Davis Texas, Inc. Gas mixer and reactor
US4096616A (en) * 1976-10-28 1978-06-27 General Electric Company Method of manufacturing a concentric tube heat exchanger
US4232735A (en) * 1978-05-05 1980-11-11 Kim Sung C Double-walled finned heat transfer tube
FR2462215A1 (en) * 1979-07-26 1981-02-13 Ferodo Sa METHOD FOR CONFORMING A TUBE ESPECIALLY FOR HEAT EXCHANGER AND HEAT EXCHANGER WITH TUBES SO COMPLIANT
ATE7208T1 (en) * 1980-01-08 1984-05-15 Elpag Ag Chur METHOD OF MAKING A HEATING DEVICE OR HEAT EXCHANGE ELEMENT.
US4286653A (en) * 1980-07-21 1981-09-01 Edwards Engineering Corporation Coaxial tube in tube heat exchanger with inner tube support
US4419802A (en) * 1980-09-11 1983-12-13 Riese W A Method of forming a heat exchanger tube
DE3126030C2 (en) * 1981-07-02 1983-04-14 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Pipe connection for a heat exchanger with a large number of individual parts to be connected to one another
US4504714A (en) * 1981-11-02 1985-03-12 Jack Katzenstein System and method for impact welding by magnetic propulsion
US4532396A (en) * 1982-06-10 1985-07-30 Westinghouse Electric Corp. Flexible induction brazing wand for hollow tubes
US4498220A (en) * 1982-08-23 1985-02-12 The Trane Company Method for pre-expanding heat exchanger tube
US4538337A (en) * 1982-08-31 1985-09-03 The Babcock & Wilcox Company Method of mechanically prestressing a tubular apparatus
GB2128522B (en) * 1982-09-29 1986-02-26 Carrier Corp A tube expanding and grooving tool and method
US4902476A (en) * 1983-01-14 1990-02-20 Baxter International Inc. Heat exchanger and blood oxygenator apparatus
US4649493A (en) * 1983-12-30 1987-03-10 Westinghouse Electric Corp. Tube expansion apparatus
US4650110A (en) * 1985-10-22 1987-03-17 Westinghouse Electric Corp. Continuous movement brazing process
US5127441A (en) * 1985-12-16 1992-07-07 Rains Robert L Coaxial piping system
US4761982A (en) * 1986-10-01 1988-08-09 General Motors Corporation Method and apparatus for forming a heat exchanger turbulator and tube
US4899810A (en) * 1987-10-22 1990-02-13 General Electric Company Low pressure drop condenser/heat pipe heat exchanger
US4915121A (en) * 1987-11-12 1990-04-10 Rains Robert L Coaxial piping system
US4847051A (en) * 1988-03-21 1989-07-11 International Fuel Cells Corporation Reformer tube heat transfer device
US5027507A (en) * 1989-03-01 1991-07-02 Westinghouse Electric Corp. Method for controlling leakage through degraded heat exchanger tubes in the tubesheet region of a nuclear generator
DE3908266A1 (en) * 1989-03-14 1990-09-20 Autokuehler Gmbh & Co Kg HEAT EXCHANGER AND METHOD FOR FASTENING A LIQUID-TIGHT PLATE TO A HEAT EXCHANGER NET
US5167275A (en) * 1989-12-06 1992-12-01 Stokes Bennie J Heat exchanger tube with turbulator
JPH06211501A (en) * 1991-06-04 1994-08-02 Toshiba Corp Reformer
US5271376A (en) * 1991-08-12 1993-12-21 Rheem Manufacturing Company Serpentined tubular heat exchanger apparatus for a fuel-fired forced air heating furnace
US5275152A (en) * 1992-07-27 1994-01-04 Welch Allyn, Inc. Insertion tube terminator
US5336570A (en) * 1992-08-21 1994-08-09 Dodge Jr Cleveland E Hydrogen powered electricity generating planar member
JP3164272B2 (en) * 1994-02-02 2001-05-08 ディン カーン Heat pipe manufacturing method and processing tool used for the manufacturing
FR2736989B1 (en) * 1995-07-19 1997-08-22 Gec Alsthom Stein Ind DEVICE INTENDED TO BE FIXED TIGHTLY ON AT LEAST ONE CYLINDRICAL ELEMENT
US5806173A (en) * 1995-07-28 1998-09-15 Hidaka Seiki Kabushiki Kaisha Tube expander
US7066973B1 (en) * 1996-08-26 2006-06-27 Nuvera Fuel Cells Integrated reformer and shift reactor
NL1012676C2 (en) * 1999-07-22 2001-01-23 Spiro Research Bv Method for manufacturing a double-walled heat exchanger tube with leak detection and such a heat exchanger tube.
JP2001137978A (en) * 1999-11-08 2001-05-22 Daido Steel Co Ltd Metal tube expanding tool
US8746028B2 (en) * 2002-07-11 2014-06-10 Weatherford/Lamb, Inc. Tubing expansion
WO2001047802A1 (en) * 1999-12-28 2001-07-05 Matsushita Electric Industrial Co., Ltd. Apparatus for forming hydrogen
JP2001342002A (en) * 2000-05-30 2001-12-11 Kansai Electric Power Co Inc:The Fuel reformer
JP4189212B2 (en) * 2001-12-25 2008-12-03 パナソニック株式会社 Hydrogen generator and fuel cell system including the same
EP1324414A3 (en) * 2001-12-25 2003-11-26 Matsushita Electric Industrial Co., Ltd. Hydrogen generation system and fuel cell system having the same
CA2461855C (en) * 2003-03-25 2008-05-20 Weatherford/Lamb, Inc. Vibration assisted tubing expansion

Also Published As

Publication number Publication date
JPWO2007125870A1 (en) 2009-09-10
US20090133259A1 (en) 2009-05-28
WO2007125870A1 (en) 2007-11-08
CN101432225B (en) 2012-04-04
CN101432225A (en) 2009-05-13

Similar Documents

Publication Publication Date Title
KR101624359B1 (en) Hydrogen generating apparatus using steam reforming reaction with improved distribution of exhaust gas
EP2407224B1 (en) Catalytic Combustor for a Reformer for a Fuel Cell
WO2005073126A1 (en) Reformer
JP2008063193A (en) Hydrogen generator and fuel cell system
KR101266673B1 (en) Hydrogen generating apparatus using steam reforming reaction
JP4060349B2 (en) Method for manufacturing hydrogen generator
JP5044048B2 (en) Hydrogen generator
JP2008535766A (en) Integrated and cylindrical steam reformer for heat exchangers
JP4880086B2 (en) HYDROGEN GENERATOR, ITS MANUFACTURING METHOD, AND FUEL CELL SYSTEM USING THE SAME
JP4918629B2 (en) Fuel processor
JP4852295B2 (en) Reformer and fuel cell system
JP2001199703A (en) Reformer
JP5336696B2 (en) Fluid processing apparatus and manufacturing method thereof
JP4990045B2 (en) Hydrogen production apparatus and fuel cell system
JP2022121769A (en) Hydrogen generating apparatus
KR20120022191A (en) Steam reformer
JP4657351B2 (en) Reformer
JP4450756B2 (en) Fuel reformer
JPH05186201A (en) Fuel reformer
JP2019085289A (en) Hydrogen generator
JPH1111901A (en) Reforming device for fuel cell power generation unit
KR101070357B1 (en) A catalytic reactor for water gas shift
JP2019085287A (en) Hydrogen generator
JP5263030B2 (en) Hydrogen generator
JP2022117539A (en) Manufacturing method of hydrogen generator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4060349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6