JP4060257B2 - A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side - Google Patents

A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side Download PDF

Info

Publication number
JP4060257B2
JP4060257B2 JP2003328919A JP2003328919A JP4060257B2 JP 4060257 B2 JP4060257 B2 JP 4060257B2 JP 2003328919 A JP2003328919 A JP 2003328919A JP 2003328919 A JP2003328919 A JP 2003328919A JP 4060257 B2 JP4060257 B2 JP 4060257B2
Authority
JP
Japan
Prior art keywords
terminal
fuel cell
cell
electrode
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003328919A
Other languages
Japanese (ja)
Other versions
JP2005093395A (en
Inventor
敏明 有吉
英明 菊池
敬祐 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003328919A priority Critical patent/JP4060257B2/en
Priority to DE102004044685.7A priority patent/DE102004044685B4/en
Priority to US10/943,073 priority patent/US7510795B2/en
Publication of JP2005093395A publication Critical patent/JP2005093395A/en
Application granted granted Critical
Publication of JP4060257B2 publication Critical patent/JP4060257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、セル電圧測定装置側の端子と燃料電池側の端子間接続構造を有する燃料電池に関する。 The present invention relates to a fuel cell having a connection structure between terminals on a cell voltage measuring device side and terminals on a fuel cell side.

燃料電池には、例えば固体高分子電解質膜をアノード側電極とカソード側電極とで両側から挟み込み、さらにその外側にセパレータを設けて単位燃料電池(以下、「単位セル」という。)を構成したものがある。
この種の燃料電池は、発電電圧確保のため、実際の使用に際しては、前記単位セルを複数積層して燃料電池スタック(以下、「スタック」という。)とする場合が多く、かかる場合には、各単位セルの発電状態を監視するために、セル電圧を測定する必要がある。
In the fuel cell, for example, a solid polymer electrolyte membrane is sandwiched between an anode side electrode and a cathode side electrode from both sides, and a separator is provided on the outer side to constitute a unit fuel cell (hereinafter referred to as “unit cell”). There is.
In order to secure the generated voltage, this type of fuel cell often has a plurality of unit cells stacked to form a fuel cell stack (hereinafter referred to as “stack”) in actual use. In order to monitor the power generation state of each unit cell, it is necessary to measure the cell voltage.

従来のセパレータは、例えばカーボンや金属などの導電性材料が使用されていたため(以下、「導電性セパレータ」という。)、セパレータの一部をセル電圧測定端子の形状にすることにより、あるいは、セパレータの外周面に丸穴を明け、この丸穴にバナナクリップにて出力端子の一端を接続することにより(例えば、特許文献1参照)、外部から容易にセル電圧を測定することができた。
特開平9−283166号公報
Since conventional conductive materials such as carbon and metal have been used for conventional separators (hereinafter referred to as “conductive separators”), by forming a part of the separator into the shape of a cell voltage measuring terminal, or A cell hole could be easily measured from the outside by making a round hole in the outer peripheral surface of the electrode and connecting one end of the output terminal to the round hole with a banana clip (see, for example, Patent Document 1).
JP-A-9-283166

しかしながら、この導電性セパレータを用いてスタックを構成した場合には、単位セル間の電位差により、冷却水(冷媒)流路を伝って漏電(液絡)や地絡が発生する可能性があるため、冷却水には高度な絶縁性が要求され、導電性イオンを除去するためにイオン交換器の設置が必要となっていた。   However, when a stack is formed using this conductive separator, there is a possibility that an electric leakage (liquid junction) or a ground fault may occur through the cooling water (refrigerant) flow path due to a potential difference between unit cells. The cooling water is required to have a high degree of insulation, and it is necessary to install an ion exchanger in order to remove conductive ions.

その対策として、近年、電極に接する部分(電極面部)に金属などの導電性材料を用い、電極面部以外の部分、すなわち、電極面部の外周部分で反応ガスや冷却水の連通孔を形成する部分に絶縁性材料を用いた、いわゆる複合型セパレータの提案がなされている。
この複合型セパレータを用いてスタックを構成した場合には、単位セル間の冷却水縁面距離(絶縁距離)が長くなるので、冷却水に高度な絶縁性が要求されなくなるほか、金属製セパレータにおける錆の発生も抑えることができる。さらに、セパレータの外縁部が絶縁材料からなるので、外部との地絡も有効に防止することができる。
As a countermeasure, in recent years, a conductive material such as a metal is used for a portion in contact with the electrode (electrode surface portion), and a portion other than the electrode surface portion, that is, a portion where the reaction gas and cooling water communication holes are formed in the outer peripheral portion of the electrode surface portion A so-called composite separator using an insulating material is proposed.
When a stack is configured using this composite separator, the cooling water edge surface distance (insulation distance) between unit cells becomes long, so that high insulation is not required for the cooling water. Rust generation can also be suppressed. Furthermore, since the outer edge portion of the separator is made of an insulating material, a ground fault with the outside can be effectively prevented.

このように、前記複合型セパレータは、電極面部の面方向外方側(セパレータ外周側)が絶縁構造になっているため、冷却水による液絡や外部との地絡を有効に防止できるという長所を持つ反面、セル電圧の測定が非常に困難になるという短所も持ち合わせている。
かかる事情から、液絡や地絡を防止しつつ、各単位セル毎の発電状態を監視可能とする技術の開発が望まれている。
As described above, the composite separator has an insulating structure on the outer side in the surface direction of the electrode surface portion (separator outer peripheral side), so that it is possible to effectively prevent a liquid junction due to cooling water or an external ground fault. On the other hand, it has the disadvantage that it becomes very difficult to measure the cell voltage.
Under such circumstances, it is desired to develop a technique that can monitor the power generation state of each unit cell while preventing liquid junction and ground fault.

本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、冷媒の液絡や外部との地絡を防止しつつ、外部から容易にセル電圧を測定可能にすることにある。   The present invention has been made in view of the above circumstances, and an object thereof is to make it possible to easily measure a cell voltage from the outside while preventing a liquid junction of a refrigerant and a ground fault with the outside. is there.

前記課題を解決するために、本発明は、以下の手段を採用した。
請求項1に係る発明は、セル電圧測定装置側の端子(例えば、後述する実施の形態における測定側端子61)と燃料電池(例えば、後述する実施の形態における単位セル1)側の端子間接続構造を有する燃料電池であって、
前記燃料電池は、電極面部(例えば、後述する実施の形態における電極面部31A,41A)を有する導電部(例えば、後述する実施の形態における導電部31,41)が絶縁部(例えば、後述する実施の形態における絶縁部32,42)により囲繞されてなる一対のセパレータ(例えば、後述する実施の形態におけるカソード側セパレータ3,アノード側セパレータ4)により、電解質(例えば、後述する実施の形態における固体高分子電解質膜21)の両側に電極(例えば、後述する実施の形態におけるカソード側ガス拡散電極22,アノード側ガス拡散電極23)を設けてなる膜電極構造体(例えば、後述する実施の形態における膜電極構造体2)を挟持して構成されると共に、前記一対のセパレータの少なくとも一方の絶縁部には、その内周側から外周側に延出し且つ内周側端部(例えば、後述する実施の形態における内周側端部47a)が前記膜電極構造体または前記導電部に接する内外連絡端子(例えば、後述する実施の形態におけるセル側端子47)が設けられてなり、
前記セル電圧測定装置側の端子(例えば、後述する実施の形態における測定側端子61)には、対向する前記一対のセパレータの絶縁部間にその隙間方向に弾性圧縮された状態で挿入されてその弾性復元力により前記内外連絡端子の外周側端部を押圧する端子電極(例えば、後述する実施の形態における端子電極65)が設けられていることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
The invention according to claim 1 is a connection between terminals on a cell voltage measuring device side (for example, a measurement side terminal 61 in an embodiment described later) and a fuel cell (for example, a unit cell 1 in an embodiment described later) side. A fuel cell having a structure,
In the fuel cell, a conductive portion (for example, conductive portions 31 and 41 in an embodiment described later) having an electrode surface portion (for example, electrode surface portions 31A and 41A in an embodiment described later) is an insulating portion (for example, implementation described later). A pair of separators (for example, a cathode-side separator 3 and an anode-side separator 4 in an embodiment described later) are surrounded by an insulating portion 32, 42 in the embodiment of FIG. A membrane electrode structure (for example, a membrane in an embodiment described later) provided with electrodes (for example, a cathode side gas diffusion electrode 22 and an anode side gas diffusion electrode 23 in an embodiment described later) on both sides of the molecular electrolyte membrane 21) The electrode structure 2) is sandwiched between at least one insulating portion of the pair of separators, The inner and outer connection terminals (for example, the inner peripheral side end portion 47a in the embodiment described later) are in contact with the membrane electrode structure or the conductive portion. A cell side terminal 47) in an embodiment to be described later,
The terminal on the cell voltage measuring device side (for example, the measuring side terminal 61 in the embodiment described later) is inserted between the insulating portions of the pair of separators facing each other in an elastically compressed state in the gap direction. A terminal electrode (for example, a terminal electrode 65 in an embodiment described later) that presses the outer peripheral side end of the inner and outer connecting terminals by an elastic restoring force is provided.

この端子間接続構造によれば、絶縁部によって外部との地絡防止が施された燃料電池に対しても、セル電圧測定に際し、燃料電池内外の電気的な接続が確保される。
また、セル電圧測定装置側の端子電極と内外連絡端子の外周側端部との間に十分な接触圧が確保されるので、接触抵抗も下がる。
さらに、振動や衝撃等、セル電圧測定装置側の端子電極が燃料電池から相対離間させられるような外乱に対しても、電気的接続の信頼性が維持される。
According to this inter-terminal connection structure, an electrical connection between the inside and outside of the fuel cell is ensured even when measuring the cell voltage, even for a fuel cell in which a ground fault is prevented from occurring by the insulating portion.
Moreover, since sufficient contact pressure is ensured between the terminal electrode by the side of a cell voltage measuring apparatus, and the outer peripheral side edge part of an internal / external connection terminal, contact resistance also falls.
Furthermore, the reliability of the electrical connection is maintained even for disturbances such as vibration and impact that cause the terminal electrode on the cell voltage measuring device side to be relatively separated from the fuel cell.

請求項2に係る発明は、請求項1に記載のセル電圧測定装置側の端子と燃料電池側の端子間接続構造を有する燃料電池において、
前記絶縁部は、反応ガスまたは冷媒が流通する連通孔(例えば、後述する実施の形態における入口側酸化剤ガス連通孔34a,出口側酸化剤ガス連通孔34b,入口側燃料ガス連通孔35a,出口側燃料ガス連通孔35b,入口側冷却水連通孔36a,および出口側冷却水連通孔36b)を有することを特徴とする。
The invention according to claim 2 is a fuel cell having the cell voltage measuring device side terminal and the fuel cell side terminal connecting structure according to claim 1,
The insulating portion includes a communication hole through which a reaction gas or a refrigerant flows (for example, an inlet-side oxidant gas communication hole 34a, an outlet-side oxidant gas communication hole 34b, an inlet-side fuel gas communication hole 35a, an outlet in an embodiment described later) A side fuel gas communication hole 35b, an inlet side cooling water communication hole 36a, and an outlet side cooling water communication hole 36b).

この構成によれば、連通孔を流通する冷媒による液絡を絶縁部によって有効に防止しつつ、外部から容易に電位を取り出すことができる。   According to this configuration, the potential can be easily taken out from the outside while effectively preventing the liquid junction caused by the refrigerant flowing through the communication hole by the insulating portion.

本発明によれば、以下の効果を得る。
請求項1に係る発明によれば、絶縁部によって外部との地絡防止が施された燃料電池に対しても、セル電圧測定装置側の端子を内外連絡端子の外周側端部に接続すれば、燃料電池内外の電気的な接続が確保されるので、外部から容易に電位を取り出すことができる。
また、振動や衝撃等、セル電圧測定装置側の端子が燃料電池から相対離間させられるような外乱に対しても、電気的接続の信頼性が確保されるので、セル電圧測定を高精度に行うことができる。
さらに、セル電圧測定装置側の端子電極と内外連絡端子の外周側端部との間に十分な接触圧を確保し得るので、接触抵抗を下げることができる。
According to the present invention, the following effects are obtained.
According to the first aspect of the present invention, the terminal on the cell voltage measuring device side is connected to the outer peripheral side end of the internal / external communication terminal even for the fuel cell in which the grounding prevention from the outside is performed by the insulating portion. Since electrical connection inside and outside the fuel cell is secured, the potential can be easily taken out from the outside.
In addition, the reliability of electrical connection is ensured against disturbances such as vibration and shock that cause the terminal on the cell voltage measuring device side to be relatively separated from the fuel cell, so cell voltage measurement is performed with high accuracy. be able to.
Furthermore, since a sufficient contact pressure can be ensured between the terminal electrode on the cell voltage measuring device side and the outer peripheral side end of the internal / external connection terminal, the contact resistance can be lowered.

請求項2に係る発明によれば、連通孔を流通する冷媒による液絡を絶縁部によって有効に防止しつつ、外部から容易に電位を取り出すことができる。   According to the second aspect of the present invention, the potential can be easily taken out from the outside while effectively preventing the liquid junction caused by the refrigerant flowing through the communication hole by the insulating portion.

以下、添付図面を参照しながら、本発明実施のための最良の形態について説明する。
図3は、セル電圧測定装置側の端子を燃料電池スタック側の端子に接続する前の状態を示す縦断面図である。
単位燃料電池(以下、「単位セル1」という。)は、膜電極構造体(MEA)2と、これを挟持するカソード側セパレータ3及びアノード側セパレータ4とを備えてなる。そして、この単位セル1が多数積層されることにより、例えば車両用の燃料電池スタック(以下、「スタック5」という。)が構成される。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 3 is a longitudinal sectional view showing a state before the terminal on the cell voltage measuring device side is connected to the terminal on the fuel cell stack side.
A unit fuel cell (hereinafter referred to as “unit cell 1”) includes a membrane electrode structure (MEA) 2 and a cathode side separator 3 and an anode side separator 4 sandwiching the membrane electrode structure (MEA) 2. A large number of unit cells 1 are stacked to form, for example, a vehicle fuel cell stack (hereinafter referred to as “stack 5”).

膜電極構造体2は、固体高分子電解質膜21と、この固体高分子電解質膜21をその外側から挟み込むカソード側ガス拡散電極22およびアノード側ガス拡散電極23と、これら固体高分子電解質膜21とカソード側およびアノード側ガス拡散電極22,23との間に設けられる白金を含む触媒層(図示略)とを備えて構成されている。
この膜電極構造体2は、固体高分子電解質膜21の外寸を基準にすると、カソード側ガス拡散電極22は略同寸であるが、アノード側ガス拡散電極23は小寸とされた段差構造をなしている。
The membrane electrode structure 2 includes a solid polymer electrolyte membrane 21, a cathode side gas diffusion electrode 22 and an anode side gas diffusion electrode 23 that sandwich the solid polymer electrolyte membrane 21 from the outside, and these solid polymer electrolyte membranes 21. It comprises a catalyst layer (not shown) containing platinum provided between the cathode side and anode side gas diffusion electrodes 22, 23.
The membrane electrode structure 2 is a step structure in which the cathode side gas diffusion electrode 22 has substantially the same size, but the anode side gas diffusion electrode 23 has a small size, based on the outer dimensions of the solid polymer electrolyte membrane 21. I am doing.

カソード側セパレータ3およびアノード側セパレータ4は、いずれも金属製(例えば、ステンレス、ハステロイ、インコネル、Au、Cu、Ni、Al、Tiなど)の導電部31,41と、その外周を囲繞するように設けられた樹脂製の絶縁部32,42とが相互接続されてなる。
この相互接続は、導電部31,41と絶縁部32,42間の熱膨張差を吸収する等の目的で、例えばシリコンゴムなどの弾性体からなる結合部を介して接続してもよい。この場合、導電部31,41と絶縁部32,42とが結合部によって完全に分離されている構造に限らず、導電部31,41の少なくとも一部が絶縁部32,42の中に入り込んだ構造でもよい。
Each of the cathode side separator 3 and the anode side separator 4 surrounds the outer periphery of the conductive parts 31 and 41 made of metal (for example, stainless steel, Hastelloy, Inconel, Au, Cu, Ni, Al, Ti, etc.). The provided insulating parts 32 and 42 made of resin are interconnected.
This interconnection may be connected through a coupling portion made of an elastic material such as silicon rubber for the purpose of absorbing a difference in thermal expansion between the conductive portions 31 and 41 and the insulating portions 32 and 42, for example. In this case, not only the structure in which the conductive portions 31 and 41 and the insulating portions 32 and 42 are completely separated by the coupling portion, but at least a part of the conductive portions 31 and 41 have entered the insulating portions 32 and 42. It may be a structure.

カソード側およびアノード側の各導電部31,41は、金属板をプレス成形することにより、平坦な山部と谷部とが交互に連続する断面波形に形成されている。各導電部31,41の谷部外面は、それらの間に挟持される膜電極構造体2の各外面に面接触しており、
該接触面が各セパレータ3,4における電極面部31A,41Aを構成している。
これら導電部31,41は金属製に限らず、カーボンや導電性樹脂など導電材料から構成されるものであればよい。
Each of the conductive portions 31 and 41 on the cathode side and the anode side is formed in a cross-sectional waveform in which flat peaks and valleys are alternately continued by press-molding a metal plate. The valley outer surfaces of the conductive portions 31 and 41 are in surface contact with the outer surfaces of the membrane electrode structure 2 sandwiched between them,
The contact surfaces constitute electrode surface portions 31A and 41A in the separators 3 and 4, respectively.
These conductive parts 31 and 41 are not limited to being made of metal, but may be made of a conductive material such as carbon or conductive resin.

カソード側およびアノード側セパレータ3,4の絶縁部32,42は、図4に示すように、樹脂を射出成形することにより周方向に間隔をおいて入口側酸化剤ガス連通孔34a,出口側酸化剤ガス連通孔34b,入口側燃料ガス連通孔35a,出口側燃料ガス連通孔35b,入口側冷却水連通孔36a,および出口側冷却水連通孔36bを有する矩形枠状に形成されている。なお、図4は、カソード側セパレータ3を示している。
これら絶縁部32,42は樹脂製に限らず、ゴム,シリコン,セラミックスなど絶縁材料から構成されるものであればよい。
As shown in FIG. 4, the insulating portions 32 and 42 of the cathode-side and anode-side separators 3 and 4 are formed by injection molding of resin and spaced in the circumferential direction at the inlet-side oxidant gas communication holes 34a and outlet-side oxidation. It is formed in a rectangular frame shape having an agent gas communication hole 34b, an inlet side fuel gas communication hole 35a, an outlet side fuel gas communication hole 35b, an inlet side cooling water communication hole 36a, and an outlet side cooling water communication hole 36b. FIG. 4 shows the cathode separator 3.
These insulating parts 32 and 42 are not limited to resin, but may be made of an insulating material such as rubber, silicon or ceramics.

カソード側絶縁部32の内面側には、セル内外の電気的な接続(導通)を可能にするセル側端子(内外連絡端子)47が設けられている。
このセル側端子47は、カソード側絶縁部32の主体をなす樹脂部32aを予め射出成形などにより成形しておき、この樹脂部32aに導電性材料を部分メッキしたり、PVDやCVDで蒸着させるなどの各種表面処理を施すことにより設けられる。
A cell side terminal (internal / external connection terminal) 47 that enables electrical connection (conduction) inside and outside the cell is provided on the inner surface side of the cathode side insulating portion 32.
The cell-side terminal 47 has a resin part 32a that is the main body of the cathode-side insulating part 32 formed in advance by injection molding or the like, and a conductive material is partially plated on the resin part 32a or deposited by PVD or CVD. It is provided by performing various surface treatments such as.

セル側端子47の樹脂部32aへの配設位置は、入口側および出口側冷却水連通孔36a,36bを流通する冷却水(冷媒)の液絡を有効に防止する観点から、これら冷却水連通孔36a,36bの周囲から離しておくことが好ましく、本実施の形態では、図4に示すように、2つの入口側酸化剤ガス連通孔34a,34a間の樹脂部32aに設けられている。   The arrangement position of the cell side terminal 47 in the resin portion 32a is such that the cooling water communication is effective from the viewpoint of effectively preventing the liquid junction of the cooling water (refrigerant) flowing through the inlet side and outlet side cooling water communication holes 36a and 36b. It is preferable to keep away from the periphery of the holes 36a and 36b, and in this embodiment, as shown in FIG. 4, the resin part 32a is provided between the two inlet side oxidant gas communication holes 34a and 34a.

セル側端子47の配設位置は、図4に示す位置に限らず、2つの出口側酸化剤ガス連通孔34b,34b間、入口側燃料ガス連通孔35a,35a間、出口側燃料ガス連通孔35b,35b間、入口側又は出口側酸化剤ガス連通孔34a,34bと出口側又は入口側燃料ガス連通孔35b,35aとの間の各樹脂部32aであってもよい。   The arrangement position of the cell-side terminal 47 is not limited to the position shown in FIG. 4, and is between the two outlet-side oxidant gas communication holes 34b and 34b, between the inlet-side fuel gas communication holes 35a and 35a, and the outlet-side fuel gas communication hole. Each resin part 32a between 35b and 35b, between the inlet side or outlet side oxidant gas communication holes 34a and 34b and the outlet side or inlet side fuel gas communication holes 35b and 35a may be used.

