JP4059606B2 - Optical connector - Google Patents

Optical connector Download PDF

Info

Publication number
JP4059606B2
JP4059606B2 JP2000058577A JP2000058577A JP4059606B2 JP 4059606 B2 JP4059606 B2 JP 4059606B2 JP 2000058577 A JP2000058577 A JP 2000058577A JP 2000058577 A JP2000058577 A JP 2000058577A JP 4059606 B2 JP4059606 B2 JP 4059606B2
Authority
JP
Japan
Prior art keywords
optical fiber
holding member
optical
hollow body
front portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000058577A
Other languages
Japanese (ja)
Other versions
JP2001249251A (en
Inventor
勇仁 渡辺
隆志 塚本
洋 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000058577A priority Critical patent/JP4059606B2/en
Publication of JP2001249251A publication Critical patent/JP2001249251A/en
Application granted granted Critical
Publication of JP4059606B2 publication Critical patent/JP4059606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、接着材を使用せずに光ファイバを固定保持することのできる光コネクタであって、特に、フェルールとフェルールをばね部材を用いてアダプタ等に押し当てるフェルールを有する光コネクタに関する。
【0002】
【従来の技術】
光通信の分野では、光伝達システムに光ファイバが用いられ、各種光通信機器の端末や光通信機器から伸びる光ファイバとを接続するために光コネクタが用いられている。
光コネクタは、接続するお互いの光ファイバの端面同士が精度良く接触するように、光ファイバを精度よく位置決めするための光ファイバ用貫通孔を備える円筒状部材、すなわちフェルールが使用される。例えばアダプタにおいては、スリーブによってフェルール同士を誘導して弾力的に接触させることによって光ファイバ同士を接続するが、接続に際して、フェルールおよび光ファイバは、光ファイバの接続端面から後方に向かって弾力的接触のための圧縮力を受ける。そのため、光コネクタには、この圧縮力に耐え光ファイバを保持することが必要である。さらに、フェルール同士を弾力的に接触させて光ファイバを接続するために、フェルールが一定の範囲内で弾力的に動くことも必要である。
【0003】
ところで、光通信では、石英光ファイバを用いるのが一般的であり、この石英光ファイバを接続するための光コネクタが各種提案され用いられている。これらの光コネクタでは、石英光ファイバを低損失で接続するために上記フェルールが使用される。その際、フェルールを用いて接続のために光コネクタを組み立てる時、エポキシ系接着剤等を用いて石英光ファイバをフェルールに接着固定することによって、石英光ファイバを光コネクタに固定保持させるのが一般的である。
【0004】
しかしながら、この接着方法によれば、接着剤の硬化のために時間がかかり、光通信システムを構築する際の作業効率の低下につながる。このため、接着剤の硬化時間を短縮するために加熱装置が用いられるが、加熱装置自体が光ファイバの接続に際して必要となるばかりか、加熱装置の予備加熱のための時間が必要となり、さらには、硬化時間を短縮したとしても30分から1時間程度の硬化時間を必要とする。さらに、加熱のために電源が必要なためビルの屋内配線現場等の施工現場では、接続作業の制約を受ける場合がある。
【0005】
そこで、光ファイバの接続作業の作業効率を高めるために、接着剤を使用しない光コネクタが望まれ、各種光コネクタが提案されてきた。
例えば、特公平5−47081号公報では、フェルールの後方にばね部材を配置して、フェルール同士を弾力的に接続させると共に、接続に際し光ファイバを保持するようにフェルールから離れた位置でコレットチャックを用いて光ファイバを保持する光コネクタ装置が提案されている。
しかし、この装置では、フェルールとコレットチャックが離間しているために、接続の際の圧縮力によって光ファイバが座屈を起こし易く、そのため、光エネルギの劣化損失が懸念される。また、フェルールとコレットチャックが離間するため、光コネクタ自体が長くなり、将来予想される小型化の要求に対して十分に対応できない。
【0006】
この他に、接着剤を使用せず、機械的に光ファイバを保持する光コネクタが、特開平7−181344号公報や特開平10−062650号公報等で提案されている。しかしながら、これらはいずれも光ファイバを機械的に固定するために複数の部品を必要とし、接着によって光ファイバを固定する接着型の光コネクタに比べて構造が複雑となりコストの上昇が妨げられないといった問題があった。
【0007】
ところで、近年、このような石英光ファイバに替わり、プラスチック光ファイバがLAN(LOCAL AREA NETWORK) や機器間接続用途等に使用され始めて来た。石英光ファイバ用に設計された光コネクタをプラスチック光ファイバの光コネクタとして用いた場合でも、石英光ファイバと同様にフェルールに接着剤を用いて光ファイバを接着固定する方法が用いられている。そのため、接続の際の問題点は石英光ファイバの場合と同様に生じた。
そのため、光伝送システムの構築の際に施工が容易な光コネクタの開発が待たれていた。
【0008】
【発明が解決しようとする課題】
本発明の目的は、光ファイバの固定のために接着剤を使用せず、少ない部品点数で光ファイバを保持することのできる、施工が容易な光コネクタを提供することである。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、ハウジングと、このハウジングの内側に配置される中空体保持部材と、光ファイバ保持溝あるいは光ファイバ保持孔を有し、先端から光ファイバの光軸方向に沿って外周が小さくなるテーパー面を外周面に備える前方部と、光ファイバ貫通孔を備える管状後方部とからなり、前記中空体保持部材の内側に配置される光ファイバ保持部材と、前記光ファイバ保持部材に嵌入して前記前方部の前記テーパー面に摺接して配置され、前記前方部の先端方向に向かうに従い、前記前方部を締めつける環状部材と、前記中空体保持部材の内側の、前記中空体保持部材に設けられた段差と前記環状部材との間に配置され、前記中空体保持部材の前記段差から前記環状部材に対して付勢することで、前記環状部材を介して前記前方部を押圧して締めつける弾性部材とを備えることを特徴とする光コネクタを提供するものである。
【0010】
ここで、前記ハウジングの内側には、光ファイバ用貫通孔を有し前方に突出するフェルールを備え、
前記フェルールは、前記光ファイバ保持部材の前記前方部の先端の端面と当接し、前記弾性部材によって前記光ファイバ保持部材の前記前方部の先端方向に付勢された前記環状部材を介して前記光ファイバ保持部材を前記フェルールに押し当てるのが好ましい。
また、前記弾性部材は、前記光ファイバ保持材に嵌入して前記環状部材に隣接して配置されるばね部材であるのが好ましい。
さらに、前記光ファイバ保持部材の前記前方部は、前記前方部の先端から光ファイバ光軸方向に沿って2つ以上の切れ込みを有するのが好ましい。
【0011】
ここで、上記光コネクタには、全体がプラスチック材料からなる光ファイバ、あるいは外層がプラスチック材料からなる光ファイバが用いられるのが好ましく、また、前記光ファイバ保持部材は、樹脂材料からなるのがよい。
また、前記中空体保持部材の後方の内周面には、内径の変化する段差部が設けられ、この内径の変化に応じた突起部が前記光ファイバ保持部材の後方端部近傍の外周面に設けられるのが好ましい。
【0012】
【発明の実施の形態】
以下、本発明の光コネクタについて、添付の図面に示される好適実施例を基に詳細に説明する。
【0013】
図1は、本発明の光コネクタの好適実施例である組み立てられた光コネクタ10の断面図を示す。
光コネクタ10は、フェルール12と、ハウジング14と、中空体保持部材16と、光ファイバ保持部材18と、環状部材20と、ばね部材22とを主に備え、ハウジング14を被うようにホルダー24が設けられる。
【0014】
フェルール12は、光ファイバの接続のために前方、すなわち光ファイバFの端面F1 を有する方向(図1中の矢印Xの方向)に突出する円筒部12aと基部12bとからなり、円筒部12aは、円筒軸に沿って光ファイバFを貫通させるフェルール貫通孔26を有する。
基部12bは、外径が円筒部12aの外径より広くなっており、ハウジング14の内周面に設けられる突起部14aによって前方の突出が制限される。
また、フェルール12の基部12bの後方(図1中の矢印Xの反対方向)の端面12cは、後述するように光ファイバ保持部材18の前方先端面18aと当接している。
【0015】
このようなフェルール12は、光ファイバFをフェルール貫通孔26に後方より貫通させることによって、フェルール12の前方端面において光ファイバFの位置が精度よく定められるとともに、フェルール12の前方端面と面一になるように端面処理(切断、研磨)が施され、アダプタを介して他の光ファイバの端面と接触して接続される。
なお、フェルール貫通孔26の内径は、基部12b側で広く、前方で細くなっている。これは、光ファイバFを後方から容易に挿入し貫通できるようにするためである。
【0016】
ハウジング14は、フェルール12を所定の位置に収めると共に、後述する中空体保持部材16を所定の位置に固定する部材である。
ハウジング14の前方外周には、アダプタや光通信機器のレセプタクルとの結合のためのホルダー24が装着される。
【0017】
中空体保持部材16は、ハウジング14の内周面の、光ファイバFの光軸方向の所定の位置に配置される筒状の中空体部材で、後述する光ファイバ保持部材18、環状部材20およびばね部材22が中空体内側に配置されるように構成される。
すなわち、中空体保持部材16は、光ファイバ保持部材18、環状部材20およびばね部材22が中空体内側に配置した状態で、中空体保持部材16の外周に設けられた突起部16bをハウジング14に設けられた切り欠き部14bに嵌合させることによって、ハウジング14内の所定の位置に固定される。
ここで、突起部16bが嵌合して中空体保持部材16を結合される切り欠き部14bのハウジング14における位置は、後述するように、中空体保持部材16の内周面に設けられた段差部16aによってばね部材22が所望の付勢力を得、環状部材20を前方に付勢するような位置に構成される。
【0018】
また、中空体保持部材16は、段差部16aおよび段差部16dを内周面に有し、段差部16aによって図中に示されるように、内径の小さい内周面16cを形成し、その後方には、段差部16dによって内径が内周面16cの領域の内径より大きい内周面16eを形成する。
ここで、内周面16eの領域の内径が内周面16cの領域の内径より大きいのは、内周面16cと内周面16eの境界にある段差部16dによって、後述する光ファイバ保持部材18の後方端部近傍の外周面に設けられた突起部18bが前方に自由に移動することを阻止するためであり、その結果、光ファイバ保持部材18、環状部材20およびばね部材22が中空体保持部材16から容易に脱落しないようにするためである。このように部材等が容易に脱落しない構成とすることで、光ファイバ保持部材18、環状部材20およびばね部材22が中空体保持部材16に予め組み込まれた構成部材を提供することができ、施工現場における光ファイバの接続作業の効率を向上させることができる。
【0019】
光ファイバ保持部材18は、図2および図3に示されるように、前方部18cと管状後方部18dとからなる、光ファイバFを固定保持する部材で、樹脂材料によって成形される。樹脂材料を用いることで、例えばプラスチックファイバ等と同様の圧縮特性を持ち、光ファイバFの保持部分に傷や凹みを作ることはない。
【0020】
前方部18cは、前方部の前方先端面18aから光ファイバ光軸方向に沿って2つの切れ込み18eを有し、分割部材18f1 および18f2 を形成する。分割部材18f1 および18f2 は、内側に光ファイバ保持溝18g1 および18g2 を有し、光ファイバFの光軸の後方(矢印Xの反対方向)に行くに連れ分割部材18f1 および18f2 の離間距離が縮まるように構成され、前方部18cの外周面、すなわち分割部材18f1 および18f2 の外周面には、光ファイバ光軸後方に向かって外周が小さくなるテーパー面18h1 および18h2 が備えられる。ここで、光ファイバ保持溝18g1 および18g2 の溝断面形状は半円形状であるが、この他三角形状や四角形状等の形状であってもよい。また、分割部材18f1 および18f2 を接合した際の光ファイバ保持溝18g1 および18g2 によって形成される孔の断面積は、光ファイバFの断面積と同等かそれより小さい。
さらに、本実施例の光ファイバ保持部材18の前方部18cには、2つの切れ込み18eを有するが、本発明においては、これに限定されず、3つの切れ込みや4つの切れ込みを有するものであってもよい。
【0021】
一方、管状後方部18dは、光ファイバ用貫通孔18iを中心軸に沿って有する。また、管状後方部18dの前方の外周面には突出部18jが設けられ、中空体保持部材16の内周面16cと摺接することによって、光ファイバ保持部材18が中空体保持部材16の内部に精度よく位置決めされる。また、光ファイバ保持部材18の後方端部近傍の外周面には、突起部18bが設けられ、上述したように、突起部18bと中空体保持部材16の段差部16dとによって光ファイバ保持部材18の前方への移動が制限される。
【0022】
環状部材20は、光ファイバ保持部材18の前方部18cに嵌入してテーパー面18h1 および18h2 に摺接し、前方部18cの前方先端に向かうに従って前方部18cの離間する分割部材18f1 および18f2 が近接するように光ファイバ保持溝18g1 および18g2 の方向に向けて締めつける締めつけ部材である。環状部材20の内径は、離間する分割部材18f1 および18f2 をお互いに接合した際の前方先端部の外径より小さくなっており、環状部材20が光ファイバ保持部材18の前方先端部から抜けて脱落しない構成となっている。
【0023】
ばね部材22は、中空体保持部材16の内側の、光ファイバ保持部材18との隙間の、環状部材20の後方に位置し、前方部18cに嵌入して配置される弾性部材である。
ばね部材22は、中空体保持部材16の段差部16aから付勢される付勢力を環状部材20に伝える。これによって、環状部材20は前方部18cを押圧して締めつける。なお、中空体保持部材16は、上述したように、環状部材20に対して所望の付勢力(圧縮力)を与えるように、段差部16aの位置が予め設定されている。
これによって、光ファイバ保持溝18g1 や18g2 に位置する光ファイバFが固定保持される。
本実施例では、ばね部材22を用いているが、本発明においては、必ずしもこれに限定されず、ゴム部材等の所定の付勢力を与える公知の弾性部材であってもよい。
【0024】
本実施例の前方部18cは切れ込み18eを有して分割部材18f1 および18f2 を形成するが、本発明においては、必ずしも前方部が切れ込みを有する必要はなく、例えば、中心軸に光ファイバFの直径より大きい光ファイバ保持孔を備え、本実施例の前方部18cと同様のテーパー面を備えた弾性圧縮可能な円錐台状部材を前方部に用い、環状部材20を前方に摺動させて弾性圧縮可能な円錐台状部材を締めつけることによって、光ファイバ保持孔の内径を狭くして光ファイバFを保持する機構としてもよい。
【0025】
また、本実施例では、フェルール12を備える光コネクタであるが、フェルールを備えない光コネクタであってもよい。例えば、アダプタ内に備えるスリーブに直接光ファイバ同士を挿入して、光ファイバ同士を接触させる光コネクタであってもよい。
このような光コネクタは、全体がプラスチック材料からなる光ファイバ、たとえば、全フッ素プラスチック光ファイバに用いられ、あるいは外層がプラスチック材料からなる光ファイバ、例えば石英光ファイバの外周をポリマ材料で被覆したPCF(ポリマクラッドファイバ)の接続に用いられるのが好ましい。勿論、従来からの石英光ファイバに用いられてもよい。
また、本発明の光コネクタは、SC型光コネクタやFC型光コネクタに用いられるばかりでなく、LC型光コネクタやMU型光コネクタに用いられてもよい。
光コネクタ10は以上のように構成される。
【0026】
次に、本発明の光コネクタの作用および組み立てについて、上述した光コネクタ10に基づいて説明する。
まず、ばね部材22および環状部材20が光ファイバ保持部材18の前方部18cに嵌入した状態で、光ファイバ保持部材18とともに中空体保持部材16内の所定位置に配置される。すなわち、ばね部材22および環状部材20が前方部18cに嵌入された状態にあるので光ファイバ保持部材18を中空体保持部材16の前方から挿入し、光ファイバ保持部材18の突起部18bが、突起部18bの外径より内径が小さい内周面16cの領域を摺動しながら、後方の内周面16eの領域まで挿入される。これによって、突起部18bが段差部16dの前方まで戻ることはなく、光ファイバ保持部材18は、中空体保持部材16内に配置される。
また、これに伴って、ばね部材22および環状部材20も中空体保持部材16の内部の所定位置に配置される。
【0027】
この時、突起部18bの動きが段差部16dよって制限される範囲内において光ファイバ保持部材18の可動範囲も制限されるが、この範囲内においては、自由に動くことができる。
一方、環状部材20は、環状部材20の内径が、前方部18cの分割部材18f1 および18f2 をお互いに接合した際の前方先端部の外径より小さくなっているため、環状部材20が光ファイバ保持部材18から抜けて脱落することはない。そのため、ばね部材22も光ファイバ保持部材18から抜けて脱落することはない。
このように、ばね部材22および環状部材20および光ファイバ保持部材18が中空体保持部材16に予め組み込まれ、構成部品が脱落することなく維持されるため、施工現場における接続作業の効率を向上することができる。なお、この時、ばね部材22は自由長に伸びている(自由長の状態にある)ので、光ファイバ保持部材18が環状部材20によって締め付けられるおそれはなく、分割部材18f1 、18f2 は十分に離間している。
【0028】
その後、前記光ファイバ保持部材18の管状後方部18dから光ファイバFを挿入して貫通させ、更に光ファイバFをフェルール12の基部12bの端面のフェルール貫通孔26の開口部から通してフェルール12を貫通させ、フェルール12の先端に突出させる。その後、フェルール12とばね部材22、環状部材20および光ファイバ保持部材18が組み込まれた中空体保持部材16は、ハウジング14が前方から被せられ、ハウジング14内の所定の位置に固定される。
すなわち、中空体保持部材16は、外周面に設けられた突起部16bがハウジング14の内周面に設けられた切り欠き部14bに嵌合することによって所定位置に固定される。それとともに、フェルール12は、フェルール12の後方の端面12cが光ファイバ保持部材18の前方先端面18aと当接する一方、フェルール12の基部12bは、ハウジング14の内周面に設けられる突起部14aによって前方の突出が制限される。
【0029】
この時、ばね部材22は、段差部16aから前方へ向かう付勢力を受け、この力によってテーパー面18h1 および18h2 に摺接する環状部材20を前方に押し出す。さらに、環状部材20は、光ファイバ保持部材18を前方に押し出し、フェルール12を所定の付勢力で前方に押し付ける。これによって、アダプタ等を介して光ファイバを接続する際、フェルール同士を弾力的に接触させることで、光ファイバに座屈等の損傷を与えることなく光ファイバを弾力的に接続させることができる。
【0030】
また、環状部材20は、ばね部材22の付勢力によって前方に押し出されるので、前方部18cを締めつけ、その結果、光ファイバFは分割部材18f1 および18f2 によって締めつけられ保持固定される。光ファイバ保持部材18は、樹脂材料を用いるため、光ファイバFの保持部分を傷付けたり凹みを作らせることはない。
ハウジング14が装着された後、光ファイバFの端面処理が行われ、アダプタや光通信機器のレセプタクルとの結合のためのホルダー24が装着される。
このようにして、光コネクタ10は組み立てられる。
【0031】
次に、図1に示す光コネクタ10を作成し、光ファイバFの保持力および光伝送損失を調べた。
使用した光ファイバFは、外径が565μmのプラスチックファイバを用い、光ファイバ保持部材18の分割部材18f1 および18f2 をお互いに接合した際に光ファイバ保持溝18g1 および18g2 によって形成される溝断面を内径が565μmの円形状とし、さらにフェルール12の光ファイバ貫通孔26の内径を580μmとした。また、ばね部材22が環状部材20および光ファイバ保持部材18を介してフェルール12を前方に押しつける付勢力を400gとし、光ファイバ保持部材18によって光ファイバFを保持させた。ハウジング14およびホルダー24は、従来より石英光ファイバの光コネクタに用いられるSC型光コネクタを流用した。
【0032】
この時の光コネクタ10がプラスチック光ファイバを保持する保持力は1kg以上であり、また、光コネクタ10がフェルールを前方に押しつける付勢力は、アダプタやレセプタクルにフェルールを挿入して光ファイバを弾力的に接続する際に必要とされる圧縮力を上回るものであった。
【0033】
また、光コネクタ10が光ファイバを保持固定する際に生じる光ファイバの受ける圧縮応力によって光伝送の損失劣化を、850nmの波長の光を発光するLED(レーザ発光ダイオード)光源を用いて調べた。調べた光ファイバは、全フッ素プラスチック光ファイバであった。その結果、圧縮応力に起因する損失劣化は認められなかった。
【0034】
さらに、光ファイバの両端に本発明の構成を有する光コネクタを用い、両端が光学研磨された長さが2mの全フッ素プラスチック光ファイバの結合損失を、850nmの波長の光を発光するLED光源を使って評価した。その結果、従来の接着剤を用いた光コネクタと同等あるいはそれ以上の良好な結合損失の結果が得られた。
【0035】
以上より、本発明の光コネクタは、アダプタやレセプタクルを用いて光ファイバを弾力的に接続することができ、しかも光ファイバ保持力も十分にあり、光伝送における損失劣化もなく、結合損失も従来と同等あるいは従来よりも良好であることは明白である。
【0036】
以上、本発明の光コネクタについて詳細に説明したが、本発明は上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。
【0037】
【発明の効果】
以上、詳細に説明したように、本発明の光コネクタは、光ファイバの固定のために接着剤を使用せず、少ない部品点数で機械的に保持することができるため、施工時の光ファイバの接続作業自体が容易となり、作業効率も向上する。そのため、短時間で光ファイバの接続が可能となる。
さらに、本発明の光コネクタを用いたプラスチック光ファイバの結合損失も従来と同等あるいはそれ以上の性能が認められた。
【図面の簡単な説明】
【図1】 本発明の光コネクタの一実施例の構成を示す断面図である。
【図2】 図1に示される光コネクタの光ファイバ保持部材、環状部材およびばね部材を示す外観図である。
【図3】 図2に示されるA−A線から矢印方向に見た光ファイバ保持部材の断面図である。
【符号の説明】
10 光コネクタ
12 フェルール
12a 円筒部
12b 基部
14 ハウジング
14a、16b、18b 突起部
14b 切り欠き部
16 中空体保持部材
16a,16d 段差部
16c、16e 内周面
18 光ファイバ保持部材
18a 前方先端面
18c 前方部
18d 環状後方部材
18e 切れ込み
18f1 、18f2 分割部材
18g1 、18g2 光ファイバ保持溝
18h1 、18h2 テーパー面
18i 光ファイバ貫通孔
18j 突出部
20 環状部材
22 ばね部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical connector capable of fixing and holding an optical fiber without using an adhesive, and more particularly to an optical connector having a ferrule and a ferrule that presses the ferrule against an adapter or the like using a spring member.
[0002]
[Prior art]
In the field of optical communications, optical fibers are used in optical transmission systems, and optical connectors are used to connect terminals of various optical communication devices and optical fibers extending from the optical communication devices.
As the optical connector, a cylindrical member having a through hole for an optical fiber for accurately positioning the optical fiber, that is, a ferrule, is used so that the end faces of the optical fibers to be connected come into contact with each other with high precision. For example, in an adapter, the ferrules are guided by a sleeve and elastically contacted to connect the optical fibers. At the time of connection, the ferrule and the optical fiber are elastically contacted backward from the connection end surface of the optical fiber. Receiving compressive force for. Therefore, the optical connector needs to withstand this compressive force and hold the optical fiber. Furthermore, in order to connect the optical fibers by making the ferrules elastically contact each other, it is also necessary that the ferrules move elastically within a certain range.
[0003]
By the way, in optical communication, a quartz optical fiber is generally used, and various optical connectors for connecting the quartz optical fiber have been proposed and used. In these optical connectors, the ferrule is used to connect the quartz optical fiber with low loss. At that time, when assembling an optical connector for connection using a ferrule, it is common to fix the quartz optical fiber to the optical connector by adhering and fixing the quartz optical fiber to the ferrule using an epoxy adhesive or the like. Is.
[0004]
However, according to this bonding method, it takes time to cure the adhesive, leading to a reduction in work efficiency when constructing an optical communication system. For this reason, a heating device is used to shorten the curing time of the adhesive, but the heating device itself is not only necessary for connecting the optical fiber, but also requires time for preheating the heating device, Even if the curing time is shortened, a curing time of about 30 minutes to 1 hour is required. Furthermore, since a power source is required for heating, connection work may be restricted at construction sites such as indoor wiring sites in buildings.
[0005]
Therefore, in order to increase the work efficiency of the optical fiber connection work, an optical connector that does not use an adhesive is desired, and various optical connectors have been proposed.
For example, in Japanese Patent Publication No. 5-47081, a spring member is arranged behind the ferrule so that the ferrules are elastically connected to each other, and the collet chuck is disposed at a position away from the ferrule so as to hold the optical fiber during the connection. An optical connector device that uses and holds an optical fiber has been proposed.
However, in this apparatus, since the ferrule and the collet chuck are separated from each other, the optical fiber is likely to buckle due to the compressive force at the time of connection, and there is a concern about deterioration loss of optical energy. Further, since the ferrule and the collet chuck are separated from each other, the optical connector itself becomes long, and it is not possible to sufficiently cope with a demand for miniaturization expected in the future.
[0006]
In addition, optical connectors that mechanically hold an optical fiber without using an adhesive have been proposed in Japanese Patent Laid-Open Nos. 7-181344 and 10-062650. However, all of these require a plurality of parts to mechanically fix the optical fiber, and the structure is more complicated than the adhesive type optical connector that fixes the optical fiber by bonding, and the increase in cost is not hindered. There was a problem.
[0007]
By the way, in recent years, plastic optical fibers have begun to be used for LAN (LOCAL AREA NETWORK) and inter-device connection in place of such quartz optical fibers. Even when an optical connector designed for a quartz optical fiber is used as an optical connector for a plastic optical fiber, a method of adhering and fixing the optical fiber using an adhesive to a ferrule is used in the same manner as the quartz optical fiber. For this reason, problems in connection occurred as in the case of the quartz optical fiber.
Therefore, development of an optical connector that can be easily constructed has been awaited when an optical transmission system is constructed.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide an optical connector that can hold an optical fiber with a small number of parts without using an adhesive for fixing the optical fiber and is easy to construct.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a housing, a hollow body holding member disposed inside the housing, an optical fiber holding groove or an optical fiber holding hole, and the optical axis direction of the optical fiber from the tip. An optical fiber holding member disposed on the inside of the hollow body holding member, the optical fiber holding member including a front portion having a tapered surface on the outer peripheral surface and a tubular rear portion having an optical fiber through hole. An annular member that is fitted into a fiber holding member and is slidably contacted with the tapered surface of the front part, and tightens the front part as it goes in the distal direction of the front part, and the inner side of the hollow body holding member , wherein the step provided in the hollow body holding member disposed between the annular member, by biased against the annular member from the step of the hollow body holding member, through said annular member There is provided an optical connector, characterized in that it comprises an elastic member tightening and pressing the forward portion Te.
[0010]
Here, the inside of the housing includes a ferrule having a through hole for an optical fiber and protruding forward,
The ferrule is in contact with the end surface of the front end of the front portion of the optical fiber holding member, and the light is transmitted through the annular member biased by the elastic member toward the front end of the front portion of the optical fiber holding member. It is preferable to press the fiber holding member against the ferrule.
Moreover, it is preferable that the said elastic member is a spring member inserted in the said optical fiber holding material, and arrange | positioned adjacent to the said annular member.
Furthermore, it is preferable that the front portion of the optical fiber holding member has two or more cuts from the front end of the front portion along the optical fiber optical axis direction.
[0011]
Here, the optical connector is preferably an optical fiber made entirely of a plastic material, or an optical fiber made of a plastic material for the outer layer, and the optical fiber holding member is preferably made of a resin material. .
Further, a step portion having an inner diameter is provided on the inner peripheral surface behind the hollow body holding member, and a protrusion corresponding to the change in the inner diameter is formed on the outer peripheral surface in the vicinity of the rear end portion of the optical fiber holding member. Preferably it is provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the optical connector of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.
[0013]
FIG. 1 shows a cross-sectional view of an assembled optical connector 10 which is a preferred embodiment of the optical connector of the present invention.
The optical connector 10 mainly includes a ferrule 12, a housing 14, a hollow body holding member 16, an optical fiber holding member 18, an annular member 20, and a spring member 22, and a holder 24 so as to cover the housing 14. Is provided.
[0014]
Ferrule 12 is made for the optical fiber connection forward, that is, from a cylindrical portion 12a and a base 12b that protrudes in a direction (direction of arrow X in FIG. 1) having an end face F 1 of the optical fiber F, the cylindrical portion 12a Has a ferrule through hole 26 that allows the optical fiber F to pass through along the cylindrical axis.
The base portion 12 b has an outer diameter that is larger than the outer diameter of the cylindrical portion 12 a, and forward protrusion is limited by the protrusion portion 14 a provided on the inner peripheral surface of the housing 14.
Further, the end surface 12c behind the base portion 12b of the ferrule 12 (the direction opposite to the arrow X in FIG. 1) is in contact with the front end surface 18a of the optical fiber holding member 18, as will be described later.
[0015]
Such a ferrule 12 allows the position of the optical fiber F to be accurately determined on the front end surface of the ferrule 12 by passing the optical fiber F through the ferrule through hole 26 from the rear, and is flush with the front end surface of the ferrule 12. End face processing (cutting and polishing) is performed so as to be in contact with the end face of another optical fiber via an adapter.
Note that the inner diameter of the ferrule through hole 26 is wide on the base 12b side and narrows forward. This is because the optical fiber F can be easily inserted and penetrated from behind.
[0016]
The housing 14 is a member that holds the ferrule 12 in a predetermined position and fixes a hollow body holding member 16 described later in a predetermined position.
A holder 24 for coupling with an adapter or a receptacle of an optical communication device is attached to the front outer periphery of the housing 14.
[0017]
The hollow body holding member 16 is a cylindrical hollow body member disposed at a predetermined position in the optical axis direction of the optical fiber F on the inner peripheral surface of the housing 14, and includes an optical fiber holding member 18, an annular member 20 and The spring member 22 is configured to be disposed inside the hollow body.
That is, the hollow body holding member 16 has a protrusion 16b provided on the outer periphery of the hollow body holding member 16 in the housing 14 in a state where the optical fiber holding member 18, the annular member 20 and the spring member 22 are arranged inside the hollow body. By being fitted into the notch 14 b provided, the housing 14 is fixed at a predetermined position.
Here, the position in the housing 14 of the notch 14b to which the protrusion 16b is fitted and coupled to the hollow body holding member 16 is a step provided on the inner peripheral surface of the hollow body holding member 16, as will be described later. The spring member 22 obtains a desired urging force by the portion 16a, and is configured at a position to urge the annular member 20 forward.
[0018]
Further, the hollow body holding member 16 has a stepped portion 16a and a stepped portion 16d on the inner peripheral surface, and as shown in the figure, the stepped portion 16a forms an inner peripheral surface 16c having a small inner diameter, and on the rear side thereof. The step 16d forms an inner peripheral surface 16e whose inner diameter is larger than the inner diameter of the region of the inner peripheral surface 16c.
Here, the reason why the inner diameter of the region of the inner peripheral surface 16e is larger than the inner diameter of the region of the inner peripheral surface 16c is the optical fiber holding member 18 described later by the step portion 16d at the boundary between the inner peripheral surface 16c and the inner peripheral surface 16e. This is to prevent the protrusion 18b provided on the outer peripheral surface in the vicinity of the rear end portion from freely moving forward, and as a result, the optical fiber holding member 18, the annular member 20, and the spring member 22 are held by the hollow body. This is to prevent the member 16 from easily falling off. By adopting a configuration in which the members or the like do not easily fall out in this way, it is possible to provide a structural member in which the optical fiber holding member 18, the annular member 20, and the spring member 22 are preliminarily incorporated in the hollow body holding member 16. The efficiency of optical fiber connection work at the site can be improved.
[0019]
As shown in FIGS. 2 and 3, the optical fiber holding member 18 is a member composed of a front portion 18c and a tubular rear portion 18d for fixing and holding the optical fiber F, and is formed of a resin material. By using a resin material, for example, it has a compression characteristic similar to that of a plastic fiber or the like, and does not make a scratch or a dent in the holding portion of the optical fiber F.
[0020]
Front portion 18c has two notches 18e along from the front tip surface 18a of the front portion to the optical fiber optical axis direction, to form the dividing member 18f 1 and 18f 2. Dividing member 18f 1 and 18f 2 has an optical fiber holding groove 18 g 1 and 18 g 2 inwardly, taken to go to the rear of the optical axis of the optical fiber F (the opposite direction of the arrow X) divided member 18f 1 and 18f 2 The outer circumferential surface of the front portion 18c, that is, the outer circumferential surface of the dividing members 18f 1 and 18f 2 is tapered surfaces 18h 1 and 18h 2 whose outer circumference decreases toward the rear of the optical fiber optical axis. Is provided. Here, the cross-sectional shape of the optical fiber holding grooves 18g 1 and 18g 2 is a semicircular shape, but may be other shapes such as a triangular shape and a rectangular shape. Further, the cross-sectional area of the hole formed by the optical fiber holding grooves 18g 1 and 18g 2 when the split members 18f 1 and 18f 2 are joined is equal to or smaller than the cross-sectional area of the optical fiber F.
Furthermore, the front portion 18c of the optical fiber holding member 18 of the present embodiment has two cuts 18e, but the present invention is not limited to this, and has three cuts or four cuts. Also good.
[0021]
On the other hand, the tubular rear portion 18d has an optical fiber through hole 18i along the central axis. Further, a protruding portion 18j is provided on the outer peripheral surface in front of the tubular rear portion 18d, and the optical fiber holding member 18 is brought into the hollow body holding member 16 by slidingly contacting the inner peripheral surface 16c of the hollow body holding member 16. Positioned with high accuracy. Further, a protrusion 18b is provided on the outer peripheral surface near the rear end of the optical fiber holding member 18, and the optical fiber holding member 18 is formed by the protrusion 18b and the step 16d of the hollow body holding member 16 as described above. Is restricted from moving forward.
[0022]
The annular member 20 is in sliding contact with the tapered surface 18h 1 and 18h 2 are fitted into the front portion 18c of the optical fiber holding member 18, dividing member 18f 1 and 18f spaced apart in the front portion 18c toward the forward tip of the forward portion 18c This is a tightening member that is tightened in the direction of the optical fiber holding grooves 18g 1 and 18g 2 so that 2 is close. The inner diameter of the annular member 20 is smaller than the outer diameter of the front tip portion when the separated divided members 18f 1 and 18f 2 are joined to each other, and the annular member 20 comes out of the front tip portion of the optical fiber holding member 18. It is configured not to fall off.
[0023]
The spring member 22 is an elastic member that is located behind the annular member 20 in the gap with the optical fiber holding member 18 inside the hollow body holding member 16 and is fitted into the front portion 18c.
The spring member 22 transmits a biasing force biased from the stepped portion 16 a of the hollow body holding member 16 to the annular member 20. Thereby, the annular member 20 presses and tightens the front portion 18c. In addition, as for the hollow body holding member 16, the position of the level | step-difference part 16a is preset so that a desired urging | biasing force (compression force) may be given with respect to the annular member 20, as mentioned above.
Thereby, the optical fiber F located in the optical fiber holding grooves 18g 1 and 18g 2 is fixedly held.
In the present embodiment, the spring member 22 is used. However, in the present invention, the spring member 22 is not necessarily limited thereto, and may be a known elastic member that gives a predetermined urging force such as a rubber member.
[0024]
Front portion 18c of the present embodiment forms a split member 18f 1 and 18f 2 has a notch 18e, but in the present invention, not necessarily the front portion has a notch, for example, an optical fiber F to the central axis An elastically compressible frustoconical member having an optical fiber holding hole larger than the diameter and having a tapered surface similar to the front portion 18c of this embodiment is used for the front portion, and the annular member 20 is slid forward. A mechanism for holding the optical fiber F by narrowing the inner diameter of the optical fiber holding hole by fastening an elastically compressible frustoconical member may be used.
[0025]
In this embodiment, the optical connector includes the ferrule 12, but an optical connector that does not include the ferrule may be used. For example, an optical connector in which optical fibers are directly inserted into a sleeve provided in the adapter and the optical fibers are brought into contact with each other may be used.
Such an optical connector is used for an optical fiber made entirely of a plastic material, such as an all-fluorine plastic optical fiber, or an optical fiber whose outer layer is made of a plastic material, for example, a PCF in which the outer periphery of a quartz optical fiber is coated with a polymer material. It is preferably used for connection of (polymer clad fiber). Of course, it may be used for a conventional quartz optical fiber.
The optical connector of the present invention may be used not only for SC type optical connectors and FC type optical connectors, but also for LC type optical connectors and MU type optical connectors.
The optical connector 10 is configured as described above.
[0026]
Next, the operation and assembly of the optical connector of the present invention will be described based on the optical connector 10 described above.
First, the spring member 22 and the annular member 20 are arranged at a predetermined position in the hollow body holding member 16 together with the optical fiber holding member 18 in a state where the spring member 22 and the annular member 20 are fitted in the front portion 18 c of the optical fiber holding member 18. That is, since the spring member 22 and the annular member 20 are fitted in the front portion 18c, the optical fiber holding member 18 is inserted from the front of the hollow body holding member 16, and the protrusion 18b of the optical fiber holding member 18 is protruded. While sliding in the region of the inner peripheral surface 16c whose inner diameter is smaller than the outer diameter of the portion 18b, the region 18b is inserted to the region of the rear inner peripheral surface 16e. As a result, the protruding portion 18b does not return to the front of the step portion 16d, and the optical fiber holding member 18 is disposed in the hollow body holding member 16.
Accordingly, the spring member 22 and the annular member 20 are also arranged at predetermined positions inside the hollow body holding member 16.
[0027]
At this time, the movable range of the optical fiber holding member 18 is also limited within a range in which the movement of the protrusion 18b is limited by the stepped portion 16d, but can move freely within this range.
On the other hand, the annular member 20, since the inner diameter of the annular member 20 is smaller than the outer diameter of the front tip portion at the time of bonding the partition member 18f 1 and 18f 2 of the front portion 18c to each other, light annular member 20 It will not fall out of the fiber holding member 18. Therefore, the spring member 22 does not come off the optical fiber holding member 18 and drop off.
Thus, since the spring member 22, the annular member 20, and the optical fiber holding member 18 are preliminarily incorporated in the hollow body holding member 16, and the components are maintained without falling off, the efficiency of the connection work at the construction site is improved. be able to. At this time, since the spring member 22 extends to a free length (is in a free length state), there is no fear that the optical fiber holding member 18 is tightened by the annular member 20, and the divided members 18 f 1 and 18 f 2 are sufficient. Are separated.
[0028]
Thereafter, the optical fiber F is inserted and penetrated from the tubular rear portion 18d of the optical fiber holding member 18, and the optical fiber F is further passed through the opening of the ferrule through hole 26 on the end surface of the base portion 12b of the ferrule 12, so that the ferrule 12 is passed. It penetrates and protrudes to the tip of the ferrule 12. Thereafter, the hollow body holding member 16 in which the ferrule 12, the spring member 22, the annular member 20, and the optical fiber holding member 18 are incorporated is covered with the housing 14 from the front, and is fixed at a predetermined position in the housing 14.
That is, the hollow body holding member 16 is fixed at a predetermined position by fitting the protrusions 16 b provided on the outer peripheral surface into the notches 14 b provided on the inner peripheral surface of the housing 14. At the same time, the ferrule 12 has a rear end surface 12c of the ferrule 12 abutting against the front end surface 18a of the optical fiber holding member 18, while the base portion 12b of the ferrule 12 is formed by a protrusion 14a provided on the inner peripheral surface of the housing 14. The forward protrusion is limited.
[0029]
At this time, the spring member 22 receives a biasing force directed forward from the stepped portion 16a, and pushes the annular member 20 slidably contacting the tapered surfaces 18h 1 and 18h 2 forward by this force. Further, the annular member 20 pushes the optical fiber holding member 18 forward and pushes the ferrule 12 forward with a predetermined urging force. Thereby, when connecting an optical fiber via an adapter or the like, the optical fiber can be elastically connected without causing damage such as buckling to the optical fiber by elastically bringing the ferrules into contact with each other.
[0030]
The annular member 20 is so pushed out forward by the biasing force of the spring member 22, clamping the front part 18c, as a result, the optical fiber F is held fixed tightened by division member 18f 1 and 18f 2. Since the optical fiber holding member 18 uses a resin material, the holding portion of the optical fiber F will not be damaged or dented.
After the housing 14 is mounted, the end face processing of the optical fiber F is performed, and a holder 24 for coupling with an adapter or a receptacle of an optical communication device is mounted.
In this way, the optical connector 10 is assembled.
[0031]
Next, the optical connector 10 shown in FIG. 1 was created, and the holding power and optical transmission loss of the optical fiber F were examined.
The used optical fiber F is a plastic fiber having an outer diameter of 565 μm, and is formed by optical fiber holding grooves 18g 1 and 18g 2 when the divided members 18f 1 and 18f 2 of the optical fiber holding member 18 are joined to each other. The cross section of the groove was circular with an inner diameter of 565 μm, and the inner diameter of the optical fiber through hole 26 of the ferrule 12 was 580 μm. Further, the urging force by which the spring member 22 presses the ferrule 12 forward through the annular member 20 and the optical fiber holding member 18 was set to 400 g, and the optical fiber F was held by the optical fiber holding member 18. As the housing 14 and the holder 24, an SC type optical connector conventionally used for an optical connector of quartz optical fiber is used.
[0032]
At this time, the holding force that the optical connector 10 holds the plastic optical fiber is 1 kg or more, and the urging force that the optical connector 10 presses the ferrule forwardly inserts the ferrule into the adapter or the receptacle to make the optical fiber elastic. It exceeded the compressive force required when connecting to.
[0033]
Further, optical transmission loss degradation due to the compressive stress received by the optical fiber when the optical connector 10 holds and fixes the optical fiber was examined using an LED (laser light emitting diode) light source that emits light having a wavelength of 850 nm. The optical fiber examined was a perfluorinated plastic optical fiber. As a result, no loss deterioration due to compressive stress was observed.
[0034]
Furthermore, using an optical connector having the configuration of the present invention at both ends of an optical fiber, an LED light source that emits light having a wavelength of 850 nm is obtained with a coupling loss of a 2 m long fluoroplastic optical fiber optically polished at both ends. Evaluated using. As a result, a good coupling loss result equal to or higher than that of an optical connector using a conventional adhesive was obtained.
[0035]
As described above, the optical connector of the present invention can elastically connect optical fibers using adapters and receptacles, and also has sufficient optical fiber holding power, no loss in optical transmission, and no coupling loss. It is clear that it is equivalent or better than conventional.
[0036]
The optical connector of the present invention has been described in detail above. However, the present invention is not limited to the above-described embodiments, and various improvements and modifications may be made without departing from the spirit of the present invention. is there.
[0037]
【The invention's effect】
As described above in detail, the optical connector of the present invention does not use an adhesive for fixing the optical fiber and can be mechanically held with a small number of parts. Connection work itself becomes easy and work efficiency improves. Therefore, the optical fiber can be connected in a short time.
Furthermore, the coupling loss of the plastic optical fiber using the optical connector of the present invention was confirmed to be equal to or higher than that of the conventional one.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of an embodiment of an optical connector of the present invention.
FIG. 2 is an external view showing an optical fiber holding member, an annular member, and a spring member of the optical connector shown in FIG.
3 is a cross-sectional view of the optical fiber holding member viewed in the direction of the arrow from the line AA shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Optical connector 12 Ferrule 12a Cylindrical part 12b Base part 14 Housing 14a, 16b, 18b Protrusion part 14b Notch part 16 Hollow body holding member 16a, 16d Step part 16c, 16e Inner peripheral surface 18 Optical fiber holding member 18a Front front end surface 18c Front Portion 18d annular rear member 18e notches 18f 1 , 18f 2 split members 18g 1 , 18g 2 optical fiber holding grooves 18h 1 , 18h 2 tapered surface 18i optical fiber through hole 18j projecting portion 20 annular member 22 spring member

Claims (7)

ハウジングと、
このハウジングの内側に配置される中空体保持部材と、
光ファイバ保持溝あるいは光ファイバ保持孔を有し、先端から光ファイバの光軸方向に沿って外周が小さくなるテーパー面を外周面に備える前方部と、光ファイバ貫通孔を備える管状後方部とからなり、前記中空体保持部材の内側に配置される光ファイバ保持部材と、
前記光ファイバ保持部材に嵌入して前記前方部の前記テーパー面に摺接して配置され、前記前方部の先端方向に向かうに従い、前記前方部を締めつける環状部材と、
前記中空体保持部材の内側の、前記中空体保持部材に設けられた段差と前記環状部材との間に配置され、前記中空体保持部材の前記段差から前記環状部材に対して付勢することで、前記環状部材を介して前記前方部を押圧して締めつける弾性部材とを備えることを特徴とする光コネクタ。
A housing;
A hollow body holding member disposed inside the housing;
An optical fiber holding groove or an optical fiber holding hole, and a front part having a tapered surface on the outer peripheral surface, the outer circumference of which decreases from the tip along the optical axis direction of the optical fiber, and a tubular rear part having an optical fiber through hole An optical fiber holding member disposed inside the hollow body holding member,
An annular member that fits into the optical fiber holding member and is arranged in sliding contact with the tapered surface of the front portion, and tightens the front portion as it goes in the distal direction of the front portion;
The inner side of the hollow body holding member is disposed between the step provided on the hollow body holding member and the annular member, and is biased from the step of the hollow body holding member to the annular member. And an elastic member that presses and tightens the front portion through the annular member.
前記ハウジングの内側には、光ファイバ用貫通孔を有し前方に突出するフェルールを備え、
前記フェルールは、前記光ファイバ保持部材の前記前方部の先端の端面と当接し、前記弾性部材によって前記光ファイバ保持部材の前記前方部の先端方向に付勢された前記環状部材を介して前記光ファイバ保持部材を前記フェルールに押し当てる請求項1に記載の光コネクタ。
The inside of the housing includes a ferrule having a through hole for an optical fiber and protruding forward,
The ferrule is in contact with the end surface of the front end of the front portion of the optical fiber holding member, and the light is transmitted through the annular member biased by the elastic member toward the front end of the front portion of the optical fiber holding member. The optical connector according to claim 1, wherein a fiber holding member is pressed against the ferrule.
前記弾性部材は、前記光ファイバ保持部材に嵌入して前記環状部材に隣接して配置されるばね部材である請求項1または2に記載の光コネクタ。The optical connector according to claim 1, wherein the elastic member is a spring member that is fitted into the optical fiber holding member and disposed adjacent to the annular member. 前記光ファイバ保持部材の前記前方部は、前記前方部の先端から光ファイバ光軸方向に沿って2つ以上の切れ込みを有する請求項1〜3のいずれかに記載の光コネクタ。The optical connector according to claim 1, wherein the front portion of the optical fiber holding member has two or more cuts along the optical fiber optical axis direction from the front end of the front portion. 全体がプラスチック材料からなる光ファイバ、あるいは外層がプラスチック材料からなる光ファイバに用いられる請求項1〜4のいずれかに記載の光コネクタ。The optical connector according to any one of claims 1 to 4, which is used for an optical fiber made entirely of a plastic material or an optical fiber whose outer layer is made of a plastic material. 前記光ファイバ保持部材は、樹脂材料からなる請求項1〜5のいずれかに記載の光コネクタ。The optical connector according to claim 1, wherein the optical fiber holding member is made of a resin material. 前記中空体保持部材の後方の内周面には、内径の変化する段差部が設けられ、この内径の変化に応じた突起部が前記光ファイバ保持部材の後方端部近傍の外周面に設けられる請求項1〜6のいずれかに記載の光コネクタ。On the inner peripheral surface at the rear of the hollow body holding member, a step portion having an inner diameter is provided, and a protrusion corresponding to the change in the inner diameter is provided on the outer peripheral surface near the rear end of the optical fiber holding member. The optical connector according to claim 1.
JP2000058577A 2000-03-03 2000-03-03 Optical connector Expired - Fee Related JP4059606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058577A JP4059606B2 (en) 2000-03-03 2000-03-03 Optical connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058577A JP4059606B2 (en) 2000-03-03 2000-03-03 Optical connector

Publications (2)

Publication Number Publication Date
JP2001249251A JP2001249251A (en) 2001-09-14
JP4059606B2 true JP4059606B2 (en) 2008-03-12

Family

ID=18579156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058577A Expired - Fee Related JP4059606B2 (en) 2000-03-03 2000-03-03 Optical connector

Country Status (1)

Country Link
JP (1) JP4059606B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267130A (en) * 2003-06-27 2006-10-05 Asahi Glass Co Ltd Method of assembling optical fiber connector
US20060002662A1 (en) * 2004-06-30 2006-01-05 Tyco Electronics Corporation Small form factor, field-installable connector
FR2873453B1 (en) * 2004-07-26 2006-11-24 Nexans Sa CONNECTOR FOR OPTICAL FIBER
JP2008191410A (en) * 2007-02-05 2008-08-21 Sumitomo Electric Ind Ltd Optical connector
KR101091462B1 (en) 2009-01-16 2011-12-07 엘지이노텍 주식회사 Optical module, optical printed circuit board and method for manufacturing the same
JP5460621B2 (en) * 2011-02-01 2014-04-02 古河電気工業株式会社 Optical connector and optical connector assembling method
WO2012112344A1 (en) 2011-02-17 2012-08-23 Tyco Electronics Raychem Bvba Portable device for attaching a connector to an optical fiber
JP5917171B2 (en) * 2012-01-31 2016-05-11 日本航空電子工業株式会社 Fiber optic connector
CN103364883B (en) 2012-04-09 2015-04-15 鸿富锦精密工业(深圳)有限公司 Optical fiber connector
CN103364884B (en) 2012-04-09 2016-03-02 国网山东省电力公司高唐县供电公司 The joints of optical fibre
CN103364886B (en) 2012-04-09 2015-03-11 鸿富锦精密工业(深圳)有限公司 Optical-fiber connector and assembling fixture used by optical-fiber connector
CN103364887B (en) * 2012-04-09 2015-03-11 鸿富锦精密工业(深圳)有限公司 Optical-fiber connector
CN103364885B (en) * 2012-04-09 2015-05-20 鸿富锦精密工业(深圳)有限公司 Optical-fiber clamping mechanism and optical-fiber connector using optical-fiber clamping mechanism
CN103454743A (en) * 2012-06-01 2013-12-18 中国科学院高能物理研究所 Optical fiber fixing device and optical fiber fixing method
JP6885771B2 (en) * 2017-04-06 2021-06-16 三菱電線工業株式会社 Optical connector and optical fiber cable using it and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3323742B2 (en) * 1996-07-15 2002-09-09 株式会社光研 Device for holding linear light guide and method for assembling the same
JPH10197741A (en) * 1997-01-06 1998-07-31 Tatsuta Electric Wire & Cable Co Ltd Optical fiber connector
JPH11194234A (en) * 1998-01-06 1999-07-21 Hirose Electric Co Ltd Simple assembly structure for optical fiber connector

Also Published As

Publication number Publication date
JP2001249251A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
JP4059606B2 (en) Optical connector
US7534051B2 (en) Optical fiber connector, optical fiber connecting method, and connector converter
US6454464B1 (en) Fiber optic connectors and transceiver test devices
EP1486808B1 (en) Receptacle for optical fibre connection and method for its manufacture
US5617495A (en) Optical semiconductor device and connection structure therefor
US6648521B2 (en) Single terminus connector with preterminated fiber and fiber guide tube
US4832435A (en) Positioning mechanism of optical fiber connector
JPH10246839A (en) Optical semiconductor module
US6637948B2 (en) Receptacle module
KR20030028452A (en) Adapter retaining method and pull-protector for fiber optic cable
JPH11344646A (en) Optical module, plug for optical fiber connection, and optical coupler equipped with them
JP2000352644A (en) Packaging assembly for photon device
JP2010002931A (en) Optical connector adapter
WO2005001533A1 (en) Method of assembling optical fiber conector
JP4192751B2 (en) Optical fiber connector and optical fiber connection method
JP2004037718A (en) Optical connector
JPH08500195A (en) Optical connector
JP2003149506A (en) Optical connection component with ferrule and optical connector receptacle
JP2005345753A (en) Optical connector and assembling method thereof
WO2004008214A1 (en) Component for connecting optical fibers, optical fiber connection structure, and optical fiber connecting method
JP2000035526A (en) Method for connecting optical module and optical fiber
JP2004045936A (en) Component, structure, and method for optical fiber connection
JP4192748B2 (en) Optical fiber connecting member and optical fiber connecting method
JP5657944B2 (en) Optical connector with lens
JPH10307231A (en) Adapter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees