JP4381759B2 - Separator and fuel cell - Google Patents

Separator and fuel cell Download PDF

Info

Publication number
JP4381759B2
JP4381759B2 JP2003328917A JP2003328917A JP4381759B2 JP 4381759 B2 JP4381759 B2 JP 4381759B2 JP 2003328917 A JP2003328917 A JP 2003328917A JP 2003328917 A JP2003328917 A JP 2003328917A JP 4381759 B2 JP4381759 B2 JP 4381759B2
Authority
JP
Japan
Prior art keywords
fuel cell
separator
insulating
insulating portion
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003328917A
Other languages
Japanese (ja)
Other versions
JP2005093394A (en
Inventor
雅章 坂野
英明 菊池
敏明 有吉
敬祐 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003328917A priority Critical patent/JP4381759B2/en
Priority to US10/943,073 priority patent/US7510795B2/en
Priority to DE102004044685.7A priority patent/DE102004044685B4/en
Publication of JP2005093394A publication Critical patent/JP2005093394A/en
Application granted granted Critical
Publication of JP4381759B2 publication Critical patent/JP4381759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、電極面部を有する導電部が絶縁部により囲繞されてなる燃料電池用のセパレータ、および該セパレータで膜電極構造体を挟持してなる燃料電池に関する。   The present invention relates to a fuel cell separator in which a conductive portion having an electrode surface portion is surrounded by an insulating portion, and a fuel cell in which a membrane electrode structure is sandwiched between the separators.

燃料電池には、例えば固体高分子電解質膜をアノード側電極とカソード側電極とで両側から挟み込み、さらにその外側にセパレータを設けて単位燃料電池(以下、「単位セル」という。)を構成したものがある。
この種の燃料電池は、発電電圧確保のため、実際の使用に際しては、前記単位セルを複数積層して燃料電池スタック(以下、「スタック」という。)とする場合が多く、かかる場合には、各単位セルの発電状態を監視するために、セル電圧を測定する必要がある。
In the fuel cell, for example, a solid polymer electrolyte membrane is sandwiched between the anode side electrode and the cathode side electrode from both sides, and a separator is provided on the outer side to constitute a unit fuel cell (hereinafter referred to as “unit cell”). There is.
This type of fuel cell is often used as a fuel cell stack (hereinafter referred to as “stack”) by stacking a plurality of the unit cells in actual use in order to secure a generated voltage. In order to monitor the power generation state of each unit cell, it is necessary to measure the cell voltage.

従来のセパレータは、例えばカーボンや金属などの導電性材料が使用されていたため(以下、「導電性セパレータ」という。)、セパレータの一部をセル電圧測定端子の形状にすることにより、あるいは、セパレータの外周面に丸穴を明け、この丸穴にバナナクリップにて出力端子の一端を接続することにより(例えば、特許文献1参照)、外部から容易にセル電圧を測定することができた。
特開平9−283166号公報
Since conventional conductive materials such as carbon and metal have been used for conventional separators (hereinafter referred to as “conductive separators”), by forming a part of the separator into the shape of a cell voltage measuring terminal, or A cell hole could be easily measured from the outside by making a round hole in the outer peripheral surface of the electrode and connecting one end of the output terminal to the round hole with a banana clip (see, for example, Patent Document 1).
JP-A-9-283166

しかしながら、この導電性セパレータを用いてスタックを構成した場合には、単位セル間の電位差により、冷却水(冷媒)流路を伝って漏電(液絡)や地絡が発生する可能性があるため、冷却水には高度な絶縁性が要求され、導電性イオンを除去するためにイオン交換器の設置が必要となっていた。   However, when a stack is formed using this conductive separator, there is a possibility that an electric leakage (liquid junction) or a ground fault may occur through the cooling water (refrigerant) flow path due to a potential difference between unit cells. The cooling water is required to have a high degree of insulation, and it is necessary to install an ion exchanger in order to remove conductive ions.

その対策として、近年、電極に接する部分(電極面部)に金属などの導電性材料を用い、電極面部以外の部分、すなわち、電極面部の外周部分で反応ガスや冷却水の連通孔を形成する部分に絶縁性材料を用いた、いわゆる複合型セパレータの提案がなされている。
この複合型セパレータを用いてスタックを構成した場合には、単位セル間の冷却水縁面距離(絶縁距離)が長くなるので、冷却水に高度な絶縁性が要求されなくなるほか、金属製セパレータにおける錆の発生も抑えることができる。さらに、セパレータの外縁部が絶縁材料からなるので、外部との地絡も有効に防止することができる。
As a countermeasure, in recent years, a conductive material such as a metal is used for a portion in contact with the electrode (electrode surface portion), and a portion other than the electrode surface portion, that is, a portion where the reaction gas or cooling water communication hole is formed in the outer peripheral portion of the electrode surface portion. A so-called composite separator using an insulating material is proposed.
When a stack is configured using this composite separator, the cooling water edge surface distance (insulation distance) between unit cells becomes long, so that high insulation is not required for the cooling water. Rust generation can also be suppressed. Furthermore, since the outer edge portion of the separator is made of an insulating material, a ground fault with the outside can be effectively prevented.

このように、前記複合型セパレータは、電極面部の面方向外方側(セパレータ外周側)が絶縁構造になっているため、冷却水による液絡や外部との地絡を有効に防止できるという長所を持つ反面、セル電圧の測定が非常に困難になるという短所も持ち合わせている。
かかる事情から、液絡や地絡を防止しつつ、各単位セル毎の発電状態を監視可能とする技術の開発が望まれている。
As described above, the composite separator has an insulating structure on the outer side in the surface direction of the electrode surface portion (separator outer peripheral side), so that it is possible to effectively prevent a liquid junction due to cooling water or an external ground fault. On the other hand, it has the disadvantage that it becomes very difficult to measure the cell voltage.
Under such circumstances, it is desired to develop a technique that can monitor the power generation state of each unit cell while preventing liquid junction and ground fault.

本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、冷媒の液絡や外部との地絡を防止しつつ、外部から容易にセル電圧を測定可能にすることにある。   The present invention has been made in view of the above circumstances, and an object thereof is to make it possible to easily measure a cell voltage from the outside while preventing a liquid junction of a refrigerant and a ground fault with the outside. is there.

前記課題を解決するために、本発明は、以下の手段を採用した。
請求項1に係る発明は、電極面部(例えば、後述する実施の形態における電極面部31A,41A)を有する導電部(例えば、後述する実施の形態における導電部31,41)が絶縁部(例えば、後述する実施の形態における絶縁部32,42)により囲繞されてなる燃料電池用のセパレータであって、
前記絶縁部には、その内周側から外周側に延出する内外連絡端子(例えば、後述する実施の形態におけるセル側端子47,48)が前記絶縁部と一体成形されており、前記燃料電池の組み立て時に前記内外連絡端子が前記電極面部と電気的に接続することを特徴とするセパレータ(例えば、後述する実施の形態におけるカソード側セパレータ3,アノード側セパレータ4)である。
このようなセパレータを用いて燃料電池を構成し、セル電圧測定装置側の端子を内外連絡端子の外周側端部に接続すれば、絶縁部によって外部との地絡防止が施された燃料電池に対しても、燃料電池内外の電気的な接続が確保される。
In order to solve the above problems, the present invention employs the following means.
In the invention according to claim 1, the conductive portion (for example, the conductive portions 31 and 41 in the embodiment described later) having the electrode surface portion (for example, the electrode surface portions 31A and 41A in the embodiment described later) is an insulating portion (for example, A separator for a fuel cell surrounded by insulating portions 32, 42) in embodiments described later,
Inner and outer connecting terminals (for example, cell-side terminals 47 and 48 in the embodiments described later) that extend from the inner peripheral side to the outer peripheral side of the insulating part are integrally formed with the insulating part, and the fuel cell The separator is characterized in that the internal / external connection terminal is electrically connected to the electrode surface portion during assembly (for example, a cathode side separator 3 and an anode side separator 4 in an embodiment described later).
If a fuel cell is configured using such a separator, and the terminal on the cell voltage measuring device side is connected to the outer peripheral side end of the inner / outer connection terminal, the fuel cell is prevented from being grounded by the insulating part. In contrast, electrical connection inside and outside the fuel cell is ensured.

請求項2に係る発明は、請求項1に記載のセパレータにおいて、
前記内外連絡端子は、少なくとも一部(例えば、後述する実施の形態におけるセル側端子47の一部47b)が前記絶縁部に埋設されていることを特徴とする。
この構成によれば、内外連絡端子の一部がセパレータと一体化されているために、内外連絡端子を別部品としてセパレータに組み付ける必要がない。また、内外連絡端子がセパレータに対して位置づれを起こすこともない。
The invention according to claim 2 is the separator according to claim 1,
The inside / outside connection terminal is characterized in that at least a part (for example, a part 47b of a cell side terminal 47 in an embodiment described later) is embedded in the insulating part.
According to this configuration, since a part of the internal / external connection terminal is integrated with the separator, it is not necessary to assemble the internal / external connection terminal as a separate part to the separator. Further, the inner / outer connection terminal is not positioned relative to the separator.

請求項3に係る発明は、請求項2に記載のセパレータにおいて、
前記内外連絡端子は、前記絶縁部のシール当接面(例えば、後述する実施の形態におけるシール当接面32D)において該絶縁部に埋設されていることを特徴とする。
このようなセパレータを用いて燃料電池を構成すれば、シール部材が絶縁部に接するシール当接面に内外連絡端子が露出せず、シール当接面における凹凸形成が抑制される。
The invention according to claim 3 is the separator according to claim 2,
The internal / external connection terminal is embedded in the insulating portion on a seal contact surface of the insulating portion (for example, a seal contact surface 32D in an embodiment described later).
If a fuel cell is configured using such a separator, the inner and outer communication terminals are not exposed on the seal contact surface where the seal member contacts the insulating portion, and the formation of irregularities on the seal contact surface is suppressed.

請求項4に係る発明は、請求項1〜請求項3のいずれかに記載のセパレータにおいて、
前記導電部と前記絶縁部との間に、弾性体からなる結合部(例えば、後述する実施の形態における結合部33,43)を有することを特徴とする。
この構成によれば、温度変化時に絶縁部と導電部との間に生じ得る熱膨張差を結合部にて吸収することができる。
The invention according to claim 4 is the separator according to any one of claims 1 to 3,
Between the conductive portion and the insulating portion, there is a coupling portion made of an elastic body (for example, coupling portions 33 and 43 in the embodiments described later).
According to this configuration, a difference in thermal expansion that can occur between the insulating portion and the conductive portion when the temperature changes can be absorbed by the coupling portion.

請求項5に係る発明は、請求項1〜請求項4のいずれかに記載のセパレータにおいて、
前記絶縁部は、反応ガスまたは冷媒が流通する連通孔(例えば、後述する実施の形態における入口側酸化剤ガス連通孔34a,出口側酸化剤ガス連通孔34b,入口側燃料ガス連通孔35a,出口側燃料ガス連通孔35b,入口側冷却水連通孔36a,および出口側冷却水連通孔36b)を有することを特徴とする。
この構成によれば、連通孔を流通する冷媒による液絡を絶縁部によって有効に防止しつつ、外部から容易に電位を取り出すことができる。
The invention according to claim 5 is the separator according to any one of claims 1 to 4,
The insulating portion includes a communication hole through which a reaction gas or a refrigerant flows (for example, an inlet-side oxidant gas communication hole 34a, an outlet-side oxidant gas communication hole 34b, an inlet-side fuel gas communication hole 35a, an outlet in an embodiment described later) A side fuel gas communication hole 35b, an inlet side cooling water communication hole 36a, and an outlet side cooling water communication hole 36b).
According to this configuration, the potential can be easily taken out from the outside while effectively preventing the liquid junction caused by the refrigerant flowing through the communication hole by the insulating portion.

請求項6に係る発明は、電解質(例えば、後述する実施の形態における固体高分子電解質膜21)の両側に電極(例えば、後述する実施の形態におけるカソード側ガス拡散電極22,アノード側ガス拡散電極23)を設けてなる膜電極構造体を一対のセパレータで挟持して構成される燃料電池であって、
前記セパレータの少なくとも一方に、請求項1〜請求項5のいずれかに記載のセパレータが用いられていることを特徴とする燃料電池(例えば、後述する実施の形態における単位セル1)である。
この構成によれば、冷媒による液絡や外部との地絡を絶縁部によって有効に防止しつつ、外部から容易に電位を取り出すことができる。
The invention according to claim 6 includes electrodes (for example, a cathode side gas diffusion electrode 22 and an anode side gas diffusion electrode in embodiments described later) on both sides of an electrolyte (for example, a solid polymer electrolyte membrane 21 in embodiments described later). 23) a fuel cell comprising a membrane electrode structure provided with a pair of separators,
A separator according to any one of claims 1 to 5 is used for at least one of the separators. A fuel cell (for example, unit cell 1 in an embodiment described later).
According to this configuration, it is possible to easily take out the potential from the outside while effectively preventing the liquid junction due to the refrigerant and the ground fault with the outside by the insulating portion.

請求項7に係る発明は、電極面部(例えば、後述する実施の形態における電極面部31A,41A)を有する導電部(例えば、後述する実施の形態における導電部31,41)が絶縁部(例えば、後述する実施の形態における絶縁部32,42)により囲繞されてなる一対のセパレータ(例えば、後述する実施の形態におけるカソード側セパレータ3,アノード側セパレータ4)により、電解質(例えば、後述する実施の形態における固体高分子電解質膜21)の両側に電極(例えば、後述する実施の形態におけるカソード側ガス拡散電極22,アノード側ガス拡散電極23)を設けてなる膜電極構造体(例えば、後述する実施の形態における膜電極構造体2)を挟持して構成される燃料電池であって、
前記セパレータの少なくとも一方の絶縁部には、その内周側から外周側に延出する内外連絡端子(例えば、後述する実施の形態におけるセル側端子47,48)が前記絶縁部と一体成形され、その内周側端部が前記膜電極構造体または前記膜電極構造体と電気的に接続された前記導電部に接していることを特徴とする燃料電池(例えば、後述する実施の形態における単位セル1)である。
この構成によれば、セル電圧測定装置側の端子を内外連絡端子の外周側端部に接続すれば、内外連絡端子の内周側端部が膜電極構造体または導電部との接点になっているので、絶縁部によって外部との地絡防止が施された燃料電池に対しても、燃料電池内外の電気的な接続が確保される。
In the invention according to claim 7, the conductive portion (for example, the conductive portions 31 and 41 in the embodiment described later) having the electrode surface portion (for example, the electrode surface portions 31A and 41A in the embodiment described later) is an insulating portion (for example, An electrolyte (for example, an embodiment to be described later) is formed by a pair of separators (for example, a cathode side separator 3 and an anode side separator 4 in an embodiment to be described later) surrounded by insulating portions 32 and 42 in the embodiment to be described later. The membrane electrode structure (for example, an embodiment to be described later) is provided with electrodes (for example, the cathode side gas diffusion electrode 22 and the anode side gas diffusion electrode 23 in the embodiment described later) on both sides of the solid polymer electrolyte membrane 21 in FIG. A fuel cell configured to sandwich a membrane electrode structure 2) in the form,
At least one insulating portion of the separator is formed integrally with the insulating portion by internal and external connection terminals (for example, cell side terminals 47 and 48 in the embodiments described later) extending from the inner peripheral side to the outer peripheral side, A fuel cell (for example, a unit cell in an embodiment to be described later) having an inner peripheral side end in contact with the membrane electrode structure or the conductive part electrically connected to the membrane electrode structure 1).
According to this configuration, if the terminal on the cell voltage measuring device side is connected to the outer peripheral side end of the inner and outer connecting terminals, the inner peripheral end of the inner and outer connecting terminals becomes a contact point with the membrane electrode structure or the conductive part. Therefore, an electrical connection between the inside and outside of the fuel cell is ensured even for the fuel cell in which the grounding prevention from the outside is performed by the insulating portion.

請求項8に係る発明は、請求項7に記載の燃料電池において、
前記膜電極構造体を挟んで、前記膜電極構造体と前記内外連絡端子との当接部の反対側に、シール部材(例えば、後述する実施の形態における側のリブ状シール部材51)が設けられていることを特徴とする。
この構成によれば、シール部材からの弾性復元力により、内外連絡端子と膜電極構造体との接触を確実にすることができる。
The invention according to claim 8 is the fuel cell according to claim 7,
Sandwiching the membrane electrode assembly, on the opposite side of the contact portion between the inner and outer contact terminals and the membrane electrode assembly, the sealing member (e.g., rib-like sealing member 51 b of the inner side in the embodiment described below) Is provided.
According to this configuration, the contact between the internal / external communication terminal and the membrane electrode structure can be ensured by the elastic restoring force from the seal member.

請求項9に係る発明は、請求項7または請求項8に記載の燃料電池において、
前記絶縁部は、反応ガスまたは冷媒が流通する連通孔(例えば、後述する実施の形態における入口側酸化剤ガス連通孔34a,出口側酸化剤ガス連通孔34b,入口側燃料ガス連通孔35a,出口側燃料ガス連通孔35b,入口側冷却水連通孔36a,および出口側冷却水連通孔36b)を有することを特徴とする。
この構成によれば、連通孔を流通する冷媒による液絡を絶縁部によって有効に防止しつつ、外部から容易に電位を取り出すことができる。
The invention according to claim 9 is the fuel cell according to claim 7 or 8, wherein
The insulating portion includes a communication hole through which a reaction gas or a refrigerant flows (for example, an inlet-side oxidant gas communication hole 34a, an outlet-side oxidant gas communication hole 34b, an inlet-side fuel gas communication hole 35a, an outlet in an embodiment described later) A side fuel gas communication hole 35b, an inlet side cooling water communication hole 36a, and an outlet side cooling water communication hole 36b).
According to this configuration, the potential can be easily taken out from the outside while effectively preventing the liquid junction caused by the refrigerant flowing through the communication hole by the insulating portion.

本発明によれば、以下の効果を得る。
請求項1に係る発明によれば、絶縁部によって外部との地絡防止が施された燃料電池を構成しても、セル電圧測定装置の端子を内外連絡端子の外周側端部に接続すれば、燃料電池内外の電気的な接続が確保されるので、外部から容易に電位を取り出すことができる。
According to the present invention, the following effects are obtained.
According to the first aspect of the present invention, even if the fuel cell in which the grounding prevention from the outside is performed by the insulating portion is configured, if the terminal of the cell voltage measuring device is connected to the outer peripheral side end portion of the inner and outer connection terminals. Since electrical connection inside and outside the fuel cell is secured, the potential can be easily taken out from the outside.

請求項2に係る発明によれば、内外連絡端子の一部がセパレータと一体化されているために、内外連絡端子を別部品としてセパレータに組み付ける必要がなく、組み立て工数を削減することができる。また、内外連絡端子がセパレータに対して位置づれを起こすことがなく、膜電極構造体または導電部に対して良好な電気的接触状態を維持することができる。   According to the invention which concerns on Claim 2, since a part of internal / external connection terminal is integrated with the separator, it is not necessary to assemble | attach an internal / external connection terminal to a separator as another component, and an assembly man-hour can be reduced. Further, the internal / external communication terminal is not positioned with respect to the separator, and a good electrical contact state can be maintained with respect to the membrane electrode structure or the conductive portion.

請求項3に係る発明によれば、シール部材が絶縁部に接するシール当接面に内外連絡端子が露出しないので、シール当接面における凹凸形成を抑制し得て、シール性の信頼性をより高めることができる。   According to the third aspect of the present invention, since the inner and outer connecting terminals are not exposed on the seal contact surface where the seal member is in contact with the insulating portion, formation of irregularities on the seal contact surface can be suppressed, and the reliability of the sealing performance is further improved. Can be increased.

請求項4に係る発明によれば、温度変化時に絶縁部と導電部との間に生じ得る熱膨張差を結合部にて吸収することができるので、絶縁部と導電部との接続境界の破断を有効に回避しつつ、良好なシール性を維持することができる。   According to the fourth aspect of the invention, since the difference in thermal expansion that can occur between the insulating portion and the conductive portion when the temperature changes can be absorbed by the joint portion, the connection boundary between the insulating portion and the conductive portion is broken. It is possible to maintain good sealing performance while effectively avoiding.

請求項5に係る発明によれば、連通孔を流通する冷媒による液絡を絶縁部によって有効に防止しつつ、外部から容易に電位を取り出すことができる。   According to the fifth aspect of the present invention, the potential can be easily taken out from the outside while effectively preventing the liquid junction caused by the refrigerant flowing through the communication hole by the insulating portion.

請求項6に係る発明によれば、冷媒による液絡や外部との地絡を絶縁部によって有効に防止しつつ、外部から容易に電位を取り出すことができる。   According to the sixth aspect of the present invention, it is possible to easily take out the potential from the outside while effectively preventing the liquid junction due to the refrigerant and the ground fault with the outside by the insulating portion.

請求項7に係る発明によれば、セル電圧測定装置の端子を内外連絡端子の外周側端部に接続すれば、内外連絡端子の内周側端部が膜電極構造体または導電部との接点になっているので、絶縁部によって外部との地絡防止が施された燃料電池に対しても、燃料電池内外の電気的な接続が確保され、外部から容易に電位を取り出すことができる。   According to the invention which concerns on Claim 7, if the terminal of a cell voltage measuring device is connected to the outer peripheral side end part of the inner and outer connecting terminal, the inner peripheral side end part of the inner and outer connecting terminal is a contact point with the membrane electrode structure or the conductive part Therefore, even in the fuel cell in which the grounding prevention from the outside is performed by the insulating portion, the electrical connection inside and outside the fuel cell is secured, and the potential can be easily taken out from the outside.

請求項8に係る発明によれば、シール部材からの弾性復元力により、内外連絡端子と膜電極構造体との接触を確実にすることができる。   According to the invention which concerns on Claim 8, contact with an internal / external communication terminal and a membrane electrode structure can be ensured with the elastic restoring force from a sealing member.

請求項9に係る発明によれば、連通孔を流通する冷媒による液絡を絶縁部によって有効に防止しつつ、外部から容易に電位を取り出すことができる。   According to the ninth aspect of the present invention, the potential can be easily taken out from the outside while effectively preventing the liquid junction caused by the refrigerant flowing through the communication hole by the insulating portion.

以下、添付図面を参照しながら、本発明実施のための最良の形態について説明する。
図1は、本発明の一実施の形態による単位燃料電池の縦断面図である。
この単位燃料電池(以下、「単位セル1」という。)は、膜電極構造体(MEA)2と、これを挟持するカソード側セパレータ3及びアノード側セパレータ4とを備えてなる。そして、この単位セル1が図3に示すように多数積層されることにより、例えば車両用の燃料電池スタック(以下、「スタック5」という。)が構成される。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view of a unit fuel cell according to an embodiment of the present invention.
This unit fuel cell (hereinafter referred to as “unit cell 1”) includes a membrane electrode structure (MEA) 2 and a cathode side separator 3 and an anode side separator 4 sandwiching the membrane electrode structure (MEA) 2. A large number of unit cells 1 are stacked as shown in FIG. 3 to form, for example, a fuel cell stack for vehicles (hereinafter referred to as “stack 5”).

膜電極構造体2は、固体高分子電解質膜21と、この固体高分子電解質膜21をその外側から挟み込むカソード側ガス拡散電極22およびアノード側ガス拡散電極23と、これら固体高分子電解質膜21とカソード側およびアノード側ガス拡散電極22,23との間に設けられる白金を含む触媒層(図示略)とを備えて構成されている。
この膜電極構造体2は、固体高分子電解質膜21の外寸を基準にすると、カソード側ガス拡散電極22は略同寸であるが、アノード側ガス拡散電極23は小寸とされた段差構造をなしている。
The membrane electrode structure 2 includes a solid polymer electrolyte membrane 21, a cathode side gas diffusion electrode 22 and an anode side gas diffusion electrode 23 that sandwich the solid polymer electrolyte membrane 21 from the outside, and these solid polymer electrolyte membranes 21. It comprises a catalyst layer (not shown) containing platinum provided between the cathode side and anode side gas diffusion electrodes 22, 23.
The membrane electrode structure 2 is a step structure in which the cathode side gas diffusion electrode 22 has substantially the same size, but the anode side gas diffusion electrode 23 has a small size, based on the outer dimensions of the solid polymer electrolyte membrane 21. I am doing.

カソード側セパレータ3およびアノード側セパレータ4は、いずれも金属製(例えば、ステンレス、ハステロイ、インコネル、Au、Cu、Ni、Al、Tiなど)の導電部31,41と、その外周を囲繞するように設けられた樹脂製の絶縁部32,42とが、例えばシリコンゴムなどの弾性体からなる結合部33,43を介して相互接続されてなる。   Each of the cathode side separator 3 and the anode side separator 4 surrounds the outer periphery of the conductive parts 31 and 41 made of metal (for example, stainless steel, Hastelloy, Inconel, Au, Cu, Ni, Al, Ti, etc.). The provided insulating parts 32 and 42 made of resin are interconnected via coupling parts 33 and 43 made of an elastic material such as silicon rubber.

カソード側およびアノード側の各導電部31,41は、金属板をプレス成形することにより、平坦な山部と谷部とが交互に連続する断面波形に形成されている。各導電部31,41の谷部外面は、それらの間に挟持される膜電極構造体2の各外面に面接触しており、該接触面が各セパレータ3,4における電極面部31A,41Aを構成している。
これら導電部31,41は金属製に限らず、カーボンや導電性樹脂など導電材料から構成されるものであればよい。
The cathode-side and anode-side conductive portions 31 and 41 are formed in a cross-sectional waveform in which flat peaks and valleys are alternately continued by press-molding a metal plate. The outer surfaces of the valley portions of the conductive portions 31 and 41 are in surface contact with the outer surfaces of the membrane electrode structure 2 sandwiched between them, and the contact surfaces contact the electrode surface portions 31A and 41A in the separators 3 and 4, respectively. It is composed.
These conductive portions 31 and 41 are not limited to being made of metal, and may be made of a conductive material such as carbon or conductive resin.

カソード側およびアノード側セパレータ3,4の絶縁部32,42は、図2に示すように、樹脂を射出成形することにより周方向に間隔をおいて入口側酸化剤ガス連通孔34a,出口側酸化剤ガス連通孔34b,入口側燃料ガス連通孔35a,出口側燃料ガス連通孔35b,入口側冷却水連通孔36a,および出口側冷却水連通孔36bを有する矩形枠状に形成されている。なお、図2は、カソード側セパレータ3を示している。
これら絶縁部32,42は樹脂製に限らず、ゴム,シリコン,セラミックスなど絶縁材料から構成されるものであればよい。
As shown in FIG. 2, the insulating portions 32 and 42 of the cathode-side and anode-side separators 3 and 4 are formed by injection molding of resin and spaced in the circumferential direction at the inlet-side oxidant gas communication holes 34a and outlet-side oxidation. It is formed in a rectangular frame shape having an agent gas communication hole 34b, an inlet side fuel gas communication hole 35a, an outlet side fuel gas communication hole 35b, an inlet side cooling water communication hole 36a, and an outlet side cooling water communication hole 36b. FIG. 2 shows the cathode separator 3.
These insulating parts 32 and 42 are not limited to resin, but may be made of an insulating material such as rubber, silicon or ceramics.

本実施の形態では、カソード側絶縁部32の内面側には、セル内外の電気的な接続(導通)を可能にする金属プレート製のセル側端子(内外連絡端子)47が設けられ、アノード側の絶縁部42には、前記電極面部31A,41Aを二重に取り囲むようにして配設されるリブ状シール部材(シール部材)51が設けられている。
以下、カソード側とアノード側に分けて、それぞれの構成を詳細に説明する。
In the present embodiment, a cell side terminal (internal / external connection terminal) 47 made of a metal plate that enables electrical connection (conduction) inside and outside the cell is provided on the inner surface side of the cathode side insulating portion 32, and the anode side The insulating portion 42 is provided with a rib-like seal member (seal member) 51 disposed so as to surround the electrode surface portions 31A and 41A in a double manner.
Hereinafter, the configuration of each of the cathode side and the anode side will be described in detail.

カソード側絶縁部32は、その内面(電極面部31A側の面)がカソード側導電部31の電極面部31Aと略面一をなしており、膜電極構造体2をその外側から一対のセパレータ3,4で挟み込んで単位セル1を組立てた際に、カソード側絶縁部32の面方向略中央よりも内方の内周側内面32Aと、カソード側導電部31の電極面部31Aとが膜電極構造体2に密着する。   The cathode-side insulating portion 32 has an inner surface (surface on the electrode surface portion 31A side) substantially flush with the electrode surface portion 31A of the cathode-side conductive portion 31, and the membrane electrode structure 2 is separated from the outside by a pair of separators 3, When the unit cell 1 is assembled by being sandwiched between 4, the inner peripheral side inner surface 32 </ b> A inward of the cathode-side insulating portion 32 and the electrode surface portion 31 </ b> A of the cathode-side conductive portion 31 is formed. 2 is in close contact.

カソード側絶縁部32の内面側に設けられたセル側端子47は、いわゆる樹脂インサート成形により樹脂部32aと一体成形され、膜電極構造体2のカソード側外面2Aに接することとなる前記内周側内面32Aの平坦性が良好であり、かつ該内周側内面32Aと前記谷部外面31Aの各面の高さが同一で段差がない構成となっている。   The cell side terminal 47 provided on the inner surface side of the cathode side insulating portion 32 is integrally formed with the resin portion 32a by so-called resin insert molding, and comes into contact with the cathode side outer surface 2A of the membrane electrode structure 2. The inner surface 32A has good flatness, and the inner peripheral side inner surface 32A and the valley outer surface 31A have the same height and no step.

セル側端子47の樹脂部32aへのインサート位置は、入口側および出口側冷却水連通孔36a,36bを流通する冷却水(冷媒)の液絡を有効に防止する観点から、これら冷却水連通孔36a,36bの周囲から離しておくことが好ましく、本実施の形態では、図2に示すように、セル側端子47が2つの入口側酸化剤ガス連通孔34a,34aの間の樹脂部32aにインサート成形されている。   The insertion position of the cell-side terminal 47 into the resin portion 32a is such that these cooling water communication holes are used from the viewpoint of effectively preventing the liquid junction of the cooling water (refrigerant) flowing through the inlet side and outlet side cooling water communication holes 36a, 36b. In this embodiment, as shown in FIG. 2, the cell-side terminal 47 is connected to the resin portion 32a between the two inlet-side oxidant gas communication holes 34a, 34a. Insert molded.

セル側端子47のインサート位置は、図2に示す位置に限らず、2つの出口側酸化剤ガス連通孔34b,34b間、入口側燃料ガス連通孔35a,35a間、出口側燃料ガス連通孔35b,35b間、入口側又は出口側酸化剤ガス連通孔34a,34bと出口側又は入口側燃料ガス連通孔35b,35aとの間の各樹脂部32aであってもよい。   The insert position of the cell side terminal 47 is not limited to the position shown in FIG. , 35b, or between the inlet side or outlet side oxidant gas communication holes 34a, 34b and the outlet side or inlet side fuel gas communication holes 35b, 35a.

セル側端子47の内周側端部47aは、膜電極構造体2のカソード側外面2Aに接する部分であり、カソード側絶縁部32の内周側内面32Aに露出する。
これに対し、アノード側絶縁部42との間に設けられたリブ状シール部材51のうち、外側のリブ状シール部材(シール部材)51aがカソード側絶縁部32に接するシール当接面32Dを含む一定範囲においては、セル側端子47の一部47bが樹脂部32a内に埋設されている。
The inner peripheral side end portion 47 a of the cell side terminal 47 is a portion in contact with the cathode side outer surface 2 A of the membrane electrode structure 2 and is exposed to the inner peripheral side inner surface 32 A of the cathode side insulating portion 32.
On the other hand, of the rib-like seal member 51 provided between the anode-side insulating portion 42, the outer rib-like seal member (seal member) 51a includes a seal contact surface 32D that contacts the cathode-side insulating portion 32. In a certain range, a part 47b of the cell side terminal 47 is embedded in the resin portion 32a.

セル側端子47の一部47bを樹脂部32a内に埋設したのは、外側のリブ状シール部材51aがカソード側絶縁部32に接するシール当接面32Dにおいては、膜電極構造体2に接する内周側端部47aのように内周側内面32Aに露出させると、樹脂部32aとセル側端子47との接合部分に隙間や段差が不可避的に生じ、その隙間等からガスの内外連通が可能になってしまうからである。   A part 47b of the cell side terminal 47 is embedded in the resin portion 32a because the outer rib-shaped seal member 51a is in contact with the membrane electrode structure 2 at the seal contact surface 32D in contact with the cathode side insulating portion 32. When exposed to the inner peripheral side inner surface 32A like the peripheral side end portion 47a, a gap or a step is inevitably generated at the joint portion between the resin portion 32a and the cell side terminal 47, and gas can be communicated between the inside and outside of the gap. Because it becomes.

本実施の形態では、少なくとも外側のリブ状シール部材51aが接するシール当接面32Dにおいては、セル側端子47を樹脂部32a内に潜り込ませているので、シール当接面32Dに凹凸が生ずることはない。
セル側端子47がシール当接面32Dに露出しない構成であれば、その一部47bを樹脂部32aの外面側(電極面部31A,41Aと反対側)に一旦露出させてもよい。
In the present embodiment, at least on the seal contact surface 32D with which the outer rib-shaped seal member 51a contacts, since the cell-side terminal 47 is embedded in the resin portion 32a, the seal contact surface 32D is uneven. There is no.
If the cell-side terminal 47 is configured not to be exposed to the seal contact surface 32D, a part 47b of the cell-side terminal 47 may be once exposed to the outer surface side (the side opposite to the electrode surface portions 31A and 41A) of the resin portion 32a.

セル側端子47の外周側端部47c、言い換えれば、前記外側のリブ状シール部材51aが絶縁部32aと接するシール当接面32Dよりも面方向外方(外周側)の部分は、カソード側絶縁部32の外周側内面32Bおよび外周端面32Cの双方に露出しており、その少なくとも一方の露出部に、セル電圧測定装置側の端子(以下、「測定側端子61」という。)が接続される。
この外周側端部47cは、前記外周側内面32Bまたは外周端面32Cのいずれか一方の面だけに露出するものでもよい。
The outer peripheral side end portion 47c of the cell side terminal 47, in other words, the portion on the outer side in the surface direction (outer peripheral side) than the seal contact surface 32D where the outer rib-shaped seal member 51a contacts the insulating portion 32a is cathode side insulating. The terminal 32 is exposed on both the outer peripheral side inner surface 32B and the outer peripheral end surface 32C, and a terminal on the cell voltage measuring device side (hereinafter referred to as “measurement side terminal 61”) is connected to at least one of the exposed portions. .
The outer peripheral end 47c may be exposed only on one of the outer peripheral inner surface 32B and the outer peripheral end surface 32C.

外側のリブ状シール部材51aがカソード側絶縁部32に接するシール当接面32Dと反対側の面、つまり電極面部31A,41A側と反対の外面には、他部よりも一段凹む凹部34が形成されている。
また、カソード側絶縁部32の内周側には、その外面が一段凹まされてなる段差部35と、該段差部35と面一をなして面方向内方(内周側)に延びるフランジ部36とが形成されている。
On the surface opposite to the seal contact surface 32D where the outer rib-shaped seal member 51a contacts the cathode-side insulating portion 32, that is, on the outer surface opposite to the electrode surface portions 31A and 41A side, a recess 34 that is recessed by one step is formed. Has been.
Further, on the inner peripheral side of the cathode-side insulating portion 32, a stepped portion 35 whose outer surface is recessed by one step, and a flange portion that is flush with the stepped portion 35 and extends inward in the plane direction (inner peripheral side). 36 is formed.

そして、カソード側絶縁部32とカソード側導電部31とは、シリコンゴムなどの弾性体からなる結合部33を介して、相互接着されている。
すなわち、導電性材料と絶縁性材料とでは一般的に熱膨張係数が異なるため、絶縁性材料からなる絶縁部32と、導電性材料からなる導電部31とを直接接着すると、温度変化した場合に熱歪みが発生し、シール性が損われることがあるが、本実施の形態では、弾性を有する結合部33が両者の熱膨張差を吸収できるので、良好なシール性が維持される。
The cathode-side insulating portion 32 and the cathode-side conductive portion 31 are bonded to each other via a coupling portion 33 made of an elastic body such as silicon rubber.
That is, since the thermal expansion coefficient is generally different between the conductive material and the insulating material, when the insulating portion 32 made of the insulating material and the conductive portion 31 made of the conductive material are directly bonded, the temperature changes. Although thermal distortion may occur and the sealing performance may be impaired, in the present embodiment, the elastic coupling portion 33 can absorb the difference in thermal expansion between them, so that a good sealing performance is maintained.

次に、アノード側絶縁部42の構成について説明する。
アノード側絶縁部42の内面(電極面部31A,41A側の面)の略中央部には凹部37が形成されており、この凹部37には、前記リブ状シール部材51が前記結合部43と一体をなして収容されている。
このリブ状シール部材51は、結合部43と別体であってもよい。
Next, the configuration of the anode side insulating portion 42 will be described.
A concave portion 37 is formed in a substantially central portion of the inner surface of the anode-side insulating portion 42 (surface on the electrode surface portions 31 </ b> A and 41 </ b> A side), and the rib-shaped sealing member 51 is integrated with the coupling portion 43 in the concave portion 37. Is housed.
The rib-like seal member 51 may be separate from the coupling portion 43.

そして、リブ状シール部材51のうち、外側のリブ状シール部材51aは、カソード側絶縁部32における前記セル側端子47の埋没箇所を押圧し、内側のリブ状シール部材51bは、固体高分子電解質膜21およびカソード側ガス拡散電極22を介して、カソード側絶縁部32においてセル側端子47が露出している前記内周側内面32Aを押圧している。   Of the rib-shaped seal members 51, the outer rib-shaped seal member 51a presses the buried portion of the cell-side terminal 47 in the cathode-side insulating portion 32, and the inner rib-shaped seal member 51b is a solid polymer electrolyte. Through the membrane 21 and the cathode side gas diffusion electrode 22, the inner peripheral side inner surface 32A where the cell side terminal 47 is exposed in the cathode side insulating portion 32 is pressed.

このように、アノードガスのシールは、アノード側絶縁部42とカソード側絶縁部32とにより、内側のリブ状シール部材51bを介して膜電極構造体2を挟むことにより成立しているが、この内側のリブ状シール部材51bの弾性復元力により生ずるシール面圧によって、カソード側絶縁部32の内周側内面32Aに露出して設けられたセル側端子47の内周側端部47aは膜電極構造体2に押し付けられ、これらセル側端子47と膜電極構造体2との接触はより確実なものになっている。   Thus, the anode gas seal is established by sandwiching the membrane electrode structure 2 between the anode side insulating portion 42 and the cathode side insulating portion 32 via the inner rib-like seal member 51b. The inner peripheral side end 47a of the cell side terminal 47 provided exposed to the inner peripheral side inner surface 32A of the cathode side insulating portion 32 by the sealing surface pressure generated by the elastic restoring force of the inner rib-shaped sealing member 51b is a membrane electrode. The cell side terminal 47 and the membrane electrode structure 2 are more reliably brought into contact with each other by being pressed against the structure 2.

以上説明したように、本実施の形態によるセパレータ3,4,該セパレータ3,4を備えてなる単位セル1,および該単位セル1を複数積層してなるスタック5によれば、測定側端子61をカソード側およびアノード側絶縁部32,42間に挿入してセル側端子47の外周側端部47cに接続すれば、セル内外およびスタック内外との電気的導通が確保されるので、連通孔部分や外部との絶縁性能を維持しつつシール性能も阻害せずに、外部からのセル電圧測定が可能となる。   As described above, according to the separator 3 according to the present embodiment, the unit cell 1 including the separators 3 and 4, and the stack 5 formed by stacking a plurality of the unit cells 1, the measurement side terminal 61 Is inserted between the cathode-side and anode-side insulating portions 32 and 42 and connected to the outer peripheral side end portion 47c of the cell-side terminal 47, the electric conduction between the inside and outside of the cell and inside and outside of the stack is ensured. In addition, the cell voltage can be measured from the outside without impairing the sealing performance while maintaining the insulation performance from the outside.

また、内側のリブ状シール部材51bによるシール面圧によって、セル電圧測定に十分な接触圧をセル側端子47と膜電極構造体2間に生じさせることができるので、接触抵抗が下がり、正確な測定が可能となる。
さらに、セル側端子47は、入口側および出口側冷却水連通孔36a,36bの周囲を避けて、入口側酸化剤ガス連通孔34a,34aの間に配設されているので、冷却水からの漏電(液絡)を有効に防止することができる。
Further, the contact pressure sufficient for measuring the cell voltage can be generated between the cell-side terminal 47 and the membrane electrode structure 2 by the sealing surface pressure by the inner rib-like seal member 51b, so that the contact resistance is lowered and accurate. Measurement is possible.
Furthermore, since the cell side terminal 47 is disposed between the inlet side oxidant gas communication holes 34a and 34a, avoiding the periphery of the inlet side and outlet side cooling water communication holes 36a and 36b, Electric leakage (liquid junction) can be effectively prevented.

また、樹脂部32aへセル側端子47をインサート成形するに際し、外側のリブ状シール部材51aがカソード側絶縁部32と接触するシール当接面32Dにおいては、セル側端子47の一部47bを樹脂部32aの内部に埋没させているので、シールライン上における凹凸形成を有効に防止し得て、シール性の信頼性向上を図ることができる。   Further, when the cell-side terminal 47 is insert-molded into the resin portion 32a, a part 47b of the cell-side terminal 47 is formed on the seal contact surface 32D where the outer rib-shaped seal member 51a contacts the cathode-side insulating portion 32. Since it is buried inside the portion 32a, it is possible to effectively prevent the formation of irregularities on the seal line, and to improve the reliability of the sealing performance.

さらに、熱膨張係数を互いに異にする導電部31,41と絶縁部32,42とをシリコンゴムなどの弾性体からなる結合部33を介して接続することにより、熱歪み吸収構造を成立させているので、接続界面が破断したり、シール不良を起こすこともない。   Furthermore, by connecting the conductive portions 31, 41 having different thermal expansion coefficients to each other and the insulating portions 32, 42 via a coupling portion 33 made of an elastic material such as silicon rubber, a thermal strain absorption structure is established. As a result, the connection interface does not break or cause a sealing failure.

本発明は前記実施の形態に限定されるものでなく、例えば下記の構成を採用することも可能である。
(1)各単位セル1に測定側端子61を接続して単位セル1ごとにセル電位を取り出す代わりに、nセル(n=1以上の整数)おきに測定側端子61を接続してもよい。
(2)セル側端子47の内周側端部47aを膜電極構造体2のカソード側外面2Aに当接させる代わりに、膜電極構造体2のアノード側外面やセパレータ3,4の導電部31,32に当接させてもよい。
The present invention is not limited to the above-described embodiment, and for example, the following configuration can be adopted.
(1) Instead of connecting the measurement side terminal 61 to each unit cell 1 and taking out the cell potential for each unit cell 1, the measurement side terminal 61 may be connected every n cells (n = 1 or more integer). .
(2) Instead of bringing the inner peripheral side end 47a of the cell side terminal 47 into contact with the cathode side outer surface 2A of the membrane electrode structure 2, the anode side outer surface of the membrane electrode structure 2 and the conductive portions 31 of the separators 3 and 4 , 32 may be contacted.

(3)測定側端子61と接続可能であれば、セル側端子47の最外周端を絶縁部32の外周端面32Cよりも内周側に位置させてもよい。
(4)セル側端子47は、カソード側絶縁部32に代えて、あるいはカソード側絶縁部32と共に、アノード側絶縁部31に設けてもよい。
かかる場合には、例えば図4に示すように、セル側端子48の内周側端部48aおよび外周側端部48cを樹脂部42aの内面側に露出させ、他の部分48bを樹脂部42aの内部に埋設すればよい。
(3) If the measurement side terminal 61 can be connected, the outermost peripheral end of the cell side terminal 47 may be positioned on the inner peripheral side of the outer peripheral end surface 32 </ b> C of the insulating portion 32.
(4) The cell side terminal 47 may be provided in the anode side insulating part 31 in place of the cathode side insulating part 32 or together with the cathode side insulating part 32.
In such a case, for example, as shown in FIG. 4, the inner peripheral side end portion 48a and the outer peripheral side end portion 48c of the cell side terminal 48 are exposed to the inner surface side of the resin portion 42a, and the other portion 48b is exposed to the resin portion 42a. Just embed it inside.

(5)カソード側絶縁部32の樹脂部32aを成形する際に金属プレート製のセル側端子47をインサート成形する代わりに、カソード側絶縁部32の主体をなす樹脂部32aだけを予め射出成形などにより成形しておき、この樹脂部32aに導電性材料を部分メッキしたり、PVDやCVDで蒸着させるなどの各種表面処理を施すことにより、内外連絡端子を設けてもよい。
また、予め作製しておいた金属箔を樹脂部32aに貼り付けてもよい。
(5) Instead of insert-molding the cell-side terminal 47 made of a metal plate when molding the resin portion 32a of the cathode-side insulating portion 32, only the resin portion 32a forming the main body of the cathode-side insulating portion 32 is injection-molded in advance. The internal and external communication terminals may be provided by molding the resin portion 32a and subjecting the resin portion 32a to various surface treatments such as partial plating of a conductive material or vapor deposition by PVD or CVD.
Moreover, you may affix the metal foil produced beforehand to the resin part 32a.

(6)導電部31,41と絶縁部32,42とが結合部33,43によって完全に分離されている構造に限らず、導電部31,41の少なくとも一部が絶縁部32,42の中に入り込んだ構造であってもよい。
(7)膜電極構造体2において、カソード側ガス拡散電極22とアノード側ガス拡散電極23とは同寸であってもよい。
(6) The structure is not limited to the structure in which the conductive portions 31 and 41 and the insulating portions 32 and 42 are completely separated by the coupling portions 33 and 43, and at least a part of the conductive portions 31 and 41 is included in the insulating portions 32 and 42. An intricate structure may be used.
(7) In the membrane electrode structure 2, the cathode side gas diffusion electrode 22 and the anode side gas diffusion electrode 23 may be the same size.

本発明の一実施の形態に係る燃料電池の一部を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of fuel cell which concerns on one embodiment of this invention. 図1に示すカソード側セパレータを内面側(電極面部側)から見た平面図である。It is the top view which looked at the cathode side separator shown in FIG. 1 from the inner surface side (electrode surface part side). 図1に示す燃料電池を複数積層して構成された燃料電池スタックの一部を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of fuel cell stack comprised by laminating | stacking multiple fuel cells shown in FIG. 本発明の他の実施の形態に係る燃料電池の一部を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of fuel cell which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 単位セル(燃料電池)
2 膜電極構造体
3 カソード側セパレータ
4 アノード側セパレータ
5 スタック
21 固体高分子電解質膜(電解質)
22 カソード側ガス拡散電極(電極)
23 アノード側ガス拡散電極(電極)
31、41 導電部
31A、41A 電極面部
32、42 絶縁部
33、43 結合部
32D シール当接面
34a 入口側酸化剤ガス連通孔(連通孔)
34b 出口側酸化剤ガス連通孔(連通孔)
35a 入口側燃料ガス連通孔(連通孔)
35b 出口側燃料ガス連通孔(連通孔)
36a 入口側冷却水連通孔(連通孔)
36b 出口側冷却水連通孔(連通孔)
47、48 セル側端子(内外連絡端子)
47a、48a 内周側端部
47c、48c 外周側端部
51a 外側のリブ状シール部材(シール部材)
1 unit cell (fuel cell)
2 Membrane electrode structure 3 Cathode side separator 4 Anode side separator 5 Stack 21 Solid polymer electrolyte membrane (electrolyte)
22 Cathode side gas diffusion electrode (electrode)
23 Anode side gas diffusion electrode (electrode)
31, 41 Conductive part 31A, 41A Electrode surface part 32, 42 Insulating part 33, 43 Coupling part 32D Seal contact surface 34a Inlet side oxidant gas communication hole (communication hole)
34b Outlet side oxidant gas communication hole (communication hole)
35a Inlet fuel gas communication hole (communication hole)
35b Outlet side fuel gas communication hole (communication hole)
36a Inlet side cooling water communication hole (communication hole)
36b Outlet side cooling water communication hole (communication hole)
47, 48 Cell side terminal (internal / external connection terminal)
47a, 48a Inner peripheral end 47c, 48c Outer peripheral end 51a Outer rib-shaped seal member (seal member)

Claims (9)

電極面部を有する導電部が絶縁部により囲繞されてなる燃料電池用のセパレータであって、
前記絶縁部には、その内周側から外周側に延出する内外連絡端子が前記絶縁部と一体成形されており、前記燃料電池の組み立て時に前記内外連絡端子が前記電極面部と電気的に接続することを特徴とするセパレータ。
A separator for a fuel cell in which a conductive portion having an electrode surface portion is surrounded by an insulating portion,
Inner and outer connecting terminals extending from the inner peripheral side to the outer peripheral side of the insulating part are integrally formed with the insulating part, and the inner and outer connecting terminals are electrically connected to the electrode surface part when the fuel cell is assembled. A separator characterized by that.
前記内外連絡端子は、少なくとも一部が前記絶縁部に埋設されていることを特徴とする請求項1に記載のセパレータ。   The separator according to claim 1, wherein at least a part of the internal / external communication terminal is embedded in the insulating portion. 前記内外連絡端子は、前記絶縁部のシール当接面において該絶縁部に埋設されていることを特徴とする請求項2に記載のセパレータ。   The separator according to claim 2, wherein the internal / external connection terminal is embedded in the insulating portion on a seal contact surface of the insulating portion. 前記導電部と前記絶縁部との間に、弾性体からなる結合部を有することを特徴とする請求項1〜請求項3のいずれかに記載のセパレータ。   The separator according to any one of claims 1 to 3, further comprising a coupling portion made of an elastic body between the conductive portion and the insulating portion. 前記絶縁部は、反応ガスまたは冷媒が流通する連通孔を有することを特徴とする請求項1〜請求項4のいずれかに記載のセパレータ。   The separator according to any one of claims 1 to 4, wherein the insulating portion has a communication hole through which a reaction gas or a refrigerant flows. 電解質の両側に電極を設けてなる膜電極構造体を一対のセパレータで挟持して構成される燃料電池であって、
前記セパレータの少なくとも一方に、請求項1〜請求項5のいずれかに記載のセパレータが用いられていることを特徴とする燃料電池。
A fuel cell configured by sandwiching a membrane electrode structure having electrodes on both sides of an electrolyte between a pair of separators,
A fuel cell, wherein the separator according to any one of claims 1 to 5 is used for at least one of the separators.
電極面部を有する導電部が絶縁部により囲繞されてなる一対のセパレータにより、電解質の両側に電極を設けてなる膜電極構造体を挟持して構成される燃料電池であって、
前記セパレータの少なくとも一方の絶縁部には、その内周側から外周側に延出する内外連絡端子が前記絶縁部と一体成形され、その内周側端部が前記膜電極構造体または前記膜電極構造体と電気的に接続された前記導電部に接していることを特徴とする燃料電池。
A fuel cell configured by sandwiching a membrane electrode structure in which electrodes are provided on both sides of an electrolyte by a pair of separators in which a conductive portion having an electrode surface portion is surrounded by an insulating portion,
At least one insulating portion of the separator is integrally formed with an inner and outer connecting terminal extending from the inner peripheral side to the outer peripheral side, and the inner peripheral side end thereof is the membrane electrode structure or the membrane electrode. A fuel cell, wherein the fuel cell is in contact with the conductive portion electrically connected to the structure .
前記膜電極構造体を挟んで、前記膜電極構造体と前記内外連絡端子との当接部の反対側に、シール部材が設けられていることを特徴とする請求項7に記載の燃料電池。 8. The fuel cell according to claim 7, wherein a seal member is provided on a side opposite to a contact portion between the membrane electrode structure and the internal / external communication terminal with the membrane electrode structure interposed therebetween . 前記絶縁部は、反応ガスまたは冷媒が流通する連通孔を有することを特徴とする請求項7または請求項8に記載の燃料電池。   9. The fuel cell according to claim 7, wherein the insulating portion has a communication hole through which a reaction gas or a refrigerant flows.
JP2003328917A 2003-09-19 2003-09-19 Separator and fuel cell Expired - Fee Related JP4381759B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003328917A JP4381759B2 (en) 2003-09-19 2003-09-19 Separator and fuel cell
US10/943,073 US7510795B2 (en) 2003-09-19 2004-09-15 Separator, fuel cell, and connection construction between cell voltage measurement device side terminal and fuel cell side terminal
DE102004044685.7A DE102004044685B4 (en) 2003-09-19 2004-09-15 Separator, fuel cell and construction of the connection between the terminals of a cell voltage measuring device and a fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328917A JP4381759B2 (en) 2003-09-19 2003-09-19 Separator and fuel cell

Publications (2)

Publication Number Publication Date
JP2005093394A JP2005093394A (en) 2005-04-07
JP4381759B2 true JP4381759B2 (en) 2009-12-09

Family

ID=34458344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328917A Expired - Fee Related JP4381759B2 (en) 2003-09-19 2003-09-19 Separator and fuel cell

Country Status (1)

Country Link
JP (1) JP4381759B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708101B2 (en) * 2005-07-05 2011-06-22 本田技研工業株式会社 Fuel cell voltage detection structure
US20100136444A1 (en) * 2005-09-21 2010-06-03 Nash David A Electrical bridge for fuel cell plates
JP4607827B2 (en) * 2006-01-11 2011-01-05 三星エスディアイ株式会社 Fuel cell system
US7927758B2 (en) 2006-01-11 2011-04-19 Samsung Sdi Co., Ltd. Gasket being capable of measuring voltage and fuel cell system having the same
JP5194439B2 (en) * 2006-11-21 2013-05-08 トヨタ自動車株式会社 Fuel cell and assembly constituting the fuel cell
JP5172495B2 (en) * 2008-06-26 2013-03-27 株式会社東芝 Fuel cell
JP5412804B2 (en) 2008-11-19 2014-02-12 日産自動車株式会社 Fuel cell stack
JP5236024B2 (en) 2011-01-12 2013-07-17 本田技研工業株式会社 Fuel cell
JP5728283B2 (en) * 2011-04-22 2015-06-03 本田技研工業株式会社 Fuel cell
JP5694123B2 (en) * 2011-10-27 2015-04-01 本田技研工業株式会社 Fuel cell
JP5778056B2 (en) * 2012-02-20 2015-09-16 本田技研工業株式会社 Fuel cell
JP5781957B2 (en) * 2012-02-20 2015-09-24 本田技研工業株式会社 Fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199551A (en) * 1997-01-06 1998-07-31 Honda Motor Co Ltd Fuel cell structural body and manufacture thereof
EP1296395B1 (en) * 2000-06-27 2012-08-08 Nok Corporation Gasket assembly for fuel cell
JP3785909B2 (en) * 2000-08-24 2006-06-14 トヨタ自動車株式会社 Manufacturing method of fuel cell separator
JP2001185168A (en) * 2001-01-11 2001-07-06 Mitsubishi Electric Corp Combined gas separator for fuel cell
JP3380805B2 (en) * 2001-01-11 2003-02-24 三菱電機株式会社 Composite gas separator for fuel cells
JP2002358993A (en) * 2001-05-31 2002-12-13 Mitsubishi Electric Corp Laminated fuel cell and measuring method of cell voltage

Also Published As

Publication number Publication date
JP2005093394A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP5412804B2 (en) Fuel cell stack
US6521368B2 (en) Fuel cell
US7709131B2 (en) Fuel cell endplate comprising current collector plate and fuel cell incorporating same
JP4381759B2 (en) Separator and fuel cell
JP4060257B2 (en) A fuel cell having a connection structure between a terminal on the cell voltage measuring device side and a terminal on the fuel cell side
JP4772794B2 (en) Sealed configuration for fuel cell stack
JP4481423B2 (en) Polymer electrolyte fuel cell stack
WO2014007182A1 (en) Fuel cell stack
JP2020068062A (en) Fuel cell stack
JP6117745B2 (en) Fuel cell stack
EP2942830B1 (en) Solid polymer electrolyte fuel cell
CN111477928A (en) Fuel cell stack
US20050202298A1 (en) Fuel cell
JP2008293766A (en) Fuel cell stack
US7510795B2 (en) Separator, fuel cell, and connection construction between cell voltage measurement device side terminal and fuel cell side terminal
JP4780940B2 (en) Solid polymer fuel cell
JP4087039B2 (en) Fuel cell
JP2012195128A (en) Gasket for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4945094B2 (en) Fuel cell
JP5143336B2 (en) Polymer electrolyte fuel cell
JP4899869B2 (en) Insulated cell for fuel cell and method for producing the same
JP5179093B2 (en) Fuel cell stack
JP2007220338A (en) Cell voltage measurement system of fuel cell stack
CN112201828A (en) Fuel cell stack
JP6194186B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4381759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees