JP3185328U - Water electrolyzer - Google Patents

Water electrolyzer Download PDF

Info

Publication number
JP3185328U
JP3185328U JP2013600027U JP2013600027U JP3185328U JP 3185328 U JP3185328 U JP 3185328U JP 2013600027 U JP2013600027 U JP 2013600027U JP 2013600027 U JP2013600027 U JP 2013600027U JP 3185328 U JP3185328 U JP 3185328U
Authority
JP
Japan
Prior art keywords
water
ozone
hydrogen
cathode
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2013600027U
Other languages
Japanese (ja)
Inventor
劉迅
呉▲タオ▼
Original Assignee
劉迅
呉▲タオ▼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 劉迅, 呉▲タオ▼ filed Critical 劉迅
Application granted granted Critical
Publication of JP3185328U publication Critical patent/JP3185328U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

【課題】電解ユニット、水タンク、気液混合器、気液分離器、電源を含む水電解装置を提供する。
【解決手段】電解ユニット1は筐体を含み、筐体の頂部に取水口が設けられる。取水口の下側に陽極チタン給電有孔板、β−PbO陽極触媒板、固体高分子電解質膜、Pt/C陰極触媒板、陰極チタン給電有孔板が設けられる。水タンク2の底部は咬合接続部が設けられ、頂部は固定されておらず、上蓋が設けられる。上蓋にオゾン排出管、水補給口が設けられる。水タンク2にオゾン水排出口が設けられる。気液混合器3はオゾンおよび水を混合し、気液分離器は水素および水を分離する。該装置は水をオゾン、オゾン水、水素および水素含有水に電解することができる。該装置の構造は簡単で、エネルギー消費が比較的小さく、コストが比較的低い。
【選択図】図1
A water electrolysis apparatus including an electrolysis unit, a water tank, a gas-liquid mixer, a gas-liquid separator, and a power source is provided.
An electrolysis unit (1) includes a casing, and a water intake is provided at the top of the casing. An anode titanium feeding perforated plate, a β-PbO 2 anode catalyst plate, a solid polymer electrolyte membrane, a Pt / C cathode catalyst plate, and a cathode titanium feeding perforated plate are provided below the water intake. The bottom of the water tank 2 is provided with an occlusal connection, the top is not fixed, and an upper lid is provided. An ozone discharge pipe and a water supply port are provided on the upper lid. The water tank 2 is provided with an ozone water discharge port. The gas-liquid mixer 3 mixes ozone and water, and the gas-liquid separator separates hydrogen and water. The apparatus can electrolyze water into ozone, ozone water, hydrogen and hydrogen-containing water. The structure of the device is simple, the energy consumption is relatively small and the cost is relatively low.
[Selection] Figure 1

Description

本考案は水電解装置に関する。   The present invention relates to a water electrolysis apparatus.

オゾンは強酸化剤であり、強い瞬間殺菌、滅菌、消毒、脱臭、脱色、品質保持などの機能を有し、分解しにくい有機物を分解することもできる。伝染病、ウイルスが大流行する公衆衛生および医療分野、大気汚染、水質汚染を処理する環境分野、食品および製薬など工業分野、電子工業の洗浄分野、水道水、飲料水の消毒、工業廃水および核廃棄物など高難度化学物質の分解処理分野において、オゾンの応用は非常に重要なものになっている。   Ozone is a strong oxidant and has functions such as strong instantaneous sterilization, sterilization, disinfection, deodorization, decolorization, and quality maintenance, and can also decompose organic substances that are difficult to decompose. Infectious diseases, public health and medical fields where viruses are prevalent, air pollution, environmental fields that handle water pollution, industrial fields such as food and pharmaceuticals, electronic industry cleaning fields, disinfection of tap water, drinking water, industrial wastewater and nuclear In the field of decomposition treatment of highly difficult chemicals such as waste, the application of ozone has become very important.

オゾンの応用は2種類に分けられる。1つ目はオゾン体の応用であり、主に空気の消毒および浄化、誘電気体の分解、工業排気ガスの分解、放出などに用いられる。超精製オゾン体は医薬工業、食品工業および医療などの分野で幅広く応用されている。2つ目はオゾン水の応用である。現在の技術の多くは、オゾンを水に混入して得るものである。混合方法は多く、異なる方式で得られたオゾン水の濃度は異なるが、応用の目的を達するのに、設備投資コストまたはエネルギー消費に関わらず、比較的高い。   There are two types of application of ozone. The first is application of the ozone body, which is mainly used for disinfection and purification of air, decomposition of dielectric gas, decomposition and release of industrial exhaust gas. Ultra-purified ozone bodies are widely applied in fields such as pharmaceutical industry, food industry and medicine. The second is the application of ozone water. Many of the current technologies are obtained by mixing ozone into water. There are many mixing methods, and the concentration of ozone water obtained by different methods is different, but the purpose of application is relatively high regardless of capital investment cost or energy consumption.

現在、利用価値のあるオゾン体の調製方法には、以下の数種の方式がある。   Currently, there are several methods for preparing ozone bodies having utility value as follows.

1.自然の空気を原料とした紫外線低圧水銀ランプ法:この種の方法で調製し得られたオゾンの濃度は低く、多くは空気の消毒に使用されるが、調製したオゾン水の利用価値は高くない。   1. Ultraviolet low-pressure mercury lamp method using natural air as raw material: The concentration of ozone obtained by this kind of method is low, and many are used for disinfection of air, but the utility value of the prepared ozone water is not high .

2.純粋な酸素を原料とした高周波放電法:この種の方法で調製し得られたオゾンの濃度は紫外線低圧水銀ランプ法より高く、オゾンの利用またはオゾン水の利用を問わず、現在比較的普及している方法である。しかしながら、この種の方法は同時に窒素酸化物が生成され、窒素酸化物は発がん性物質であるため、この種の方法は精製分野および飲料水分野の応用において、極めて大きく制限される。   2. High-frequency discharge method using pure oxygen as a raw material: The concentration of ozone obtained by this kind of method is higher than that of the ultraviolet low-pressure mercury lamp method, and it is relatively popular now regardless of whether ozone or ozone water is used. Is the way. However, this type of process simultaneously produces nitrogen oxides, and nitrogen oxides are carcinogens, so this type of process is extremely limited in applications in the purification and drinking water fields.

3.純水を原料とした電解法:この種の方法は水を原料とし、β−PbOを陽極触媒、白金(Pt/C)を陰極触媒とした電解触媒作用下において水素および酸素を分離し、陽極からOおよびOが生成され、陰極からHが生成される。この種の方法で調製し得られたオゾンの濃度は高く純粋であるが、エネルギー消費が高く、価格も高価であり、なおかつ製品は管理しにくいため、普及および採用されにくい。 3. Electrolytic method using pure water as a raw material: This type of method separates hydrogen and oxygen under the electrocatalytic action using water as a raw material, β-PbO 2 as an anode catalyst, and platinum (Pt / C) as a cathode catalyst, O 2 and O 3 are generated from the anode, and H is generated from the cathode. Although the concentration of ozone obtained by this type of method is high and pure, it is difficult to disseminate and adopt because it is energy consuming, expensive, and difficult to manage.

文献によれば、水電解式オゾン発生器の研究は1886年から始まり、長期的な研究により進歩し、1985年にSPE式電解オゾン発生器が登場した。この種の形式を用いたオゾン発生器の基本構造はβ−PbOを陽極触媒層、白金(Pt/C)を触媒の陰極触媒層とし、その中間に固体高分子電解質膜(SPE)が挟まれている。陽極および陰極の外側を、導電体作用を有し、透気透水作用を発揮する多孔質チタン板または泡沫状チタン材で挟み、さらにそのそれぞれの外側を、正負電源の電力供給を受ける陰陽極チタン板で挟む。動作時、陽極に純水を供給し、2〜3.5Vの直流電流を通電すると、陰陽電極の触媒作用の下、水の水素原子は固体高分子電解質膜(SPE)を通過し、陰極に移動して水素が生成され、残りの酸素原子は陽極で放電してオゾンが生成される。陰極の白金触媒層(Pt1mg/cm)は酸化還元反応により水素を生成する作用を発揮する。この種の形式の技術は、現在、日本市場の電解オゾン発生器の主流となっている。 According to the literature, research on water electrolysis ozone generators began in 1886 and progressed with long-term research, and in 1985 the SPE electrolysis ozone generator appeared. The basic structure of an ozone generator using this type is β-PbO 2 as an anode catalyst layer, platinum (Pt / C) as a catalyst cathode catalyst layer, and a solid polymer electrolyte membrane (SPE) sandwiched between them. It is. The anode and the cathode are sandwiched between a porous titanium plate or foamed titanium material having a conductor action and exhibiting air permeability and water permeability, and the outside of each of the anode and the anode is supplied with positive and negative power sources. Hold it with a plate. In operation, when pure water is supplied to the anode and a direct current of 2 to 3.5 V is applied, hydrogen atoms of water pass through the solid polymer electrolyte membrane (SPE) under the catalytic action of the negative and positive electrodes, and to the cathode. It moves to generate hydrogen, and the remaining oxygen atoms are discharged at the anode to generate ozone. The platinum catalyst layer (Pt 1 mg / cm 2 ) on the cathode exhibits an action of generating hydrogen by an oxidation-reduction reaction. This type of technology is currently the mainstream of electrolytic ozone generators in the Japanese market.

この種のオゾン発生器の基本構造は次の通りである。固体高分子電解質膜(SPE)が中央に位置し、陽極(+電極)および陰極(−電極)がその両側に位置する。陽極の超純水原料電解槽および陰極の積水槽は、さらにそれぞれ陽極電極および陰極電極の両側に位置する。陽極で生成される酸素を含むオゾン体は、オゾンを含有するオゾン水と合わせて、陽極電解槽から陽極気液分離室(一般に陽極水タンクと呼ばれる)に送られ、オゾンおよび水の比重が異なることを利用してここで分離された後、酸素を含有するオゾン体は気液分離室の頂部から排出される。水はさらに一方向バルブを通過して陽極電解槽に入る。陰極で生成される水素および水は陰極の積水槽から陰極気液分離室(一般に陰極水タンクと呼ばれる)に送られ、水素および水の比重が異なることを利用してここで分離された後、水素は気液分離室の頂部から排出され、空気で希釈処理された後大気に放出される。水は陰極気液分離室から放出される。この種の縦型に並べて設置された電解構造は、電極および電解用原料水も縦型に設置するのと同じであり、電極および水が側面接触する。水の重力は下向きであり、側面接触により、電解過程において電極および水の摩擦接触が引き起こされ、生成されたオゾン体は摩擦水域で上に向かって流動し、流体的乱流および損失が生じる。なおかつ、この種の構造の電解槽は容積を大きくするのが難しく、原料水量が少なくなる。このほか、摩擦および乱流により引き起こされる損失によって液体の温度上昇が起こり、温度の上昇を制御するため、外部冷却水を循環させて冷却するなどの手段を講じなければならない。この構造に存在する欠点は以下の通りである。   The basic structure of this type of ozone generator is as follows. A solid polymer electrolyte membrane (SPE) is located in the center, and an anode (+ electrode) and a cathode (− electrode) are located on both sides thereof. The anode ultrapure water raw material electrolytic cell and the cathode water tank are further located on both sides of the anode electrode and the cathode electrode, respectively. The ozone body containing oxygen generated at the anode is sent to the anode gas-liquid separation chamber (generally called an anode water tank) from the anode electrolytic cell together with ozone water containing ozone, and the specific gravity of ozone and water is different. After being separated here, the ozone body containing oxygen is discharged from the top of the gas-liquid separation chamber. The water further passes through the one-way valve and enters the anodic cell. After the hydrogen and water produced at the cathode are sent from the cathode water tank to the cathode gas-liquid separation chamber (generally called the cathode water tank) and separated here by utilizing the different specific gravity of hydrogen and water, Hydrogen is discharged from the top of the gas-liquid separation chamber, diluted with air, and then released to the atmosphere. Water is discharged from the cathode gas-liquid separation chamber. The electrolytic structure installed side by side in this type is the same as that in which the electrode and the raw material water for electrolysis are also installed in the vertical type, and the electrode and water are in side contact. The gravity of the water is downward and the side contact causes frictional contact of the electrode and water during the electrolysis process, and the generated ozone body flows upward in the frictional water area, resulting in fluid turbulence and loss. Moreover, it is difficult to increase the volume of this type of electrolytic cell, and the amount of raw water is reduced. In addition, in order to control the temperature rise due to loss caused by friction and turbulent flow, measures such as cooling by circulating external cooling water must be taken. The disadvantages present in this structure are as follows.

(1)オゾンは強酸化剤であるため、過電流部品はすべて耐腐食性が強い材料を採用しなければならず、多くはチタン合金、ステンレス316以上などの金属材料、またはポリテトラフルオロエチレンPTFE、PFAなどの樹脂材料である。部品およびパーツが多く、接続部分も多く、材料間の接続が難しいため、コストがかなり高くなる。複雑な構造により給水、液面、温度など制御システムが複雑化し、ユーザの管理、操作、メンテナンスなどの難度も増大し、これにより、応用が限定される。   (1) Since ozone is a strong oxidant, all overcurrent components must be made of highly corrosion-resistant materials, many of which are metal materials such as titanium alloys, stainless steel 316 or higher, or polytetrafluoroethylene PTFE. , PFA and other resin materials. Since there are many parts and parts, there are many connecting parts, and it is difficult to connect materials, the cost is considerably high. The complicated structure complicates the control system such as water supply, liquid level, and temperature, and increases the difficulty of user management, operation, maintenance, etc., thereby limiting the application.

(2)その工程が制限され、一旦電力供給が中断すると、陽極触媒層のβ−PbO極は容易に還元劣化し、再起動時に一定の電流効率および濃度に達するのに要する時間が長くなる。このため一旦通電した後、電力供給を中断してはならず、装置に蓄電池または緊急予備電源を配備する必要があり、そのため使用および普及が難しい。 (2) Once the process is limited and power supply is interrupted, the β-PbO 2 electrode of the anode catalyst layer is easily reduced and deteriorated, and it takes a long time to reach a constant current efficiency and concentration at the time of restart. . For this reason, once the power is turned on, the power supply must not be interrupted, and a storage battery or emergency standby power supply must be provided in the device, which makes it difficult to use and disseminate.

(3)オゾン発生器自体のオゾン濃度を調節することができず、オゾン濃度を高くする必要がないとき、空気ポンプで空気を充填して希釈することにより、濃度を低下させる必要がある。オゾン発生器の電力消費が高い以外に、空気ポンプの消費および部品が壊れやすい潜在的な危険が増加する。   (3) When the ozone concentration of the ozone generator itself cannot be adjusted and it is not necessary to increase the ozone concentration, it is necessary to reduce the concentration by filling the air with an air pump for dilution. Besides the high power consumption of the ozone generator, the consumption of air pumps and the potential danger of fragile parts increases.

(4)陽極は10Ωcm以上の超純水を必要とし、この条件により、オゾン発生器の応用が制限され、超純水を得ることができない環境で応用することができない。 (4) The anode requires ultrapure water of 10 6 Ωcm or more, and this condition limits the application of the ozone generator and cannot be applied in an environment where ultrapure water cannot be obtained.

(5)オゾン発生器は消耗品であり、一定寿命まで使用すると交換する必要がある。しかしながら、複雑な接続構造のためユーザは簡単で、安全な取外しおよび交換を行うことができず、一定の操作条件および技術の下、交換する必要がある。これも応用を困難にしている。   (5) The ozone generator is a consumable item and needs to be replaced if it is used for a certain period of time. However, due to the complex connection structure, the user cannot easily perform safe removal and replacement, and needs to be replaced under certain operating conditions and techniques. This also makes application difficult.

人体の抗酸化、老化および各種疾病に対する水素の有効性は、早くは20世紀から認識されてきた。ここ数年、日本の医学専門家が人体の健康に対する水素の働きのメカニズムを理論的に解析することに成功し、センセーションを巻き起こしている。それぞれの角度から日常的な健康の維持、疾病予防および臨床治療における水素の医学的効果を研究し、急速に展開している。人体が水素を受容する経路は、主に水素の吸入および水素含有水の飲用があり、水素水を注射する報告もある。水素は自然界に大量に存在する物質であるが、人々は日常生活においてそれを得ることはできない。現在、多くの水素および水素水商品が次々と市場に登場しているが、その信頼度および価格により人々に敬遠されている。   The effectiveness of hydrogen against human antioxidants, aging and various diseases has been recognized since the 20th century. In recent years, Japanese medical professionals have succeeded in theoretically analyzing the mechanism of the action of hydrogen on human health, creating a sensation. Researching the medical effects of hydrogen in daily health maintenance, disease prevention and clinical treatment from various angles, we are developing rapidly. The human body receives hydrogen mainly through inhalation of hydrogen and drinking of hydrogen-containing water, and there are reports of injecting hydrogen water. Hydrogen is a substance that exists in large quantities in nature, but people cannot get it in their daily lives. Currently, many hydrogen and hydrogen water products are appearing on the market one after another, but they are shunned by their reliability and price.

本考案の実施例の第1の目的は水電解装置を提供することであり、水をオゾン、オゾン水、水素および水素含有水に分解することができる。構造が簡単で、エネルギー消費が比較的小さく、コストが比較的低く、幅広く応用することができる。   The first object of the embodiment of the present invention is to provide a water electrolysis device, which can decompose water into ozone, ozone water, hydrogen and hydrogen-containing water. Simple structure, relatively low energy consumption, relatively low cost, can be widely applied.

上記の目的を実現するため、本考案の技術案は以下の通りである。   In order to achieve the above object, the technical solution of the present invention is as follows.

水電解装置は、電解ユニット、水タンク、気液混合器、気液分離器、電源を含む。   The water electrolysis apparatus includes an electrolysis unit, a water tank, a gas-liquid mixer, a gas-liquid separator, and a power source.

前述した電解ユニットは筐体を含み、前記筐体の頂部に取水口が設けられ、前記取水口の下側に、上から下まで順番につながり、水平方向に設置される陽極チタン給電有孔板、β−PbO陽極触媒板、固体高分子電解質膜、Pt/C陰極触媒板、陰極チタン給電有孔板、陰極集水槽が設けられる。前述したβ−PbO陽極触媒板、Pt/C陰極触媒板は、それぞれβ−PbO陽極触媒電極および多孔チタン板、Pt/C陰極触媒電極および多孔チタン板が一体に加圧製造されたものである。前記陽極チタン給電有孔板、β−PbO陽極触媒板、固体高分子電解質膜、Pt/C陰極触媒板、陰極チタン給電有孔板、陰極集水槽をボルトで締め付けることにより、電解モジュール全体が締め付けられる。前述した陰極集水槽に水素水排出管が設けられる。 The above-described electrolysis unit includes a casing, and is provided with a water intake at the top of the casing, and is connected to the lower side of the water intake in order from top to bottom, and is installed in a horizontal direction. , Β-PbO 2 anode catalyst plate, solid polymer electrolyte membrane, Pt / C cathode catalyst plate, cathode titanium feed perforated plate, cathode water collecting tank. The β-PbO 2 anode catalyst plate and the Pt / C cathode catalyst plate described above are obtained by integrally pressing the β-PbO 2 anode catalyst electrode and the porous titanium plate, the Pt / C cathode catalyst electrode and the porous titanium plate, respectively. It is. By tightening the anode titanium-feed perforated plate, β-PbO 2 anode catalyst plate, solid polymer electrolyte membrane, Pt / C cathode catalyst plate, cathode titanium-feed perforated plate, and cathode water collecting tank, the entire electrolytic module is Tightened. The cathode water collection tank described above is provided with a hydrogen water discharge pipe.

前記水タンクの底部に、前記筐体の取水口と互いに適合、接続する咬合接続部が設けられ、前記水タンクの頂部にオゾン排出管、水補給口が設けられ、前記水タンクのタンク体にオゾン水排出口が設けられる。   The bottom of the water tank is provided with an occlusal connection that fits and connects with the water intake of the housing, and an ozone discharge pipe and a water supply port are provided at the top of the water tank. An ozone water outlet is provided.

前記気液混合器はオゾンおよび水を混合する混合器容器を含み、前記混合器容器にオゾン入口、取水口、オゾン水出口が設けられる。前記オゾン入口および前記水タンクのオゾン排出管は互いに接続し、前記取水口は外部の使用する水源に接続される。   The gas-liquid mixer includes a mixer container for mixing ozone and water, and the mixer container is provided with an ozone inlet, a water intake, and an ozone water outlet. The ozone inlet and the ozone discharge pipe of the water tank are connected to each other, and the water intake is connected to an external water source.

前記気液分離器は水素および水を分離する分離器容器を含み、前記分離器容器に水素水入口、排水口、水素放出管が設けられる。前記水素水入口および前記電解ユニットの水素水排出管は互いに接続する。   The gas-liquid separator includes a separator container for separating hydrogen and water, and the separator container is provided with a hydrogen water inlet, a drain port, and a hydrogen discharge pipe. The hydrogen water inlet and the hydrogen water discharge pipe of the electrolysis unit are connected to each other.

前記電源の正極および陽極チタン給電有孔板は互いに接続し、前記電源の負極および陰極チタン給電有孔板は互いに接続する。   The positive electrode and the anode titanium feeding perforated plate of the power source are connected to each other, and the negative electrode and the cathode titanium feeding perforated plate of the power source are connected to each other.

好ましい構造として、本考案の前記水タンクの頂部は固定されておらず、上蓋が設けられ、前述したオゾン排出管、水補給口は上蓋に設置される。前述したオゾン排出管にさらにオゾン利用口、オゾン分解器、オゾン漏れ保護バルブが設けられ、前記オゾン分解器はオゾンを酸素に還元する。前記水タンクの上蓋にさらに液面計、温度センサーが設けられる。前記気液混合器のオゾン入口および取水口に、それぞれノズルが設けられる。前記水素放出管に、さらに水素利用口および水素漏れ保護バルブが設けられる。   As a preferred structure, the top of the water tank of the present invention is not fixed and an upper cover is provided, and the ozone discharge pipe and the water supply port described above are installed on the upper cover. The ozone discharge pipe is further provided with an ozone utilization port, an ozone decomposer, and an ozone leakage protection valve, and the ozone decomposer reduces ozone to oxygen. A liquid level gauge and a temperature sensor are further provided on the upper lid of the water tank. Nozzles are respectively provided at the ozone inlet and the water intake of the gas-liquid mixer. The hydrogen discharge pipe is further provided with a hydrogen utilization port and a hydrogen leak protection valve.

好ましい改良構造として、本考案の前記電源は、濃度を制御する調節モジュール、オーバーロード保護モジュール、過熱保護モジュールおよび異常保護モジュールを含む。   As a preferred improved structure, the power source of the present invention includes an adjustment module for controlling the concentration, an overload protection module, an overheat protection module, and an abnormality protection module.

選択可能であるが、本考案の前記電解ユニットおよび水タンクの間はネジ山を通して接続され、前記電解ユニットの取水口に雌ネジが設けられ、前記水タンクの底部の咬合接続部に雄ネジが対応して設けられる。前記電解ユニットおよび水タンクの間は、受口に差し込むことにより咬合接続してもよい。   The electrolytic unit of the present invention and the water tank are connected through a screw thread, a female screw is provided at the water intake of the electrolytic unit, and a male screw is provided at the occlusal connection at the bottom of the water tank. Correspondingly provided. The electrolysis unit and the water tank may be occluded by being inserted into a receiving port.

好ましくは、本考案の前記陽極チタン給電有孔板、陰極チタン給電有孔板は均等に分布されたまっすぐな有孔板であり、前記孔の面積和は陽極チタン給電有孔板/陰極チタン給電有孔板の総面積の40%以上である。前記陽極チタン給電有孔板/陰極チタン給電有孔板の厚さは0.5mm以上である。   Preferably, the anode titanium feed perforated plate and the cathode titanium feed perforated plate of the present invention are straight perforated plates that are evenly distributed, and the total area of the holes is anode titanium feed perforated plate / cathode titanium feed. It is 40% or more of the total area of the perforated plate. The thickness of the anode titanium feed perforated plate / cathode titanium feed perforated plate is 0.5 mm or more.

上記から、既存技術と比較して、本考案が以下のような有益な効果を有することがわかる。   From the above, it can be seen that the present invention has the following beneficial effects as compared with the existing technology.

(1)本考案の電解ユニットの各板は水平方向に設置されるため、動作時、水タンク中の水が自然に落下して、陽極電極で直接作用し、電解して生成されたオゾン体は直接上昇する。電解ユニット内に摩擦力および気体の逆流により生じる損失は無く、電気エネルギーの消耗が減少し、オゾン濃度の上昇速度が向上する。このほか、水タンクのサイズは必要により大きくしても小さくしてもよく、水量が十分であれば、電極の触媒過程において産生される熱量を効果的に除去することができ、良好な冷却効果を発揮する。構造が簡単で、エネルギー消費が比較的小さく、コストが比較的低く、幅広く応用することができる。   (1) Since each plate of the electrolysis unit of the present invention is installed in a horizontal direction, the water in the water tank naturally falls during operation, and acts directly on the anode electrode, and the ozone body generated by electrolysis Rises directly. There is no loss caused by frictional force and back flow of gas in the electrolysis unit, the consumption of electric energy is reduced, and the rising rate of ozone concentration is improved. In addition, the size of the water tank may be increased or decreased as necessary. If the amount of water is sufficient, the amount of heat generated in the catalyst process of the electrode can be effectively removed, and a good cooling effect can be obtained. To demonstrate. Simple structure, relatively low energy consumption, relatively low cost, can be widely applied.

(2)本考案の電解ユニットおよび水タンクは相互に咬合し、電解ユニットは電球を換えるように取外しおよび取付を行うことができ、専門の工具を必要とせず、使用が非常に便利である。   (2) The electrolysis unit and the water tank of the present invention are engaged with each other, and the electrolysis unit can be removed and attached so as to change the light bulb, and does not require a specialized tool, and is very convenient to use.

(3)本考案は利用価値が非常に高く、得るのが難しい4種の物質を同時に生成することができる。すなわち、オゾンガス、オゾン水、水素ガスおよび水素含有水である。生成して得られた高純度オゾンガスの濃度は250mg/Lに達することができ、オゾン水濃度は64ppmに達することができる。電流1Aごとに約4ml/minの高濃度オゾン体および8ml/minの飽和水素を得ることができる。   (3) The present invention has a very high utility value and can simultaneously generate four kinds of substances that are difficult to obtain. That is, ozone gas, ozone water, hydrogen gas, and hydrogen-containing water. The concentration of the high purity ozone gas produced can reach 250 mg / L, and the ozone water concentration can reach 64 ppm. A high-concentration ozone body of about 4 ml / min and saturated hydrogen of 8 ml / min can be obtained for each current of 1 A.

ここで説明する付図は、本考案に対するさらなる理解を提供し、本出願の一部を構成するが、本考案に対して不適当な限定を行うものではない。   The accompanying drawings described herein provide a further understanding of the present invention and form part of the present application, but do not place undue limitations on the present invention.

図1は、本考案の考案を実施するための形態で提供される構造略図である。FIG. 1 is a schematic structural diagram provided in a mode for carrying out the invention. 図2は、本考案の考案を実施するための形態で提供される電解ユニットの構造略図である。FIG. 2 is a schematic structural diagram of an electrolysis unit provided in a mode for carrying out the idea of the present invention. 図3は、本考案の考案を実施するための形態で提供される水タンクの構造略図である。FIG. 3 is a schematic structural diagram of a water tank provided in a mode for carrying out the invention. 図4は、本考案の考案を実施するための形態で提供される気液混合器の構造略図である。FIG. 4 is a schematic structural diagram of a gas-liquid mixer provided in a mode for carrying out the idea of the present invention. 図5は、本考案の考案を実施するための形態で提供される気液分離器の構造略図である。FIG. 5 is a schematic structural diagram of a gas-liquid separator provided in a mode for carrying out the idea of the present invention. 図6は、本考案の考案を実施するための形態で提供される給電板の構造略図である。FIG. 6 is a schematic diagram of the structure of a power supply plate provided in a mode for carrying out the idea of the present invention.

以下に、付図および具体的実施例を組み合わせて本考案を詳細に説明する。ここで、本考案の概要的実施例および説明は本考案を詳しく説明するためのものであり、本考案に対する限定とみなさない。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings and specific examples. Here, the general embodiments and description of the present invention are for explaining the present invention in detail, and are not considered as limitations on the present invention.

図1から図6に示すのは、本考案で記載する水電解装置の実施例であり、これは電解ユニット1、水タンク2、気液混合器3、気液分離器4、電源5を含む。電解ユニット1は筐体10を含み、筐体10の頂部に取水口が設けられ、取水口の下側に上から下まで順番につながり、水平方向に設置される陽極チタン給電有孔板11、β−PbO陽極触媒板12、固体高分子電解質膜13、Pt/C陰極触媒板14、陰極チタン給電有孔板15、陰極集水槽17が設けられる。β−PbO陽極触媒板12、Pt/C陰極触媒板14は、それぞれβ−PbO陽極触媒電極および多孔チタン板、Pt/C陰極触媒電極および多孔チタン板が一体に加圧製造されたものである。陽極チタン給電有孔板11、β−PbO陽極触媒板12、固体高分子電解質膜13、Pt/C陰極触媒板14、陰極チタン給電有孔板15、陰極集水槽17をボルト18で締め付けることにより、電解モジュール全体が締め付けられる。陰極集水槽17に水素水排出管19が設けられる。水タンク2の底部に筐体10の取水口と互いに適合、接続する咬合接続部21が設けられ、水タンク2の頂部にオゾン排出管23、水補給口24が設けられ、水タンク2のタンク体にオゾン水排出口25が設けられる。気液混合器3はオゾンおよび水を混合する混合器容器31を含み、混合器容器31にオゾン入口32、取水口33、オゾン水出口34が設けられる。オゾン入口32および水タンク2のオゾン排出管23は互いに接続し、取水口33は外部の使用する水源に接続される。気液分離器4は水素および水を分離する分離器容器41を含み、分離器容器41に水素水入口42、排水口44、水素放出管43が設けられる。水素水入口42および電解ユニット1の水素水排出管19は互いに接続する。電源5の正極51および陽極チタン給電有孔板11は互いに接続し、電源5の負極52および陰極チタン給電有孔板15の陰極は互いに接続する。 1 to 6 show an embodiment of a water electrolysis apparatus described in the present invention, which includes an electrolysis unit 1, a water tank 2, a gas / liquid mixer 3, a gas / liquid separator 4, and a power source 5. . The electrolysis unit 1 includes a housing 10, and a water intake is provided at the top of the housing 10. The anode titanium feeding perforated plate 11 is connected to the lower side of the water intake in order from top to bottom, and is installed in the horizontal direction. A β-PbO 2 anode catalyst plate 12, a solid polymer electrolyte membrane 13, a Pt / C cathode catalyst plate 14, a cathode titanium feeding perforated plate 15, and a cathode water collection tank 17 are provided. The β-PbO 2 anode catalyst plate 12 and the Pt / C cathode catalyst plate 14 are obtained by integrally pressing a β-PbO 2 anode catalyst electrode and a porous titanium plate, and a Pt / C cathode catalyst electrode and a porous titanium plate, respectively. It is. Tightening the anode titanium feed perforated plate 11, β-PbO 2 anode catalyst plate 12, solid polymer electrolyte membrane 13, Pt / C cathode catalyst plate 14, cathode titanium feed perforated plate 15, and cathode water collecting tank 17 with bolts 18. Thus, the entire electrolytic module is tightened. A hydrogen water discharge pipe 19 is provided in the cathode water collecting tank 17. At the bottom of the water tank 2, an occlusal connection 21 that fits and connects with the water intake of the housing 10 is provided. At the top of the water tank 2, an ozone discharge pipe 23 and a water supply port 24 are provided. An ozone water discharge port 25 is provided in the body. The gas-liquid mixer 3 includes a mixer container 31 for mixing ozone and water, and the mixer container 31 is provided with an ozone inlet 32, a water intake 33, and an ozone water outlet 34. The ozone inlet 32 and the ozone discharge pipe 23 of the water tank 2 are connected to each other, and the water intake 33 is connected to an external water source to be used. The gas-liquid separator 4 includes a separator container 41 that separates hydrogen and water, and the separator container 41 is provided with a hydrogen water inlet 42, a drain outlet 44, and a hydrogen discharge pipe 43. The hydrogen water inlet 42 and the hydrogen water discharge pipe 19 of the electrolysis unit 1 are connected to each other. The positive electrode 51 of the power source 5 and the anode titanium feeding perforated plate 11 are connected to each other, and the negative electrode 52 of the power source 5 and the cathode of the cathode titanium feeding perforated plate 15 are connected to each other.

動作時、水タンク2の水は咬合接続部21を通過して電解ユニット1内に自然に落下し、水はオゾンおよび水素に電解される。このうちオゾンは水タンク2内に上昇し、水タンク2内の水は次第に高濃度飽和オゾン水となる。オゾンは水面から溢れてさらにオゾン排出管23およびオゾン入口32を通過して気液混合器3内に進入し、使用する水と連続して混合され、オゾン水出口34から中低濃度のオゾン水を得ることができる。電解産生された水素は陰極集水槽17内で水素水としてまとめられ、順次排出管19および水素水入口42を通過して気液分離器4に流入する。水素および水はこの中で絶えず分離され、水素は水素放出管43から排出される。分離されなかった水素を含有する水は排水口44から排出され、直接利用することができる。β−PbO陽極触媒板12、Pt/C陰極触媒板14は、それぞれβ−PbO陽極触媒電極および多孔チタン板、Pt/C陰極触媒電極および多孔チタン板が一体に加圧製造されたものであり、接触不良の隙間が存在することはなく、電気伝導のインピーダンスが減少し、電流の動作効率が向上する。β−PbO陽極触媒板12は化学法により製造され、劣化現象が起こることはなく、電力供給を中断した後再起動しても比較的短い時間内で正常動作に回復することができ、蓄電池または緊急予備電源を配備する必要がない。 In operation, the water in the water tank 2 passes through the occlusal connection 21 and falls naturally into the electrolysis unit 1, and the water is electrolyzed to ozone and hydrogen. Of these, ozone rises into the water tank 2, and the water in the water tank 2 gradually becomes highly concentrated saturated ozone water. Ozone overflows from the surface of the water, passes through the ozone discharge pipe 23 and the ozone inlet 32, enters the gas-liquid mixer 3, and is continuously mixed with the water to be used. Can be obtained. The electrolytically produced hydrogen is collected as hydrogen water in the cathode water collecting tank 17 and sequentially flows into the gas-liquid separator 4 through the discharge pipe 19 and the hydrogen water inlet 42. Hydrogen and water are constantly separated in this, and hydrogen is discharged from the hydrogen discharge pipe 43. The water containing hydrogen that has not been separated is discharged from the drain 44 and can be used directly. The β-PbO 2 anode catalyst plate 12 and the Pt / C cathode catalyst plate 14 are obtained by integrally pressing a β-PbO 2 anode catalyst electrode and a porous titanium plate, and a Pt / C cathode catalyst electrode and a porous titanium plate, respectively. Thus, there is no gap of poor contact, the electric conduction impedance is reduced, and the current operating efficiency is improved. The β-PbO 2 anode catalyst plate 12 is manufactured by a chemical method, does not cause a deterioration phenomenon, and can recover to a normal operation within a relatively short time even when the power supply is interrupted and restarted. Or there is no need to deploy emergency standby power.

本実施例において、水タンク2の頂部は固定されておらず、上蓋22が設けられ、オゾン排出管23、水補給口24は上蓋22に設置される。使用するとき、固定せずに設置した上蓋22は取り外すことができ、取付、修理が便利である。オゾン排出管23にオゾン利用口26、オゾン分解器27、オゾン漏れ保護バルブ28がさらに設けられる。オゾン分解器27はオゾンを酸素に還元し、オゾンを利用しないとき、オゾン漏れ保護バルブ28はその漏れを防止することができる。オゾンはオゾン分解器27に進入し、徹底的に酸素に還元された後、空気中に放出される。水タンク2の上蓋22にさらに液面計29、温度センサー20が設けられ、液面計29は水タンク2内の液面の高度を調節、制御することができる。気液混合器3のオゾン入口32および取水口33の合流部分にノズル34が設けられる。水素放出管43にさらに水素利用口45および水素漏れ保護バルブ46が設けられ、水素を利用しないとき、水素漏れ保護バルブ46は水素が漏れて外に流出するのを防止することができる。電源5は濃度を制御する調節モジュール、オーバーロード保護モジュール、過熱保護モジュールおよび異常保護モジュールを含む。電源5の動作性能および陰陽電極特性は相互に一致し、その出力動作効率を向上または低下させることにより、オゾン産生量の調節を実現することができ、さらには使用するオゾン水濃度を調節する目的を達する。電源5の過熱保護モジュールの作用は、電解ユニットが動作し、過熱するときに自動で電源を切断し、オーバーロード保護モジュールの作用は、運転出力が高すぎるとき電流および電圧を自動調節することができ、異常保護モジュールの作用は、電解ユニットの劣化または外部異常のとき電源を切断することができる。さらに、電源を切断後、自由に再起動することができ、蓄電池または緊急予備保護電源を配備する必要がない。   In the present embodiment, the top of the water tank 2 is not fixed, the upper lid 22 is provided, and the ozone discharge pipe 23 and the water supply port 24 are installed on the upper lid 22. When used, the upper lid 22 installed without being fixed can be removed, and attachment and repair are convenient. The ozone discharge pipe 23 is further provided with an ozone utilization port 26, an ozone decomposer 27, and an ozone leakage protection valve 28. The ozone decomposer 27 reduces ozone to oxygen, and when the ozone is not used, the ozone leak protection valve 28 can prevent the leak. Ozone enters the ozonolysis device 27 and is thoroughly reduced to oxygen and then released into the air. A liquid level gauge 29 and a temperature sensor 20 are further provided on the upper lid 22 of the water tank 2, and the liquid level gauge 29 can adjust and control the height of the liquid level in the water tank 2. A nozzle 34 is provided at the junction of the ozone inlet 32 and the water intake 33 of the gas-liquid mixer 3. The hydrogen discharge pipe 43 is further provided with a hydrogen use port 45 and a hydrogen leak protection valve 46. When hydrogen is not used, the hydrogen leak protection valve 46 can prevent hydrogen from leaking out. The power source 5 includes an adjustment module for controlling the concentration, an overload protection module, an overheat protection module, and an abnormality protection module. The operation performance and the yin and yang electrode characteristics of the power source 5 match each other, and the output production efficiency can be improved or decreased to achieve adjustment of the amount of ozone produced, and also to adjust the concentration of ozone water to be used Reach. The action of the overheat protection module of the power supply 5 is to automatically cut off the power supply when the electrolysis unit operates and overheats, and the action of the overload protection module can automatically adjust the current and voltage when the operation output is too high. The abnormality protection module can be turned off when the electrolysis unit is deteriorated or external abnormality occurs. Furthermore, it can be restarted freely after the power is turned off, and there is no need to provide a storage battery or emergency reserve protection power supply.

本実施例において、電解ユニット1および水タンク2の間はネジ山を採用して接続する。電解ユニット1の取水口に雌ネジ16が設けられ、水タンク2の底部の咬合接続部21に雄ネジが対応して設けられる。このように電解ユニット1は電球を換えるように取外しおよび取付を行うことができ、専門の工具を必要とせず、使用が非常に便利である。実際の動作時、電解ユニット1および水タンク2の間は、受口に差し込むことにより咬合接続してもよい。   In the present embodiment, the electrolytic unit 1 and the water tank 2 are connected by employing a screw thread. A female screw 16 is provided at the water intake of the electrolysis unit 1, and a male screw is provided corresponding to the occlusal connection portion 21 at the bottom of the water tank 2. Thus, the electrolysis unit 1 can be removed and attached so as to change the light bulb, does not require a specialized tool, and is very convenient to use. During actual operation, the electrolysis unit 1 and the water tank 2 may be occluded by being inserted into a receiving port.

全体の安定性を高めるため、本実施例において、陽極チタン給電有孔板11、陰極チタン給電有孔板15は均等に分布されたまっすぐな有孔板であり、孔の面積和は陽極チタン給電有孔板11/陰極チタン給電有孔板15の総面積の40%以上である。陽極チタン給電有孔板11/陰極チタン給電有孔板15の厚さは0.5mm以上である。このように装置全体の安定性を高めることができ、温度上昇の制御もより容易である。   In order to improve the overall stability, in this embodiment, the anode titanium feed perforated plate 11 and the cathode titanium feed perforated plate 15 are straight perforated plates that are evenly distributed, and the total area of the holes is the anode titanium feed perforated plate. It is 40% or more of the total area of the perforated plate 11 / cathode titanium feeding perforated plate 15. The thickness of the anode titanium feeding perforated plate 11 / cathode titanium feeding perforated plate 15 is 0.5 mm or more. In this way, the stability of the entire apparatus can be improved, and the temperature rise can be controlled more easily.

本考案は必要な容量および濃度に基づき、各種異なる大きさの装置を作製することができ、単相直流電流および飲料グレードの純水を得ることができさえすれば、コンセントに差し込みすぐに使用することを実現することができる。工業に幅広く応用することができるだけでなく、家庭、事業所、役所、学校、歯科、医療および公共の場所への幅広い普及、提供が可能である。本考案の技術を利用して家庭で使用する小型機器を開発した場合、その電気消費量はわずか約25Wであり、動作により消費する原料水量は約25cc/hである。水道水を使用して濃度が約250mg/Lに達するオゾンと混合し、流量が約1.5L/min、濃度が約4ppmのオゾン水を絶えず得ることができる。果物、野菜、水産製品、まな板、刃物類、食器、タオルなどの洗浄に用いることができる以外に、果物、野菜および水産物、生肉などを浸漬して表面の付着物を取り除き、品質保持および保存期間を延長する効果を達することもでき、さらに手洗い、うがい、洗足、洗髪などに使用することもできる。少量の高濃度オゾン水を直接取り、室内、ごみ箱、汚染物質排出口などに噴霧して空気の浄化、脱臭、滅菌などの作用を発揮することもできる。微量のオゾン体を直接利用し、さらに細菌、ウイルスの流行時に家庭、役所、学校および公共の場所などにおける伝染病の蔓延を予防することができる。同時に調製した水素および水素含有水も利用することができ、人体の老化を防止し、日常の健康を保つ。   Based on the required capacity and concentration, the present invention can be used in various sizes of equipment, and if it can obtain single-phase DC current and beverage-grade pure water, it can be plugged into an outlet and used immediately. Can be realized. Not only can it be applied to a wide range of industries, it can be widely spread and provided to homes, offices, government offices, schools, dentistry, medical and public places. When a small device used at home is developed using the technology of the present invention, the electricity consumption is only about 25 W, and the amount of raw water consumed by the operation is about 25 cc / h. Tap water can be mixed with ozone reaching a concentration of about 250 mg / L, and ozone water having a flow rate of about 1.5 L / min and a concentration of about 4 ppm can be obtained continuously. In addition to being used for washing fruits, vegetables, marine products, cutting boards, cutlery, tableware, towels, etc., fruits, vegetables and marine products, raw meat, etc. are soaked to remove surface deposits and maintain quality and shelf life Can be used for hand washing, gargle, foot washing, hair washing, and the like. A small amount of high-concentration ozone water can be directly taken and sprayed on indoors, trash cans, pollutant outlets, etc., to exert actions such as air purification, deodorization, and sterilization. A small amount of ozone can be used directly, and it is possible to prevent the spread of infectious diseases in households, government offices, schools and public places during the outbreak of bacteria and viruses. At the same time, hydrogen and hydrogen-containing water prepared can be used to prevent aging of the human body and maintain daily health.

以上、本考案の実施例で提供される技術案に対して詳細な説明を行った。本文中、具体例を使用し、本考案の実施例の原理および実施方式について詳しく述べたが、以上の実施例の説明は、本考案について、実施例の原理の理解を助けるために適用しただけである。同時に、当業者は本考案の実施例に基づき、考案を実施するための形態および応用範囲において変更を行うことができる。以上をまとめると、本明細書の内容は本考案に対する制限であると理解するべきではない。   The technical proposal provided in the embodiments of the present invention has been described in detail above. In the text, specific examples were used to describe the principles and implementation methods of the embodiments of the present invention in detail. However, the above description of the embodiments was applied to the present invention only to help understand the principles of the embodiments. It is. At the same time, those skilled in the art can make changes in the form and application range for carrying out the invention based on the embodiments of the present invention. In summary, the contents of this specification should not be understood as a limitation on the present invention.

Claims (10)

電解ユニット、水タンク、気液混合器、気液分離器、電源を含む水電解装置であって、
前述した電解ユニットが筐体を含み、前記筐体の頂部に取水口が設けられ、前記取水口の下側に、上から下まで順番につながり、水平方向に設置される陽極チタン給電有孔板、β−PbO陽極触媒板、固体高分子電解質膜、Pt/C陰極触媒板、陰極チタン給電有孔板、陰極集水槽が設けられ、前記β−PbO陽極触媒板、Pt/C陰極触媒板は、それぞれβ−PbO陽極触媒電極および多孔チタン板、Pt/C陰極触媒電極および多孔チタン板が一体に加圧製造されたものであり、前記陽極チタン給電有孔板、β−PbO陽極触媒板、固体高分子電解質膜、Pt/C陰極触媒板、陰極チタン給電有孔板、陰極集水槽をボルトで締め付けることにより、電解モジュール全体が締め付けられ、前述した陰極集水槽に水素水排出管が設けられ、
前記水タンクの底部に前記筐体の取水口と互いに適合、接続する咬合接続部が設けられ、前記水タンクの頂部にオゾン排出管、水補給口が設けられ、前記水タンクのタンク体にオゾン水排出口が設けられ、
前記気液混合器がオゾンおよび水を混合する混合器容器を含み、前記混合器容器にオゾン入口、取水口、オゾン水出口が設けられ、前記オゾン入口および前記水タンクのオゾン排出管が互いに接続し、前記取水口が外部の使用する水源に接続され、
前記気液分離器が水素および水を分離する分離器容器を含み、前記分離器容器に水素水入口、排水口、水素放出管が設けられ、前記水素水入口および前記電解ユニットの水素水排出管が互いに接続し、
前記電源の正極および陽極チタン給電有孔板が互いに接続し、前記電源の負極および陰極チタン給電有孔板が互いに接続する、
水電解装置。
A water electrolysis device including an electrolysis unit, a water tank, a gas-liquid mixer, a gas-liquid separator, and a power source,
The above-mentioned electrolysis unit includes a housing, a water intake is provided at the top of the housing, and is connected to the lower side of the water intake in order from the top to the bottom, and is installed in a horizontal direction. , Β-PbO 2 anode catalyst plate, solid polymer electrolyte membrane, Pt / C cathode catalyst plate, cathode titanium feed perforated plate, cathode water collecting tank, β-PbO 2 anode catalyst plate, Pt / C cathode catalyst The plates were obtained by integrally pressing a β-PbO 2 anode catalyst electrode and a porous titanium plate, a Pt / C cathode catalyst electrode and a porous titanium plate, respectively, and the anode titanium-feed perforated plate, β-PbO 2 By tightening the anode catalyst plate, solid polymer electrolyte membrane, Pt / C cathode catalyst plate, cathode titanium-feed perforated plate, and cathode water collecting tank with bolts, the entire electrolysis module is tightened, and hydrogen water is discharged into the cathode water collecting tank described above. Tube provided It is,
The bottom of the water tank is provided with an occlusal connection that fits and connects with the water intake of the housing, an ozone discharge pipe and a water supply port are provided at the top of the water tank, and the tank body of the water tank has ozone. A water outlet is provided,
The gas-liquid mixer includes a mixer container for mixing ozone and water, and the mixer container is provided with an ozone inlet, a water inlet, and an ozone water outlet, and the ozone inlet and the ozone discharge pipe of the water tank are connected to each other The water intake is connected to an external water source,
The gas-liquid separator includes a separator container for separating hydrogen and water, and the separator container is provided with a hydrogen water inlet, a drain outlet, and a hydrogen discharge pipe, and the hydrogen water inlet and the hydrogen water discharge pipe of the electrolysis unit Connected to each other
The positive and negative titanium feed perforated plates of the power supply are connected to each other, and the negative and negative titanium feed feeders of the power source are connected to each other;
Water electrolyzer.
前記水タンクの頂部が固定されておらず、上蓋が設けられ、前述したオゾン排出管、水補給口が上蓋に設置される、請求項1に記載の水電解装置。   The water electrolysis apparatus according to claim 1, wherein a top portion of the water tank is not fixed, an upper lid is provided, and the ozone discharge pipe and the water supply port are installed in the upper lid. 前述したオゾン排出管にさらにオゾン利用口、オゾン分解器、オゾン漏れ保護バルブが設けられ、前記オゾン分解器がオゾンを酸素に還元する、請求項1に記載の水電解装置。   The water electrolysis apparatus according to claim 1, wherein the ozone discharge pipe is further provided with an ozone utilization port, an ozone decomposer, and an ozone leakage protection valve, and the ozone decomposer reduces ozone to oxygen. 前記水タンクの上蓋にさらに液面計、温度センサーが設けられる、請求項2に記載の水電解装置。   The water electrolysis apparatus according to claim 2, wherein a liquid level gauge and a temperature sensor are further provided on an upper lid of the water tank. 前記気液混合器のオゾン入口および取水口にそれぞれノズルが設けられる、請求項1に記載の水電解装置。   The water electrolysis apparatus according to claim 1, wherein nozzles are respectively provided at an ozone inlet and a water intake of the gas-liquid mixer. 前述した水素放出管にさらに水素利用口および水素漏れ保護バルブが設けられる、請求項1に記載の水電解装置。   The water electrolysis apparatus according to claim 1, wherein the hydrogen discharge pipe is further provided with a hydrogen use port and a hydrogen leak protection valve. 前述した電源に濃度を制御する調節モジュール、オーバーロード保護モジュール、過熱保護モジュール、および異常保護モジュールが設けられる、請求項1に記載の水電解装置。   The water electrolysis apparatus according to claim 1, wherein the power source includes an adjustment module that controls concentration, an overload protection module, an overheat protection module, and an abnormality protection module. 前記電解ユニットおよび水タンクの間がネジ山を通して接続され、前記電解ユニットの取水口に雌ネジが設けられ、前記水タンクの底部の咬合接続部に雄ネジが対応して設けられる、請求項1に記載の水電解装置。   The electrolysis unit and the water tank are connected through a screw thread, a female screw is provided at a water intake port of the electrolysis unit, and a male screw is provided corresponding to an occlusal connection portion at the bottom of the water tank. The water electrolysis apparatus according to 1. 前記電解ユニットおよび水タンクの間が、受口に差し込むことにより咬合接続される、請求項1に記載の水電解装置。   The water electrolysis apparatus according to claim 1, wherein the electrolysis unit and the water tank are occluded by being inserted into a receiving port. 前記陽極チタン給電有孔板、陰極チタン給電有孔板が均等に分布されたまっすぐな有孔板であり、前記孔の面積和が陽極チタン給電有孔板/陰極チタン給電有孔板の総面積の40%以上であり、前記陽極チタン給電有孔板/陰極チタン給電有孔板の厚さが0.5mm以上である、請求項1に記載の水電解装置。   The anode titanium-fed perforated plate and the cathode titanium-fed perforated plate are straight perforated plates, and the total area of the holes is the total area of the anode titanium-fed perforated plate / cathode titanium-fed perforated plate The water electrolysis apparatus according to claim 1, wherein the thickness of the anode titanium-feed perforated plate / cathode titanium feed perforated plate is 0.5 mm or more.
JP2013600027U 2010-06-22 2011-06-27 Water electrolyzer Expired - Lifetime JP3185328U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010202356357U CN201746592U (en) 2010-06-22 2010-06-22 Water electrolysis device
PCT/CN2011/001061 WO2011160446A1 (en) 2010-06-22 2011-06-27 Water electrolytic device

Publications (1)

Publication Number Publication Date
JP3185328U true JP3185328U (en) 2013-08-15

Family

ID=43581271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013600027U Expired - Lifetime JP3185328U (en) 2010-06-22 2011-06-27 Water electrolyzer

Country Status (3)

Country Link
JP (1) JP3185328U (en)
CN (1) CN201746592U (en)
WO (1) WO2011160446A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035099A (en) * 2014-07-31 2016-03-17 ソルコ バイオメディカル シーオー.,エルティーディー. Hydrogen generation unit for producing hydrogen water

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295326B (en) * 2010-06-22 2012-11-28 刘迅 Water electrolysis device
CN102899685B (en) * 2012-09-12 2017-06-16 金华市广源环保科技有限公司 Low-voltage electrolysis formula Ozone generator module negative and positive electrode catalyst and preparation method thereof
CN106044992A (en) * 2016-07-01 2016-10-26 张晟源 Intelligent hydrogen-rich thermal spring water preparation device
CN107130257A (en) * 2017-06-23 2017-09-05 深圳市好美水科技开发有限公司 One kind inhales hydrogen machine
CN109896592A (en) * 2017-12-07 2019-06-18 福建金源泉科技发展有限公司 A kind of hydrogen-rich weak base direct drinking fountain
CN110512227B (en) * 2018-05-21 2024-08-06 苏州鼎德电环保科技有限公司 Electrocatalytic discharge reactor, hydrogen production system and hydrogen production method
CN108531934A (en) * 2018-05-30 2018-09-14 赵婧雯 The radiator of electrolysis type ozone generator
CN111206265B (en) * 2018-11-21 2021-06-04 元智大学 Air-water circulating system and multifunctional water electrolysis device thereof
CN111172554A (en) * 2020-02-13 2020-05-19 杭州顺鑫环境科技有限公司 Low-voltage electrolytic active oxygen hydrogen-rich generating device
EP4252888A1 (en) * 2022-03-31 2023-10-04 Estech A/S Electrolytic regeneration of amine based co2 absorbent
CN115448423B (en) * 2022-08-26 2023-12-22 大连东道尔膜技术有限公司 Electrocatalytic waste water hardness removal device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100190A (en) * 1986-10-16 1988-05-02 Sasakura Eng Co Ltd Electrolytic device for generating gas
JP3048612B2 (en) * 1990-09-06 2000-06-05 ペルメレック電極株式会社 Electrolytic ozone generator
JP3297250B2 (en) * 1995-06-15 2002-07-02 三菱重工業株式会社 Electrolytic ozone generator
TW401373B (en) * 1997-03-07 2000-08-11 Univ Wuhan Electrolytic ozone generating apparatus
JP2001104995A (en) * 1999-10-07 2001-04-17 Teeiku Wan Sogo Jimusho:Kk Electrolytic ozone forming method, electrolytic ozone forming apparatus and ozone water making apparatus
CN2431290Y (en) * 2000-07-04 2001-05-23 胡柏 Generator for producing ozone by electrolyzing process
CN2431291Y (en) * 2000-07-11 2001-05-23 上海奥赛科技有限公司 Generator for producing large flow of ozone water
HUP0501204A2 (en) * 2005-12-23 2007-07-30 Thales Rt Ozone generating electrolytic cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035099A (en) * 2014-07-31 2016-03-17 ソルコ バイオメディカル シーオー.,エルティーディー. Hydrogen generation unit for producing hydrogen water

Also Published As

Publication number Publication date
WO2011160446A1 (en) 2011-12-29
CN201746592U (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP3185328U (en) Water electrolyzer
CN102295326B (en) Water electrolysis device
US6458257B1 (en) Microorganism control of point-of-use potable water sources
JP5544181B2 (en) Electrochemical synthesis of ozone fine bubbles
TW201207014A (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
US20030209447A1 (en) Generation and delivery device for ozone gas and ozone dissolved in water
CN101608317A (en) Ozone generation device
CN1168674C (en) Microoganism control of point-of-use potable water sources
CN105002517A (en) Ozone generating electrode, anode production process and ozone generator
CN104609532B (en) Method for removing PPCPs in treatment process of drinking water
CN102465311B (en) Preparing system and method of sodium hypochlorite
CN101531411A (en) Method for electrochemically disinfecting gas diffusion electrode system
TWM559893U (en) Hydrogen-rich kettle electrolysis device
CN107512760A (en) Electrolytic cell device of synchronous electricity life ozone and hydrogen peroxide and preparation method thereof, application
CN108815540B (en) Ozone disinfection device for medical instruments
JP6341410B2 (en) Gas dissolved water generator
KR100958677B1 (en) High efficient un-divided electrochemical cell and apparatus for manufacturing of chlorine dioxide using it
KR100634760B1 (en) Apparatus for producing sterilizing and oxidizing water by electrolysis cell used overpotential electrode
KR101679790B1 (en) Antibacterial and hydrogen generator for water purifier
TW200932956A (en) Configurable ozone generators
CN207130343U (en) A kind of electrolytic ozone generator that can add electrolyte automatically
KR200439134Y1 (en) Apparatus for Generating Oxygen Gas
CN1136090A (en) Process of electrochemical oxygen generation by cathode and its oxygen generating box
CN205803201U (en) A kind of heterogeneous electroxidation processes the equipment of degradation water
JP2014113549A (en) Ozone water generator

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3185328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term