セル側端子47の内周側端部47aは、膜電極構造体2のカソード側外面2Aに接している。
ここで、アノードガスのシールは、アノード側絶縁部42とカソード側絶縁部32とにより、アノード側絶縁部42に前記電極面部31A,41Aを二重に取り囲むようにして配設されるリブ状シール部材51a,51bのうち内側のリブ状シール部材51bを介して膜電極構造体2を挟むことにより成立しているが、この内側のリブ状シール部材51bの弾性復元力により生ずるシール面圧によって、カソード側絶縁部32の内面32Aに設けられたセル側端子47の内周側端部47aは膜電極構造体2に押し付けられ、これらセル側端子47と膜電極構造体2との接触はより確実なものになっている。
The inner peripheral side end portion 47 a of the cell side terminal 47 is in contact with the cathode side outer surface 2 A of the membrane electrode structure 2.
Here, the anode gas seal is a rib-like seal disposed by the anode-side insulating portion 42 and the cathode-side insulating portion 32 so as to surround the electrode surface portions 31A and 41A in the anode-side insulating portion 42 in a double manner. It is established by sandwiching the membrane electrode structure 2 through the inner rib-shaped seal member 51b among the members 51a and 51b, but the seal surface pressure generated by the elastic restoring force of the inner rib-shaped seal member 51b The inner peripheral side end 47a of the cell side terminal 47 provided on the inner surface 32A of the cathode side insulating part 32 is pressed against the membrane electrode structure 2, and the contact between the cell side terminal 47 and the membrane electrode structure 2 is more reliable. It has become a thing.

他方、セル側端子47の外周側端部47c、言い換えれば、外側のリブ状シール部材51aが絶縁部32aと当接するシール当接面32Dよりも面方向外方(外周側)の部分は、セル電圧測定装置側の端子(以下、「測定側端子61」という。)と接続されている。   On the other hand, the outer peripheral side end portion 47c of the cell side terminal 47, in other words, the portion on the outer side in the surface direction (outer peripheral side) than the seal contact surface 32D where the outer rib-shaped seal member 51a contacts the insulating portion 32a is the cell It is connected to a terminal on the voltage measuring device side (hereinafter referred to as “measurement side terminal 61”).

測定側端子61は、図2に示すように、例えば樹脂等からなる本体部62と、その前面62Aすなわち接続時にスタック5に対向する面から端子挿入方向(図1では白抜矢印の指す方向)に突出する複数の電極保持部63およびスペーサ部64と、前記本体部62及び電極保持部63をこの順に挿通して電極保持部63の先端面にて端子離脱方向に折り返されてなる端子電極65とを備えて構成されている。   As shown in FIG. 2, the measurement side terminal 61 has a main body portion 62 made of, for example, resin and the front surface 62A, that is, the surface facing the stack 5 when connected (in the direction indicated by the white arrow in FIG. 1). A plurality of electrode holding portions 63 and spacer portions 64 projecting in the same manner, and the main body portion 62 and the electrode holding portion 63 are inserted in this order, and the terminal electrode 65 is folded back at the distal end surface of the electrode holding portion 63 in the terminal detachment direction. And is configured.

電極保持部63と端子電極65は、一の単位セル1を構成するカソード側セパレータ3とアノード側セパレータ4との間に形成された隙間S1に挿入される。
また、スペーサ部64は、単位セル1間の隙間S2、すなわち、隣り合う単位セル1の一方のカソード側セパレータ3と、他方の単位セル1のアノード側セパレータ4との間に形成された隙間に挿入される。
スペーサ部64は、端子挿入方向に向かうに従い、燃料電池積層方向の寸法が漸次減少するような縦断面台形の先細り形状をなしている。
The electrode holding part 63 and the terminal electrode 65 are inserted into a gap S1 formed between the cathode side separator 3 and the anode side separator 4 constituting one unit cell 1.
Further, the spacer portion 64 is a gap S2 between the unit cells 1, that is, a gap formed between one cathode side separator 3 of the adjacent unit cells 1 and the anode side separator 4 of the other unit cell 1. Inserted.
The spacer section 64 has a trapezoidal shape with a trapezoidal vertical cross section in which the dimension in the fuel cell stacking direction gradually decreases as it goes in the terminal insertion direction.

端子電極65は、バネ性(弾性)を有する材料から円弧状に湾曲形成されており、端子挿入時における入口側と端子離脱時における出口側のそれぞれに傾斜面部65a,65bを備えると共に、これら傾斜面部65a,65b間には燃料電池積層方向に沿って外側に膨らむ膨出部65cを備えてなる。
そして、膨出部65cの最外面と、電極保持部63の絶縁部42に接する面63Aとの燃料電池積層方向の離間寸法tは、カソード側及びアノード側の各絶縁部32,42間の隙間寸法Tよりも大きくなるように設定されている。
The terminal electrode 65 is formed into a circular arc shape from a material having elasticity (elasticity), and includes inclined surface portions 65a and 65b on the inlet side when the terminal is inserted and the outlet side when the terminal is detached, and these inclined portions are provided. Between the surface portions 65a and 65b, a bulging portion 65c bulging outward along the fuel cell stacking direction is provided.
The distance t in the fuel cell stacking direction between the outermost surface of the bulging portion 65c and the surface 63A in contact with the insulating portion 42 of the electrode holding portion 63 is the clearance between the cathode-side and anode-side insulating portions 32, 42. It is set to be larger than the dimension T.

測定側端子61をセル側端子47に接続するために絶縁部32,42間に挿入すると、端子電極65の膨出部65cは、前記離間寸法tが間隙寸法Tと等しくなるように弾性変形しながら、つまり、対向する絶縁部32,42間の隙間S1にその隙間方向に弾性圧縮されながら挿入される。
よって、端子電極65は、前記隙間方向の弾性復元力によりセル側端子47の外周側端部47cを押圧し、該外周側端部47cに密接する。
When the measurement-side terminal 61 is inserted between the insulating portions 32 and 42 to connect to the cell-side terminal 47, the bulging portion 65c of the terminal electrode 65 is elastically deformed so that the separation dimension t becomes equal to the gap dimension T. In other words, it is inserted into the gap S1 between the opposing insulating portions 32, 42 while being elastically compressed in the gap direction.
Therefore, the terminal electrode 65 presses the outer peripheral side end portion 47c of the cell side terminal 47 by the elastic restoring force in the gap direction, and comes into close contact with the outer peripheral side end portion 47c.

このとき、隣り合う単位セル1間の隙間S2にスペーサ部64が挿入されているので、端子電極65からの弾性復元力を受けるカソード側およびアノード側絶縁部32,42の反りは有効に防止される。
さらに、端子電極65は、その傾斜面部65a,65bにより引っ掛かりを生ずることなく円滑に絶縁部32,42間へ挿脱される。
At this time, since the spacer portion 64 is inserted into the gap S2 between the adjacent unit cells 1, warping of the cathode side and anode side insulating portions 32 and 42 that receive elastic restoring force from the terminal electrode 65 is effectively prevented. The
Further, the terminal electrode 65 is smoothly inserted and removed between the insulating portions 32 and 42 without being caught by the inclined surface portions 65a and 65b.

以上説明したように、本実施の形態による端子間接続構造によれば、測定側端子61をカソード側およびアノード側絶縁部32,42間に挿入して端子電極65をセル側端子47の外周側端部47cに接続すれば、セル内外およびスタック内外との電気的導通が確保されるので、連通孔部分や外部との絶縁性能を維持しつつシール性能も阻害せずに、外部からのセル電圧測定が可能となる。
しかも、振動や衝撃等、測定側端子がスタック5から相対離間させられるような外乱に対しても、電気的接続の信頼性が維持されるので、セル電圧測定を高精度に行える。
As described above, according to the inter-terminal connection structure according to the present embodiment, the measurement-side terminal 61 is inserted between the cathode-side and anode-side insulating portions 32 and 42, and the terminal electrode 65 is placed on the outer peripheral side of the cell-side terminal 47. By connecting to the end 47c, electrical continuity between the inside and outside of the cell and inside and outside of the stack is ensured, so that the cell voltage from the outside can be maintained without impairing the sealing performance while maintaining the insulation performance from the communication hole portion and the outside. Measurement is possible.
In addition, the reliability of the electrical connection is maintained against disturbances such as vibration and impact that cause the measurement-side terminal to be relatively separated from the stack 5, so that the cell voltage can be measured with high accuracy.

また、内側のリブ状シール部材51bによるシール面圧によって、セル電圧測定に十分な接触圧をセル側端子47と膜電極構造体2間に生じさせることができるので、接触抵抗が下がり、正確な測定が可能となる。
さらに、セル側端子47は、入口側および出口側冷却水連通孔36a,36bの周囲を避けて、入口側酸化剤ガス連通孔34a,34aの間に配設されているので、冷却水からの漏電(液絡)を有効に防止することができる。
Further, the contact pressure sufficient for measuring the cell voltage can be generated between the cell-side terminal 47 and the membrane electrode structure 2 by the sealing surface pressure by the inner rib-like seal member 51b, so that the contact resistance is lowered and accurate. Measurement is possible.
Furthermore, since the cell side terminal 47 is disposed between the inlet side oxidant gas communication holes 34a and 34a, avoiding the periphery of the inlet side and outlet side cooling water communication holes 36a and 36b, Electric leakage (liquid junction) can be effectively prevented.

本発明は前記実施の形態に限定されるものでなく、例えば下記の構成を採用することも可能である。
(1)各単位セル1に測定側端子61を接続して単位セル1ごとにセル電位を取り出す代わりに、nセル(n=1以上の整数)おきに測定側端子61を接続してもよい。
(2)セル側端子47の内周側端部47aを膜電極構造体2のカソード側外面2Aに当接させる代わりに、膜電極構造体2のアノード側外面やセパレータ3,4の導電部31,32に当接させてもよい。
The present invention is not limited to the above-described embodiment, and for example, the following configuration can be adopted.
(1) Instead of connecting the measurement side terminal 61 to each unit cell 1 and taking out the cell potential for each unit cell 1, the measurement side terminal 61 may be connected every n cells (n = 1 or more integer). .
(2) Instead of bringing the inner peripheral side end 47a of the cell side terminal 47 into contact with the cathode side outer surface 2A of the membrane electrode structure 2, the anode side outer surface of the membrane electrode structure 2 and the conductive portions 31 of the separators 3 and 4 , 32 may be contacted.

(3)測定側端子61と接続可能であれば、セル側端子47の最外周端を絶縁部32の外周端面32Bよりも内周側に位置させてもよい。
(4)セル側端子47は、カソード側絶縁部32に代えて、あるいはカソード側絶縁部32と共に、アノード側絶縁部31に設けてもよい。
(5)カソード側絶縁部32の樹脂部32aを予め成形し、樹脂部32aにセル側端子47を各種の表面処理法を用いて設ける代わりに、樹脂部32aを成形する際に金属プレート等をインサート成形してセル側端子47を設けてもよい。
(6)膜電極構造体2において、カソード側ガス拡散電極22とアノード側ガス拡散電極23とは同寸であってもよい。
(3) As long as the measurement side terminal 61 can be connected, the outermost peripheral end of the cell side terminal 47 may be positioned on the inner peripheral side of the outer peripheral end surface 32 </ b> B of the insulating portion 32.
(4) The cell side terminal 47 may be provided in the anode side insulating part 31 in place of the cathode side insulating part 32 or together with the cathode side insulating part 32.
(5) Instead of forming the resin part 32a of the cathode-side insulating part 32 in advance and providing the cell-side terminal 47 on the resin part 32a using various surface treatment methods, a metal plate or the like is used when forming the resin part 32a. The cell side terminal 47 may be provided by insert molding.
(6) In the membrane electrode structure 2, the cathode side gas diffusion electrode 22 and the anode side gas diffusion electrode 23 may be the same size.

本発明の一実施の形態によるセル電圧測定装置側の端子と燃料電池スタック側の端子間接続構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection structure between the terminal by the side of the cell voltage measurement apparatus by one embodiment of this invention, and the terminal by the side of a fuel cell stack. 図1に示す測定側端子の拡大図である。It is an enlarged view of the measurement side terminal shown in FIG. 図1に示すセル電圧測定装置側の端子を燃料電池スタック側の端子に接続する前の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state before connecting the terminal by the side of the cell voltage measuring apparatus shown in FIG. 1 to the terminal by the side of a fuel cell stack. 図1に示すカソード側セパレータを内面側(電極面部側)から見た平面図である。It is the top view which looked at the cathode side separator shown in FIG. 1 from the inner surface side (electrode surface part side).

符号の説明Explanation of symbols

1 単位セル(燃料電池)
2 膜電極構造体
3 カソード側セパレータ
4 アノード側セパレータ
5 スタック(燃料電池スタック)
21 固体高分子電解質膜(電解質)
22 カソード側ガス拡散電極(電極)
23 アノード側ガス拡散電極(電極)
31、41 導電部
31A、41A 電極面部
32、42 絶縁部
34a 入口側酸化剤ガス連通孔(連通孔)
34b 出口側酸化剤ガス連通孔(連通孔)
35a 入口側燃料ガス連通孔(連通孔)
35b 出口側燃料ガス連通孔(連通孔)
36a 入口側冷却水連通孔(連通孔)
36b 出口側冷却水連通孔(連通孔)
47 セル側端子(内外連絡端子)
47a 内周側端部
47c 外周側端部
61 測定側端子(セル電圧測定装置側の端子)
65 端子電極
1 unit cell (fuel cell)
2 Membrane electrode structure 3 Cathode side separator 4 Anode side separator 5 Stack (fuel cell stack)
21 Solid polymer electrolyte membrane (electrolyte)
22 Cathode side gas diffusion electrode (electrode)
23 Anode side gas diffusion electrode (electrode)
31, 41 Conductive part 31A, 41A Electrode surface part 32, 42 Insulating part 34a Inlet side oxidant gas communication hole (communication hole)
34b Outlet side oxidant gas communication hole (communication hole)
35a Inlet fuel gas communication hole (communication hole)
35b Outlet side fuel gas communication hole (communication hole)
36a Inlet side cooling water communication hole (communication hole)
36b Outlet side cooling water communication hole (communication hole)
47 Cell side terminal (internal / external connection terminal)
47a Inner peripheral side end 47c Outer peripheral side end 61 Measurement side terminal (terminal on the cell voltage measuring device side)
65 terminal electrode

Claims (2)

セル電圧測定装置側の端子と燃料電池側の端子間接続構造を有する燃料電池であって、
前記燃料電池は、電極面部を有する導電部が絶縁部により囲繞されてなる一対のセパレータにより、電解質の両側に電極を設けてなる膜電極構造体を挟持して構成されると共に、前記一対のセパレータの少なくとも一方の絶縁部には、その内周側から外周側に延出し且つ内周側端部が前記膜電極構造体または前記導電部に接する内外連絡端子が設けられてなり、
前記セル電圧測定装置側の端子には、対向する前記一対のセパレータの絶縁部間にその隙間方向に弾性圧縮された状態で挿入されてその弾性復元力により前記内外連絡端子の外周側端部を押圧する端子電極が設けられていることを特徴とするセル電圧測定装置側の端子と燃料電池側の端子間接続構造を有する燃料電池
A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side,
The fuel cell is configured by sandwiching a membrane electrode structure in which electrodes are provided on both sides of an electrolyte by a pair of separators in which a conductive part having an electrode surface part is surrounded by an insulating part, and the pair of separators At least one of the insulating parts is provided with an internal / external connection terminal that extends from the inner peripheral side to the outer peripheral side and has an inner peripheral side end in contact with the membrane electrode structure or the conductive part.
The terminal on the cell voltage measuring device side is inserted between the insulating portions of the pair of separators facing each other in a state of being elastically compressed in the gap direction, and the outer peripheral end of the inner / outer connection terminal is formed by the elastic restoring force. A fuel cell having a connection structure between a terminal on a cell voltage measuring device side and a terminal on a fuel cell side, wherein a terminal electrode to be pressed is provided.
前記絶縁部は、反応ガスまたは冷媒が流通する連通孔を有することを特徴とする請求項1に記載のセル電圧測定装置側の端子と燃料電池側の端子間接続構造を有する燃料電池The fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side according to claim 1, wherein the insulating portion has a communication hole through which a reaction gas or a refrigerant flows.
JP2003328919A 2003-09-19 2003-09-19 A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side Expired - Fee Related JP4060257B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003328919A JP4060257B2 (en) 2003-09-19 2003-09-19 A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side
DE102004044685.7A DE102004044685B4 (en) 2003-09-19 2004-09-15 Separator, fuel cell and construction of the connection between the terminals of a cell voltage measuring device and a fuel cell
US10/943,073 US7510795B2 (en) 2003-09-19 2004-09-15 Separator, fuel cell, and connection construction between cell voltage measurement device side terminal and fuel cell side terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328919A JP4060257B2 (en) 2003-09-19 2003-09-19 A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side

Publications (2)

Publication Number Publication Date
JP2005093395A JP2005093395A (en) 2005-04-07
JP4060257B2 true JP4060257B2 (en) 2008-03-12

Family

ID=34458346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328919A Expired - Fee Related JP4060257B2 (en) 2003-09-19 2003-09-19 A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side

Country Status (1)

Country Link
JP (1) JP4060257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941541B2 (en) 2013-08-09 2018-04-10 Honda Motor Co., Ltd. Fuel cell stack

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708101B2 (en) * 2005-07-05 2011-06-22 本田技研工業株式会社 Fuel cell voltage detection structure
JP5034273B2 (en) * 2006-03-07 2012-09-26 トヨタ自動車株式会社 Fuel cell
KR100749257B1 (en) 2006-09-04 2007-08-13 주식회사 케피코 Voltage measuring module of fuel cell having voltage measuring terminal apply to zebra
JP5070857B2 (en) * 2007-01-29 2012-11-14 トヨタ自動車株式会社 Fuel cell stack
JP5248226B2 (en) * 2008-07-15 2013-07-31 アイシン精機株式会社 Connector device and stack device
JP5728283B2 (en) * 2011-04-22 2015-06-03 本田技研工業株式会社 Fuel cell
JP5829580B2 (en) * 2011-09-29 2015-12-09 本田技研工業株式会社 Potential measurement device for fuel cell
JP5778056B2 (en) * 2012-02-20 2015-09-16 本田技研工業株式会社 Fuel cell
JP5781957B2 (en) * 2012-02-20 2015-09-24 本田技研工業株式会社 Fuel cell
KR101491038B1 (en) 2013-10-10 2015-02-10 (주)씨엘 Lead wire for fuel cell and lead wire holder and method for connecting the lead wire to the fuel cell
JP6844497B2 (en) 2017-10-19 2021-03-17 トヨタ自動車株式会社 How to install cell monitor connector, fuel cell module
SE2250131A1 (en) * 2022-02-10 2023-08-11 Powercell Sweden Ab Voltage monitoring device for an electric stack, particularly for a fuel cell stack
SE2250917A1 (en) * 2022-07-18 2024-01-19 Powercell Sweden Ab Voltage monitoring arrangement for an electric cell stack, particularly for a fuel cell stack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941541B2 (en) 2013-08-09 2018-04-10 Honda Motor Co., Ltd. Fuel cell stack

Also Published As

Publication number Publication date
JP2005093395A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4096027B2 (en) Solid polymer electrolyte fuel cell
JP3460346B2 (en) Solid polymer electrolyte fuel cell
JP4060257B2 (en) A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side
US7709131B2 (en) Fuel cell endplate comprising current collector plate and fuel cell incorporating same
CN100355136C (en) Fuel cell
US7670710B2 (en) Fuel cell and fuel cell stack with pressure chambers
JP4381759B2 (en) Separator and fuel cell
JP2007250353A (en) Fuel cell
JPH11233128A (en) Fuel cell
JP6117745B2 (en) Fuel cell stack
JP4087038B2 (en) Fuel cell
US20050202298A1 (en) Fuel cell
US7510795B2 (en) Separator, fuel cell, and connection construction between cell voltage measurement device side terminal and fuel cell side terminal
JP4780940B2 (en) Solid polymer fuel cell
JP2012195128A (en) Gasket for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4087039B2 (en) Fuel cell
KR101903317B1 (en) Metal separator structure for a fuel cell, fuel cell and fuel cell stack using the separator structure
JP5075328B2 (en) Separator
JP4945094B2 (en) Fuel cell
JP2007220338A (en) Cell voltage measurement system of fuel cell stack
WO2008081911A1 (en) Heat insulation cell for fuel cell and method of producing the same
JP6194186B2 (en) Fuel cell
JP4776788B2 (en) Fuel cell
JP5302758B2 (en) Fuel cell stack
JP4281330B2 (en) Polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4060257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees