JP4056421B2 - Electrolytic water purifier - Google Patents

Electrolytic water purifier Download PDF

Info

Publication number
JP4056421B2
JP4056421B2 JP2003101752A JP2003101752A JP4056421B2 JP 4056421 B2 JP4056421 B2 JP 4056421B2 JP 2003101752 A JP2003101752 A JP 2003101752A JP 2003101752 A JP2003101752 A JP 2003101752A JP 4056421 B2 JP4056421 B2 JP 4056421B2
Authority
JP
Japan
Prior art keywords
water purification
purification member
voltage
porous water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003101752A
Other languages
Japanese (ja)
Other versions
JP2004305870A (en
Inventor
滋夫 栃窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2003101752A priority Critical patent/JP4056421B2/en
Publication of JP2004305870A publication Critical patent/JP2004305870A/en
Application granted granted Critical
Publication of JP4056421B2 publication Critical patent/JP4056421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多数の細孔を備えている多孔質浄水部材に電圧を印加して水を電気分解させる電解浄水器に関し、殊に、電気分解で発生したガス、殊に、活性が強いと一般に言われている電気分解直後のガスを多孔質浄水部材の細孔に効率的に吸蔵するのに有利な電解浄水器に適用できる。本発明は、家庭用、医療用、業務用等の浄水器に適用できる。
【0002】
【従来の技術】
浄水器は、内壁面で区画された給水室をもつ容器と、容器の給水室に収容された水浄化性をもつ多孔質浄水部材と、容器の給水室に給水する給水部と、容器の給水室内の多孔質浄水部材で浄化された水を器外に吐出する吐出部とを備えている。この浄水器によれば、水が多孔質浄水部材により浄化される。
【0003】
また、最近の文献(日本機能水学会、第一回学術大会、講演要旨集号 44頁 演題『ヒト培養細胞におけるアルカリ電解水機能の解析』、講演者:京都大学大学院医学研究科 病理系腫瘍生物学講座 助教授 高橋 玲)によれば、電気分解した直後のガス粒(水素ガス)は、電気分解からかなり時間が経過した通常のガス粒(一般的には水素ガス)よりも、活性に富み、生体等に有効であることが報告されている。即ち、電気分解した直後に確認される極微小サイズ(例えば3〜100nm)のガス粒(一般的には水素ガス粒)は、電気分解から時間が経過して成長した通常のガス粒(一般的には水素ガス粒)よりも活性に富み、生体等に有効であることが報告されている。
【0004】
【非特許文献1】
日本機能水学会、第一回学術大会、講演要旨集号 44頁 演題『ヒト培養細胞におけるアルカリ電解水機能の解析』、講演者:京都大学大学院医学研究科 病理系腫瘍生物学講座 助教授 高橋 玲
【0005】
【発明が解決しようとする課題】
本発明は上記した浄水器の開発の一環としてなされたものであり、ガスの成長を抑えるのに貢献でき、しかもガス粒の生成箇所からの脱離に貢献できる電解浄水器を提供することを課題とする。
【0006】
【課題を解決するための手段】
発明に係る電解浄水器は、給水室をもつ容器と、容器の給水室に収容された水浄化性を有する多数の細孔をもつ多孔質浄水部材と、容器の給水室に給水する給水部と、容器の給水室内の多孔質浄水部材で浄化された水を器外に吐出する吐出部とを有する電解浄水器であって、
多孔質浄水部材は、互いに対面する第1多孔質浄水部材及び第2多孔質浄水部材で形成されており、
第1多孔質浄水部材は第1給電端子とされて第1電極とされていると共に、第2多孔質浄水部材は第2給電端子と接続されて第2電極とされており、
時間経過に伴い増加領域を備えると共に増加後に減少する減少領域を備えた直流と、交流とを併せた併合給電を、第1電極と第2電極との間に印加することにより、給水室内の水を電気分解させるようにしていることを特徴とするものである
【0007】
発明に係る電解浄水器によれば、電解の際に、時間経過に伴い増加領域を備えると共に増加後に減少する減少領域を備えた電圧または電流を、第1電極と第2電極との間に印加することにしている。印加は給電を意味する。このため、電気分解の際に電圧または電流を第1電極と第2電極との間に間欠的に給電できる。故に、電気分解の際に生成されるガス粒(水素ガス粒等)のサイズの過剰成長を抑制するのに有利であり、ガス粒のサイズを小さくするのに有利である。しかもガス粒の生成箇所からの脱離に貢献できる。
【0008】
【発明の実施形態】
本発明に係る電解浄水器によれば、次の形態のうちの少なくとも一つを採用できる。
【0009】
・多孔質浄水部材は、環状の隙間を形成するように径方向において少なくとも2つの筒状の多孔質浄水部材に分割されている形態を例示できる。従って、多孔質浄水部材は第1多孔質浄水部材と第2多孔質浄水部材とで形成できる。第1多孔質浄水部材と第2多孔質浄水部材との間に、水が進入できる隙間を設けることができる。隙間は、多孔質浄水部材の中心を1周する環状が好ましい。場合によっては、多孔質浄水部材は、径方向において3個に分割されていても良いし、4個に分割されていても良い。水が多孔質浄水部材の径方向(殊に求心方向)に透過する形態を例示できる。多孔質浄水部材が円筒形状や角筒形状等の筒形状であるときには、水が多孔質浄水部材の求心方向に透過する場合、多孔質浄水部材の半径方向外方に水圧がかかることを抑止できるため、多孔質浄水部材の破損回避に貢献できる。
【0010】
・第1多孔質浄水部材は第1給電端子とされて第1電極とされていると共に、前記第2多孔質浄水部材は第2給電端子と接続されて第2電極とされている形態を例示できる。また、第1電極及び第2電極としては、導電性をもつ金属部材で形成しても良い。第1電極と第2電極とに電圧を印加(給電)することにより、給水室内の水が電気分解される。電解室は、一の多孔質浄水部材及び他の多孔質浄水部材により形成された環状隙間等の隙間で構成されている形態を例示できる。この場合、電解室である隙間としては、多孔質浄水部材の軸端(例えば上端、下端)までを貫通または実質的に貫通する形態を例示できる。
【0011】
さらに、電解室である隙間の貫通方向の端部には、電解室の端部を閉鎖して電解室の圧力を高めるために電解室の端部を閉鎖するシールキャップ等の閉鎖部が設けられている形態を例示できる。電解室である隙間の閉鎖性が閉鎖部により高まり、電解室である環状隙間等の隙間における電気分解で発生したガスによって、電解室である隙間の圧力を増加させ、そのガスを多孔質浄水部材に吸蔵させるのに有利となる。この場合、電解室である隙間において電気分解で発生させたガス、殊に電気分解直後のガスを多孔質浄水部材の細孔に早期に吸蔵させ得る効果を期待できる。電解室における隙間の隙間幅を維持するためのスペーサ部材等の隙間維持手段をシールキャップ等の閉鎖部に一体的に形成することもできる。
【0012】
なお、電解室である隙間が設けられているときには、隙間の隙間幅が過剰に大きくなると、電解電流が流れにくくなる。故に、電解室である隙間の隙間幅としては、印加する電圧によっても相違するものの、例えば、30ミリメートル以下、20ミリメートル以下、10ミリメートル以下、5ミリメートル以下、4ミリメートル以下、2ミリメートル以下とすることができる。
【0013】
・第1多孔質浄水部材及び第2多孔質浄水部材は共に、円筒形状等の筒形状をなしている形態を例示できる。第1多孔質浄水部材は第1給電端子と接続されて第1電極とされていると共に、第2多孔質浄水部材は第2給電端子と接続されて第2電極とされている形態を例示できる。第1電極と第2電極とに電圧を印加することにより、隙間の水を電気分解し、発生したガスを第1多孔質浄水部材及び第2多孔質浄水部材のうちの少なくとも一方の細孔に吸蔵させることを期待できる。
【0014】
・直流電圧と交流電圧とを併合させた併合給電としての併合電圧を第1電極と第2電極との間に印加させるときには、例えば、1.5〜20ボルトの範囲内、殊に3〜12ボルトの範囲内を例示できるが、これらに限定されるものではない。なお本明細書でいうボルトは、交流の場合には実効値を意味する。電圧または電流を第1電極と第2電極との間に印加することは、搭載されている制御部により行うことができる。
【0015】
・多孔質浄水部材は多数の細孔を有し、菌等の異物に対する高い捕捉性を有する。細孔同士は連通しており、水を透過させ得る水透過層を形成する。細孔は水浄化能力を有する他に、電気分解で発生した水素や酸素等といったガス等の物質を吸蔵させ得る。多孔質浄水部材としては、電気良導体である活性炭等の炭素系物質(一般的には炭素系成形体)を利用して構成することが好ましい。この場合には、多孔質浄水部材は活性炭と結合材によって成形できる。活性炭としては粉末状、粒状、繊維状の少なくとも1種を採用できる。導電性を向上できる黒鉛粉末を必要に応じて配合できる。
【0016】
【実施例】
以下、本発明に係る電解浄水器の第1実施例について図1〜図3を参照しつつ具体的に説明する。
【0017】
(電解浄水器の構成)
図1は、据え置き型の家庭用または業務用の電解浄水器を示し、全体構成の断面図を示す。図2は主要部を拡大した電解浄水器の詳細断面図を示す。図3は電解浄水器の外観図を示す。
【0018】
容器1は、金属で円筒形状に成形され軸芯P1を有する容器本体としての筒部10と、円形平板形状をなし筒部10の下側の軸端開口を閉鎖するように溶接で固定された金属板で形成された底蓋11と、筒部10の下端部を保持する樹脂製の台座12と、筒部10の上側の軸端開口において取り付けられた固定部として機能する電装収容部13とを有している。なお、筒部10及び底蓋11を構成する金属は、耐食性が高い金属の代表例であるステンレス鋼で形成されているが、これに限らず、アルミ合金、チタン、チタン合金、炭素鋼、樹脂の少なくとも1種で形成してもよい。容器1は圧力容器を形成している。
【0019】
図1に示すように、容器1は、筒部10の内壁面10mで形成された横断面円形状の給水室14を有する。給水室14の横断面は円形状とされているが、これに限定されるものでなく、四角形状等の角形状でもよい。電装収容部13は、電装品を収容する電装室16と電装室16の上面開口を閉じる蓋16aとを有しており、リング状のシール部材19を介して筒部10の上端部に着脱可能に固定されている。電装収容部13は、樹脂製の蓋部材18T及び樹脂またはゴム製のシール部材19を上側から圧縮しており、筒部10の上端部と電装収容部13との間の水密性を確保している。
【0020】
電装収容部13の裏面13a側には、図2に示す如く、チタン合金、ステンレス鋼、炭素鋼等の導電材料で形成された第1給電端子17,第2給電端子18が保持されている。第1給電端子17,第2給電端子18には制御部50から電圧が印加されるため、電圧印加部として機能できる。第1給電端子17,第2給電端子18は、給電リード線の接続のために図略のナット部材が螺合される雄螺子部17m,18mを有する。図2に示すように、給電端子17,18はバネ17c,18cで付勢されている。バネ17c,18cは、内側多孔質浄水部材4,外側多孔質浄水部材5に対する通電抵抗を低減させるための付勢手段として機能する。バネ17c,18cはコイル状とされているが、これに限らず板バネ、皿バネ、発泡体等でも良い。
【0021】
図1に示すように、容器1の筒部10の給水室14内には、円筒形状の多孔質浄水部材3が同軸的に収容されている。多孔質浄水部材3は、実質的に同軸的に配置された第1多孔質浄水部材として機能する内周側の内側多孔質浄水部材4と、第2多孔質浄水部材として機能する外周側の外側多孔質浄水部材5とで構成されている。外側多孔質浄水部材5は内側多孔質浄水部材4を包囲している。内側多孔質浄水部材4及び外側多孔質浄水部材5は、軸長サイズが同じまたは実質的に同じとされており、且つ、互いに同軸的または実質的に同軸的に配置されており、内周側及び外周側の2重構造とされている。水は、内側多孔質浄水部材4及び外側多孔質浄水部材5の径方向に沿って透過するものである。
【0022】
図1に示すように、内側多孔質浄水部材4は円筒形状をなしており、筒空洞状の中央孔4aを有する円筒形状の内壁面4iと、内壁面4iに背向する円筒形状の外壁面4kとを有する。
【0023】
外側多孔質浄水部材5は、内側多孔質浄水部材4を外周側を包囲する円筒形状をなしており、内側多孔質浄水部材4の外壁面4kに隙間6を介して対面する円筒形状の内壁面5iと、筒部10の内壁面10mに対面する円筒形状の外壁面5kとを有する。隙間6は環状をなしている。
【0024】
隙間6は、周方向において隙間間隔が均等またはほぼ均等となるようにリング形状をなしている。隙間6は、内側多孔質浄水部材4と外側多孔質浄水部材5との直接的導通を回避し、両者を電気的に絶縁する絶縁空間として機能することができる。隙間6の隙間幅は、多孔質浄水部材3の軸長方向にわたり、均一または実質的に均一とされている。
【0025】
内側多孔質浄水部材4と外側多孔質浄水部材5との双方は、多孔質の活性炭ブロックフィルターであり、混練した材料を加圧成形して厚肉状の成形体とし、成形体を焼成した後に、所定のサイズに研削して形成したものである。混練した材料は、細孔を有する粉末状の活性炭と、電気抵抗を減少させて電気伝導度を向上させる黒鉛粉末と、結合材と、水とを所定の重量比で配合している。混練した材料の配合割合としては、活性炭と黒鉛粉末と結合材との合計量を100%としたとき、一般的には、重量比で、活性炭は30〜60%、黒鉛粉末は5〜10%、結合材は30〜60%とされている。但し、配合割合はこれに限定されるものではない。
【0026】
内側多孔質浄水部材4と外側多孔質浄水部材5については、気孔率としては適宜選択されるが、例えば体積比で10〜80%範囲内に適宜設定できる。但し気孔率はこれに限定されるものではない。このような微細な水透過層であれば、内側多孔質浄水部材4および外側多孔質浄水部材5の微生物の繁殖が抑え易い利点がある。また、含水した活性炭は、一般的に、空気中ではよく酸素を吸着し、水中では水中を拡散してくる電解水素ガスについても多量に吸蔵することが本発明者の試験により確認された。
【0027】
上記した結合材としては、アルミナ系またはシリカ系等の無機バインダを用いてもよいし、あるいは、焼結する必要のない樹脂、殊に、熱可塑性樹脂(例えばポリエチレン)の粉末を用いても良い。内側多孔質浄水部材4と外側多孔質浄水部材5は、水に含まれている塵埃を除去する他に、水に含まれる次亜塩素酸(以下塩素という)等を化学反応で除去する水浄化性を有し、更に細孔により、水に溶解したトリハロメタン類等の有害物質を吸着する水浄化性を有する。
【0028】
本実施例に係る内側多孔質浄水部材4、外側多孔質浄水部材5によれば、内側多孔質浄水部材4、外側多孔質浄水部材5の水透過層を形成する細孔の径としては、平均で、0.1〜100ミクロン、特に0.3〜50ミクロン、殊に0.3〜20ミクロンとすることができる。但し細孔径は上記した範囲に限定されるものではない。
【0029】
前記したように、内側多孔質浄水部材4は中央孔4aをもつ厚肉状の円筒形状をなす。外側多孔質浄水部材5は、内側多孔質浄水部材4を軸芯状に配置して環状の隙間6を形成する中央孔5aをもつ厚肉状の円筒形状をなしている。
【0030】
本実施例では、図1に示すように、内側多孔質浄水部材4と外側多孔質浄水部材5の軸端付近の損傷等を防ぐため、内側多孔質浄水部材4および外側多孔質浄水部材5を略同心円状に配置して構成した多孔質浄水部材3の軸端には、樹脂またはゴム等の高分子材料で形成されたシールキャップ70,71(閉鎖部)が接着剤により接着されている。シールキャップ70,71は電気絶縁性およびシール性を有する。
【0031】
図1に示すように、上側のシールキャップ70は、内側多孔質浄水部材4及び外側多孔質浄水部材5の軸端面(上端面)を被覆するキャップ70aと、内側多孔質浄水部材4の内壁面4iの上部を被覆する内側被覆部70bと、外側多孔質浄水部材5の外壁面5kの上部を被覆する外側被覆部70cとを備えている。
【0032】
図1に示すように、下側のシールキャップ71は、内側多孔質浄水部材4及び外側多孔質浄水部材5の軸端面(下端面)を被覆するキャップ71aと、内側多孔質浄水部材4の内壁面4iの下部を被覆する内側被覆部71bと、外側多孔質浄水部材5の外壁面5kの下部を被覆する外側被覆部71cとを備えている。
【0033】
シールキャップ70,71は、隙間6の隙間幅を維持するための隙間維持手段としても機能することができる。またシールキャップ70,71により、内側多孔質浄水部材4および外側多孔質浄水部材5の軸端面(上端面4u,下端面4d)から浄化不充分の水が浸入することが抑止される。即ち、内側多孔質浄水部材4の外壁面4kおよび外側多孔質浄水部材5の外壁面5kから水が半径方向内方(矢印W方向,求心方向)に向けて内側多孔質浄水部材4および外側多孔質浄水部材5の内部に進入できるようにされている。
【0034】
吐水用の内筒部材として機能するセンターパイプ22はパイプ孔で形成された通路22wを有し、周壁に多数の通孔を有する。センターパイプ22は、内側多孔質浄水部材4の中央孔4a内に縦型で設置されている。容器10の底蓋11には係合部材としてのエルボ23が溶接で固定されている。
【0035】
電装収容部13は、電源からのリード線を通す開口13c、LED27a,27bを有する。LED27aは、内側多孔質浄水部材4と外側多孔質浄水部材5とに電圧が印加されており、電解室(即ち、内側多孔質浄水部材4と外側多孔質浄水部材5との間の環状の隙間6に相当)において電気分解が生じているときに点灯するものである。従ってLED27aは、浄水器において電気分解処理が行われていることを使用者に報知する第1報知手段として機能する。LED27bは、浄水器において電気分解処理が行われていないことを使用者に報知する第2報知手段として機能する。従ってLED27bは、電気分解で発生したガスが内側多孔質浄水部材4および外側多孔質浄水部材5に吸蔵されていることを報知するガス吸蔵報知手段としても機能できる。
【0036】
本実施例によれば、図3に示すように、発生した水素量を還元電位に置き換えて表示する表示部26が電装収容部13の外面側に使用者により視認できる位置に設けられている。還元電位のセンシングについては、図1に示すように、センサー27で行っている。センサー27の検出部27fはセンターパイプ22の上側に位置している。センサー27の図示していないマイコンを持った出力部は結露、浸水等を考慮すれば、電装収容部13に水密構造で設置することが好ましい。
【0037】
図1に示すように容器1の側部には、給水室14に水を供給する給水部29、給水部29に連通する1次浄化部として機能するフィルタ部90が設置されている。給水部29はホース等の連結管29rを介して図略の水道の蛇口に接続されている。水道の蛇口が開放されると、水道水等の浄化前の原水が、給水部29の通路29aを介してフィルタ部90を透過し、予備処理として濾過される。
【0038】
フィルタ部90を通過して濾過された水は、フィルタ部90の中空室90wから給水部29の通路29cを経て、容器1内の給水室14のうち、外周側の給水隙間4xに導かれる。図1に示すように、給水隙間4xは、外側多孔質浄水部材5の外壁面5kと筒部10の内壁面10mとの間のリング状の隙間である。
【0039】
本実施例によれば、図1に示すように、内側多孔質浄水部材4の外壁面4kと外側多孔質浄水部材5の内壁面5iとは、これらの軸長方向に電解室となるリング状の環状の隙間6(隙間幅X0)を構成している。環状の隙間6は電解室となり、内側多孔質浄水部材4および外側多孔質浄水部材5における水の往路に設けられている。
【0040】
図2に示すように、内側多孔質浄水部材4の上端面4uには、給電端子17により給電体34が電気的に接触した状態で保持されている。給電体34は、導電材料(例えばチタン、チタン合金、合金鋼)にメッキ膜(例えば白金メッキ等)を被覆することにより形成されている。
バネ17cで付勢された第1給電端子17により、給電体34は内側多孔質浄水部材4に導電可能に圧接されており、圧接により給電端子34と内側多孔質浄水部材4との間の通電抵抗が軽減されており、給電性が確保されている。これにより内側多孔質浄水部材4は、第1給電端子17と接続されて第1電極A1とされている。
【0041】
図2に示すように、給電体35も同様に導電材料(例えばチタン、チタン合金、合金鋼)にメッキ膜(例えば白金メッキ等)を被覆することにより形成されている。バネ18cで付勢された第2給電端子18により、給電体35は外側多孔質浄水部材5に導電可能に圧接されており、圧接により第2給電端子18と外側多孔質浄水部材5との間における通電抵抗が軽減されており、給電性が確保されている。これにより外側多孔質浄水部材5は、第2給電端子18と接続されて第2電極A2とされている。図1,図2に示すように、給電端子17,18は多孔質浄水部材3のうちの同一面側(上端面側)に配置されているため、多孔質浄水部材3に対する給電に有利である。
【0042】
なお、直流電圧を第1電極A1及び第2電極A2に印加した場合には、直流電圧の陽極(+極)側においては、印加電流値にもよるが、陽極(+極)側を金属等で形成している場合には、これらは酸化して、溶出したり、酸化膜を形成して導通を悪くしたりするおそれがある。
【0043】
この点について本実施例によれば、第1電極A1と第2電極A2との間に直流電圧を印加するときには、外側の給電端子18,外側の第2電極A2は陰極とされているため、従来生じていた容器1や給電体34,35等における陽極酸化現象、陽極溶出現象を抑制するのに有利となる。
【0044】
浄水器を使用する際には、給水部29に繋がる水道の蛇口を開く。すると、図1において、浄化すべき水は、給水部29の給水路29aを経てフィルタ部90に至り、フィルタ部90で予備的に濾過された後に、筒部10の内壁面10mと外側多孔質浄水部材5の外壁面5kとの間の環状の給水隙間4xに供給される。給水隙間4xに供給された水は、外側多孔質浄水部材5の外壁面5kから外側多孔質浄水部材5の内部に矢印W方向に沿って進入して外側多孔質浄水部材5の透過層5cで浄化され、ついで、内側多孔質浄水部材4の外壁面4kから内側多孔質浄水部材4の内部に進入して透過層4cで浄化され、内側多孔質浄水部材4の中央孔4aに到達する。
【0045】
内側多孔質浄水部材4の中央孔4aに到達した浄化水は、センターパイプ22の通路22wを通り、センターパイプ22の下方の端部に設けられている係合部材としてのエルボ23の通路23cを経て吐出部36から器外に吐出される。
【0046】
本実施例によれば、使用の際には、図1に示すように、内周側に配置されている内側多孔質浄水部材4に給電する第1給電端子17が陽極(+極)側となり,外周側に配置されている外側多孔質浄水部材5に給電する第2給電端子18が陰極(−極)側となるように、給電端子17,18に直流電圧を印加する。このため内側多孔質浄水部材4と外側多孔質浄水部材5との間の環状の隙間6(例えば2ミリメートルに設定できるが、これに限定されるものではない)における電気分解によって、ガスが隙間6内に発生する。水素ガス及び酸素ガスが発生すると推察される。
【0047】
さて電解室である環状の隙間6において生成したガスは、隙間6等に貯留されている水に溶解したり、あるいは、微小気泡となったりして電解室である隙間6の上部に溜まり、電解室である隙間6内の圧力を増加させる。このように電解室である隙間6内の圧力が増加すると、外側多孔質浄水部材5の内壁面5iから外側多孔質浄水部材5の内部にガス粒を送り込む作用、内側多孔質浄水部材4の外壁面4kから内側多孔質浄水部材4の内部にガス粒を送り込む作用が増加する。
【0048】
電解室である隙間6内の滞留水を多孔質浄水部材4,5の内部に押し出した段階で、電解室である隙間6の水の大部分が消失するため、水の電気分解が停止する。この際、電解室である隙間6の滞留水は、内側多孔質浄水部材4の側よりも、外側多孔質浄水部材5の側へは押し出されにくいものと推察される。外側多孔質浄水部材5は水圧が高い給水隙間4xに近いためと推察される。
【0049】
本実施例によれば、図1に示すように、吐出部36に接続される図略のホース先端部に逆止弁80を配置し、逆止弁80の逆止機能により電解室である隙間6内の圧力を高めに保持することもできる。図1に示すように、逆止弁80は、弁口80aを閉鎖する弁体80bと、弁体80bが弁口80aを閉鎖する方向に弁体80bを付勢すると共に開放設定圧力を規定する付勢バネ80cとをもつ。電気分解で生成したガスによって容器1内の圧力が逆止弁80の開放設定圧力よりも高くなると、逆止弁80が自動的に開放されるため、吐出部36から器外に浄水を吐出することができる。なお場合によっては逆止弁80を廃止し、手動または電動の開閉式の弁としても良い。
【0050】
上記のような本実施例においては、電解浄水器が使用されていない状態において、容器1の密閉性が維持される。このため、両多孔質浄水部材4,5の環状の隙間6に設けられた水を電気分解することにより発生したガスが、多孔質浄水部材3(4,5)の内部へ吸蔵されることが促進される。電解浄水器が使用されていない状態においては、電解室である環状の隙間6のガス圧力が増加しやすいためである。
【0051】
(電圧印加)
図4(A)〜図4(E)は、制御部50により給電端子17,18を介して第1電極A1及び第2電極A2に印加させるパルス状の直流電圧波形の代表的な参考例を例示する。この場合、前述したように、内周側に配置されている内側多孔質浄水部材4に給電する給電端子17が陽極(+極)となり,外周側に配置されている外側多孔質浄水部材5に給電する給電端子18が陰極(−極)となるように、給電端子17,18に直流電圧を印加する。なお、直流電圧波形は図4(A)〜図4(E)に示す波形に限定されるものではなく、適宜変更できる。
【0052】
図4(A)〜図4(E)の縦軸は電圧を示し、横軸は時間を示す。図4(A)は、交流を半波整流した半波整流波形を有する直流電圧のパルス状の波形を示す。図4(B)は矩形波波形を有する直流電圧のパルス状の波形を示す。図4(C)は三角波波形を有する直流電圧のパルス状の波形を示す。図4(D)は、三角波波形が連続する直流電圧のパルス状の波形を示す。図4(E)は、交流を全波整流した全波整流波形が連続する直流電圧のパルス状の波形を示す。
【0053】
図4(A)〜図4(E)に示す参考例にかかるパルス状の各直流電圧波形は、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UEを備えると共に、増加後に減少する立ち下がり領域として機能する減少領域DEを備えている。増加領域UEの開始時刻から次の増加領域UEの開始時刻までの時間をTAとし、増加領域UEの開始時刻から減少領域DEの終了時刻までの時間をTBとすると、図4(A)〜図4(C)に示す形態によれば、TB/TAの割合、つまりデューティ比は5〜95%の範囲内、10〜90%の範囲内で設定することができる。すなわち、図4(A)〜図4(C)では、通電と断電、つまりオンとオフとが連続的に繰り返されている直流電圧波形とされている。
【0054】
上記したように本参考例によれば、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UEを備えると共に、増加後に減少する立ち下がり領域として機能する減少領域DEを備えるパルス状の直流電圧波形を、給電端子17,18に印加すれば、電気分解が間欠的に行われることになるため、電解の際に発生するガス粒(水素ガス粒等)の成長の過大化を抑えるのに有利となる。更に、立ち下がり領域として機能する減少領域DEは、電解直後に生成したガス粒(水素ガス粒等)の生成箇所からの脱離を促進させるのに有利となり、ひいては小さいガス粒を生成させるのに有利となる。
【0055】
また本実施例によれば、多孔質浄水部材3は、隙間6を形成するように径方向において2つの内側多孔質浄水部材4,外側多孔質浄水部材5に分割されており、内側多孔質浄水部材4は第1給電端子17と接続されて第1電極A1とされていると共に、外側多孔質浄水部材5は第2給電端子18と接続されて第2電極A2とされている。このようにすれば、電解室となる隙間6を形成する外側多孔質浄水部材5の内壁面5i、内側多孔質浄水部材4の外壁面4kの表出面積を大きく確保することができる。ひいては多孔質浄水部材3における電解面積を大きく確保することができ、電解室となる隙間6における電解能力を大きくするのに有利である。更にガスを吸蔵させる多孔質浄水部材3のガス透過面積も大きく確保できるため、電解室となる隙間6における水の電気分解で生成したガスを、多孔質浄水部材3の細孔に吸蔵させるのに有利となる。
【0056】
一般的には、電解で発生した直後の水素等のガスは活性に富み、生体によい影響を与えるといわれている。本実施例によれば、電解室である隙間6は多孔質浄水部材間4,5によって形成されているため、電気分解で発生した直後の活性が高くて生体に良いとされるガスを多孔質浄水部材3に効果的に吸蔵させるのに有利である。
【0057】
図5(A)(B)は、制御部50により給電端子17,18を介して第1電極A1及び第2電極A2に印加させる直流電圧波形の代表的な他の形態を例示する。図5(A)(B)の縦軸は電圧を示し、横軸は時間を示す。図5(A)によれば、この直流電圧波形は、継続する直流波形DPに、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UEが併合されていると共に、更に、増加後に減少する立ち下がり領域として機能する減少領域DEが併合されている。図5(B)に示す直流電圧波形は、サインカーブ状の交流電圧と直流電圧Vxとを併合させて形成されている。この直流電圧波形は、直流電圧Vxに相当する分+側にバイアスされていると共に、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UEと、増加後に減少する立ち下がり領域として機能する減少領域DEとをもつ。
【0058】
なお、上記した実施例によれば、内周側に配置されている内側多孔質浄水部材4に給電する第1給電端子17が陽極(+極)側となり,外周側に配置されている外側多孔質浄水部材5に給電する第2給電端子18が陰極(−極)側となるように、給電端子17,18に直流電圧を印加するが、これに限らず、場合によっては、第1給電端子17が陰極(−極)側となり,外周側に配置されている外側多孔質浄水部材5に給電する第2給電端子18が陽極(+極)側となるように、給電端子17,18に直流電圧を印加することにしても良い。
【0059】
(第2実施例)
第2実施例は前記した第1実施例と基本的には同様の構成であり、図1〜図3に示す浄水器全体の構造を準用する。以下、第1実施例と異なる部分を中心として説明する。第2実施例によれば、制御部50により直流電圧と交流電圧とを併合させて併合電圧(併合給電)を給電端子17,18に印加する。
【0060】
直流の場合、内周側に配置されている第1給電端子17が陽極(+極)となり,外周側に配置されている第2給電端子18が陰極(−極)となるように直流電圧を印加する。
【0061】
図6(A)〜図6(C)の縦軸は電圧を示し、横軸は時間を示す。図6(A)は併合される交流電圧の波形を示す。図6(B)は半波整流した併合されるパルス状の直流電圧波形を示す。この直流電圧波形は交流電圧波形と位相を整合させている。これにより併合電圧(併合給電)における電圧減少を急激に行うことができる。図6(C)は、交流電圧と半波整流した直流電圧とを併合させた併合電圧の波形を示す。本実施例では、この併合電圧が給電端子17,18に印加される。
【0062】
図6(B)に示すパルス状の直流電圧波形は、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UEを備えると共に、増加後に減少する立ち下がり領域として機能する減少領域DEを備えている。直流電圧波形の増加領域UEは、交流電圧波形の増加領域UE’と同じ位相とされている。直流電圧波形の減少領域DEは、交流電圧波形の減少領域DE’と同じ位相とされている。
【0063】
図6(B)に示すパルス状の直流電圧波形において、増加領域UEの開始時刻から次の増加領域UEの開始時刻までの時間をTAとし、増加領域UEの開始時刻から減少領域DEの終了時刻までの時間(オン時間)をTBとすると、図6(B)では、TB/TAの割合、つまりデューティ比は5〜95%の範囲内、10〜90%の範囲内で設定することができる。すなわち、図6(B)に示すパルス状の直流電圧波形にでは、通電と断電、つまり、オンとオフとが繰り返されている直流電圧波形とされている。
【0064】
図6(C)に示す直流と交流とが混合した併合電圧の波形は、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UE”を備えると共に、増加後に減少する立ち下がり領域として機能する減少領域DE”を備えている。
【0065】
本実施例においても、電気分解現象が間欠的に行われることになるため、電解の際に発生するガス粒(水素ガス粒等)の成長の過大化を抑えるのに有利となる。
【0066】
また、図6(C)に示す併合電圧の波形によれば、パルス状の直流電圧波形がバイアス電圧となるため、+の電位を示すピーク値V+peakの絶対値は、−の電位を示すピーク値V-peakの絶対値よりも大きく設定されている。このため、電解の際に発生するガス粒(水素ガス粒等)の成長の過大化を抑えるのに有利となる。更に、併合電圧波形の立ち下がり領域として機能する減少領域DE”は、電圧減少の勾配が急となるため、電解直後に生成したガス粒(水素ガス粒等)の生成箇所からの脱離促進を期待でき、ひいては小さいガス粒を生成させるのに有利となる。
【0067】
第1電極A1、第2電極A2に導通される場合には、一般的には容器10等を構成する導通部材は分極されることがある。陽極(+極)に分極された部位では金属部品は陽極腐蝕を起こすおそれがある。しかしながら正電位・負電位が単位時間当たり多数回繰り返される交流電圧を直流電圧と共に第1電極A1及び第2電極A2に併合的に印加させているため、酸化、還元がサイクル数に基づいて単位時間当たり何回も繰り返されるので、陽極腐蝕、陽極溶出を抑えるのに有利となる。
なお本実施例によれば、直流電圧の電圧値をVdとし、交流電圧の実効電圧をVaとしたとき、次の(1)〜(3)のうちのいずれかに設定することができる。
(1) Vd>Va
(2) Vd<Va
(3) Vd=Va
Vd>Vaであれば、直流電圧の影響を大きくでき、ガス粒の成長を抑制することを期待できる。Vd<Vaであれば、交流電圧の影響を大きくでき、従来生じていた陽極酸化現象、陽極溶出現象を抑制するのに期待できる。
【0068】
また、直流電圧を第1電極A1及び第2電極A2に印加する場合には、電解浄水器の使用が長期にわたると、陰極(−極)側には、炭酸カルシューム、炭酸マグネシューム等の生成物が堆積するが、これらの堆積を抑えるためにも、正電位・負電位が単位時間あたり多数回交互に繰り返される交流電圧を第1電極A1及び第2電極A2に印加するは、有効である。換言すれば本実施例によれば、第1電極A1及び第2電極A2に交流を直流電圧と共に印加することにしているため、陽極腐蝕の現象を抑え、且つ、陰極(−極)に集中的に炭酸カルシューム、炭酸マグネシューム等の生成物が堆積することを抑制するのに有利となり、メンテナンス等の面で有利となる。
【0069】
上記した交流電圧の周波数としては、500Hz以下、300Hz以下、200Hz以下を採用することができる。家庭に給電されている交流電圧を考慮すると、40〜70Hzの範囲内、殊に50〜60Hzの範囲内を採用することができる。具体的には通常の交流式家庭電器製品と同様に、50Hzまたは60Hzを採用することができる。
【0070】
図7は別の形態を示す。図7(A)〜図7(C)の縦軸は電圧を示し、横軸は時間を示す。図7(A)は制御部50により併合される交流電圧の波形を示す。図7(B)は矩形パルス状の直流電圧波形を示す。この直流電圧波形は交流電圧波形と位相を整合させている。この場合、併合電圧における電圧減少を急激に行うことができる。図7(C)は、交流電圧と半波整流した直流電圧とを併合させた併合電圧の波形を示す。
【0071】
図7(B)に示すパルス状の直流電圧波形は、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UEを備えると共に、増加後に減少する立ち下がり領域として機能する減少領域DEを備えている。直流電圧波形の増加領域UEは、交流電圧波形の増加領域UE’と同じ位相とされている。
【0072】
図7(C)に示す直流と交流とが混合した併合電圧波形は、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UE”を備えると共に、増加後に減少する立ち下がり領域として機能する減少領域DE”を備えている。
【0073】
図8は更に別の形態を示す。図8(A)〜図8(C)の縦軸は電圧を示し、横軸は時間を示す。図8(A)は併合される交流電圧の波形を示す。図8(B)は矩形パルス状の直流電圧波形を示す。この直流電圧波形は交流電圧波形と位相を整合させている。図8(C)は、交流電圧と半波整流した直流電圧とを併合させた併合電圧の波形を示す。
【0074】
図8(B)に示すパルス状の直流電圧波形は、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UEを備えると共に、増加後に減少する立ち下がり領域として機能する減少領域DEを備えている。直流電圧波形の増加領域UEは、交流電圧波形の増加領域UE’と同じ位相とされている。
【0075】
図8(C)に示す直流と交流とが混合した併合電圧波形は、時間経過に伴い電圧が増加する立ち上がり領域として機能する増加領域UE”を備えると共に、増加後に減少する立ち下がり領域として機能する減少領域DE”を備えている。
【0076】
図7,図8に示す形態においても、電気分解現象が間欠的に行われることになるため、電解の際に発生するガス粒(水素ガス粒等)の成長の過大化を抑えるのに有利となる。
【0077】
(ブロック図)
図9は、直流電圧波形を給電端子17,18に印加する場合における参考例に係る制御部50のブロック図の代表的な例を示す。図9に示す例では、商用電源100の交流電圧に対して電圧を変化させて変圧後の交流電圧を生成する変圧回路102、変圧後の交流電圧を半波整流する整流回路104が設けられており、半波整流されたパルス状の直流電圧波形を給電端子17,18に給電する。
【0078】
図10は、直流電圧と交流電圧とを併合させた併合電圧を給電端子17,18に印加する場合における第2実施例に係る制御部50のブロック図の代表的な例を示す。図10に示す例では、商用電源100の交流電圧に対して電圧を変化させて変圧後の交流電圧を生成する変圧回路106、変圧後の交流電圧を半波整流して半波整流を生成する整流回路104が設けられている。これにより。直流電圧と交流電圧とを併合させた併合電圧を給電端子17,18に印加させることができる。
【0079】
図11、図12は、矩形波パルス状の直流電圧波形を給電端子17,18に印加する場合における参考例に係る制御部50のブロック図の代表的な例を示す。図11に示す例によれば、のこぎり波V1の電圧波形を生成するのこぎり波発生回路150,基準電圧V2の波形を生成する基準電圧設定回路152、のこぎり波E1の電圧と基準電圧V2の電圧とを比較する比較器154、比較器154の信号V3を増幅する増幅回路156が設けられている。
【0080】
図12(A)(B)に示すように、のこぎり波V1の電圧が基準電圧V2の電圧よりも高いときに、比較器154は矩形パルスの信号V3を出力し、増幅回路15は信号V3を増幅させる。これにより増幅された矩形パルスの直流電圧V4を給電端子17,18に給電する。基準電圧設定回路152により基準電圧V2の電圧値の高低を調整すれば、信号V3のデューティ比が調整され、ひいては、給電端子17,18に給電する矩形パルスの直流電圧V4のオン時間を意味するデューティ比が調整され、電解条件が調整される。なお、のこぎり波V1の電圧が基準電圧V2の電圧よりも低いときに、比較器154は矩形パルスの信号V3を出力することにしても良い。
【0081】
(その他)
本発明は上記し且つ図面に示した各実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できるものである。例えば上記した各部品の形状、構造、サイズ、材質等は上記したものに限定されるものではない。印加される電圧値等は、上記した値に限定されるものではない。浄化前の原水としては水道水に限定されるものではなく、井戸等の水でも良い。給電端子17,18は他の形状及び他の構造でも良く、要するに多孔質浄水部材に給電できるものであれば良い。水は、多孔質浄水部材3の求心方向に通過するが、これに限らず逆でも良い。図1に示す実施例では、内側多孔質浄水部材4の上端面4u及び外側多孔質浄水部材5の上端面5uに給電端子17,18を設け、内側多孔質浄水部材4及び外側多孔質浄水部材5の上側から給電することにしているが、これに限らず、内側多孔質浄水部材4及び外側多孔質浄水部材5の下側から給電することにしても良い。あるいは、内側多孔質浄水部材4及び外側多孔質浄水部材5の下側及び上側の双方から給電することにしても良い。上記した実施例では、内側多孔質浄水部材4と外側多孔質浄水部材5とは円筒形状とされているが、場合によっては円錐筒形状、角筒形状でも良い。内側多孔質浄水部材4と外側多孔質浄水部材5と活性炭系とされているが、これに限定されるものではなく、要するに水を浄化できるもので有ればよい。水は、内側多孔質浄水部材4及び外側多孔質浄水部材5の半径方向外方に向けて透過するようにしても良い。また水は、内側多孔質浄水部材及び外側多孔質浄水部材の軸長方向に沿って透過するようにしても良い。給電端子17,18は、内側多孔質浄水部材及び外側多孔質浄水部材の上端面の側に設けられているが、下端面側に設けても良いし、あるいは、下端面及び上端面のうちの少なくとも一方に食い込ませても良い。第2実施例によれば、直流の場合、内周側に配置されている第1給電端子17が陽極(+極)となり,外周側に配置されている第2給電端子18が陰極(−極)となるように直流電圧を印加するが、場合によっては、逆にしても良く、第1給電端子17が陰極(−極)となり,外周側に配置されている第2給電端子18が陽極(+極)となるように直流電圧を印加することにしても良い。
【0082】
(付記)上記した記載から次の技術的思想も把握できる。
【0083】
(1)第1様相の本発明に係る電解浄水器は、給水室をもつ容器と、容器の給水室に収容された水浄化性を有する多数の細孔をもつ多孔質浄水部材と、容器の給水室に給水する給水部と、容器の給水室内の多孔質浄水部材で浄化された水を器外に吐出する吐出部とを有する電解浄水器であって、第1電極及び第2電極が給水室内に設けられており、時間経過に伴い増加する増加領域を備えると共に増加後に減少する減少領域を備えた電圧または電流を、第1電極と第2電極との間に印加することにより、給水室内の水を電気分解させるようにしていることを特徴とするものである。
【0084】
(2)第2様相の本発明に係る電解浄水器は、給水室をもつ容器と、容器の給水室に収容された水浄化性を有する多数の細孔をもつ多孔質浄水部材と、容器の給水室に給水する給水部と、容器の給水室内の多孔質浄水部材で浄化された水を器外に吐出する吐出部とを有する電解浄水器であって、第1電極及び第2電極が給水室内に設けられており、時間経過に伴い電圧が増加する増加領域を備えると共に増加後に減少する減少領域を備えた直流と、交流とを併せた併合給電を、第1電極と前記第2電極との間に印加することにより、給水室内の水を電気分解させるようにしていることを特徴とするものである。
【0085】
(3)第3様相の本発明に係る電解浄水器は、給水室をもつ容器と、容器の給水室に収容された水浄化性を有する多数の細孔をもつ多孔質浄水部材と、容器の給水室に給水する給水部と、容器の給水室内の多孔質浄水部材で浄化された水を器外に吐出する吐出部とを有する電解浄水器であって、多孔質浄水部材は、互いに対面する第1多孔質浄水部材及び第2多孔質浄水部材で形成されており、第1多孔質浄水部材は第1給電端子とされて第1電極とされていると共に、第2多孔質浄水部材は第2給電端子と接続されて第2電極とされており、時間経過に伴い増加領域を備えると共に増加後に減少する減少領域を備えた電圧または電流を、第1給電端子と第2給電端子とを介して第1電極と第2電極との間に印加することにより、給水室内の水を電気分解するようにしていることを特徴とするものである。
【0086】
【発明の効果】
本発明に係る電解浄水器によれば、時間経過に伴い電圧が増加する増加領域を備えると共に増加後に減少する減少領域を備えた直流と、交流とを併せた併合給電を、前記第1電極と前記第2電極との間に印加することにより、給水室内の水を電気分解させるようにしている。すなわち、時間経過に伴い増加する増加領域を備えると共に増加後に減少する減少領域を備えた電圧または電流を、第1電極と第2電極との間に印加(給電)することにより、給水室内の水を電気分解させるようにしている。このため電気分解で生成されるガス粒のサイズの過剰成長を抑制するのに有利である。
【0087】
本発明に係る電解浄水器によれば、電気分解で発生した直後の活性が高くて生体に良いとされるガスを多孔質浄水部材に効果的に吸蔵させるのに有利である。
【図面の簡単な説明】
【図1】本発明の実施例に係る電解浄水器を示す縦断面図である。
【図2】本発明の実施例に係る電解浄水器の要部を示す拡大縦断面図である。
【図3】本発明の実施例に係る電解浄水器を示す外観図である。
【図4】パルス状の直流電圧を印加する場合における波形図である。
【図】パルス状の直流電圧を印加する場合における他の形態に係る波形図である。
【図6】パルス状の直流電圧と交流電圧とを併合させる場合における波形図である。
【図7】パルス状の直流電圧と交流電圧とを併合させる場合における他の形態に係る波形図である。
【図8】パルス状の直流電圧と交流電圧とを併合させる場合における他の形態に係る波形図である。
【図9】パルス状の直流電圧を印加する場合におけるブロック図である。
【図10】パルス状の直流電圧と交流電圧とを併合させる場合におけるブロック図である。
【図11】パルス状の直流電圧を印加する場合におけるブロック図である。
【図12】パルス状の直流電圧を印加する場合における波形図である。
【符号の説明】
図中、1は容器、10は筒部、3は多孔質浄水部材、4は内側多孔質浄水部材、5は外側多孔質浄水部材、17,18は給電端子、29は給水部、36は吐出部、50は制御部を示す。
[0001]
BACKGROUND OF THE INVENTION
  TECHNICAL FIELD The present invention relates to an electrolytic water purifier that electrolyzes water by applying a voltage to a porous water purification member having a large number of pores, and in particular, a gas generated by electrolysis, particularly when the activity is strong. The present invention can be applied to an electrolytic water purifier that is advantageous for efficiently storing the gas immediately after electrolysis in the pores of the porous water purification member. The present invention can be applied to water purifiers for home use, medical use, and business use.
[0002]
[Prior art]
  The water purifier includes a container having a water supply chamber partitioned by an inner wall surface, a water purifying porous water purification member housed in the water supply chamber of the container, a water supply unit for supplying water to the water supply chamber of the container, and water supply of the container And a discharge part for discharging water purified by the indoor porous water purification member to the outside of the vessel. According to this water purifier, water is purified by the porous water purification member.
[0003]
  In addition, recent literature (The Functional Water Society of Japan, the 1st Annual Conference, Abstracts of the 44th Lecture), “Analysis of alkaline electrolyzed water function in cultured human cells”, Speaker: Kyoto University Graduate School of Medicine, Pathological Oncology According to Associate Professor Satoshi Takahashi), the gas particles immediately after electrolysis (hydrogen gas) are more active than normal gas particles (generally hydrogen gas) that have passed considerably after electrolysis, It is reported to be effective for living bodies and the like. That is, gas particles (generally hydrogen gas particles) of very small size (for example, 3 to 100 nm) that are confirmed immediately after electrolysis are normal gas particles (generally hydrogen gas particles) that have grown over time after electrolysis. Has a higher activity than hydrogen gas particles) and is reported to be effective for living bodies and the like.
[0004]
[Non-Patent Document 1]
  Functional Hydrological Society of Japan, 1st Academic Conference, Abstracts, 44 pages, “Analysis of Alkaline Electrolyzed Water Function in Cultured Human Cells”, Speaker: Akira Takahashi, Associate Professor, Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University
[0005]
[Problems to be solved by the invention]
  The present invention has been made as part of the development of the water purifier described above, and it is an object to provide an electrolytic water purifier that can contribute to suppressing the growth of gas and can contribute to desorption from the generation site of gas particles. And
[0006]
[Means for Solving the Problems]
  BookAn electrolytic water purifier according to the invention includes a container having a water supply chamber, a porous water purification member having a large number of pores having water purification properties accommodated in the water supply chamber of the container, and a water supply unit for supplying water to the water supply chamber of the container , An electrolytic water purifier having a discharge section for discharging water purified by a porous water purification member in a water supply chamber of the container to the outside,
  The porous water purification member is formed of a first porous water purification member and a second porous water purification member facing each other,
  The first porous water purification member is the first power supply terminal and is the first electrode, and the second porous water purification member is connected to the second power supply terminal and is the second electrode,
  By applying a combined power supply that combines an alternating current and a direct current having an increasing region and a decreasing region that decreases after increasing with the passage of time between the first electrode and the second electrode, It is characterized by making it electrolyze.
[0007]
BookAccording to the electrolytic water purifier of the present invention, during electrolysis, a voltage or current having an increasing region with time and a decreasing region that decreases after increasing is applied between the first electrode and the second electrode. I am going to do it. Application means feeding. For this reason, voltage or current can be intermittently supplied between the first electrode and the second electrode during electrolysis. Therefore, it is advantageous for suppressing the excessive growth of the size of gas particles (hydrogen gas particles or the like) generated during electrolysis, and is advantageous for reducing the size of the gas particles. In addition, it can contribute to desorption from the location where gas particles are generated.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  According to the electrolytic water purifier which concerns on this invention, at least one of the following forms is employable.
[0009]
  -The porous water purification member can illustrate the form divided | segmented into at least 2 cylindrical porous water purification member in radial direction so that an annular clearance may be formed. Therefore, the porous water purification member can be formed by the first porous water purification member and the second porous water purification member. A gap through which water can enter can be provided between the first porous water purification member and the second porous water purification member. The gap is preferably an annular shape that goes around the center of the porous water purification member. Depending on the case, the porous water purification member may be divided into three pieces or four pieces in the radial direction. The form which water permeate | transmits to the radial direction (especially centripetal direction) of a porous water purification member can be illustrated. When the porous water purification member has a cylindrical shape such as a cylindrical shape or a rectangular tube shape, when water permeates in the centripetal direction of the porous water purification member, it is possible to prevent water pressure from being applied radially outward of the porous water purification member. Therefore, it can contribute to avoiding damage to the porous water purification member.
