JP4059126B2 - Dielectric resonator, dielectric filter, composite dielectric filter, and communication device - Google Patents

Dielectric resonator, dielectric filter, composite dielectric filter, and communication device Download PDF

Info

Publication number
JP4059126B2
JP4059126B2 JP2003101986A JP2003101986A JP4059126B2 JP 4059126 B2 JP4059126 B2 JP 4059126B2 JP 2003101986 A JP2003101986 A JP 2003101986A JP 2003101986 A JP2003101986 A JP 2003101986A JP 4059126 B2 JP4059126 B2 JP 4059126B2
Authority
JP
Japan
Prior art keywords
dielectric
dielectric resonator
resonance
mode
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003101986A
Other languages
Japanese (ja)
Other versions
JP2004312288A (en
Inventor
正道 安藤
浩幸 藤野
宗則 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003101986A priority Critical patent/JP4059126B2/en
Publication of JP2004312288A publication Critical patent/JP2004312288A/en
Application granted granted Critical
Publication of JP4059126B2 publication Critical patent/JP4059126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、多重モードで動作する誘電体共振器、それを備えた誘電体フィルタ、複合誘電体フィルタおよび通信装置に関するものである。
【0002】
【従来の技術】
従来、1個の誘電体ブロックを複数の共振モードで共振させるようにした多重モードの誘電体共振器が用いられている(例えば特許文献1)。
特許文献1の誘電体共振器は、略直方体形状の誘電体ブロックの稜部の少なくとも一部に斜平面を設けて2つの共振モード同士を結合させるようにしている。
【0003】
【特許文献1】
特開2002−151906公報
【0004】
【発明が解決しようとする課題】
ところが、特許文献1に示されている誘電体共振器の構造では、生じる3つの共振モードのうち、所定の2つの共振モード同士を結合させた際、誘電体部分の削除に伴ってその2つの共振モードの共振周波数が上昇する。すなわち結合量と共振周波数とが連動してしまい、両者を独立して定めることができなかった。
【0005】
また、その誘電体共振器の実際の使用状態では、他の共振器との結合条件やキャビティの形状によって、結合する2つの共振周波数を異ならせることも必要となる。しかし特許文献1に示されている誘電体共振器では、上記斜平面の拡大に伴って、結合する2つの共振モードの共振周波数は共に上昇方向に変化するので、2つの共振モードの共振周波数が共に上昇して、両者に差が生じない。そのため、誘電体フィルタを構成した場合に所望のフィルタ特性を高い自由度の下で設計・製造できない。さらに、その誘電体フィルタや複合誘電体フィルタを用いた通信装置を小型・低コストに構成できない。
【0006】
そこで、この発明の目的は、上述の問題を解消して、結合量と共振周波数とを独立して定められるようにした誘電体共振器を提供することにある。
【0007】
またこの発明の他の目的は、2つの共振モードを所定の結合量で結合させるとともに、それぞれの共振周波数に差をもたせるようにした誘電体共振器およびそれによる所望のフィルタ特性を得るようにした誘電体フィルタ、複合誘電体フィルタおよびそれらを備えた小型低コストな通信装置を提供することにある。
【0008】
【課題を解決するための手段】
この発明は、キャビティ内に、当該キャビティの壁面から離れた状態で配置される、全体が略直方体形状をなすTE01δ多重モードの誘電体共振器において、誘電体共振器の互いに平行且つ対角位置関係にある2つの稜を含む第1の仮想面と、その2つの稜とは異なる互いに平行且つ対角位置関係にある他の2つの稜を含む第2の仮想面のいずれからも異なった位置であり、且つ前記第1・第2の仮想面の交差する直線を含み、該第1・第2の仮想面がなす角度を2等分する他の2つの仮想面のいずれからも異なった位置に穴を設けたことを特徴としている。
【0009】
このように互いに平行且つ対角位置関係にある2つの稜を含む第1・第2の仮想面から異なった位置であり、且つ前記第1・第2の仮想面の交差する直線を含み、該第1・第2の仮想面がなす角度を2等分する他の2つの仮想面のいずれからも異なった位置に穴を設ければ、2つの共振モードによる2つの結合モードの周波数に差が生じて2つの共振モード同士が結合する。また、結合する2つの共振モードの電界ベクトルが通る部分についての実効誘電率に差が生じて、その2つの共振モードの共振周波数に差が生じる。
【0010】
また、この発明は、キャビティ内に、当該キャビティの壁面から離れた状態で配置される、全体が略直方体形状をなすTE01δ多重モードの誘電体共振器において、誘電体共振器の面に、該面の中央部から離れ且つ該面に含まれる稜から離れた位置を通り、所定深さで前記稜に対して略平行に延びる溝を設けたことを特徴としている。
【0011】
このように誘電体共振器外面の中央部から離れた位置で、その面に含まれる稜に対して平行に延びる溝は、2つの共振モードによる2つの結合モードの周波数に差を生じさせるので、2つの共振モード間同士が結合する。また、結合する2つの共振モードの電界ベクトルに対する実効誘電率に差が生じて、2つの共振モードの共振周波数を異ならせることができる。
【0012】
また、この発明は、上記誘電体共振器と、その誘電体共振器に外部結合する外部結合手段とを備えた誘電体フィルタを構成すること、およびその誘電体フィルタを複数組備えた複合誘電体フィルタを構成することを特徴としている。
【0013】
また、この発明は、上記誘電体フィルタまたは複合誘電体フィルタを高周波回路部に備えて通信装置を構成することを特徴としている。
【0014】
【発明の実施の形態】
第1の実施形態に係る誘電体共振器について図1〜図6を基に説明する。
図1はキャビティ内に配置する誘電体共振器の基本形と、それを備えた誘電体共振器装置の主要部の構成を示す分解斜視図である。この例では、誘電体コア10をキャビティ1の内部に配置して誘電体共振器装置を構成している。誘電体コア10の外形は略立方体形状を成している。この誘電体コア10は支持板3に接合している。支持板3としては低誘電率で且つ誘電体コア10と線膨張係数が近似しているセラミック板を用いる。誘電体コア10は支持板3に対して接着剤により接着するか、ガラスグレースの焼付けによって接合する。
【0015】
キャビティ1は金属の成型体であり、その内面は略直方体形状を成している。このキャビティの内外面に銀電極などの導体膜を形成している。キャビティ1の内底面には4つの支持柱2を配置し、この支持柱2を介して上記支持板3を支持するようにしている。キャビティ1の上部開口面にはカバーを取り付ける。
【0016】
このようにして、キャビティ1の中央部に誘電体共振器10を配置する。図中ループ状の記号は、この誘電体共振器10に生じる3つの共振モードの電界分布の形を象徴している。すなわちx軸に垂直な面に沿って電界が回るTE01δxモード、y軸に垂直な面に沿って電界が回るTE01δyモード、z軸に垂直な面に沿って電界が回るTE01δzモードの3つの共振モードが生じる。勿論これらの共振モードの高次共振モードも生じるが、ここでは基本モードを利用する。
【0017】
図2〜図4は上記3つの共振モードの電磁界分布の例を示している。図2はTE01δxモード、図3はTE01δyモード、図4はTE01δzモードについてそれぞれ示している。これらの図中の実線の矢印は電気力線、破線の矢印は磁力線をそれぞれ表している。なお、図1の場合と同様にこれらの図についてもキャビティは省略している。
【0018】
図1〜図4に示した例では、誘電体共振器10が立方体形状であるとすると、3つの共振モードの電磁界分布は互いに直交しているので、それらは独立している。また、3つの共振モードの共振周波数はそれぞれ等しい。この3つの共振モードのうち2つの共振モードを結合させるためには次のように構成する。
【0019】
図5の(A)はTE01δxモードとTE01δyモードの電界の回る方向を面で表している。また(B)はこの2つの共振モードの結合モードであるTE01δx+yモード(偶モード)とTE01δx−yモード(奇モード)の電界の回る方向について示している。
【0020】
図6は2つの共振モードを所定の結合量で結合させ、且つそれぞれの共振周波数を所定値に定めた誘電体共振器の斜視図である。誘電体共振器10の互いに平行且つ対角位置関係にある2つの稜E1,E3を含む第1の仮想面VS1と、稜E1,E3に平行で互いに対角位置関係にある他の2つの稜E2,E4を含む第2の仮想面VS2の何れからも異なった位置に穴15を設けている。この例では、穴15は4つの稜E1〜E4に平行な方向に延びる断面円形の有底穴を形成している。
【0021】
図7は図6に示した誘電体共振器10の上面図である。(A),(B)に示した矢印は結合させるべき2つの共振モード(TE01δxモード,TE01δyモード)の電界ベクトル(ループ)の向きを表している。このように、穴15を2つの仮想面VS1,VS2の交差位置からずれた位置に設けると、図5の(B)に示したように、2つの結合モードTE01δx+yモードとTE01δx−yモードの電界に対して不均衡な摂動が生じて、上記2つの共振モード同士が結合する。
【0022】
仮に穴15を(A)に示すように仮想面VS2の位置に設けた場合には、この穴15はTE01δxモードとTE01δyモードの電界に対して等量に作用するため、この2つの共振モードの共振周波数は等しく上昇する。
【0023】
一方、図7の(B)に示したように、穴15を仮想面VS2からずれた位置に設けると、2つの共振モードの電界に対する影響度に差が生じる。この例では穴15はTE01δyモードの電界強度の比較的低い部分に存在し、TE01δxモードの電界強度の比較的高い部分に存在するので、TE01δxモードの電界に対する実効誘電率が低下し、TE01δxモードの共振周波数がTE01δyモードの共振周波数より相対的に高くなる。
【0024】
図7の(C)は穴15の位置を2つの仮想面に対する位置関係で示している。穴15が誘電体共振器10の中心(2つの仮想面VS1,VS2の交差する直線)oから仮想面VS2に沿った方向の距離Dが大きくなるほど、2つの結合モードの周波数差が大きくなるので結合量が増大する。また、その仮想面VS2からのずれ量dが大きくなるほど、2つの共振モードの共振周波数の差が大きくなる。更に、穴15の内径および深さにより定まる容積が大きくなるほど、上記作用が顕著となる。従って穴15の位置と大きさによって、2つの共振モードの共振周波数と結合量を任意に定めることができる。
【0025】
次に、第2の実施形態に係る誘電体共振器について図8・図9を基に説明する。
図8は誘電体共振器の斜視図である。第1の実施形態で示した誘電体共振器と異なり、2つの穴15,15′を設けている。
【0026】
図9はこの誘電体共振器の上面図である。2つの穴15,15′を図9の(A)に示すように仮想面VS2の位置に設けた場合には、この穴15,15′はTE01δxモードとTE01δyモードの電界に対して等量に作用するため、この2つの共振モードの共振周波数は等しく上昇する。
【0027】
一方、図9の(B)に示したように、穴15,15′が仮想面VS2からずれた位置に設けると、2つの共振モードの電界に対する影響度に差が生じる。この例では穴15,15′はTE01δyモードの電界強度の比較的低い部分に存在し、TE01δxモードの電界強度の比較的高い部分に存在するので、TE01δxモードの共振周波数がTE01δyモードの共振周波数より相対的に高くなる。
【0028】
図9の(C)は、穴15,15′の位置を2つの仮想面に対する位置関係で示している。穴15,15′が誘電体共振器10の中心(2つの仮想面VS1,S2の交差する直線)oから仮想面VS2に沿った方向の距離D,D′が大きくなるほど、2つの結合モードの周波数差が大きくなるので結合量が増大する。また、その仮想面VS2からのずれ量d,d′が大きくなるほど、2つの共振モードの共振周波数の差が大きくなる。更に、穴15,15′の内径および深さにより定まる容積が大きくなるほど、上記作用が顕著となる。従って穴15,15′の位置と大きさによって、2つの共振モードの共振周波数と結合量を任意に定めることができる。
【0029】
このように2つの穴15,15′を設けるようにすれば、例えば結合量と共振周波数の調整時の第1段階で穴15を所定位置に所定深さだけ設け、誘電体共振器の特性を測定した後、所定の特性値からのずれ分を補正するために、もう一方の穴15′を所定位置に所定深さ分だけ設けるようにすれば、粗調整と微調整を組み合わせて、短時間に特性調整が完了する。
【0030】
図10は第3の実施形態に係る誘電体共振器の斜視図である。第1・第2の実施形態では、3つの共振モードのうち2つの共振モードについて結合量と共振周波数を定める例について示したが、第2と第3の共振モードについても結合量と共振周波数の調整を行うためには、図10に示すように、誘電体共振器10の直交する2つの外面にそれぞれ穴を設ければよい。図10に示す例では、穴15,15′によってTE01δxモードとTE01δyモードの結合量とそれぞれの共振周波数を定め、穴16,16′によってTE01δxモードとTE01δzモードの結合量とそれぞれの共振周波数を定めることができる。
【0031】
図11は第4の実施形態に係る誘電体共振器の上面図である。この例では粗調整のために穴15a,15a′を設け、微調整のために穴15b,15b′を設ける。微調整用の穴15b,15b′は粗調整用の穴15a,15a′近傍の仮想面VS2とは異なった、直交するもう1つの仮想面VS1の近傍に設ける。例えば穴を設ける前の2つの共振モードの結合量が0(結合係数k=0%)、2つの共振モードの共振周波数がf1,f2であったとして、穴15a,15a′を設けたことにより結合量(例えば結合係数k′=2%)になり、共振周波数がそれぞれf1′,f2′に変化したなら、その後、所定の結合量(例えば結合係数k″=1%)に下げるために、微調整用の穴15b,15b′を設ける。これにより2つの共振周波数もf1″,f2″に変化する。したがって、この微調整時の共振周波数の変化分を見越して、上記f1″,f2″が目標の共振周波数となるように、且つ結合係数k″が目標の結合係数となるように微調整用の穴15b,15b′の位置と大きさを定めるようにすればよい。
【0032】
なお、このように対角位置の関係に各穴を設けることによって、調整範囲が広くなるだけでなく、調整量を増しても、誘電体共振器10の構造上の対称性が大きく崩れず、スプリアスモードの発生が抑えられる効果がある。
【0033】
次に、第5の実施形態に係る誘電体共振器について図12・図13を基に説明する。
図12は誘電体共振器の斜視図である。(A)の例では、誘電体共振器10の所定の面の中央部oから離れた位置で、且つ稜E4に対して平行に延びるように所定深さの溝11を設けている。(B)に示す例では、同様にして2つの溝11,11′を設けている。
【0034】
図13はこの誘電体共振器の結合させるべき2つの共振モードの電界分布と溝との位置関係を示す上面図である。このように溝11,11′を所定面の中央部から離れた位置で且つ稜に対して平行に延びるように設けたことにより、2つの共振モード(TE01δxモード,TE01δyモード)による2つの結合モードの周波数に差が生じて2つの共振モード同士が結合する。また、結合する2つの共振モードの電界ベクトルが通る部分についての実効誘電率に差が生じて、その2つの共振モードの共振周波数に差が生じる。
【0035】
溝11,11′の位置を図13の(C)に示すように、稜E1,E3からの距離S,S′で表すと、この距離S,S′を小さくするほど2つの結合モードの電界に対する摂動が大きくなって結合量が増す。またS,S′を大きくするほど2つの共振モードの電界に対する影響の差が大きくなって共振周波数の差が大きくなる。また、溝11,11′の幅と深さの比によっても結合量と共振周波数差に与える影響が変化する。
【0036】
このように溝11,11′の位置によって結合量と2つの共振周波数の差が共に変化するので両者を完全に独立に定めることはできないが、溝11,11′の幅と深さも合わせて調整することによって、ある程度の自由度で2つの共振モードの共振周波数とその結合量を定めることができる。例えば、溝11を粗調整のために設け、溝11′を微調整のために設ければ、2つの共振モードの共振周波数とその結合量をさらに高精度に定めることができる。
【0037】
また、微調用の溝を、11″で示すように仮想面VS1境として11′とは反対面側に設ければ、2つの共振モードの共振周波数差の変化を減少方向に作用させることができる。
【0038】
図13の(D)に示す例は、粗調整用として溝11a,11a′を設け、微調整のために溝11b,11b′を設ける。微調整用の溝11b,11b′は粗調整用の溝11a,11a′近傍の仮想面VS1とは異なった、直交するもう1つの仮想面VS2の近傍に設ける。このように対角位置の関係に各溝を設けることによって、調整範囲が広くなるだけでなく、調整量を増しても、誘電体共振器10の構造上の対称性が大きく崩れず、スプリアスモードの発生が抑えられる効果がある。
【0039】
次に、第6の実施形態に係る誘電体フィルタの構成を図14を基に説明する。図14はキャビティ内における誘電体共振器およびそれに結合する結合ループとの位置関係を示している。この誘電体共振器10は図10に示した誘電体共振器と同一である。図中キャビティは省略している。結合ループKy,Kzはそれぞれの一端を、キャビティに取り付けた同軸コネクタの中心導体に接続していて、他端をキャビティの内面にそれぞれ接続している。結合ループKyはそのループ面をx−z面に向けている。結合ループKzはそのループ面をx−y面に向けている。従って結合ループKyはTE01δyモードに磁界結合し、結合ループKzはTE01δzモードに磁界結合する。
【0040】
図10を用いて既に説明したように、TE01δxモードはTE01δyモードと結合し、同時にTE01δzモードとも結合するので、2つの結合ループKy,Kz間に、TE01δyモード共振器→TE01δxモード共振器→TE01δzモード共振器の順に結合した3つの共振器が等価的に存在する。これにより3段の共振器から成る帯域通過フィルタ特性を有するフィルタを構成することができる。
【0041】
次に、第7の実施形態に係る複合誘電体フィルタおよび通信装置の構成を図15に示す。
ここで、デュプレクサは送信フィルタと受信フィルタとから構成している。この送信フィルタと受信フィルタは、いずれも、前述した構成のフィルタである。送信フィルタの出力ポートと受信フィルタの入力ポートとの間は、送信信号が受信フィルタ側へ回り込まないように、また、受信信号が送信フィルタ側へ回り込まないように、位相調整を行っている。このデュプレクサの送信信号入力ポートには送信回路を、受信信号出力ポートには受信回路をそれぞれ接続している。また、アンテナポートにはアンテナを接続している。このようにして、この発明に係る誘電体共振器を備えた通信装置を構成する。
【0042】
【発明の効果】
この発明によれば、互いに平行且つ対角位置関係にある、略直方体形状の誘電体共振器の2つの稜を含む第1・第2の仮想面から異なった位置であり、且つ前記第1・第2の仮想面の交差する直線を含み、該第1・第2の仮想面がなす角度を2等分する他の2つの仮想面のいずれからも異なった位置に穴を設けたことにより、2つの共振モード同士を結合させ、且つその2つの共振モードの共振周波数に差をもたせることができる。
【0043】
また、この発明によれば、誘電体共振器外面の中央部から離れ且つ該面に含まれる稜から離れた位置を通り、所定深さで前記稜に対して平行に延びる溝を形成したことにより、2つの共振モード同士を結合させ、且つその2つの共振モードの共振周波数に差をもたせることができる。
【0044】
また、この発明によれば、上記の誘電体共振器装置と、それに外部結合する外部結合手段を備えて、所望のフィルタ特性を有する誘電体フィルタおよび複合誘電体フィルタが容易に得られる。
【0045】
また、この発明によれば、上記誘電体フィルタまたは複合誘電体フィルタを高周波回路部に備えて、小型・低コストな通信装置を構成することができる。
【図面の簡単な説明】
【図1】第1の実施形態に係る誘電体共振器の基本的な構造を示す斜視図
【図2】TE01δxモードの電磁界分布を示す図
【図3】TE01δyモードの電磁界分布を示す図
【図4】TE01δzモードの電磁界分布を示す図
【図5】2つの共振モードとその結合モードの電界の向きを示す図
【図6】誘電体共振器の斜視図
【図7】結合させる2つの共振モードの電界分布と穴の位置関係を示す図
【図8】第2の実施形態に係る誘電体共振器の斜視図
【図9】2つの共振モードとその結合モードの電界の向きを示す図
【図10】第3の実施形態に係る誘電体共振器の斜視図
【図11】第4の実施形態に係る誘電体共振器の結合させる2つの共振モードの電界分布と穴の位置関係を示す図
【図12】第5の実施形態に係る誘電体共振器の斜視図
【図13】2つの共振モードとその結合モードの電界の向きを示す図
【図14】第6の実施形態に係る誘電体フィルタの主要部の構成を示す斜視図
【図15】第7の実施形態に係る複合誘電体フィルタおよび通信装置の構成を示す図
【符号の説明】
10−誘電体共振器
11,11′,11a,11a′,11b,11b′−溝
15,15′,15a,15a′,15b,15b′−穴
VS1,VS2−仮想面
E1,E2,E3,E4−稜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric resonator that operates in multiple modes, a dielectric filter including the dielectric resonator, a composite dielectric filter, and a communication device.
[0002]
[Prior art]
Conventionally, a multi-mode dielectric resonator in which one dielectric block is resonated in a plurality of resonance modes has been used (for example, Patent Document 1).
In the dielectric resonator disclosed in Patent Document 1, an oblique plane is provided on at least a part of the ridge portion of a substantially rectangular parallelepiped dielectric block so that two resonance modes are coupled to each other.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-151906
[Problems to be solved by the invention]
However, in the structure of the dielectric resonator disclosed in Patent Document 1, when two predetermined resonance modes among the three generated resonance modes are coupled to each other, the two of the two resonance modes are removed along with the deletion of the dielectric portion. The resonance frequency of the resonance mode increases. That is, the amount of coupling and the resonance frequency are interlocked, and the two cannot be determined independently.
[0005]
Further, in the actual usage state of the dielectric resonator, it is necessary to make the two resonance frequencies to be coupled differ depending on the coupling conditions with other resonators and the shape of the cavity. However, in the dielectric resonator shown in Patent Document 1, as the oblique plane is enlarged, the resonance frequencies of the two resonance modes to be coupled both change in the upward direction. Both rise and there is no difference between them. Therefore, when a dielectric filter is configured, desired filter characteristics cannot be designed and manufactured with a high degree of freedom. Furthermore, a communication device using the dielectric filter or the composite dielectric filter cannot be configured in a small size and at a low cost.
[0006]
Accordingly, an object of the present invention is to provide a dielectric resonator in which the above-described problems are solved and the coupling amount and the resonance frequency can be determined independently.
[0007]
Another object of the present invention is to obtain a dielectric resonator that couples two resonance modes with a predetermined coupling amount and has a difference between the resonance frequencies, and a desired filter characteristic thereby. It is an object of the present invention to provide a dielectric filter, a composite dielectric filter, and a small and low-cost communication device including the same.
[0008]
[Means for Solving the Problems]
The present invention relates to a TE01δ multimode dielectric resonator having a substantially rectangular parallelepiped shape that is disposed in a cavity in a state of being separated from the wall surface of the cavity. At a position different from any of the first virtual surface including the two ridges and the second virtual surface including the other two ridges that are different from each other in parallel and diagonal positions . And includes a straight line intersecting the first and second imaginary planes at a position different from any of the other two imaginary planes that bisect the angle formed by the first and second imaginary planes. It is characterized by providing holes.
[0009]
In this way, the first and second imaginary planes including two ridges that are parallel and diagonal to each other are located at different positions , and the first and second imaginary planes intersect with each other. If a hole is provided at a different position from any of the other two virtual planes that bisect the angle formed by the first and second virtual planes, there will be a difference in the frequency of the two coupled modes due to the two resonance modes. As a result, the two resonance modes are coupled to each other. Further, a difference occurs in the effective dielectric constant at a portion through which the electric field vectors of the two resonance modes to be coupled pass, and a difference occurs in the resonance frequency of the two resonance modes.
[0010]
Further, the present invention provides a TE01δ multimode dielectric resonator having a substantially rectangular parallelepiped shape disposed in a cavity in a state separated from a wall surface of the cavity . And a groove extending through the position away from the ridge included in the surface and extending substantially parallel to the ridge at a predetermined depth.
[0011]
In this way, the groove extending in parallel to the ridge included in the surface at a position away from the center of the outer surface of the dielectric resonator causes a difference in the frequency of the two coupling modes by the two resonance modes. The two resonance modes are coupled to each other. Further, a difference occurs in the effective dielectric constant with respect to the electric field vector of the two resonance modes to be coupled, so that the resonance frequencies of the two resonance modes can be made different.
[0012]
The present invention also provides a dielectric filter comprising the dielectric resonator and an external coupling means for external coupling to the dielectric resonator, and a composite dielectric comprising a plurality of sets of the dielectric filter. It is characterized by constituting a filter.
[0013]
In addition, the present invention is characterized in that a communication device is configured by including the dielectric filter or the composite dielectric filter in a high-frequency circuit section.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric resonator according to the first embodiment will be described with reference to FIGS.
FIG. 1 is an exploded perspective view showing a basic configuration of a dielectric resonator disposed in a cavity and a configuration of a main part of a dielectric resonator device including the same. In this example, a dielectric resonator device is configured by disposing the dielectric core 10 inside the cavity 1. The outer shape of the dielectric core 10 has a substantially cubic shape. The dielectric core 10 is bonded to the support plate 3. As the support plate 3, a ceramic plate having a low dielectric constant and having a linear expansion coefficient similar to that of the dielectric core 10 is used. The dielectric core 10 is bonded to the support plate 3 with an adhesive or bonded by baking glass grace.
[0015]
The cavity 1 is a metal molded body, and its inner surface has a substantially rectangular parallelepiped shape. Conductive films such as silver electrodes are formed on the inner and outer surfaces of the cavity. Four support columns 2 are arranged on the inner bottom surface of the cavity 1, and the support plate 3 is supported via the support columns 2. A cover is attached to the upper opening surface of the cavity 1.
[0016]
In this way, the dielectric resonator 10 is arranged at the center of the cavity 1. The loop symbol in the figure symbolizes the shape of the electric field distribution of the three resonance modes generated in the dielectric resonator 10. That is, three resonance modes of TE01δx mode in which an electric field rotates along a plane perpendicular to the x axis, TE01δy mode in which an electric field rotates along a plane perpendicular to the y axis, and TE01δz mode in which an electric field rotates along a plane perpendicular to the z axis Occurs. Of course, higher-order resonance modes of these resonance modes also occur, but the fundamental mode is used here.
[0017]
2 to 4 show examples of electromagnetic field distributions in the three resonance modes. 2 shows the TE01δx mode, FIG. 3 shows the TE01δy mode, and FIG. 4 shows the TE01δz mode. In these figures, solid arrows indicate electric lines of force, and broken arrows indicate lines of magnetic force. Note that the cavities are omitted in these figures as in the case of FIG.
[0018]
In the example shown in FIGS. 1 to 4, if the dielectric resonator 10 has a cubic shape, the electromagnetic field distributions of the three resonance modes are orthogonal to each other, so that they are independent. The resonance frequencies of the three resonance modes are the same. In order to couple two of the three resonance modes, the following configuration is used.
[0019]
FIG. 5A shows the directions in which the electric fields of the TE01δx mode and the TE01δy mode rotate by planes. (B) shows the direction in which the electric field rotates in the TE01δx + y mode (even mode) and TE01δx-y mode (odd mode), which are coupled modes of these two resonance modes.
[0020]
FIG. 6 is a perspective view of a dielectric resonator in which two resonance modes are coupled with a predetermined coupling amount and each resonance frequency is set to a predetermined value. The first imaginary plane VS1 including two ridges E1 and E3 that are parallel and diagonal to each other of the dielectric resonator 10 and the other two ridges that are parallel to the ridges E1 and E3 and are diagonal to each other A hole 15 is provided at a position different from any of the second virtual plane VS2 including E2 and E4. In this example, the hole 15 forms a bottomed hole having a circular cross section extending in a direction parallel to the four edges E1 to E4.
[0021]
FIG. 7 is a top view of the dielectric resonator 10 shown in FIG. The arrows shown in (A) and (B) indicate the directions of the electric field vectors (loops) of the two resonance modes (TE01δx mode and TE01δy mode) to be coupled. As described above, when the hole 15 is provided at a position shifted from the intersecting position of the two virtual planes VS1 and VS2, as shown in FIG. 5B, the electric fields of the two coupled modes TE01δx + y mode and TE01δx-y mode are obtained. The two resonance modes are coupled to each other.
[0022]
If the hole 15 is provided at the position of the virtual plane VS2 as shown in (A), the hole 15 acts equally on the electric fields of the TE01δx mode and the TE01δy mode. The resonance frequency rises equally.
[0023]
On the other hand, as shown in FIG. 7B, if the hole 15 is provided at a position shifted from the virtual plane VS2, there is a difference in the degree of influence of the two resonance modes on the electric field. In this example, since the hole 15 exists in a portion where the electric field strength of the TE01δx mode is relatively low and exists in a portion where the electric field strength of the TE01δx mode is relatively high, the effective dielectric constant with respect to the electric field of the TE01δx mode is reduced. The resonance frequency is relatively higher than the resonance frequency of the TE01δy mode.
[0024]
FIG. 7C shows the position of the hole 15 in a positional relationship with respect to the two virtual planes. Since the distance D in the direction along the virtual plane VS2 from the center 15 of the dielectric resonator 10 (the straight line where the two virtual planes VS1 and VS2 intersect) o increases, the frequency difference between the two coupling modes increases. The amount of binding increases. Further, as the deviation d from the virtual surface VS2 increases, the difference between the resonance frequencies of the two resonance modes increases. Furthermore, the above action becomes more remarkable as the volume determined by the inner diameter and depth of the hole 15 increases. Accordingly, the resonance frequency and the coupling amount of the two resonance modes can be arbitrarily determined by the position and size of the hole 15.
[0025]
Next, a dielectric resonator according to a second embodiment will be described with reference to FIGS.
FIG. 8 is a perspective view of the dielectric resonator. Unlike the dielectric resonator shown in the first embodiment, two holes 15 and 15 'are provided.
[0026]
FIG. 9 is a top view of the dielectric resonator. When the two holes 15 and 15 'are provided at the position of the virtual plane VS2 as shown in FIG. 9A, the holes 15 and 15' are equivalent to the electric fields of the TE01δx mode and the TE01δy mode. In order to act, the resonance frequency of these two resonance modes rises equally.
[0027]
On the other hand, as shown in FIG. 9B, if the holes 15 and 15 'are provided at positions shifted from the virtual plane VS2, there is a difference in the degree of influence of the two resonance modes on the electric field. In this example, since the holes 15 and 15 'are present in a portion where the electric field strength of the TE01δx mode is relatively low and are present in a portion where the electric field strength of the TE01δx mode is relatively high, the resonance frequency of the TE01δx mode is higher than the resonance frequency of the TE01δy mode. Relatively high.
[0028]
FIG. 9C shows the positions of the holes 15 and 15 ′ in a positional relationship with respect to the two virtual surfaces. As the distances D and D ′ in the direction along the virtual plane VS2 from the center (the straight line where the two virtual planes VS1 and S2 intersect) o of the holes 15 and 15 ′ increase from the center o, Since the frequency difference increases, the amount of coupling increases. In addition, the difference between the resonance frequencies of the two resonance modes increases as the deviation amounts d and d ′ from the virtual surface VS2 increase. Furthermore, the above action becomes more remarkable as the volume determined by the inner diameter and depth of the holes 15 and 15 'increases. Accordingly, the resonance frequency and the coupling amount of the two resonance modes can be arbitrarily determined by the positions and sizes of the holes 15 and 15 '.
[0029]
If the two holes 15 and 15 'are provided in this way, for example, the hole 15 is provided at a predetermined depth at a predetermined position in the first stage when adjusting the coupling amount and the resonance frequency, and the characteristics of the dielectric resonator are improved. After the measurement, in order to correct the deviation from the predetermined characteristic value, if the other hole 15 'is provided at the predetermined position by the predetermined depth, the coarse adjustment and the fine adjustment are combined for a short time. The characteristic adjustment is completed.
[0030]
FIG. 10 is a perspective view of a dielectric resonator according to the third embodiment. In the first and second embodiments, the example in which the coupling amount and the resonance frequency are determined for two of the three resonance modes is shown. However, the coupling amount and the resonance frequency are also determined for the second and third resonance modes. In order to perform the adjustment, as shown in FIG. 10, it is only necessary to provide holes on the two outer surfaces of the dielectric resonator 10 that are orthogonal to each other. In the example shown in FIG. 10, the coupling amounts of the TE01δx mode and the TE01δy mode and the respective resonance frequencies are defined by the holes 15 and 15 ′, and the coupling amounts of the TE01δx mode and the TE01δz mode and the respective resonance frequencies are defined by the holes 16 and 16 ′. be able to.
[0031]
FIG. 11 is a top view of a dielectric resonator according to the fourth embodiment. In this example, holes 15a and 15a 'are provided for coarse adjustment, and holes 15b and 15b' are provided for fine adjustment. The fine adjustment holes 15b and 15b 'are provided in the vicinity of another virtual surface VS1 which is different from the virtual surface VS2 in the vicinity of the rough adjustment holes 15a and 15a'. For example, by providing the holes 15a and 15a ′ on the assumption that the coupling amount of the two resonance modes before providing the hole is 0 (coupling coefficient k = 0%) and the resonance frequencies of the two resonance modes are f1 and f2. If the coupling amount (for example, the coupling coefficient k ′ = 2%) and the resonance frequencies are changed to f1 ′ and f2 ′, respectively, to reduce the coupling amount to a predetermined coupling amount (for example, the coupling coefficient k ″ = 1%), Fine adjustment holes 15b and 15b 'are provided. As a result, the two resonance frequencies are also changed to f1 "and f2". Therefore, in anticipation of the change in the resonance frequency during the fine adjustment, the above f1 "and f2" are provided. The positions and sizes of the fine adjustment holes 15b and 15b ′ may be determined so that the resonance frequency becomes the target resonance frequency and the coupling coefficient k ″ becomes the target coupling coefficient.
[0032]
In addition, by providing each hole in the relationship of the diagonal positions in this way, not only the adjustment range is widened, but even if the adjustment amount is increased, the structural symmetry of the dielectric resonator 10 is not greatly broken, This has the effect of suppressing the occurrence of spurious mode.
[0033]
Next, a dielectric resonator according to a fifth embodiment will be described with reference to FIGS.
FIG. 12 is a perspective view of a dielectric resonator. In the example of (A), a groove 11 having a predetermined depth is provided so as to extend in parallel to the edge E4 at a position away from the center portion o of a predetermined surface of the dielectric resonator 10. In the example shown in (B), two grooves 11 and 11 'are provided in the same manner.
[0034]
FIG. 13 is a top view showing the positional relationship between the electric field distribution of the two resonance modes to be coupled to the dielectric resonator and the groove. Thus, by providing the grooves 11 and 11 ′ so as to extend in parallel with the ridges at positions away from the center of the predetermined surface, two coupled modes by two resonance modes (TE01δx mode and TE01δy mode) are provided. The two resonance modes are coupled to each other due to a difference in frequency. Further, a difference occurs in the effective dielectric constant at a portion through which the electric field vectors of the two resonance modes to be coupled pass, and a difference occurs in the resonance frequency of the two resonance modes.
[0035]
As shown in FIG. 13C, the positions of the grooves 11 and 11 ′ are represented by distances S and S ′ from the edges E1 and E3. As the distances S and S ′ are reduced, the electric fields of the two coupled modes are reduced. The perturbation to increases and the amount of binding increases. Further, as S and S ′ are increased, the difference in the influence of the two resonance modes on the electric field is increased, and the difference in resonance frequency is increased. Further, the influence on the coupling amount and the resonance frequency difference also changes depending on the ratio of the width and depth of the grooves 11 and 11 '.
[0036]
As described above, both the coupling amount and the difference between the two resonance frequencies change depending on the positions of the grooves 11 and 11 ′, so that the two cannot be determined completely independently, but the width and depth of the grooves 11 and 11 ′ are also adjusted. By doing so, it is possible to determine the resonance frequencies of the two resonance modes and their coupling amounts with a certain degree of freedom. For example, if the groove 11 is provided for coarse adjustment and the groove 11 ′ is provided for fine adjustment, the resonance frequencies of the two resonance modes and the coupling amount thereof can be determined with higher accuracy.
[0037]
Further, if a fine adjustment groove is provided on the surface opposite to 11 ′ as a virtual surface VS1 boundary as indicated by 11 ″, a change in the resonance frequency difference between the two resonance modes can be applied in a decreasing direction. .
[0038]
In the example shown in FIG. 13D, grooves 11a and 11a ′ are provided for coarse adjustment, and grooves 11b and 11b ′ are provided for fine adjustment. The fine adjustment grooves 11b and 11b ′ are provided in the vicinity of another orthogonal virtual surface VS2 different from the virtual surface VS1 in the vicinity of the coarse adjustment grooves 11a and 11a ′. By providing the grooves in the diagonal position in this way, not only the adjustment range is widened, but even if the adjustment amount is increased, the structural symmetry of the dielectric resonator 10 is not greatly broken, and the spurious mode This has the effect of suppressing the occurrence of
[0039]
Next, the configuration of the dielectric filter according to the sixth embodiment will be described with reference to FIG. FIG. 14 shows the positional relationship between the dielectric resonator and the coupling loop coupled thereto in the cavity. The dielectric resonator 10 is the same as the dielectric resonator shown in FIG. In the figure, the cavity is omitted. Each of the coupling loops Ky and Kz has one end connected to the central conductor of the coaxial connector attached to the cavity and the other end connected to the inner surface of the cavity. The coupling loop Ky has its loop surface facing the xz plane. The coupling loop Kz has its loop surface facing the xy plane. Therefore, the coupling loop Ky is magnetically coupled to the TE01δy mode, and the coupling loop Kz is magnetically coupled to the TE01δz mode.
[0040]
As already described with reference to FIG. 10, the TE01δx mode is coupled to the TE01δy mode and simultaneously to the TE01δz mode. There are equivalently three resonators coupled in the order of the resonators. As a result, a filter having a bandpass filter characteristic composed of a three-stage resonator can be configured.
[0041]
Next, the structure of the composite dielectric filter and communication apparatus according to the seventh embodiment is shown in FIG.
Here, the duplexer includes a transmission filter and a reception filter. Both the transmission filter and the reception filter are filters having the above-described configuration. Phase adjustment is performed between the output port of the transmission filter and the input port of the reception filter so that the transmission signal does not circulate to the reception filter side and the reception signal does not circulate to the transmission filter side. A transmission circuit is connected to the transmission signal input port of the duplexer, and a reception circuit is connected to the reception signal output port. An antenna is connected to the antenna port. Thus, the communication apparatus provided with the dielectric resonator according to the present invention is configured.
[0042]
【The invention's effect】
According to the present invention, the positions are different from the first and second imaginary planes including the two edges of the substantially parallelepiped dielectric resonator, which are parallel and diagonal to each other , and the first By providing a hole at a position different from any of the other two virtual surfaces that bisect the angle formed by the first and second virtual surfaces, including a straight line intersecting the second virtual surface , The two resonance modes can be coupled to each other, and a difference can be made between the resonance frequencies of the two resonance modes.
[0043]
Further, according to the present invention, the groove extending from the center of the outer surface of the dielectric resonator and away from the ridge included in the surface and extending in parallel to the ridge at a predetermined depth is formed. Two resonance modes can be coupled to each other, and a difference can be made between the resonance frequencies of the two resonance modes.
[0044]
Further, according to the present invention, a dielectric filter and a composite dielectric filter having desired filter characteristics can be easily obtained by including the above-described dielectric resonator device and external coupling means coupled externally thereto.
[0045]
In addition, according to the present invention, a small-sized and low-cost communication device can be configured by including the dielectric filter or the composite dielectric filter in a high-frequency circuit unit.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a basic structure of a dielectric resonator according to a first embodiment. FIG. 2 is a diagram showing a TE01δx mode electromagnetic field distribution. FIG. 3 is a TE01δy mode electromagnetic field distribution. FIG. 4 is a diagram showing the electromagnetic field distribution of the TE01δz mode. FIG. 5 is a diagram showing the direction of the electric field of the two resonance modes and their coupling modes. FIG. 6 is a perspective view of a dielectric resonator. FIG. 8 is a perspective view of the dielectric resonator according to the second embodiment. FIG. 9 shows the directions of the electric fields of the two resonance modes and their coupling modes. FIG. 10 is a perspective view of a dielectric resonator according to a third embodiment. FIG. 11 shows the positional relationship between electric field distributions and holes in two resonance modes to be coupled by the dielectric resonator according to the fourth embodiment. FIG. 12 is a perspective view of a dielectric resonator according to a fifth embodiment. FIG. 13 is a diagram showing the directions of electric fields of two resonance modes and their coupling modes. FIG. 14 is a perspective view showing the configuration of the main part of a dielectric filter according to a sixth embodiment. FIG. Showing the configuration of the composite dielectric filter and communication device according to the present invention
10-dielectric resonators 11, 11 ', 11a, 11a', 11b, 11b'-grooves 15, 15 ', 15a, 15a', 15b, 15b'-holes VS1, VS2-virtual planes E1, E2, E3 E4-ridge

Claims (5)

キャビティ内に、当該キャビティの壁面から離れた状態で配置される、全体が略直方体形状をなすTE01δ多重モードの誘電体共振器において、
穴を設ける位置を仮想面に対する位置関係で示した場合に、
前記誘電体共振器の互いに平行且つ対角位置関係にある2つの稜を含む第1の仮想面と、前記2つの稜とは異なる互いに平行且つ対角位置関係にある他の2つの稜を含む第2の仮想面のいずれからも異なった位置であり、且つ前記第1・第2の仮想面の交差する直線を含み、該第1・第2の仮想面がなす角度を2等分する他の2つの仮想面のいずれからも異なった位置に穴を設けたことを特徴とする誘電体共振器。
In the TE01δ multi-mode dielectric resonator, which is disposed in the cavity in a state separated from the wall surface of the cavity and has a substantially rectangular parallelepiped shape as a whole,
When the position to provide the hole is shown in the positional relationship with the virtual plane,
A first imaginary plane including two ridges in parallel and diagonal positions of the dielectric resonator; and two other ridges in parallel and diagonal positions different from each other. Other than a position that is different from any of the second imaginary planes and includes a straight line intersecting the first and second imaginary planes, and divides the angle formed by the first and second imaginary planes into two equal parts. A dielectric resonator characterized in that a hole is provided at a position different from either of the two virtual planes .
キャビティ内に、当該キャビティの壁面から離れた状態で配置される、全体が略直方体形状をなすTE01δ多重モードの誘電体共振器において、
前記誘電体共振器の面に、該面の中央部から離れ且つ該面に含まれる稜から離れた位置を通り、所定深さで前記稜に対して略平行に延びる溝を設けたことを特徴とする誘電体共振器。
In the TE01δ multi-mode dielectric resonator, which is disposed in the cavity in a state separated from the wall surface of the cavity and has a substantially rectangular parallelepiped shape as a whole,
The surface of the dielectric resonator is provided with a groove extending from the central portion of the surface and away from the ridge included in the surface and extending substantially parallel to the ridge at a predetermined depth. A dielectric resonator.
請求項1または2に記載の誘電体共振器と、該誘電体共振器に外部結合する外部結合手段とを備えてなる誘電体フィルタ。  A dielectric filter comprising the dielectric resonator according to claim 1 and external coupling means for external coupling to the dielectric resonator. 請求項3に記載の誘電体フィルタを複数組備えるとともに、それぞれの誘電体フィルタの一方の外部結合手段を共用した複合誘電体フィルタ。  A composite dielectric filter comprising a plurality of sets of dielectric filters according to claim 3 and sharing one external coupling means of each dielectric filter. 請求項3に記載の誘電体フィルタまたは請求項4に記載の複合誘電体フィルタを高周波回路部に備えた通信装置。  A communication device comprising the high frequency circuit section comprising the dielectric filter according to claim 3 or the composite dielectric filter according to claim 4.
JP2003101986A 2003-04-04 2003-04-04 Dielectric resonator, dielectric filter, composite dielectric filter, and communication device Expired - Fee Related JP4059126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101986A JP4059126B2 (en) 2003-04-04 2003-04-04 Dielectric resonator, dielectric filter, composite dielectric filter, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101986A JP4059126B2 (en) 2003-04-04 2003-04-04 Dielectric resonator, dielectric filter, composite dielectric filter, and communication device

Publications (2)

Publication Number Publication Date
JP2004312288A JP2004312288A (en) 2004-11-04
JP4059126B2 true JP4059126B2 (en) 2008-03-12

Family

ID=33465611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101986A Expired - Fee Related JP4059126B2 (en) 2003-04-04 2003-04-04 Dielectric resonator, dielectric filter, composite dielectric filter, and communication device

Country Status (1)

Country Link
JP (1) JP4059126B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406988B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Multi-mode filter
US20130049891A1 (en) 2011-08-23 2013-02-28 Mesaplexx Pty Ltd Filter
US20140097913A1 (en) 2012-10-09 2014-04-10 Mesaplexx Pty Ltd Multi-mode filter
US9325046B2 (en) 2012-10-25 2016-04-26 Mesaplexx Pty Ltd Multi-mode filter
EP3370300B1 (en) 2013-04-16 2021-06-09 Huawei Technologies Co., Ltd. Dielectric resonator, dielectric filter, and fabrication method
US9614264B2 (en) 2013-12-19 2017-04-04 Mesaplexxpty Ltd Filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298485B2 (en) * 1997-02-03 2002-07-02 株式会社村田製作所 Multi-mode dielectric resonator
JP2001085913A (en) * 1999-09-09 2001-03-30 Murata Mfg Co Ltd Dielectric resonator, dielectric filter, duplexer and communication unit

Also Published As

Publication number Publication date
JP2004312288A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US6549092B1 (en) Resonator device, filter, composite filter device, duplexer, and communication device
EP1014473B1 (en) Multi-mode dielectric resonance devices, dielectric filter, composite dielectric filter, synthesizer, distributor, and communication equipment
US6621381B1 (en) TEM-mode dielectric resonator and bandpass filter using the resonator
US7332987B2 (en) Multimode dielectric resonator device, dielectric filter, composite dielectric filter and communication apparatus
EP2432070B9 (en) Super Q dual mode cavity filter assembly
KR101320896B1 (en) The Ceramic Panel Dual mode Resonators using Quasi TM110 mode and RF Dual mode Filter by the same
JP6617102B2 (en) Dielectric resonator and dielectric filter
EP2865047B1 (en) In-line pseudoelliptic te01(no) mode dielectric resonator filters
US8085118B2 (en) Inline cross-coupled coaxial cavity filter
US7705694B2 (en) Rotatable elliptical dielectric resonators and circuits with such dielectric resonators
JP3633520B2 (en) Resonator device, filter, duplexer, and communication device
JP4059126B2 (en) Dielectric resonator, dielectric filter, composite dielectric filter, and communication device
JP3506076B2 (en) Multi-mode dielectric resonator device, filter, duplexer, and communication device
US6965283B2 (en) Dielectric resonator device, communication filter, and communication unit for mobile communication base station
US20160240905A1 (en) Hybrid folded rectangular waveguide filter
EP1079457A2 (en) Dielectric resonance device, dielectric filter, composite dielectric filter device, dielectric duplexer, and communication apparatus
JP2001156502A (en) Multiple mode dielectric resonator, filter duplexer and communication device
JP2004312287A (en) Dielectric resonator, dielectric filter, composite dielectric filter, and communication apparatus
JP4803255B2 (en) Dielectric resonator, dielectric filter, and communication device
US7274273B2 (en) Dielectric resonator device, dielectric filter, duplexer, and high-frequency communication apparatus
EP1962371A1 (en) Dielectric multimode resonator
JP4284832B2 (en) Multimode dielectric resonator device, filter, duplexer, and communication device
KR100789378B1 (en) Filter having circular type cavity resonator using a multiple of via wall
CN115917869A (en) Three-mode resonator and waveguide filter including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees