JP4058759B2 - Cemented carbide end mill with excellent chipping resistance in high speed cutting - Google Patents

Cemented carbide end mill with excellent chipping resistance in high speed cutting Download PDF

Info

Publication number
JP4058759B2
JP4058759B2 JP2002262984A JP2002262984A JP4058759B2 JP 4058759 B2 JP4058759 B2 JP 4058759B2 JP 2002262984 A JP2002262984 A JP 2002262984A JP 2002262984 A JP2002262984 A JP 2002262984A JP 4058759 B2 JP4058759 B2 JP 4058759B2
Authority
JP
Japan
Prior art keywords
end mill
cemented carbide
phase
powder
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002262984A
Other languages
Japanese (ja)
Other versions
JP2004074384A (en
Inventor
一樹 岡田
慧 高橋
幸生 青木
真 西田
俊之 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002262984A priority Critical patent/JP4058759B2/en
Publication of JP2004074384A publication Critical patent/JP2004074384A/en
Application granted granted Critical
Publication of JP4058759B2 publication Critical patent/JP4058759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、特に硬質相を構成する炭化タングステン(以下、WCで示す)相がすぐれた靭性と耐熱性を有し、したがって高熱発生を伴なう高速切削加工で、底刃を含む切刃先端部がすぐれた耐チッピング性を発揮する超硬合金製エンドミル(以下、単にエンドミルと云う)に関するものである。
【0002】
【従来の技術】
従来、一般に、鋼や鋳鉄、さらに非鉄材料などの被削材の面加工や溝加工、さらに肩加工などにエンドミルが用いられ、このエンドミルが切刃部とシャンク部からなり、前記切刃部がスクエア形状のものや、切刃部の先端部がボール形状を有するもの、また切刃部がルーター形状を有するものなどが知られており、さらに少なくとも前記切刃部が、結合相形成成分として質量%(以下、%は質量%を示す)で、4〜16%の割合で含有するCo中に0.1〜3%の割合で固溶含有したCrおよび/またはV成分による粒成長抑制作用で、硬質相形成成分としてのWC相の粒径を、平均粒径で、望ましくは0.7μm以下とした微粒組織の超硬合金で構成されたエンドミルが知られている(例えば、特許文献1参照)。
【0003】
さらに、上記のエンドミルが、原料粉末として、いずれも0.1〜3μmの範囲内の所定の平均粒径を有するWC粉末、炭化クロム(以下、Cr32で示す)粉末、炭化バナジウム(以下、VCで示す)粉末、およびCo粉末を用い、これら原料粉末を所定の配合組成に配合し、湿式混合し、乾燥した後、押出しプレスにて所定の直径の長尺状成形体とし、この長尺状成形体を、1.3〜13.3Paの真空雰囲気中、1350〜1480℃の範囲内の所定の温度に昇温し、この昇温温度に1〜2時間保持後、雰囲気を、例えばArを導入して4.9〜14.7MPaの加圧雰囲気とし、前記昇温温度および加圧雰囲気の条件下に15〜60分間保持した後、少なくとも1200℃までを50〜100℃/minの冷却速度で冷却することにより、Cr(Cr32)および/またはV(VC)がCo中に固溶してなる結合相とWC相の硬質相で構成された超硬合金からなる所定の直径の長尺状加圧焼結体を形成し、この加圧焼結体から図1に示される形状に研削加工することにより製造されることも知られている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開昭61−12847号公報
【0005】
【発明が解決しようとする課題】
一方、近年の切削加工の省力化および省エネ化、さらに低コスト化に対する要求は強く、これに伴い、切削装置の高性能化と相俟って、切削加工は高速で行われる傾向にあるが、上記の従来エンドミルにおいては、これを高速切削加工に用いると、靭性および耐熱性不足が原因で、底刃および外周刃にチッピング(微小欠け)が発生し易くなり、比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者らは、上述のような観点から、高速切削加工で、すぐれた耐チッピング性を発揮するエンドミルを開発すべく、特に上記の従来エンドミルに着目し、研究を行った結果、
(a)通常、従来の原料粉末としてのWC粉末は、高純度を意図して製造されているため、焼結後の超硬合金のWC相の不純物である窒素および酸素の含有量は、WC相の中心部のオージェ電子分光分析装置による測定で、
窒素(N):0.001〜0.03%、
酸素(O):0.001〜0.05%、
であるのが一般的であること。
【0007】
(b)一般に、上記の従来高純度WC粉末は、原料粉末としてWO3粉末を用い、これに還元粉末として所定量のカーボンブラックを配合し、混合した後、この混合粉末を950〜1050℃に加熱し、窒素気流中で所定時間保持の条件で還元処理を行い、ついで加熱温度を1150〜1250℃とすると共に、前記窒素気流を水素気流に変えて所定時間保持の条件で炭化処理を行うことにより製造されているが、この従来高純度WC粉末の製造において、還元処理の窒素気流中および炭化処理の水素気流中に所定割合、望ましくは5〜15容量%の割合でCOガスを配合すると、製造されたWC粉末中の窒素および酸素含有量が上昇するようになり、前記のCOガスの5〜15容量%の配合で、製造されたWC粉末は、
窒素(N):0.1〜0.25%、
酸素(O):0.2〜0.6%、
を含有するようになること。
【0008】
(c)この結果の高窒素高酸素含有のWC粉末を原料粉末として用いて製造されたエンドミルにおいては、これの超硬合金の硬質相を構成するWC相は、その中心部のオージェ電子分光分析装置による測定で、原料粉末状態のN:0.1〜0.25%、O:0.2〜0.6%、を含有し、前記Nによるすぐれた靭性および前記Oによるすぐれた耐熱性を具備するようになり、このWC相のもつ高靭性およびすぐれた耐熱性は超硬合金自体の具備する特性となり、高熱発生を伴なう高速切削加工でもすぐれた耐チッピング性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、切刃部とシャンク部からなり、少なくとも前記切刃部を、いずれも結合相形成成分として、以下いずれも質量%で、
Co:4〜16%、
Crおよび/またはV:0.1〜3%、
を含有し、残りが硬質相形成成分としての酸素および窒素を固溶含有するWCと前記酸素および窒素以外の不可避不純物からなる組成を有し、かつ前記硬質相形成成分としてのWC相が、これの中心部のオージェ電子分光分析装置による測定で、
N:0.1〜0.25%、
O:0.2〜0.6%、
を含有する超硬合金で構成してなる、高速切削加工ですぐれた耐チッピング性を発揮するエンドミルに特徴を有するものである。
【0010】
以下に、この発明のエンドミルにおいて、これを構成する超硬合金の組成を上記の通りに限定した理由を説明する。
(1) Co
結合相形成成分としてのCo含有量が4%未満では所望の強度および靭性を確保することができず、一方Co含有量が16%を超えると急激に軟化し、摩耗進行が促進するようになることから、Co含有量を4〜16%と定めた。
【0011】
(2) Crおよび/またはV
これらの成分には、結合相を形成するCo中に固溶した状態で硬質相を形成するWC相の成長を著しく抑制して、WC相の粒径を平均粒径で、望ましくは0.7μm以下とした微粒組織とする作用があるが、この作用はCrおよびV成分の含有量が0.1%未満では不充分となり、一方その含有量が3%を超えると、これらの成分が炭化物として析出し、強度および靭性を低下させるようになることから、その含有量を0.1〜3%と定めた。
【0012】
(3) WC相のNおよびO含有量
エンドミルを構成する超硬合金のWC相におけるN含有量が0.1%未満では、所望の高靭性を確保することができないので、原料粉末として用いられるWC粉末の製造に際して、還元処理の窒素気流中および炭化処理の水素気流中に配合するCOガスの割合を調整して0.1%以上含有するようにするが、一方その含有量が0.25%を超えると硬さが急激に低下するようになって、摩耗進行が著しく促進され、使用寿命短命化の原因となることから、その含有量を0.1〜0.25%と定めた。
また、同WC相におけるO含有量が0.2%未満では、所望のすぐれた耐熱性を確保することができないので、同じくWC粉末の製造時に、還元処理の窒素気流中および炭化処理の水素気流中に配合するCOガスの割合を調整して0.2%以上含有させ、すぐれた耐熱性を確保して、高熱発生の高速切削加工でもN成分との共存においてすぐれた耐チッピング性を発揮するようにするが、一方その含有量が0.6%を超えると靭性が急激に低下するようになって、チッピングが起り易くなり、これも使用寿命短命化をもたらすことから、その含有量を0.2〜0.6%と定めた。
【0013】
【発明の実施の態様】
つぎに、この発明のエンドミルを実施例により具体的に説明する。
原料粉末として、平均粒径:0.5μmを有するWO3粉末、および同0.2μmのカーボンブラックを用意し、まずこれら原料粉末を、カーボンブラック:17%、WO3粉末:残り、の割合に配合し、湿式ボールミルでアセトンを加えて3時間混合し、減圧乾燥した後、よくほぐした状態でカーボンボートに充填した後、この混合粉末を950〜1050℃に加熱し、COガスを5〜15容量%の範囲内の所定の割合で配合してなる窒素−CO混合気流中で3時間保持の条件で還元処理を行い、ついで加熱温度を1150〜1250℃とすると共に、前記窒素−CO混合気流を同じくCOガスを5〜15容量%の範囲内の所定の割合で配合してなる水素−CO混合気流に変えて3時間保持の条件で炭化処理を行い、最終的に粒度調整を行うことにより、表1に示される窒素および酸素を含有し、かつ平均粒径をもった本発明エンドミル製造用原料粉末としてのWC粉末(以下、本発明原料WC粉末という)A−1〜A−7をそれぞれ製造した。
【0014】
また、比較の目的で、還元処理の反応雰囲気を窒素気流、炭化処理の反応雰囲気を水素気流とする以外は、同一の条件で、同じく表1に示される窒素および酸素含有量、並びに平均粒径の従来エンドミル製造用原料粉末としてのWC粉末(以下、従来原料WC粉末という)a−1〜a−7をそれぞれ製造した。
【0015】
ついで、上記の本発明原料WC粉末A−1〜A−7および従来原料WC粉末a−1〜a−7のそれぞれに、平均粒径:1.2μmのCo粉末、同1.8μmのVC粉末、および同2.3μmのCr32粉末を表2に示される割合に配合し、ボールミルで72時間湿式混合し、減圧乾燥し、さらにワックスと溶剤を加えて1時間混和した後、押出しプレスにて4〜26mmの範囲内の所定の直径を有する長尺状成形体を形成し、これらの長尺状成形体を、1.3Paの真空雰囲気中、1380〜1480℃の範囲内の所定の温度に1時間保持して焼結した後、前記昇温温度に保持したまま、Arを導入して雰囲気を圧力:6MPaの加圧雰囲気として1時間保持し、その後冷却のHIP処理を施すことにより、3.3〜21.0mmの範囲内の所定の直径を有する本発明エンドミル形成用長尺状加圧焼結体素材(以下、本発明焼結素材という)B−1〜B−7および従来エンドミル形成用長尺状加圧焼結体素材(以下、従来焼結素材という)b−1〜b−7を形成し、さらにこれらの焼結素材から研削加工にて、切刃部がそれぞれ表3,4に示される形状および寸法をもった本発明エンドミル1〜14および従来エンドミル1〜14をそれぞれを製造した。
【0016】
また、表2に上記の本発明焼結素材B−1〜B−7(本発明エンドミル1〜14)および従来焼結素材b−1〜b−7(従来エンドミル1〜14)について、オージェ電子分光分析装置を用いて、これを構成する超硬合金における任意5個のWC相の中心部のO含有量およびN含有量を測定した結果を平均値で示した。
さらに、表2には、上記の各種焼結素材の任意断面におけるWC相(分散相)の平均粒径を走査型電子顕微鏡を用いて測定した結果を示した。また、前記焼結素材を構成する超硬合金のCo、Cr、およびV成分の含有量を測定したところ、配合組成と実質的に同じ値を示した。
【0017】
つぎに、上記の各種のエンドミルのうち、本発明エンドミル1〜7および従来エンドミル1〜7については、被削材として、幅:400mmを有するJIS・SKD11(硬さ:HRC60)の板材を用い、表3に示される条件で高速肩削り加工を行い、エンドミルの先端面の逃げ面摩耗幅がそれぞれ表3に示される使用目安とされる値に至るまでの切削長を測定し、また本発明エンドミル8〜14および従来エンドミル8〜14については、被削材として厚さ:1.6mmのガラス繊維強化エポキシ樹脂多層板を用い、これを表4に示される枚数積み重ね、同じく表4に示される切削加工条件で乾式高速外形加工を行ない、加工材に標準寸法に対して20μmの寸法誤差が生じるまでの切削長を測定した。これらのた。これらの測定結果を表3,4にそれぞれ平均値で示した。
【0018】
【表1】

Figure 0004058759
【0019】
【表2】
Figure 0004058759
【0020】
【表3】
Figure 0004058759
【0021】
【表4】
Figure 0004058759
【0022】
【発明の効果】
表2〜4に示される結果から、本発明エンドミル1〜14は、いずれもこれを構成する超硬合金の硬質相(WC相)のNおよびOの含有量が相対的に高く、前記WC相によって高靭性とすぐれた耐熱性が確保されることから、高熱発生を伴なう高速切削加工でも切刃部にチッピングの発生なく、すぐれた耐摩耗性を発揮するのに対して、前記硬質相(WC相)のNおよびOの含有量が相対的に低い従来エンドミル1〜14においては、いずれも靭性および耐熱性不足が原因で、高速切削加工では切刃部にチッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明のエンドミルは、通常の条件での切削加工は勿論のこと、高速切削加工でもすぐれた耐摩耗性を長期に亘って発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応することができるものである。[0001]
BACKGROUND OF THE INVENTION
In particular, the present invention provides a tungsten carbide (hereinafter referred to as WC) phase that constitutes a hard phase having excellent toughness and heat resistance. The present invention relates to a cemented carbide end mill (hereinafter simply referred to as an end mill) that exhibits excellent chipping resistance.
[0002]
[Prior art]
Conventionally, an end mill is generally used for surface processing, grooving, and shoulder processing of work materials such as steel, cast iron, and non-ferrous materials, and this end mill is composed of a cutting edge portion and a shank portion, and the cutting edge portion is Known are square shapes, those having a ball shape at the tip of the cutting edge, and those having a router shape at the cutting edge, and at least the cutting edge has a mass as a binder phase forming component. % (Hereinafter,% indicates% by mass), with the effect of suppressing grain growth by Cr and / or V components contained in a solid solution at a rate of 0.1 to 3% in Co contained at a rate of 4 to 16%. An end mill made of a cemented carbide with a fine grain structure in which the particle diameter of the WC phase as a hard phase forming component is an average particle diameter, preferably 0.7 μm or less is known (for example, see Patent Document 1). ).
[0003]
Furthermore, the above-mentioned end mills are WC powder, chromium carbide (hereinafter referred to as Cr 3 C 2 ) powder, vanadium carbide (hereinafter referred to as “raw powder”) having a predetermined average particle diameter in the range of 0.1 to 3 μm as raw material powders. , VC powder), and Co powder, these raw material powders are blended in a predetermined composition, wet mixed, dried, and then formed into a long shaped body having a predetermined diameter by an extrusion press. The scale-shaped body is heated to a predetermined temperature within the range of 1350 to 1480 ° C. in a vacuum atmosphere of 1.3 to 13.3 Pa, and after holding at this temperature rising temperature for 1 to 2 hours, the atmosphere is, for example, Ar was introduced to form a pressurized atmosphere of 4.9 to 14.7 MPa, and after maintaining for 15 to 60 minutes under the conditions of the temperature elevation temperature and the pressurized atmosphere, at least 1200 ° C. was maintained at 50 to 100 ° C./min. To cool at the cooling rate Accordingly, a long-sized alloy of a predetermined diameter made of a cemented carbide composed of a binder phase in which Cr (Cr 3 C 2 ) and / or V (VC) is dissolved in Co and a hard phase of WC phase is formed. It is also known that a pressure sintered body is formed and manufactured by grinding the pressure sintered body into the shape shown in FIG. 1 (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 61-12847
[Problems to be solved by the invention]
On the other hand, there is a strong demand for labor saving and energy saving of cutting work and cost reduction in recent years, and along with this, cutting performance tends to be performed at a high speed in combination with high performance of cutting equipment. In the above-mentioned conventional end mill, if this is used for high-speed cutting, chipping (small chipping) is likely to occur on the bottom edge and outer peripheral edge due to insufficient toughness and heat resistance, and the service life is shortened in a relatively short time. This is the current situation.
[0006]
[Means for Solving the Problems]
Therefore, from the above viewpoints, the present inventors conducted research by focusing on the conventional end mill, in particular, in order to develop an end mill that exhibits excellent chipping resistance in high-speed cutting.
(A) Normally, WC powder as a conventional raw material powder is manufactured with the intention of high purity, so the content of nitrogen and oxygen, which are impurities in the WC phase of the cemented carbide after sintering, is WC In the measurement by the Auger electron spectrometer at the center of the phase,
Nitrogen (N): 0.001 to 0.03%,
Oxygen (O): 0.001 to 0.05%,
It is common to be.
[0007]
(B) In general, the above conventional high purity WC powder uses WO 3 powder as a raw material powder, and a predetermined amount of carbon black as a reducing powder is mixed and mixed, and then the mixed powder is heated to 950 to 1050 ° C. Heating and performing a reduction treatment under a condition of holding in a nitrogen stream for a predetermined time, then setting the heating temperature to 1150 to 1250 ° C., and changing the nitrogen stream into a hydrogen stream and performing a carbonization treatment under a condition of holding for a predetermined time In the production of this conventional high-purity WC powder, when CO gas is blended in a predetermined ratio, preferably 5 to 15% by volume, in a nitrogen stream of reduction treatment and a hydrogen stream of carbonization treatment, The nitrogen and oxygen content in the manufactured WC powder is increased, and the WC powder manufactured with 5-15% by volume of the CO gas is
Nitrogen (N): 0.1-0.25%,
Oxygen (O): 0.2-0.6%
To come to contain.
[0008]
(C) In the end mill manufactured using the WC powder containing the high nitrogen and oxygen content as a raw material powder, the WC phase constituting the hard phase of the cemented carbide is an Auger electron spectroscopic analysis at the center. It contains N: 0.1-0.25% and O: 0.2-0.6% in the raw material powder state as measured by an apparatus, and exhibits excellent toughness due to the N and excellent heat resistance due to the O. The high toughness and excellent heat resistance of the WC phase become the characteristics of the cemented carbide itself, and it will exhibit excellent chipping resistance even in high-speed cutting with high heat generation. thing.
The research results shown in (a) to (c) above were obtained.
[0009]
This invention was made based on the above research results, and consists of a cutting blade part and a shank part, and at least the cutting blade part as a binder phase forming component, and in the following, all in mass%,
Co: 4-16%,
Cr and / or V: 0.1 to 3%,
And WC phase as the hard phase forming component, and the WC phase as the hard phase forming component has the composition of WC containing oxygen and nitrogen as a hard phase forming component in solid solution and the inevitable impurities other than oxygen and nitrogen. In the measurement by the Auger electron spectroscopy analyzer in the center of
N: 0.1-0.25%
O: 0.2-0.6%
It has a feature in an end mill that is made of a cemented carbide containing iron and exhibits excellent chipping resistance in high-speed cutting.
[0010]
The reason why the composition of the cemented carbide constituting the end mill of the present invention is limited as described above will be described below.
(1) Co
If the Co content as the binder phase forming component is less than 4%, the desired strength and toughness cannot be ensured. On the other hand, if the Co content exceeds 16%, it softens rapidly and the progress of wear is promoted. Therefore, the Co content was determined to be 4 to 16%.
[0011]
(2) Cr and / or V
For these components, the growth of the WC phase that forms the hard phase in a solid solution state in the Co that forms the binder phase is remarkably suppressed, and the particle size of the WC phase is an average particle size, preferably 0.7 μm. There is an effect of the following fine structure, but this effect becomes insufficient when the content of Cr and V components is less than 0.1%, whereas when the content exceeds 3%, these components are converted into carbides. Since it precipitates and strength and toughness are lowered, the content is determined to be 0.1 to 3%.
[0012]
(3) N and O contents of WC phase If the N content in the WC phase of the cemented carbide constituting the end mill is less than 0.1%, the desired high toughness cannot be ensured, so it is used as a raw material powder. In the production of WC powder, the proportion of CO gas blended in the nitrogen stream of reduction treatment and the hydrogen stream of carbonization treatment is adjusted to contain 0.1% or more, while the content is 0.25. When the content exceeds 50%, the hardness decreases rapidly, the progress of wear is remarkably promoted, and the service life is shortened. Therefore, the content is determined to be 0.1 to 0.25%.
Also, if the O content in the WC phase is less than 0.2%, the desired excellent heat resistance cannot be ensured. Therefore, during the production of the WC powder, in the nitrogen stream of the reduction process and the hydrogen stream of the carbonization process. Adjust the ratio of CO gas blended in it to contain 0.2% or more, ensure excellent heat resistance, and exhibit excellent chipping resistance in coexistence with N component even in high-speed high-speed cutting processing. On the other hand, if its content exceeds 0.6%, the toughness is suddenly lowered and chipping easily occurs. This also shortens the service life. .2 to 0.6%.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the end mill of the present invention will be specifically described with reference to examples.
WO 3 powder having an average particle size of 0.5 μm and carbon black of 0.2 μm were prepared as raw material powders. First, these raw material powders were mixed in a ratio of carbon black: 17%, WO 3 powder: remaining. After blending, adding acetone with a wet ball mill and mixing for 3 hours, drying under reduced pressure, and filling in a carbon boat in a well-unraveled state, this mixed powder is heated to 950-1050 ° C., and the CO gas is changed to 5-15. Reduction treatment is performed under the condition of holding for 3 hours in a nitrogen-CO mixed gas stream blended at a predetermined ratio within a volume% range, and then the heating temperature is set to 1150 to 1250 ° C., and the nitrogen-CO mixed gas stream Is changed to a hydrogen-CO mixed gas stream in which CO gas is blended at a predetermined ratio in the range of 5 to 15% by volume, and carbonization is performed under the condition of holding for 3 hours, and finally the particle size is adjusted. WC powders (hereinafter referred to as the present raw material WC powders) A-1 to A-7 containing the nitrogen and oxygen shown in Table 1 and having an average particle diameter as the raw material powder for producing the end mill of the present invention (hereinafter referred to as the present raw material WC powder) Were manufactured respectively.
[0014]
For comparison purposes, the nitrogen and oxygen contents shown in Table 1 and the average particle diameter are the same under the same conditions except that the reaction atmosphere for the reduction treatment is a nitrogen stream and the reaction atmosphere for the carbonization treatment is a hydrogen stream. WC powders (hereinafter referred to as conventional raw material WC powders) a-1 to a-7 as raw material powders for conventional end mill production were prepared.
[0015]
Next, each of the raw material WC powders A-1 to A-7 of the present invention and the conventional raw material WC powders a-1 to a-7, respectively, has an average particle size of 1.2 μm Co powder and 1.8 μm VC powder. And 2.3 μm Cr 3 C 2 powder in the proportions shown in Table 2, wet-mixed with a ball mill for 72 hours, dried under reduced pressure, mixed with wax and solvent for 1 hour, and then extruded. Are formed into long shaped bodies having a predetermined diameter within a range of 4 to 26 mm, and these long shaped bodies are formed in a vacuum atmosphere of 1.3 Pa at a predetermined range of 1380 to 1480 ° C. After sintering by maintaining at the temperature for 1 hour, Ar is introduced while maintaining the temperature rising temperature, and the atmosphere is maintained as a pressurized atmosphere of pressure: 6 MPa for 1 hour, and then cooling HIP treatment is performed. Within the range of 3.3 to 21.0 mm Long pressure sintered body material for forming end mill of the present invention (hereinafter referred to as “sintered material of the present invention”) B-1 to B-7 having a constant diameter and long pressure sintered body material for forming conventional end mill B-1 to b-7 (hereinafter referred to as conventional sintered materials) are formed, and further, the cutting blades have shapes and dimensions shown in Tables 3 and 4 by grinding from these sintered materials. Invention end mills 1 to 14 and conventional end mills 1 to 14 were produced.
[0016]
Table 2 shows the above-mentioned sintered materials B-1 to B-7 (present end mills 1 to 14) and conventional sintered materials b-1 to b-7 (conventional end mills 1 to 14) described above. The results of measuring the O content and the N content of the central part of any five WC phases in the cemented carbide constituting this using a spectroscopic analyzer are shown as average values.
Further, Table 2 shows the results of measuring the average particle diameter of the WC phase (dispersed phase) in an arbitrary cross section of the above various sintered materials using a scanning electron microscope. Moreover, when the content of Co, Cr, and V component of the cemented carbide constituting the sintered material was measured, it showed substantially the same value as the blend composition.
[0017]
Next, among the above-mentioned various end mills, the end mills 1 to 7 and the conventional end mills 1 to 7 use a plate material of JIS / SKD11 (hardness: HRC60) having a width of 400 mm as a work material. High-speed shoulder machining is performed under the conditions shown in Table 3, and the cutting length until the flank wear width of the end face of the end mill reaches the value that is used as a guideline shown in Table 3 is measured. For 8 to 14 and the conventional end mills 8 to 14, a glass fiber reinforced epoxy resin multilayer board having a thickness of 1.6 mm is used as a work material, and this is stacked in the number shown in Table 4, and the cutting shown in Table 4 is also performed. Dry high-speed outline machining was performed under the machining conditions, and the cutting length until a dimensional error of 20 μm with respect to the standard dimension was measured on the workpiece was measured. These were. These measurement results are shown in Tables 3 and 4 as average values.
[0018]
[Table 1]
Figure 0004058759
[0019]
[Table 2]
Figure 0004058759
[0020]
[Table 3]
Figure 0004058759
[0021]
[Table 4]
Figure 0004058759
[0022]
【The invention's effect】
From the results shown in Tables 2 to 4, each of the present invention end mills 1 to 14 has a relatively high content of N and O in the hard phase (WC phase) of the cemented carbide constituting this, and the WC phase High toughness and excellent heat resistance are ensured by the above, so that even in high-speed cutting with high heat generation, chipping does not occur at the cutting edge and excellent wear resistance is exhibited. In the conventional end mills 1 to 14 in which the contents of N and O in the (WC phase) are relatively low, all are caused by insufficient toughness and heat resistance. It is clear that the service life is reached in a relatively short time.
As described above, the end mill of the present invention exhibits excellent wear resistance over a long period of time even in high-speed cutting as well as cutting under normal conditions. It can cope with energy saving and cost reduction sufficiently satisfactorily.

Claims (1)

切刃部とシャンク部からなり、少なくとも前記切刃部を、いずれも結合相形成成分として、以下いずれも質量%で、
Co:4〜16%、
Crおよび/またはV:0.1〜3%、
を含有し、残りが硬質相形成成分としての酸素および窒素を固溶含有する炭化タングステンと前記酸素および窒素以外の不可避不純物からなる組成を有し、かつ前記硬質相形成成分としての炭化タングステン相が、これの中心部のオージェ電子分光分析装置による測定で、
窒素:0.1〜0.25%、
酸素:0.2〜0.6%、
を含有する超硬合金で構成したこと、
を特徴とする高速切削加工ですぐれた耐チッピング性を発揮する超硬合金製エンドミル。
It consists of a cutting blade part and a shank part, and at least the cutting blade part as a binder phase forming component,
Co: 4-16%,
Cr and / or V: 0.1 to 3%,
A tungsten carbide phase containing a solid solution containing oxygen and nitrogen as a hard phase forming component, and an inevitable impurity other than the oxygen and nitrogen, and a tungsten carbide phase as the hard phase forming component In the measurement by the Auger electron spectrometer at the center of this,
Nitrogen: 0.1-0.25%,
Oxygen: 0.2-0.6%,
Made of cemented carbide containing
A cemented carbide end mill that exhibits excellent chipping resistance in high-speed cutting.
JP2002262984A 2002-06-18 2002-09-09 Cemented carbide end mill with excellent chipping resistance in high speed cutting Expired - Lifetime JP4058759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262984A JP4058759B2 (en) 2002-06-18 2002-09-09 Cemented carbide end mill with excellent chipping resistance in high speed cutting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002176500 2002-06-18
JP2002262984A JP4058759B2 (en) 2002-06-18 2002-09-09 Cemented carbide end mill with excellent chipping resistance in high speed cutting

Publications (2)

Publication Number Publication Date
JP2004074384A JP2004074384A (en) 2004-03-11
JP4058759B2 true JP4058759B2 (en) 2008-03-12

Family

ID=32032447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262984A Expired - Lifetime JP4058759B2 (en) 2002-06-18 2002-09-09 Cemented carbide end mill with excellent chipping resistance in high speed cutting

Country Status (1)

Country Link
JP (1) JP4058759B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816380B (en) * 2021-10-19 2023-03-24 赣州有色冶金研究所有限公司 Method for preparing ultrafine tungsten carbide powder by one-step carbonization of tungsten oxide

Also Published As

Publication number Publication date
JP2004074384A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
EP1359130B1 (en) Cubic boron nitride sintered body and cutting tool
WO2006134944A1 (en) Cermet insert and cutting tool
WO2011002008A1 (en) Cermet and coated cermet
WO2012053507A1 (en) Cubic boron nitride sintered body and cubic boron nitride sintered body tool
CN111386355B (en) Cemented carbide, cutting tool, and method for producing cemented carbide
CN110923535A (en) Hard alloy and preparation method and application thereof
JP5559575B2 (en) Cermet and coated cermet
JP5284684B2 (en) Super hard alloy
CN109641806B (en) Titanium carbonitride powder and method for producing titanium carbonitride powder
JP4229750B2 (en) Cubic boron nitride sintered body
JP4058759B2 (en) Cemented carbide end mill with excellent chipping resistance in high speed cutting
US6238148B1 (en) Cemented carbide cutting tool
JP2006111947A (en) Ultra-fine particle of cermet
JP4155778B2 (en) Cemented carbide throwaway cutting tip that provides excellent wear resistance in high-speed cutting
JP2018065228A (en) Ticn-based cermet cutting tool
JP2020079202A (en) Method for producing ceramic powder and method for producing boron nitride sintered body
JP6819018B2 (en) TiCN-based cermet cutting tool
JP4058758B2 (en) Surface-coated cemented carbide end mill with excellent heat-resistant plastic deformation in high-speed cutting
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JP4058761B2 (en) Surface-coated cemented carbide end mill with excellent torsional deformation resistance when cutting under high feed conditions
JP4019365B2 (en) Cemented carbide miniature drill with excellent chipping resistance in high-speed drilling
JP4540791B2 (en) Cermet for cutting tools
JPH07224346A (en) Titanium carbon nitride cement excellent in toughness
WO2023053441A1 (en) Cubic boron nitride sintered body
CN111647787B (en) TiCN-based particle metal ceramic cutter and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4058759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

EXPY Cancellation because of completion of term