[0010]
  -While the 1st porous water purification member is made into the 1st electric power feeding terminal and is made into the 1st electrode, the said 2nd porous water purification member is connected with the 2nd electric power feeding terminal, and illustrates the form made into the 2nd electrode it can. Further, the first electrode and the second electrode may be formed of a conductive metal member. By applying voltage (power feeding) to the first electrode and the second electrode, water in the water supply chamber is electrolyzed. The electrolysis chamber can illustrate the form comprised by gaps, such as the annular clearance formed by one porous water purification member and another porous water purification member. In this case, the gap that is the electrolytic chamber can be exemplified by a form that penetrates or substantially penetrates up to the shaft end (for example, the upper end and the lower end) of the porous water purification member.
[0011]
  Furthermore, a closing portion such as a seal cap for closing the end of the electrolysis chamber is provided at the end in the penetration direction of the gap that is the electrolysis chamber in order to close the end of the electrolysis chamber and increase the pressure in the electrolysis chamber. Can be illustrated. The closing property of the gap that is the electrolysis chamber is enhanced by the closing portion, and the gas generated by electrolysis in the gap such as the annular gap that is the electrolysis chamber increases the pressure of the gap that is the electrolysis chamber, and the gas is used as a porous water purification member. It is advantageous for occlusion. In this case, it can be expected that the gas generated by the electrolysis in the gap that is the electrolysis chamber, in particular, the gas immediately after the electrolysis can be stored in the pores of the porous water purification member at an early stage. A gap maintaining means such as a spacer member for maintaining the gap width of the gap in the electrolysis chamber can also be formed integrally with a closed portion such as a seal cap.
[0012]
  In addition, when the gap which is an electrolysis chamber is provided, if the gap width of the gap becomes excessively large, it is difficult for the electrolysis current to flow. Therefore, the gap width of the gap that is an electrolysis chamber is, for example, 30 mm or less, 20 mm or less, 10 mm or less, 5 mm or less, 4 mm or less, 2 mm or less, although it varies depending on the applied voltage. Can do.
[0013]
  -Both the 1st porous water purification members and the 2nd porous water purification members can illustrate the form which has constituted cylindrical shape, such as cylindrical shape. While the 1st porous water purification member is connected with the 1st electric power feeding terminal, it is made the 1st electrode, and the 2nd porous water purification member can be illustrated with the 2nd electric power feeding terminal being made the 2nd electrode. . By applying a voltage to the first electrode and the second electrode, the water in the gap is electrolyzed, and the generated gas is supplied to at least one of the pores of the first porous water purification member and the second porous water purification member. Can be expected to occlude.
[0014]
  ·straightWhen applying a merged voltage as a merged power supply in which a current voltage and an AC voltage are merged between the first electrode and the second electrode, for example, within a range of 1.5 to 20 volts, particularly 3 to 12 volts. However, the present invention is not limited to these. In addition, the volt | bolt as used in this specification means an effective value in the case of alternating current. Application of voltage or current between the first electrode and the second electrode can be performed by a mounted control unit.
[0015]
  -The porous water purification member has a large number of pores and has a high scavenging ability for foreign substances such as bacteria. The pores communicate with each other and form a water permeable layer that can permeate water. In addition to having a water purification capability, the pores can occlude substances such as gas such as hydrogen and oxygen generated by electrolysis. The porous water purification member is preferably configured using a carbon-based material (generally a carbon-based molded body) such as activated carbon that is a good electrical conductor. In this case, the porous water purification member can be formed by activated carbon and a binder. As the activated carbon, at least one of powdery, granular and fibrous can be adopted. A graphite powder capable of improving conductivity can be blended as necessary.
[0016]
【Example】
  Hereinafter, the 1st Example of the electrolytic water purifier which concerns on this invention is described concretely, referring FIGS. 1-3.
[0017]
(Configuration of electrolytic water purifier)
  FIG. 1 shows a stationary type household or commercial electrolytic water purifier, and shows a cross-sectional view of the overall configuration. FIG. 2 shows a detailed sectional view of an electrolytic water purifier with an enlarged main part. FIG. 3 shows an external view of the electrolytic water purifier.
[0018]
  The container 1 was fixed by welding so as to close a cylindrical end portion 10 formed as a cylindrical body of metal and having a shaft core P1 and a cylindrical flat plate shape and a shaft end opening on the lower side of the cylindrical portion 10. A bottom lid 11 formed of a metal plate, a resin pedestal 12 that holds the lower end portion of the cylindrical portion 10, and an electrical component accommodating portion 13 that functions as a fixed portion attached to the upper shaft end opening of the cylindrical portion 10, have. In addition, although the metal which comprises the cylinder part 10 and the bottom cover 11 is formed with the stainless steel which is a representative example of a metal with high corrosion resistance, it is not restricted to this, Aluminum alloy, titanium, titanium alloy, carbon steel, resin You may form with at least 1 sort (s) of these. The container 1 forms a pressure container.
[0019]
  As shown in FIG. 1, the container 1 has a water supply chamber 14 having a circular cross section formed by an inner wall surface 10 m of the cylindrical portion 10. Although the cross section of the water supply chamber 14 is circular, it is not limited to this, and may be rectangular such as a quadrangle. The electrical equipment housing part 13 has an electrical equipment room 16 for housing electrical equipment and a lid 16a for closing the upper surface opening of the electrical equipment room 16, and is attachable to and detachable from the upper end part of the tubular part 10 via a ring-shaped seal member 19. It is fixed to. The electrical component housing part 13 compresses the resin lid member 18T and the resin or rubber seal member 19 from the upper side to ensure the watertightness between the upper end of the cylindrical part 10 and the electrical component housing part 13. Yes.
[0020]
  As shown in FIG. 2, a first power supply terminal 17 and a second power supply terminal 18 formed of a conductive material such as titanium alloy, stainless steel, or carbon steel are held on the back surface 13 a side of the electrical equipment housing portion 13. Since a voltage is applied from the control unit 50 to the first power supply terminal 17 and the second power supply terminal 18, it can function as a voltage application unit. The first power supply terminal 17 and the second power supply terminal 18 have male screw portions 17m and 18m into which nut members (not shown) are screwed for connection of power supply lead wires. As shown in FIG. 2, the power supply terminals 17 and 18 are biased by springs 17c and 18c. The springs 17 c and 18 c function as urging means for reducing energization resistance with respect to the inner porous water purification member 4 and the outer porous water purification member 5. The springs 17c and 18c are coiled, but are not limited thereto, and may be a leaf spring, a disc spring, a foam, or the like.
[0021]
  As shown in FIG. 1, a cylindrical porous water purification member 3 is coaxially accommodated in the water supply chamber 14 of the cylindrical portion 10 of the container 1. The porous water purification member 3 includes an inner peripheral side inner water purification member 4 functioning as a first porous water purification member disposed substantially coaxially, and an outer peripheral side outer side functioning as a second porous water purification member. It is comprised with the porous water purification member 5. The outer porous water purification member 5 surrounds the inner porous water purification member 4. The inner porous water purification member 4 and the outer porous water purification member 5 have the same or substantially the same axial length size, and are arranged coaxially or substantially coaxially with each other on the inner peripheral side. And a double structure on the outer peripheral side. Water permeates along the radial direction of the inner porous water purification member 4 and the outer porous water purification member 5.
[0022]
  As shown in FIG. 1, the inner porous water purification member 4 has a cylindrical shape, a cylindrical inner wall surface 4i having a cylindrical hollow central hole 4a, and a cylindrical outer wall surface facing the inner wall surface 4i. 4k.
[0023]
  The outer porous water purification member 5 has a cylindrical shape surrounding the inner porous water purification member 4 on the outer peripheral side, and a cylindrical inner wall surface facing the outer wall surface 4k of the inner porous water purification member 4 with a gap 6 therebetween. 5i and a cylindrical outer wall surface 5k facing the inner wall surface 10m of the cylindrical portion 10. The gap 6 has an annular shape.
[0024]
  The gap 6 has a ring shape so that the gap interval is uniform or substantially uniform in the circumferential direction. The gap 6 can function as an insulating space that avoids direct conduction between the inner porous water purification member 4 and the outer porous water purification member 5 and electrically insulates both. The gap width of the gap 6 is uniform or substantially uniform over the axial length direction of the porous water purification member 3.
[0025]
  Both the inner porous water purification member 4 and the outer porous water purification member 5 are porous activated carbon block filters. After the kneaded material is pressure-molded to form a thick-walled molded body, the molded body is fired. , Formed by grinding to a predetermined size. The kneaded material contains powdered activated carbon having pores, graphite powder that reduces electrical resistance and improves electrical conductivity, a binder, and water in a predetermined weight ratio. As a mixing ratio of the kneaded material, when the total amount of the activated carbon, the graphite powder and the binder is 100%, generally, the activated carbon is 30 to 60% and the graphite powder is 5 to 10% by weight. The binder is 30 to 60%. However, the blending ratio is not limited to this.
[0026]
  About the inner porous water purification member 4 and the outer porous water purification member 5, although it selects suitably as a porosity, it can set suitably in 10 to 80% of range, for example by volume ratio. However, the porosity is not limited to this. Such a fine water-permeable layer has an advantage that it is easy to suppress the growth of microorganisms in the inner porous water purification member 4 and the outer porous water purification member 5. In addition, it has been confirmed by tests of the present inventors that activated carbon containing water generally absorbs oxygen well in the air and occludes a large amount of electrolytic hydrogen gas that diffuses in water.
[0027]
  As the above-mentioned binder, an inorganic binder such as alumina or silica may be used, or a resin that does not need to be sintered, in particular, a thermoplastic resin (for example, polyethylene) powder may be used. . The inner porous water purification member 4 and the outer porous water purification member 5 not only remove dust contained in the water, but also purify water by removing hypochlorous acid (hereinafter referred to as chlorine) contained in the water by a chemical reaction. Furthermore, it has a water purifying property that adsorbs harmful substances such as trihalomethanes dissolved in water through pores.
[0028]
  According to the inner porous water purification member 4 and the outer porous water purification member 5 according to the present embodiment, the diameters of the pores forming the water permeable layer of the inner porous water purification member 4 and the outer porous water purification member 5 are average. And 0.1 to 100 microns, in particular 0.3 to 50 microns, in particular 0.3 to 20 microns. However, the pore diameter is not limited to the above range.
[0029]
  As described above, the inner porous water purification member 4 has a thick cylindrical shape having a central hole 4a. The outer porous water purification member 5 has a thick cylindrical shape having a central hole 5a that forms an annular gap 6 by arranging the inner porous water purification member 4 in an axial core shape.
[0030]
  In the present embodiment, as shown in FIG. 1, in order to prevent damage in the vicinity of the shaft ends of the inner porous water purification member 4 and the outer porous water purification member 5, the inner porous water purification member 4 and the outer porous water purification member 5 are provided. Seal caps 70 and 71 (closed portions) made of a polymer material such as resin or rubber are bonded to an axial end of the porous water purification member 3 configured to be arranged substantially concentrically with an adhesive. The seal caps 70 and 71 have electrical insulation and sealing properties.
[0031]
  As shown in FIG. 1, the upper seal cap 70 includes a cap 70 a that covers axial end surfaces (upper end surfaces) of the inner porous water purification member 4 and the outer porous water purification member 5, and an inner wall surface of the inner porous water purification member 4. An inner covering portion 70b that covers the upper portion of 4i and an outer covering portion 70c that covers the upper portion of the outer wall surface 5k of the outer porous water purification member 5 are provided.
[0032]
  As shown in FIG. 1, the lower seal cap 71 includes a cap 71 a that covers the axial end surfaces (lower end surfaces) of the inner porous water purification member 4 and the outer porous water purification member 5, and the inner porous water purification member 4. An inner covering portion 71b that covers the lower portion of the wall surface 4i and an outer covering portion 71c that covers the lower portion of the outer wall surface 5k of the outer porous water purification member 5 are provided.
[0033]
  The seal caps 70 and 71 can also function as a gap maintaining means for maintaining the gap width of the gap 6. Further, the seal caps 70 and 71 prevent inadequate purification of water from the shaft end surfaces (the upper end surface 4 u and the lower end surface 4 d) of the inner porous water purification member 4 and the outer porous water purification member 5. That is, the inner porous water purification member 4 and the outer porous water are directed radially inward (arrow W direction, centripetal direction) from the outer wall surface 4k of the inner porous water purification member 4 and the outer wall surface 5k of the outer porous water purification member 5. It is made possible to enter the inside of the quality water purification member 5.
[0034]
  The center pipe 22 that functions as an inner cylinder member for water discharge has a passage 22w formed by a pipe hole, and has a large number of through holes in the peripheral wall. The center pipe 22 is vertically installed in the central hole 4 a of the inner porous water purification member 4. An elbow 23 as an engaging member is fixed to the bottom lid 11 of the container 10 by welding.
[0035]
  The electrical equipment housing portion 13 has an opening 13c through which a lead wire from a power source passes and LEDs 27a and 27b. In the LED 27a, a voltage is applied to the inner porous water purification member 4 and the outer porous water purification member 5, and an electrolytic chamber (that is, an annular gap between the inner porous water purification member 4 and the outer porous water purification member 5). 6), the light is turned on when electrolysis occurs. Therefore, LED27a functions as a 1st alerting | reporting means which alert | reports to a user that the electrolysis process is performed in the water purifier. LED27b functions as a 2nd alerting | reporting means which alert | reports to a user that the electrolysis process is not performed in the water purifier. Therefore, the LED 27b can also function as a gas occlusion informing means for informing that the gas generated by the electrolysis is occluded in the inner porous water purification member 4 and the outer porous water purification member 5.
[0036]
  According to the present embodiment, as shown in FIG. 3, the display unit 26 that displays the generated hydrogen amount by replacing it with the reduction potential is provided on the outer surface side of the electrical equipment housing unit 13 at a position that can be visually recognized by the user. The sensing of the reduction potential is performed by the sensor 27 as shown in FIG. The detection unit 27 f of the sensor 27 is located above the center pipe 22. It is preferable that the output unit having a microcomputer (not shown) of the sensor 27 is installed in the electrical component housing unit 13 in a watertight structure in consideration of condensation, water immersion, and the like.
[0037]
  As shown in FIG. 1, a water supply unit 29 that supplies water to the water supply chamber 14 and a filter unit 90 that functions as a primary purification unit communicating with the water supply unit 29 are installed on the side of the container 1. The water supply unit 29 is connected to a faucet (not shown) through a connecting pipe 29r such as a hose. When the tap is opened, raw water before purification, such as tap water, passes through the filter section 90 through the passage 29a of the water supply section 29 and is filtered as a preliminary treatment.
[0038]
  The water filtered through the filter unit 90 is guided from the hollow chamber 90w of the filter unit 90 through the passage 29c of the water supply unit 29 to the water supply gap 4x on the outer peripheral side of the water supply chamber 14 in the container 1. As shown in FIG. 1, the water supply gap 4 x is a ring-shaped gap between the outer wall surface 5 k of the outer porous water purification member 5 and the inner wall surface 10 m of the cylindrical portion 10.
[0039]
  According to the present embodiment, as shown in FIG. 1, the outer wall surface 4 k of the inner porous water purification member 4 and the inner wall surface 5 i of the outer porous water purification member 5 are ring-shaped that serve as an electrolytic chamber in the axial length direction. An annular gap 6 (gap width X0) is formed. The annular gap 6 serves as an electrolysis chamber, and is provided in the forward path of water in the inner porous water purification member 4 and the outer porous water purification member 5.
[0040]
  As shown in FIG. 2, the power supply body 34 is held by the power supply terminal 17 on the upper end surface 4 u of the inner porous water purification member 4 in an electrically contacted state. The power feeding body 34 is formed by covering a conductive material (for example, titanium, titanium alloy, alloy steel) with a plating film (for example, platinum plating).
By the first power supply terminal 17 biased by the spring 17c, the power supply body 34 is press-contacted to the inner porous water purification member 4 so as to be conductive, and the current flow between the power supply terminal 34 and the inner porous water purification member 4 by the pressure contact. Resistance is reduced and power supply is ensured. Thereby, the inner porous water purification member 4 is connected to the first power supply terminal 17 to be the first electrode A1.
[0041]
  As shown in FIG. 2, the power supply 35 is also formed by covering a conductive material (eg, titanium, titanium alloy, alloy steel) with a plating film (eg, platinum plating). The power feeding body 35 is press-contacted to the outer porous water purification member 5 by the second power feeding terminal 18 biased by the spring 18c so as to be conductive, and the second power feeding terminal 18 and the outer porous water purification member 5 are pressed by the pressure contact. The current-carrying resistance is reduced, and power feeding performance is ensured. Thereby, the outer porous water purification member 5 is connected to the second power supply terminal 18 to be the second electrode A2. As shown in FIGS. 1 and 2, the power supply terminals 17 and 18 are arranged on the same surface side (upper end surface side) of the porous water purification member 3, which is advantageous for power supply to the porous water purification member 3. .
[0042]
  When a DC voltage is applied to the first electrode A1 and the second electrode A2, the anode (+ electrode) side of the DC voltage on the anode (+ electrode) side depends on the applied current value, but the anode (+ electrode) side is made of metal or the like. When these are formed, they may be oxidized and eluted, or an oxide film may be formed to deteriorate conduction.
[0043]
  In this regard, according to the present embodiment, when a DC voltage is applied between the first electrode A1 and the second electrode A2, the outer power supply terminal 18 and the outer second electrode A2 are the cathodes. This is advantageous for suppressing the anodic oxidation phenomenon and the anodic dissolution phenomenon in the container 1 and the power feeders 34 and 35 that have occurred conventionally.
[0044]
  When using the water purifier, the water tap connected to the water supply unit 29 is opened. Then, in FIG. 1, the water to be purified reaches the filter unit 90 through the water supply channel 29 a of the water supply unit 29, and after being preliminarily filtered by the filter unit 90, the inner wall surface 10 m and the outer porous body of the cylinder unit 10. It is supplied to an annular water supply gap 4x between the outer wall surface 5k of the water purification member 5. The water supplied to the water supply gap 4x enters the outer porous water purification member 5 from the outer wall surface 5k of the outer porous water purification member 5 along the direction of the arrow W and passes through the permeation layer 5c of the outer porous water purification member 5. Next, the water enters the inside of the inner porous water purification member 4 from the outer wall surface 4k of the inner porous water purification member 4 and is purified by the permeable layer 4c, and reaches the central hole 4a of the inner porous water purification member 4.
[0045]
  The purified water that has reached the central hole 4 a of the inner porous water purification member 4 passes through the passage 22 w of the center pipe 22 and is discharged through the passage 23 c of the elbow 23 as an engagement member provided at the lower end of the center pipe 22. The liquid is discharged from the portion 36 to the outside of the device.
[0046]
  According to the present embodiment, in use, as shown in FIG. 1, the first power supply terminal 17 that supplies power to the inner porous water purification member 4 disposed on the inner peripheral side is the anode (+ electrode) side. A DC voltage is applied to the power supply terminals 17 and 18 so that the second power supply terminal 18 that supplies power to the outer porous water purification member 5 disposed on the outer peripheral side is on the cathode (-electrode) side. For this reason, gas is removed by electrolysis in an annular gap 6 (for example, but not limited to 2 mm) between the inner porous water purification member 4 and the outer porous water purification member 5. Occurs within. It is assumed that hydrogen gas and oxygen gas are generated.
[0047]
  The gas generated in the annular gap 6 serving as an electrolysis chamber dissolves in water stored in the gap 6 or the like, or becomes microbubbles, and accumulates in the upper part of the gap 6 serving as an electrolysis chamber. The pressure in the gap 6 that is a chamber is increased. Thus, when the pressure in the gap 6 that is an electrolysis chamber increases, the action of sending gas particles from the inner wall surface 5i of the outer porous water purification member 5 to the inside of the outer porous water purification member 5, the outside of the inner porous water purification member 4 The effect | action which sends a gas particle into the inside porous water purification member 4 from the wall surface 4k increases.
[0048]
  Since most of the water in the gap 6 serving as the electrolysis chamber disappears at the stage where the accumulated water in the gap 6 serving as the electrolysis chamber is pushed into the porous water purification members 4 and 5, the electrolysis of water stops. At this time, it is presumed that the accumulated water in the gap 6 that is an electrolysis chamber is less likely to be pushed out to the outer porous water purification member 5 side than to the inner porous water purification member 4 side. It is inferred that the outer porous water purification member 5 is close to the water supply gap 4x having a high water pressure.
[0049]
  According to the present embodiment, as shown in FIG. 1, a check valve 80 is arranged at a not-shown hose tip connected to the discharge portion 36, and the check valve 80 has a check function to provide a gap that is an electrolytic chamber. The pressure in 6 can be kept high. As shown in FIG. 1, the check valve 80 encloses a valve body 80b that closes the valve port 80a, and urges the valve body 80b in a direction that the valve body 80b closes the valve port 80a and defines an opening setting pressure. And an urging spring 80c. When the pressure in the container 1 becomes higher than the set opening pressure of the check valve 80 due to the gas generated by the electrolysis, the check valve 80 is automatically opened, so that purified water is discharged from the discharge portion 36 to the outside of the apparatus. be able to. In some cases, the check valve 80 may be eliminated and a manual or electrically operated open / close valve may be used.
[0050]
  In the present embodiment as described above, the hermeticity of the container 1 is maintained in a state where the electrolytic water purifier is not used. For this reason, the gas generated by electrolyzing the water provided in the annular gap 6 between the porous water purification members 4 and 5 may be occluded into the porous water purification member 3 (4, 5). Promoted. This is because in a state where the electrolytic water purifier is not used, the gas pressure in the annular gap 6 which is an electrolysis chamber tends to increase.
[0051]
  (Voltage applied)
  4 (A) to 4 (E) are representative examples of pulsed DC voltage waveforms applied to the first electrode A1 and the second electrode A2 via the power supply terminals 17 and 18 by the control unit 50. FIG.Reference exampleIs illustrated. In this case, as described above, the power feeding terminal 17 that feeds power to the inner porous water purification member 4 disposed on the inner peripheral side becomes an anode (+ electrode), and the outer porous water purification member 5 disposed on the outer peripheral side A DC voltage is applied to the power supply terminals 17 and 18 so that the power supply terminal 18 that supplies power becomes a cathode (-pole). The DC voltage waveform is not limited to the waveforms shown in FIGS. 4A to 4E and can be changed as appropriate.
[0052]
  4A to 4E, the vertical axis represents voltage, and the horizontal axis represents time. FIG. 4A shows a pulsed waveform of a DC voltage having a half-wave rectified waveform obtained by half-wave rectifying alternating current. FIG. 4B shows a pulsed waveform of a DC voltage having a rectangular waveform. FIG. 4C shows a pulsed waveform of a DC voltage having a triangular waveform. FIG. 4D shows a pulsed waveform of a DC voltage in which a triangular waveform is continuous. FIG. 4E shows a pulse waveform of a DC voltage in which a full-wave rectified waveform obtained by full-wave rectification of alternating current continues.
[0053]
  Shown in FIGS. 4A to 4ETake a reference exampleEach pulsed DC voltage waveform includes an increase area UE that functions as a rising area where the voltage increases with time, and a decrease area DE that functions as a falling area that decreases after the increase. When the time from the start time of the increase area UE to the start time of the next increase area UE is TA, and the time from the start time of the increase area UE to the end time of the decrease area DE is TB, FIG. According to the form shown in 4 (C), the ratio of TB / TA, that is, the duty ratio can be set within a range of 5 to 95% and within a range of 10 to 90%. That is, in FIGS. 4A to 4C, the DC voltage waveform is such that energization and disconnection, that is, ON and OFF are continuously repeated.
[0054]
  Book as abovereferenceAccording to the example, a pulsed DC voltage waveform including an increasing region UE that functions as a rising region where the voltage increases with time and a decreasing region DE that functions as a falling region that decreases after increasing is supplied to the power supply terminal. When applied to the electrodes 17 and 18, since electrolysis is intermittently performed, it is advantageous to suppress excessive growth of gas particles (hydrogen gas particles and the like) generated during electrolysis. Further, the decrease region DE functioning as a falling region is advantageous for promoting the desorption of gas particles (hydrogen gas particles, etc.) generated immediately after electrolysis from the generation site, and thus generating small gas particles. It will be advantageous.
[0055]
  Moreover, according to the present Example, the porous water purification member 3 is divided | segmented into the two inner porous water purification members 4 and the outer side porous water purification member 5 in the radial direction so that the clearance gap 6 may be formed. The member 4 is connected to the first power supply terminal 17 to be the first electrode A1, and the outer porous water purification member 5 is connected to the second power supply terminal 18 to be the second electrode A2. In this way, it is possible to ensure a large exposed area of the inner wall surface 5i of the outer porous water purification member 5 and the outer wall surface 4k of the inner porous water purification member 4 that form the gap 6 serving as an electrolysis chamber. As a result, a large electrolysis area in the porous water purification member 3 can be secured, which is advantageous for increasing the electrolysis capacity in the gap 6 serving as an electrolysis chamber. Furthermore, since the gas permeation area of the porous water purification member 3 for occluding gas can be secured large, the gas generated by electrolysis of water in the gap 6 serving as an electrolysis chamber can be occluded in the pores of the porous water purification member 3. It will be advantageous.
[0056]
  In general, it is said that a gas such as hydrogen immediately after being generated by electrolysis is rich in activity and has a positive effect on the living body. According to the present embodiment, since the gap 6 that is an electrolysis chamber is formed by the porous water purification members 4, 5, the gas immediately after being generated by electrolysis has high activity and is good for the living body. It is advantageous for making the water purification member 3 occluded effectively.
[0057]
  5A and 5B exemplify other typical forms of DC voltage waveforms applied to the first electrode A1 and the second electrode A2 via the power supply terminals 17 and 18 by the control unit 50. FIG. 5A and 5B, the vertical axis represents voltage, and the horizontal axis represents time. According to FIG. 5 (A), this DC voltage waveform is combined with an increasing area UE functioning as a rising area where the voltage increases with time, and further decreases after increasing, with the continuous DC waveform DP. A decreasing area DE that functions as a falling area is merged. The DC voltage waveform shown in FIG. 5B is formed by combining a sine curve AC voltage and a DC voltage Vx. This DC voltage waveform is biased to the + side corresponding to the DC voltage Vx, and functions as an increasing region UE that functions as a rising region where the voltage increases with time, and a falling region that decreases after increasing. It has a decreasing area DE.
[0058]
  In addition, according to the above-mentioned Example, the 1st electric power feeding terminal 17 which electrically feeds the inner side porous water purification member 4 arrange | positioned at the inner peripheral side turns into an anode (+ pole) side, and the outer side porous arrange | positioned at the outer peripheral side A DC voltage is applied to the power supply terminals 17 and 18 so that the second power supply terminal 18 that supplies power to the quality water purification member 5 is on the cathode (-pole) side. However, the present invention is not limited to this. Direct current is supplied to the power supply terminals 17 and 18 so that the second power supply terminal 18 for supplying power to the outer porous water purification member 5 disposed on the outer peripheral side is on the anode (+ electrode) side. A voltage may be applied.
[0059]
  (Second embodiment)
  The second embodiment basically has the same configuration as the first embodiment described above, and applies the structure of the entire water purifier shown in FIGS. Hereinafter, a description will be given centering on differences from the first embodiment. According to the second embodiment, the control unit 50 merges the DC voltage and the AC voltage and applies the merged voltage (merged feeding) to the feeding terminals 17 and 18.
[0060]
  In the case of direct current, the direct current voltage is applied so that the first power supply terminal 17 arranged on the inner peripheral side becomes an anode (+ pole) and the second power supply terminal 18 arranged on the outer peripheral side becomes a cathode (−pole). Apply.
[0061]
  6A to 6C, the vertical axis represents voltage, and the horizontal axis represents time. FIG. 6A shows the waveform of the AC voltage to be merged. FIG. 6B shows a pulsed DC voltage waveform that is merged by half-wave rectification. This DC voltage waveform is in phase with the AC voltage waveform. Thereby, the voltage decrease in the merged voltage (merged power supply) can be performed rapidly. FIG. 6C shows a waveform of the merged voltage obtained by merging the AC voltage and the half-wave rectified DC voltage. In this embodiment, this merged voltage is applied to the power supply terminals 17 and 18.
[0062]
  The pulsed DC voltage waveform shown in FIG. 6B includes an increasing area UE that functions as a rising area where the voltage increases with time, and a decreasing area DE that functions as a falling area that decreases after increasing. ing. The DC voltage waveform increase region UE has the same phase as the AC voltage waveform increase region UE '. The DC voltage waveform decrease region DE has the same phase as the AC voltage waveform decrease region DE '.
[0063]
  In the pulsed DC voltage waveform shown in FIG. 6B, TA is defined as the time from the start time of the increase area UE to the start time of the next increase area UE, and the end time of the decrease area DE from the start time of the increase area UE. 6B, the ratio of TB / TA, that is, the duty ratio can be set within a range of 5 to 95% and within a range of 10 to 90%. . That is, the pulsed DC voltage waveform shown in FIG. 6B is a DC voltage waveform in which energization and disconnection, that is, ON and OFF are repeated.
[0064]
  The waveform of the merged voltage in which direct current and alternating current shown in FIG. 6C are mixed includes an increasing region UE ″ that functions as a rising region where the voltage increases with time, and functions as a falling region that decreases after increasing. Decrease area DE ".
[0065]
  Also in this embodiment, since the electrolysis phenomenon is intermittently performed, it is advantageous to suppress the excessive growth of gas particles (hydrogen gas particles or the like) generated during electrolysis.
[0066]
  Further, according to the waveform of the merged voltage shown in FIG. 6C, since the pulsed DC voltage waveform becomes the bias voltage, the absolute value of the peak value V + peak indicating the positive potential indicates the negative potential. It is set larger than the absolute value of the peak value V-peak. For this reason, it is advantageous to suppress excessive growth of gas particles (hydrogen gas particles and the like) generated during electrolysis. Furthermore, since the decreasing region DE ″ functioning as the falling region of the merged voltage waveform has a steep voltage decreasing gradient, it promotes desorption from the generation site of gas particles (hydrogen gas particles, etc.) generated immediately after electrolysis. This can be expected and is advantageous for producing small gas particles.
[0067]
  When conducting to the first electrode A1 and the second electrode A2, in general, the conducting member constituting the container 10 or the like may be polarized. Metal parts may cause anodic corrosion at the part polarized to the anode (+ electrode). However, since an alternating voltage in which positive and negative potentials are repeated many times per unit time is applied to the first electrode A1 and the second electrode A2 together with the direct current voltage, oxidation and reduction are performed on a unit time basis based on the number of cycles. Since it is repeated many times per hit, it is advantageous for suppressing anode corrosion and anode elution.
In addition, according to the present Example, when the voltage value of DC voltage is set to Vd and the effective voltage of AC voltage is set to Va, it can set to either of following (1)-(3).
(1) Vd> Va
(2) Vd <Va
(3) Vd = Va
  If Vd> Va, the influence of the DC voltage can be increased, and it can be expected to suppress the growth of gas grains. If Vd <Va, the influence of the AC voltage can be increased, and it can be expected to suppress the anodic oxidation phenomenon and the anodic elution phenomenon which have occurred conventionally.
[0068]
  In addition, when a DC voltage is applied to the first electrode A1 and the second electrode A2, if the electrolytic water purifier is used for a long time, products such as calcium carbonate and magnesium carbonate are present on the cathode (-electrode) side. In order to suppress the deposition, it is effective to apply an alternating voltage in which the positive potential and the negative potential are alternately repeated many times per unit time to the first electrode A1 and the second electrode A2. In other words, according to the present embodiment, since alternating current is applied to the first electrode A1 and the second electrode A2 together with the DC voltage, the phenomenon of anodic corrosion is suppressed and concentrated on the cathode (-electrode). It is advantageous to suppress the accumulation of products such as calcium carbonate and magnesium carbonate, and is advantageous in terms of maintenance.
[0069]
  As the frequency of the AC voltage, 500 Hz or less, 300 Hz or less, or 200 Hz or less can be employed. In consideration of the AC voltage supplied to the home, it is possible to adopt the range of 40 to 70 Hz, particularly 50 to 60 Hz. Specifically, 50 Hz or 60 Hz can be employed in the same manner as a normal AC home appliance.
[0070]
  FIG. 7 shows another embodiment. 7A to 7C, the vertical axis represents voltage, and the horizontal axis represents time. FIG. 7A shows the waveform of the AC voltage merged by the control unit 50. FIG. 7B shows a rectangular pulsed DC voltage waveform. This DC voltage waveform is in phase with the AC voltage waveform. In this case, the voltage decrease in the merged voltage can be performed rapidly. FIG. 7C shows a waveform of the merged voltage obtained by merging the AC voltage and the half-wave rectified DC voltage.
[0071]
  The pulsed DC voltage waveform shown in FIG. 7B includes an increasing area UE that functions as a rising area where the voltage increases with time, and a decreasing area DE that functions as a falling area that decreases after increasing. ing. The DC voltage waveform increase region UE has the same phase as the AC voltage waveform increase region UE '.
[0072]
  The combined voltage waveform in which direct current and alternating current shown in FIG. 7C are mixed includes an increasing region UE ″ that functions as a rising region where the voltage increases with time, and also functions as a falling region that decreases after increasing. A decrease area DE "is provided.
[0073]
  FIG. 8 shows yet another embodiment. 8A to 8C, the vertical axis represents voltage, and the horizontal axis represents time. FIG. 8A shows the waveform of the AC voltage to be merged. FIG. 8B shows a rectangular pulsed DC voltage waveform. This DC voltage waveform is in phase with the AC voltage waveform. FIG. 8C shows a waveform of a merged voltage obtained by merging an AC voltage and a half-wave rectified DC voltage.
[0074]
  The pulsed DC voltage waveform shown in FIG. 8B includes an increasing region UE that functions as a rising region where the voltage increases with time, and a decreasing region DE that functions as a falling region that decreases after increasing. ing. The DC voltage waveform increase region UE has the same phase as the AC voltage waveform increase region UE '.
[0075]
  The combined voltage waveform in which direct current and alternating current shown in FIG. 8C are mixed includes an increasing region UE ″ that functions as a rising region where the voltage increases with time, and also functions as a falling region that decreases after increasing. A decrease area DE "is provided.
[0076]
  7 and 8, the electrolysis phenomenon is intermittently performed, which is advantageous for suppressing excessive growth of gas particles (hydrogen gas particles, etc.) generated during electrolysis. Become.
[0077]
  (Block Diagram)
  FIG. 9 shows a case where a DC voltage waveform is applied to the power supply terminals 17 and 18.referenceThe typical example of the block diagram of the control part 50 which concerns on an example is shown. In the example shown in FIG. 9, a transformer circuit 102 that generates a transformed AC voltage by changing the voltage with respect to the AC voltage of the commercial power supply 100 and a rectifier circuit 104 that half-wave rectifies the transformed AC voltage are provided. The half-wave rectified pulsed DC voltage waveform is supplied to the power supply terminals 17 and 18.
[0078]
  FIG. 10 shows a representative example of a block diagram of the control unit 50 according to the second embodiment when a merged voltage obtained by merging a DC voltage and an AC voltage is applied to the power supply terminals 17 and 18. In the example illustrated in FIG. 10, the voltage is changed with respect to the AC voltage of the commercial power supply 100 to generate a transformed AC voltage, and the transformed AC voltage is half-wave rectified to generate half-wave rectification. A rectifier circuit 104 is provided. By this. A merged voltage obtained by merging the DC voltage and the AC voltage can be applied to the power supply terminals 17 and 18.
[0079]
  11 and 12 show a case where a DC voltage waveform in the form of a rectangular wave pulse is applied to the power supply terminals 17 and 18.referenceThe typical example of the block diagram of the control part 50 which concerns on an example is shown. According to the example shown in FIG. 11, the sawtooth wave generation circuit 150 that generates the voltage waveform of the sawtooth wave V1, the reference voltage setting circuit 152 that generates the waveform of the reference voltage V2, the voltage of the sawtooth wave E1 and the voltage of the reference voltage V2 Are provided, and an amplifier circuit 156 for amplifying the signal V3 of the comparator 154 is provided.
[0080]
As shown in FIGS. 12A and 12B, when the voltage of the sawtooth wave V1 is higher than the voltage of the reference voltage V2, the comparator 154 outputs a rectangular pulse signal V3, and the amplifier circuit 15 outputs the signal V3. Amplify. The DC voltage V4 of the rectangular pulse thus amplified is supplied to the power supply terminals 17 and 18. If the reference voltage setting circuit 152 adjusts the level of the voltage value of the reference voltage V2, the duty ratio of the signal V3 is adjusted, which means the on-time of the DC voltage V4 of the rectangular pulse that supplies power to the power supply terminals 17 and 18. The duty ratio is adjusted and the electrolysis conditions are adjusted. The comparator 154 may output a rectangular pulse signal V3 when the voltage of the sawtooth wave V1 is lower than the voltage of the reference voltage V2.
[0081]
  (Other)
  The present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within a range not departing from the gist. For example, the shape, structure, size, material, and the like of each component described above are not limited to those described above. The applied voltage value and the like are not limited to the above values. The raw water before purification is not limited to tap water, and water such as wells may be used. The power supply terminals 17 and 18 may have other shapes and structures, and in short, any power supply terminals that can supply power to the porous water purification member. Although water passes in the centripetal direction of the porous water purification member 3, it is not limited to this and may be reversed. In the embodiment shown in FIG. 1, power supply terminals 17 and 18 are provided on the upper end surface 4u of the inner porous water purification member 4 and the upper end surface 5u of the outer porous water purification member 5, and the inner porous water purification member 4 and the outer porous water purification member are provided. However, the present invention is not limited to this, and power may be supplied from below the inner porous water purification member 4 and the outer porous water purification member 5. Alternatively, power may be supplied from both the lower side and the upper side of the inner porous water purification member 4 and the outer porous water purification member 5. In the above-described embodiment, the inner porous water purification member 4 and the outer porous water purification member 5 are formed in a cylindrical shape. The inner porous water purification member 4, the outer porous water purification member 5, and the activated carbon system are not limited thereto, but may be anything that can purify water. You may make it permeate | transmit water toward the radial direction outward of the inner side porous water purification member 4 and the outer side porous water purification member 5. FIG. Moreover, you may make it permeate | transmit water along the axial length direction of an inner side porous water purification member and an outer side porous water purification member. The power supply terminals 17 and 18 are provided on the upper end surface side of the inner porous water purification member and the outer porous water purification member, but may be provided on the lower end surface side, or the lower end surface and the upper end surface. You may make it bite into at least one. According to the second embodiment, in the case of direct current, the first power supply terminal 17 arranged on the inner peripheral side becomes the anode (+ pole), and the second power supply terminal 18 arranged on the outer peripheral side becomes the cathode (-pole). DC voltage is applied so that the first power supply terminal 17 becomes the negative electrode (-pole) and the second power supply terminal 18 arranged on the outer peripheral side becomes the anode (-). A DC voltage may be applied so as to be + pole).
[0082]
(Supplementary note) The following technical idea can be grasped from the above description.
[0083]
(1) An electrolytic water purifier according to the first aspect of the present invention includes a container having a water supply chamber, a porous water purification member having a large number of pores having water purification properties accommodated in the water supply chamber of the container, An electrolytic water purifier having a water supply portion for supplying water to a water supply chamber and a discharge portion for discharging water purified by a porous water purification member in a water supply chamber of a container to the outside, wherein the first electrode and the second electrode are water supply By applying a voltage or a current provided between the first electrode and the second electrode, which is provided in the room and has an increasing area that increases with time and a decreasing area that decreases after the increase, The water is electrolyzed.
[0084]
(2) The electrolytic water purifier according to the second aspect of the present invention includes a container having a water supply chamber, a porous water purification member having a large number of pores having water purification properties accommodated in the water supply chamber of the container, An electrolytic water purifier having a water supply portion for supplying water to a water supply chamber and a discharge portion for discharging water purified by a porous water purification member in a water supply chamber of a container to the outside, wherein the first electrode and the second electrode are water supply The first electrode and the second electrode are combined and fed with a direct current and an alternating current provided in the room and having an increasing region in which the voltage increases with time and a decreasing region that decreases after increasing. By applying between the two, the water in the water supply chamber is electrolyzed.
[0085]
(3) The electrolytic water purifier according to the third aspect of the present invention includes a container having a water supply chamber, a porous water purification member having a large number of pores having water purification properties accommodated in the water supply chamber of the container, An electrolytic water purifier having a water supply portion for supplying water to a water supply chamber and a discharge portion for discharging water purified by a porous water purification member in a water supply chamber of a container to the outside, wherein the porous water purification members face each other The first porous water purification member and the second porous water purification member are formed. The first porous water purification member serves as the first power supply terminal and serves as the first electrode, and the second porous water purification member includes the first porous water purification member. The voltage or current is connected to the two power supply terminals to serve as the second electrode, and includes an increase region with time and a decrease region that decreases after the increase, via the first power supply terminal and the second power supply terminal. By applying between the first electrode and the second electrode, The is characterized in that so as to electrolysis.
[0086]
【The invention's effect】
  According to the electrolytic water purifier according to the present invention,Applying a combined feed including a direct current having an increasing region where the voltage increases with time and a decreasing region decreasing after increasing, and an alternating current, between the first electrode and the second electrode. Thus, the water in the water supply chamber is electrolyzed. That is,By applying (power feeding) between the first electrode and the second electrode, a voltage or current having an increasing region that increases with time and a decreasing region that decreases after the increase is supplied to the water in the water supply chamber. I try to disassemble it. For this reason, it is advantageous for suppressing the excessive growth of the size of the gas particle produced | generated by electrolysis.
[0087]
  The electrolytic water purifier according to the present invention is advantageous in causing the porous water purifying member to effectively occlude the gas that has high activity immediately after electrolysis and is good for the living body.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an electrolytic water purifier according to an embodiment of the present invention.
FIG. 2 is an enlarged longitudinal sectional view showing a main part of the electrolytic water purifier according to the embodiment of the present invention.
FIG. 3 is an external view showing an electrolytic water purifier according to an embodiment of the present invention.
FIG. 4 is a waveform diagram when a pulsed DC voltage is applied.
[Figure5It is a waveform diagram according to another embodiment in the case of applying a pulsed DC voltage.
FIG. 6 is a waveform diagram in the case of merging pulsed DC voltage and AC voltage.
FIG. 7 is a waveform diagram according to another embodiment in the case where pulsed DC voltage and AC voltage are combined.
FIG. 8 is a waveform diagram according to another embodiment in the case of merging pulsed DC voltage and AC voltage.
FIG. 9 is a block diagram when a pulsed DC voltage is applied.
FIG. 10 is a block diagram in the case of merging pulsed DC voltage and AC voltage.
FIG. 11 is a block diagram when a pulsed DC voltage is applied.
FIG. 12 is a waveform diagram when a pulsed DC voltage is applied.
[Explanation of symbols]
  In the figure, 1 is a container, 10 is a cylindrical portion, 3 is a porous water purification member, 4 is an inner porous water purification member, 5 is an outer porous water purification member, 17 and 18 are power supply terminals, 29 is a water supply portion, and 36 is discharge. Reference numeral 50 denotes a control unit.

Claims (5)

給水室をもつ容器と、前記容器の給水室に収容された水浄化性を有する多数の細孔をもつ多孔質浄水部材と、前記容器の給水室に給水する給水部と、前記容器の給水室内の前記多孔質浄水部材で浄化された水を器外に吐出する吐出部とを有する電解浄水器であって、
前記多孔質浄水部材は、互いに対面する第1多孔質浄水部材及び第2多孔質浄水部材で形成されており、
前記第1多孔質浄水部材は第1給電端子とされて第1電極とされていると共に、前記第2多孔質浄水部材は第2給電端子と接続されて第2電極とされており、
時間経過に伴い電圧が増加する増加領域を備えると共に増加後に減少する減少領域を備えた直流と、交流とを併せた併合給電を、前記第1電極と前記第2電極との間に印加することにより、前記給水室内の水を電気分解させるようにしていることを特徴とする電解浄水器。
A container having a water supply chamber, a porous water purification member having a large number of pores having water purifying properties accommodated in the water supply chamber of the container, a water supply unit supplying water to the water supply chamber of the container, and a water supply chamber of the container An electrolytic water purifier having a discharge part for discharging water purified by the porous water purifying member to the outside,
The porous water purification member is formed of a first porous water purification member and a second porous water purification member facing each other,
The first porous water purification member is a first power supply terminal and is a first electrode, and the second porous water purification member is connected to a second power supply terminal and is a second electrode,
Applying a combined feed including a direct current having an increasing region where the voltage increases with time and a decreasing region decreasing after increasing, and an alternating current, between the first electrode and the second electrode. The electrolytic water purifier is characterized in that the water in the water supply chamber is electrolyzed.
請求項において、直流電圧は、交流を半波整流した半波整流波形、三角波波形、矩形波波形の少なくとも一つを有することを特徴とする電解浄水器。2. The electrolytic water purifier according to claim 1, wherein the DC voltage has at least one of a half-wave rectified waveform, a triangular wave waveform, and a rectangular waveform obtained by half-wave rectifying alternating current. 請求項1または請求項2において、前記第1多孔質浄水部材及び前記第2多孔質浄水部材は、隙間を形成するように対面しており、前記第1多孔質浄水部材と前記第2多孔質浄水部材との間の隙間の隙間幅を維持する隙間維持手段が設けられていることを特徴とする電解浄水器。In Claim 1 or Claim 2 , the said 1st porous water purification member and the said 2nd porous water purification member are facing so that a clearance gap may be formed, and the said 1st porous water purification member and the said 2nd porous water An electrolytic water purifier characterized in that gap maintaining means for maintaining the gap width of the gap between the water purifying members is provided. 請求項1〜請求項3のうちのいずれか一項において、前記第1多孔質浄水部材及び前記第2多孔質浄水部材のうちの一方は、前記給水室の外周側に配置されて陰極とされており、前記第1多孔質浄水部材及び前記第2多孔質浄水部材のうちの他方は、前記給水室の内周側に配置されて陽極とされていることを特徴とする電解浄水器。In any one of Claims 1-3 , either one of the said 1st porous water purification member and the said 2nd porous water purification member is arrange | positioned at the outer peripheral side of the said water supply chamber, and is made into a cathode. The other of the first porous water purification member and the second porous water purification member is disposed on the inner peripheral side of the water supply chamber and serves as an anode. 請求項において、直流の電圧値をVdとし交流の実効電圧をVaとしたとき、次の(1)〜(3)のうちのいずれかに設定されていることを特徴とする電解浄水器。
(1) Vd>Va
(2) Vd<Va
(3) Vd=Va
2. The electrolytic water purifier according to claim 1, wherein when the direct-current voltage value is Vd and the alternating-current effective voltage is Va, it is set to any one of the following (1) to (3).
(1) Vd> Va
(2) Vd <Va
(3) Vd = Va
JP2003101752A 2003-04-04 2003-04-04 Electrolytic water purifier Expired - Fee Related JP4056421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101752A JP4056421B2 (en) 2003-04-04 2003-04-04 Electrolytic water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101752A JP4056421B2 (en) 2003-04-04 2003-04-04 Electrolytic water purifier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007272168A Division JP2008062234A (en) 2007-10-19 2007-10-19 Electrolytic water purifier

Publications (2)

Publication Number Publication Date
JP2004305870A JP2004305870A (en) 2004-11-04
JP4056421B2 true JP4056421B2 (en) 2008-03-05

Family

ID=33465440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101752A Expired - Fee Related JP4056421B2 (en) 2003-04-04 2003-04-04 Electrolytic water purifier

Country Status (1)

Country Link
JP (1) JP4056421B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119557B2 (en) * 2009-08-24 2013-01-16 株式会社エイエスイー Production method of carbonated water
CN104168996B (en) 2011-11-24 2017-03-15 印度理工学院 Multilamellar organic formwork boehmite nanostructured for water purification
CN104520706B (en) 2012-04-17 2017-03-01 印度理工学院 Usage amount submanifold detects discharge
JP6869188B2 (en) * 2015-11-25 2021-05-12 中本 義範 Reduction water production equipment and reduction water production method

Also Published As

Publication number Publication date
JP2004305870A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
CA2638633C (en) Portable ozone generator and use thereof for purifying water
JP3185328U (en) Water electrolyzer
JP2017516653A (en) Electrolytic drinking water production equipment
KR20110010502U (en) Portable device for producing hydrogen enriched water
MXPA03007923A (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water.
JP2009022838A (en) Water treatment device and water treatment method
JP4056421B2 (en) Electrolytic water purifier
WO2020171239A1 (en) Water electrolysis apparatus, and sterilization/cleaning method and method for decomposing/removing harmful substance, each using water electrolysis apparatus
JP2008062234A (en) Electrolytic water purifier
CN208948909U (en) A kind of electro-chemical systems of the purifying drinking water using the building of closing anode chamber
JP3664302B2 (en) Electrolytic water purifier
JP2007289838A (en) Electrolytic water generator
JP3682275B2 (en) Ozone water production equipment
CN101921033A (en) Electrocatalysis device for rapidly increasing oxygen/removing disinfection byproducts for household drinking water
KR20100080645A (en) Bidet equipped with iniizer
US20050247557A1 (en) Electrolytic water purifier
JP2002066563A (en) Active hydrogen occluded water cleaning device
JP2001187382A (en) Water purifier for producing reduced water
KR101972893B1 (en) Portable water tank having hydrogen-generator
JP3790346B2 (en) Water treatment equipment
JPH06154760A (en) Feeding device and method for dissolved carbon dioxide gas
KR101659884B1 (en) Wet membrane-electrode assembly, sterilizer using the same
KR100253992B1 (en) Electrolytic germiciding system for water
JP2005024169A (en) Hot-water supply device with water reduction function
JP2005211725A (en) Reduced water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees