JP4055049B2 - Pre-preg for non-halogen printed wiring board and its use - Google Patents

Pre-preg for non-halogen printed wiring board and its use Download PDF

Info

Publication number
JP4055049B2
JP4055049B2 JP2002028359A JP2002028359A JP4055049B2 JP 4055049 B2 JP4055049 B2 JP 4055049B2 JP 2002028359 A JP2002028359 A JP 2002028359A JP 2002028359 A JP2002028359 A JP 2002028359A JP 4055049 B2 JP4055049 B2 JP 4055049B2
Authority
JP
Japan
Prior art keywords
parts
weight
resin
prepreg
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002028359A
Other languages
Japanese (ja)
Other versions
JP2003229647A (en
Inventor
広志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2002028359A priority Critical patent/JP4055049B2/en
Publication of JP2003229647A publication Critical patent/JP2003229647A/en
Application granted granted Critical
Publication of JP4055049B2 publication Critical patent/JP4055049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プリント配線板等の電気絶縁材料に使用する、非ハロゲン系のポリイミド樹脂系プリプレグの製造方法及びその用途に関する。
【0002】
【従来の技術】
通常、ポリイミド樹脂積層板は、ポリイミド樹脂組成物のワニス溶液をガラス布に含浸し、硬化させてBステージ化したプリプレグを積層し、加熱加圧して製造されている。
【0003】
ポリイミド樹脂は、エポキシ樹脂に比べるとガラス転移温度(以下、Tgと略す)が高いため、これを用いた積層板はスルーホール信頼性等に優れている。その反面、積層時の硬化温度をエポキシ樹脂系よりも高く設定する必要があり、積層作業効率が悪いという欠点がある。また、ポリイミド樹脂は硬くて脆いため、エポキシ樹脂を用いた積層板に比べてドリル加工性等が劣る傾向にある。そのため、プリント配線板にポリイミド樹脂組成物を使用する場合、改質剤としてエポキシ樹脂を配合し、積層性やドリル加工性を向上することが多い。
【0004】
また、従来、ポリイミド樹脂組成物に難燃性を付与するため、臭素等のハロゲン元素を含有する樹脂を使用していた。特に、前述のようにエポキシ樹脂を配合することが多いため、ハロゲン化したエポキシ樹脂を用いたり、テトラブロモビスフェノールAやそのグリシジルエーテル化物のような難燃樹脂を用いることが多かった。
【0005】
ところが、ポリイミド樹脂組成物を用いた積層板は、エポキシ樹脂積層板に比べて吸湿処理時の吸水率が大きい傾向にあり、その結果、基板はんだ耐熱性が不充分になってしまう。また、樹脂組成物中のハロゲン元素は、マイグレーションやトラッキング性等の電気的信頼性を低下させる一因であり、更に近年では環境問題に対する関心が高まったこともあり、燃焼時にダイオキシン等の有害物質を発生させる原因となるハロゲン元素を含まない非ハロゲン系の材料が求められている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、ハロゲン元素を用いず、難燃性を有し、Tgが高く、耐熱性に優れ、環境問題に対応したポリイミド樹脂系プリント配線板用プリプレグ及びその用途を提供することである。
【0007】
【課題を解決するための手段】
本発明は、プリント配線板用プリプレグであって、(a)ポリイミド樹脂プレポリマー;(b)水酸化アルミニウムを有機樹脂固形分100重量部あたり50〜150重量部;及び(c)末端に水酸基と反応する官能基を1個以上有し、かつ炭化水素基として炭素数6〜12のアリール基を少なくとも1個以上有する有機シランを有機樹脂固形分100重量部あたり0.005〜15重量部全有機樹脂固形分中の窒素含有量が、5重量%以上でハロゲン元素を含有しない熱硬化性樹脂ワニスから得られたことを特徴とする、プリント配線板用のガラス基材ポリイミド樹脂プリプレグに関する。
【0008】
【発明の実施の形態】
本発明に用いる(a)ポリイミド樹脂プレポリマーは、テトラカルボン酸の無水物、ジイミド又はモノイミド(以下、テトラカルボン酸の無水物等と略す)とジアミンとを反応させて得ることができる。慣用の方法を用いて、反応させることができ、上市品を用いることもできる。線状ポリイミドが好ましい。テトラカルボン酸の無水物等としては、マレイン酸、トリメリト酸、ピロメリト酸、ビス(3,4−ジカルボキシフェニル)エーテル等の無水物、ジイミド又はモノイミドが挙げられる。テトラカルボン酸ジイミドが好ましく、ビスマレイミドが特に好ましい。
【0009】
ビスマレイミドとしては、分子内にマレイミド基を2個含有する化合物で、ハロゲン元素を含まないものであれば、特に制限されない。例えば、マレイン酸N,N’−エチレン−ビスイミド、マレイン酸N,N’−ヘキサメチレン−ビスイミド、マレイン酸N,N’−メタフェニレン−ビスイミド、マレイン酸N,N’−4,4’−ジフェニルメタン−ビスイミド(N,N’−メチレンビス(−N−フェニルマレイミドともいう)、マレイン酸N,N’−4,4’−ジフェニルエーテル−ビスイミド、マレイン酸N,N’−4,4’−ジフェニルスルホン−ビスイミド、4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン−ビスイミド、マレイン酸4,4’−メチレン−ジ−2,6−ジイソプロピルアニリン−ビスイミド等が挙げられ、これらを単独あるいは併用して使用することができる。
【0010】
本発明に用いるジアミンとしては、分子内にアミノ基を2個含有する化合物であり、ハロゲン元素を含まないものであれば、特に制限されない。例えば、4,4’−ジアミノジシクロヘキシルメタン、3,3’−ジメチル−4,4’−ジアミノジシクロヘキシルメタン、1,4−ジアミノシクロヘキサン、2,6−ジアミノピリジン、メタフェニレンジアミン、4,4’−ジアミノジフェニルメタン、ビス(4−アミノフェニル)プロパン、4,4’−ジアミノジフェニルスルホン、1,3−ビス(2−p−アニリノプロピリデン)ベンゼン、1,4−ビス(2−p−アニリノプロピリデン)ベンゼン、4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン、ジシアンジアミド、アセトグアナミン、ベンゾグアナミン、m−トルイレンジアミン、2,4−ジアミノ−6−(2’−ウンデシルイミダゾリル−(1’)−)エチル−S−トリアジン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、ビス−4−(4−アミノフェノキシ)フェニルスルホン、ビス−4−(3−アミノフェノキシ)フェニルスルホン等が挙げられ、これらを単独あるいは併用して使用することができる。
【0011】
本発明によれば、ジアミンは、プレポリマー化及び硬化後の耐熱性と、硬化後のTgとの両方を考慮すると、テトラカルボン酸無水物等1モル当たりジアミン0.3〜1.2モルの比率で、テトラカルボン酸無水物等と反応させることが好ましく、0.5〜1.0モルの比率で反応させることがより好ましい。
【0012】
本発明で用いる(b)水酸化アルミニウムには、組成式Al ・3H Oで表されるギブサイト、バイヤライト若しくはノルドストランダイト、または、Al ・H Oで表されるベーマイト、ダイアスポアのいずれも用いることができる。また、これらの1種以上を混合して用いることもできる。製造コスト及びプリント配線板の難燃性を考慮すると、結晶水を分子内に多く有するギブサイト型が好ましい。
【0013】
また、(b)成分に含まれる不純物Na Oの含有率は、耐熱性を考慮すると0.2重量%未満であることが好ましい。(b)成分は、形状については特に制限されない。(b)成分は、市販されている水酸化アルミニウムを用いることができる。
【0014】
また、(b)成分に加えて、無機充填剤を任意に添加することができる。例えば、ボロン、カーボン、クレー、ガラス、炭酸カルシウム、タルク、アルミナ、シリカ、マイカ、酸化チタン、炭酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。ビーズ、粉末、繊維、粉砕品、ウィスカ、りん片等の形状で用いることができる。例えば、ホウ酸アルミニウム、炭化ケイ素のウィスカ、ガラスの単繊維等が挙げられる。
【0015】
(b)成分は、難燃効果の発現と塗工作業性、成形性、耐熱性、及びピール強度を考慮すると、有機樹脂成分100重量部当たり、50〜150重量部配合することが好ましく、70〜130重量部配合することがより好ましい。
【0016】
本発明に用いる(c)有機シランは、(b)水酸化アルミニウムの表面処理に加えて、任意に配合し得る(b)成分以外の無機充填剤の表面処理にも使用することができる。(c)成分は、ハロゲン元素を含まないもので、末端に水酸基と反応する官能基を1個以上有し、かつ炭化水素基として炭素数6〜12のアリール基を少なくとも1個以上有するものであり、その他、構造等は特に制限されない。
【0017】
本発明の(c)成分が末端に有する官能基としては、例えば、シラン類のヒドロキシル基、アルコール類のヒドロキシル基、カルボン酸類のカルボキシル基、ケトン類のカルボニル基等が挙げられる。炭素数1または2のアルコキシ基や、シラノール基等が好ましい。
【0018】
また、(c)成分の分子中の炭化水素基としては、炭素数6〜12のアリール基が2つ以上含まれているものが好ましく、炭素数6〜12のアリール基が3つ以上含まれているものがより好ましい。ここで、アリール基はアラルキル、アルカリルを含む。例えば、フェニル、トリル、ナフチル、ベンジル、クメニル、スチリル、フェネチル、キシリル、メシチル、シンナミル等が挙げられる。メチル基、エチル基等の炭化水素基のみを有する有機シランに比べ、分子量の大きなアリール基を1個以上有する(c)成分が水酸化アルミニウムの表面に付着した場合、水酸化アルミニウムの結晶水を脱水するのに必要な熱エネルギー量が増加する結果、水酸化アルミニウムの脱水温度は上昇して、水酸化アルミニウムの耐熱性を向上することが可能となる。
【0019】
(c)成分は、(b)成分の表面に付着させるため、耐熱性を考慮するとゲル状態ではないことが好ましく、付着むらが生じない状態が好ましい。本発明の(c)成分を(b)成分及び任意に配合し得る(b)成分以外の無機充填剤の表面に付着させる方法は、特に制限されない。(c)成分を直接添加する乾式法、有機溶媒等で希釈した処理液を用いる湿式法等が好ましい。熱硬化性樹脂ワニス中に配合して攪拌することによっても効果が得られる。
【0020】
(c)成分の配合量は、界面接着性及び耐熱性の両方を考慮すると、(b)成分及び他の充填材の総重量当たり、0.01〜10重量部が好ましく、1〜7重量部がより好ましい。また、有機樹脂固形分100重量部当たり、0.005〜15重量部が好ましく、0.5〜10.5重量部がより好ましい。
【0021】
本発明によれば、積層板特性の改質剤として、(d)非ハロゲン系エポキシ樹脂を配合することが好ましい。本発明の(d)成分は、分子内にエポキシ基を2個以上有し、かつハロゲン化されていない樹脂である。有機臭素化合物、有機塩素化合物、または無機塩素化合物等のハロゲン化物を実質的に含有しない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、多官能フェノールのグリシジルエーテル化物、多官能アルコールのグリシジルエーテル化物、これらの水素添加物等が挙げられる。これらを1種類以上併用することもできる。
【0022】
また、本発明によれば、(d)成分には、樹脂ワニスの硬化後のTgや耐熱性を改善するために、フェノール類とホルムアルデヒドの重縮合物のグリシジルエーテル化物を用いることが好ましい。このような樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等が挙げられ、これらは単独若しくは併用して用いることができる。
【0023】
本発明の(d)成分の配合量は、ドリル加工性とTg及び耐熱性との両方を考慮すると、(a)成分100重量部当たり、30〜150重量部が好ましく、50〜100重量部が好ましい。
【0024】
上記(a)、(b)、(c)及び(d)成分に加えて、本発明の目的を阻害しない範囲で、任意に、硬化促進剤、水酸化アルミニウム以外の充填剤、着色剤、酸化防止剤、還元剤、紫外線不透過剤等を加えることができる。特に無機充填剤は、難燃性を改善するのに効果がある。これらは、1種類を用いても2種類以上を併用しても良い。
【0025】
本発明において、全有機樹脂固形分の重量に対し、難燃性を考慮すると、窒素元素の含有率である窒素含有率が5重量%以上であることが好ましい。全有機樹脂固形分とは、(a)ポリイミド樹脂プレポリマー、(d)非ハロゲン系エポキシ樹脂、及びその他に配合した有機樹脂重量の合計量である。窒素含有率とはその合計量に対する窒素元素の含有率である。
【0026】
本発明によれば、上記(a)、(b)、(c)及び任意に(d)成分を溶剤中で配合して得たポリイミド樹脂ワニスをガラス基材に含浸させて、乾燥することによりプリプレグを得ることができる。慣用のプリプレグの製造方法を用いることができる。ここで使用するガラス基材の種類は特に制限されない。例えば、ガラス織布、ガラス不織布等が挙げられる。厚さ0.02〜0.4mmのものを、目的のプリプレグまたは積層板の厚さに合わせて使用することができる。ここで、含浸量は樹脂分として示されるが、樹脂分とは、プリプレグの全重量に対する有機樹脂固形分と無機充填剤との合計重量部の割合である。含浸量または樹脂分は、30〜80重量%であることが好ましく、40〜70重量%であることがより好ましい。樹脂分は目的のプリプレグの性能、及び積層後の絶縁層の厚さに合わせて適宜決定することができる。プリプレグを製造する乾燥条件は、乾燥温度60〜200℃、乾燥時間1〜30分間の範囲で、目的のプリプレグ特性に合わせて自由に選択することができる。
【0027】
目的とする積層板の厚みに合わせて得られたプリプレグを積層し、その片側または両側に金属箔を重ね、加熱加圧して積層板を製造する。金属箔には、主に銅箔やアルミ箔を用いるが、他の金属箔を用いることもできる。金属箔の厚みは通常3〜200μmであることが好ましい。積層板製造時の加熱温度は130〜250℃が好ましく、160〜200℃がより好ましい。圧力は0.5〜10MPaが好ましく、1〜4MPaがより好ましい。プリプレグ特性や、プレス機の能力、目的の積層板の厚み等により適宜決定することができる。
【0028】
【実施例】
以下、本発明を実施例に基づき、より詳細に説明する。これらの実施例は、本発明を如何なる意味においても制限するものではない。なお、実施例中、他に断らない限り、部は重量部を意味する。
【0029】
実施例1
マレイン酸N,N’−4,4’−ジフェニルメタン−ビスイミド100部及び4,4’−ジアミノジフェニルメタン30部をエチレングリコールモノメチルエーテル150部中に入れ、攪拌しながら、125℃で90分間還流下加熱した。その後、液温を80℃まで冷却し、o−クレゾールノボラック型エポキシ樹脂(東都化成株式会社製、商品名:YDCN−703Sを使用)130部を加え、更に60分攪拌し、その後30℃まで冷却した。次いで、ジシアンジアミド6部、イミダゾール硬化促進剤(四国化成株式会社製、商品名:キュアゾールC11Z−Aを使用)0.3部、トリメトキシモノフェニルシラン16部、水酸化アルミニウム(ギブサイト型)320部及びエチレングリコールモノメチルエーテル108.1部を加えて攪拌し、不揮発分70重量%、窒素含有率6.0重量%の樹脂ワニスを作成した。このワニスを100μmのガラス織布(IPC品番#2116タイプ)に含浸し、180℃の乾燥器中で6分間乾燥し、樹脂分60%のB−ステージ状態のプリプレグを得た。
【0030】
実施例2
実施例1において、トリメトキシモノフェニルシランの代わりにモノヒドロキシトリフェニルシランを9.6部用いた以外は、実施例1と同様にして不揮発分70重量%、窒素含有率6.0重量%の樹脂ワニスを得た。
得られたワニスを実施例1と同様にして、樹脂分60%のB−ステージ状態のプリプレグを得た。
【0031】
有機シラン処理A溶液の調整
攪拌装置を備えたガラス製フラスコに、トリメトキシモノフェニルシラン及びエチレングリコールモノメチルエーテルを入れ、トリメトキシモノフェニルシランの10wt%溶液を作成した。さらに、攪拌を継続しながら、溶液1部に対して水酸化アルミニウム(ギブサイト型)2部を入れて、有機シラン処理A溶液を作成した。
【0032】
実施例3
実施例1において、トリメトキシモノフェニルシラン16部、水酸化アルミニウム(ギブサイト型)320部及びエチレングリコールモノメチルエーテル108.1部の代わりに、有機シラン処理A溶液を480部使用した以外は、実施例1と同様にして不揮発分67重量%、窒素含有率6.0重量%の樹脂ワニスを得た。
得られたワニスを実施例1と同様にして、樹脂分60%のB−ステージ状態のプリプレグを得た。
【0033】
実施例4
マレイン酸N,N’−4,4’−ジフェニルメタン−ビスイミド100部及び2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン50部をエチレングリコールモノメチルエーテル150部中に投入し、125℃にて90分還流加熱、攪拌した。液温100℃まで冷却した後、ベンゾグアナミン20部及びフェノールノボラック型エポキシ樹脂(東都化成株式会社製、商品名:YDPN−638Pを使用)110部を加え、更に90分攪拌し、その後室温にて、ジメトキシジフェニルシラン8部、水酸化アルミニウム(ギブサイト型)200部及びエチレングリコールモノメチルエーテル90部を加えて攪拌し、不揮発分67重量%、窒素含有率6.7重量%の樹脂ワニスを作成した。このワニスを50μmのガラス織布(IPC品番#1080タイプ)に含浸し、170℃の乾燥器中で7分間乾燥し、樹脂分70%のB−ステージ状態のプリプレグを得た。
【0034】
実施例5
実施例4において、ジメトキシジフェニルシランの代わりにモノヒドロキシトリフェニルシランを6部使用した以外は、実施例と同様にして不揮発分67重量%、窒素含有率6.7重量%の樹脂ワニスを得た。得られたワニスを実施例4と同様にして、樹脂分70%のB−ステージ状態のプリプレグを得た。
【0035】
比較例1
実施例4において、水酸化アルミニウムの配合量を120部にした以外は、実施例4と同様な方法で、不揮発分63重量%、窒素含有率6.7重量%の樹脂ワニスを得た。このワニスを用いて実施例4と同様の方法にて、樹脂分68%のB−ステージ状態のプリプレグを得た。
【0036】
比較例2
実施例1におけるトリメトキシモノフェニルシランを用いずに、エチレングリコールモノメチルエーテルの配合量を100部にした以外は、実施例1と同様な方法でワニスを合成し、樹脂分60%のB−ステージ状態のプリプレグを得た。
【0037】
比較例3
実施例1における4,4’−ジアミノジフェニルメタンの配合量を20部に、o−クレゾールノボラック型エポキシ樹脂の配合量を175部に、ジシアンジアミドの配合量を5部にした以外は実施例1と同様な方法で、不揮発分71重量%、窒素含有率4.7重量%の樹脂ワニスを得た。このワニスを用いて実施例1と同様の方法にて樹脂分59%のB−ステージ状態のプリプレグを得た。
【0038】
金属張り積層板の製造方法
実施例1、2、3及び比較例1、2については、上記の工程で得られたプリプレグ4枚を重ね、その外側に厚さ18μmの銅箔を配し、圧力3MPa、温度200℃で80分間加熱加圧して両面銅張積層板を得た。
実施例4、5及び比較例3については、得られたプリプレグ8枚を重ね、同様の積層方法にて両面銅張積層板を得た。
【0039】
得られた両面銅張積層板の銅箔をエッチングした後、UL−94耐熱性試験、Tgの測定及び基板はんだ耐熱性試験を行った。
結果を表1に示す。
【0040】
なお、Tgの測定は、株式会社ユービーエム製、Rheogel E−4000型粘弾性測定装置を用いて測定した。
また、基板はんだ耐熱性は、表1に記載した吸湿処理後、288℃のはんだ槽に20秒間浸漬した基材を観察し、評価した。各記号はそれぞれ、○:変化無し、△:ミーズリング発生、×:ふくれ発生を意味する。
【0041】
【表1】

Figure 0004055049
【0042】
表1から明らかなように、本発明のプリプレグを用いた金属張り積層板は、ハロゲン元素を用いずにUL−94耐熱性試験においてV−0を達成した。また、TgもDVE法で230℃以上の高Tgを有し、基板はんだ耐熱性も良好であった。一方、比較例では、水酸化アルミニウムの配合量を有機樹脂固形分100重量部当たり50重量部未満とした比較例1、及び全有機樹脂固形分中の窒素含有率を5重量%未満に低くした比較例3は、耐熱性試験でV−0を達成できなかった。更に、(c)成分を使用しなかった比較例2は、耐熱性試験はV−0であったが、基板はんだ耐熱性が劣り、所望の性能を達成し得なかった。
【0043】
【発明の効果】
本発明によるプリプレグは、ハロゲン元素を用いず、難燃性を有し、Tgが高く、基板はんだ耐熱性に優れており、これを用いることにより、プリント配線板用金属張り積層板を得ることができる。また、この積層板は優れた難燃性を示すと同時に、燃焼時にダイオキシン等の有害物質を発生する原因となるハロゲン元素成分を実質的に含有せず、環境問題に対応した金属張り積層板である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a non-halogen polyimide resin prepreg used for an electrical insulating material such as a printed wiring board and its use.
[0002]
[Prior art]
In general, a polyimide resin laminate is manufactured by impregnating a glass cloth with a varnish solution of a polyimide resin composition, laminating a prepreg which has been cured to form a B stage, and heating and pressing.
[0003]
Since the polyimide resin has a higher glass transition temperature (hereinafter abbreviated as Tg) than the epoxy resin, a laminate using the polyimide resin has excellent through-hole reliability and the like. On the other hand, it is necessary to set the curing temperature at the time of lamination higher than that of the epoxy resin system, and there is a drawback that the lamination work efficiency is poor. In addition, since the polyimide resin is hard and brittle, the drillability and the like tend to be inferior compared to a laminated board using an epoxy resin. Therefore, when using a polyimide resin composition for a printed wiring board, an epoxy resin is often blended as a modifier to improve the laminating property and drill workability.
[0004]
Conventionally, in order to impart flame retardancy to a polyimide resin composition, a resin containing a halogen element such as bromine has been used. In particular, since epoxy resins are often blended as described above, halogenated epoxy resins or flame retardant resins such as tetrabromobisphenol A and glycidyl ethers thereof are often used.
[0005]
However, a laminate using a polyimide resin composition tends to have a higher water absorption rate during moisture absorption treatment than an epoxy resin laminate, resulting in insufficient substrate solder heat resistance. In addition, the halogen element in the resin composition is a cause of lowering electrical reliability such as migration and tracking properties, and in recent years there has been increased interest in environmental problems, and harmful substances such as dioxins during combustion. There is a demand for a non-halogen material that does not contain a halogen element that causes the generation of oxygen.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a prepreg for a polyimide resin-based printed wiring board and a use thereof that does not use a halogen element, has flame retardancy, has high Tg, is excellent in heat resistance, and copes with environmental problems. .
[0007]
[Means for Solving the Problems]
The present invention is a prepreg for a printed wiring board, comprising: (a) a polyimide resin prepolymer; (b) 50 to 150 parts by weight of aluminum hydroxide per 100 parts by weight of organic resin solids ; the reaction functional groups having one or more, and at least one organic silane organic resin solids 0.005 parts viewed contains per 100 parts by weight having more aryl group having 6 to 12 carbon atoms as the hydrocarbon group The present invention relates to a glass substrate polyimide resin prepreg for a printed wiring board, characterized in that it is obtained from a thermosetting resin varnish having a nitrogen content in the total organic resin solid content of 5% by weight or more and containing no halogen element. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The (a) polyimide resin prepolymer used in the present invention can be obtained by reacting a tetracarboxylic acid anhydride, diimide or monoimide (hereinafter abbreviated as tetracarboxylic acid anhydride) with a diamine. The reaction can be carried out using conventional methods, and commercially available products can also be used. Linear polyimide is preferred. Examples of tetracarboxylic acid anhydrides include anhydrides such as maleic acid, trimellitic acid, pyromellitic acid, and bis (3,4-dicarboxyphenyl) ether, diimides, and monoimides. Tetracarboxylic acid diimide is preferred, and bismaleimide is particularly preferred.
[0009]
The bismaleimide is not particularly limited as long as it is a compound containing two maleimide groups in the molecule and does not contain a halogen element. For example, maleic acid N, N′-ethylene-bisimide, maleic acid N, N′-hexamethylene-bisimide, maleic acid N, N′-metaphenylene-bisimide, maleic acid N, N′-4,4′-diphenylmethane -Bisimide (also referred to as N, N'-methylenebis (-N-phenylmaleimide), maleic acid N, N'-4,4'-diphenyl ether-bisimide, maleic acid N, N'-4,4'-diphenylsulfone- Bisimide, 4,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane-bisimide, maleic acid 4,4′-methylene-di-2,6-diisopropylaniline-bisimide, etc. These can be used alone or in combination.
[0010]
The diamine used in the present invention is not particularly limited as long as it is a compound containing two amino groups in the molecule and does not contain a halogen element. For example, 4,4′-diaminodicyclohexylmethane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 1,4-diaminocyclohexane, 2,6-diaminopyridine, metaphenylenediamine, 4,4′- Diaminodiphenylmethane, bis (4-aminophenyl) propane, 4,4′-diaminodiphenylsulfone, 1,3-bis (2-p-anilinopropylidene) benzene, 1,4-bis (2-p-anilinopro) Pyridene) benzene, 4,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane, dicyandiamide, acetoguanamine, benzoguanamine, m-toluylenediamine, 2,4-diamino-6- (2 '-Undecylimidazolyl- (1')-) ethyl-S-triazine, 2,2-bis (4- (4- Aminophenoxy) phenyl) propane, 1,3-bis (3-aminophenoxy) benzene, bis-4- (4-aminophenoxy) phenylsulfone, bis-4- (3-aminophenoxy) phenylsulfone, etc. These can be used alone or in combination.
[0011]
According to the present invention, the diamine has 0.3 to 1.2 moles of diamine per mole of tetracarboxylic acid anhydride and the like, considering both the heat resistance after prepolymerization and curing and the Tg after curing. It is preferable to make it react with a tetracarboxylic anhydride etc. by a ratio, and it is more preferable to make it react by the ratio of 0.5-1.0 mol.
[0012]
(B) Aluminum hydroxide used in the present invention has a composition formula of Al 2 O 3 ・ 3H 2 Gibbsite represented by O, Bayerite or Nordstrandite, or Al 2 O 3 ・ H 2 Either boehmite represented by O or diaspore can be used. Also, one or more of these can be mixed and used. In consideration of the manufacturing cost and the flame retardancy of the printed wiring board, the gibbsite type having a large amount of crystal water in the molecule is preferable.
[0013]
Further, the impurity Na 2 contained in the component (b) The content of O is preferably less than 0.2% by weight in consideration of heat resistance. The component (b) is not particularly limited regarding the shape. As the component (b), commercially available aluminum hydroxide can be used.
[0014]
In addition to the component (b), an inorganic filler can be optionally added. Examples thereof include boron, carbon, clay, glass, calcium carbonate, talc, alumina, silica, mica, titanium oxide, aluminum carbonate, magnesium silicate, aluminum silicate, aluminum borate, and silicon carbide. It can be used in the form of beads, powder, fibers, pulverized products, whiskers, flakes and the like. For example, aluminum borate, silicon carbide whisker, glass single fiber, and the like can be given.
[0015]
The component (b) is preferably blended in an amount of 50 to 150 parts by weight per 100 parts by weight of the organic resin component in consideration of the expression of flame retardancy and coating workability, moldability, heat resistance, and peel strength. It is more preferable to blend ~ 130 parts by weight.
[0016]
The (c) organosilane used in the present invention can also be used for surface treatment of inorganic fillers other than the component (b) that can be optionally blended, in addition to (b) surface treatment of aluminum hydroxide. The component (c) does not contain a halogen element, has at least one functional group that reacts with a hydroxyl group at the terminal, and has at least one aryl group having 6 to 12 carbon atoms as a hydrocarbon group. In addition, the structure and the like are not particularly limited.
[0017]
Examples of the functional group at the end of the component (c) of the present invention include a hydroxyl group of silanes, a hydroxyl group of alcohols, a carboxyl group of carboxylic acids, and a carbonyl group of ketones. An alkoxy group having 1 or 2 carbon atoms or a silanol group is preferable.
[0018]
Further, the hydrocarbon group in the component (c) molecule preferably includes two or more aryl groups having 6 to 12 carbon atoms, and includes three or more aryl groups having 6 to 12 carbon atoms. It is more preferable. Here, the aryl group includes aralkyl and alkaryl. Examples thereof include phenyl, tolyl, naphthyl, benzyl, cumenyl, styryl, phenethyl, xylyl, mesityl, cinnamyl and the like. When the component (c) having one or more aryl groups having a large molecular weight adheres to the surface of the aluminum hydroxide as compared with the organic silane having only a hydrocarbon group such as a methyl group or an ethyl group, As a result of the increase in the amount of heat energy required for dehydration, the dehydration temperature of aluminum hydroxide increases, and the heat resistance of aluminum hydroxide can be improved.
[0019]
Since the component (c) is attached to the surface of the component (b), it is preferable that the component is not in a gel state in consideration of heat resistance, and a state in which uneven adhesion does not occur is preferable. The method of adhering the component (c) of the present invention to the surface of the inorganic filler other than the component (b) and the component (b) that can be optionally blended is not particularly limited. A dry method in which the component (c) is directly added, a wet method using a treatment liquid diluted with an organic solvent, or the like is preferable. The effect can also be obtained by mixing in a thermosetting resin varnish and stirring.
[0020]
The amount of component (c) is preferably 0.01 to 10 parts by weight, preferably 1 to 7 parts by weight, based on the total weight of component (b) and other fillers, considering both interfacial adhesion and heat resistance. Is more preferable. Moreover, 0.005-15 weight part is preferable per 100 weight part of organic resin solid content, and 0.5-10.5 weight part is more preferable.
[0021]
According to the present invention, it is preferable to blend (d) a non-halogen epoxy resin as a modifier for the laminate properties. The component (d) of the present invention is a resin that has two or more epoxy groups in the molecule and is not halogenated. It does not substantially contain a halide such as an organic bromine compound, an organic chlorine compound, or an inorganic chlorine compound. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, glycidyl etherified product of polyfunctional phenol, glycidyl etherified product of polyfunctional alcohol, hydrogen of these An additive etc. are mentioned. One or more of these may be used in combination.
[0022]
According to the present invention, it is preferable to use a glycidyl etherified product of a polycondensate of phenols and formaldehyde for the component (d) in order to improve Tg and heat resistance after curing of the resin varnish. Examples of such resins include phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins and the like, and these can be used alone or in combination.
[0023]
The blending amount of the component (d) of the present invention is preferably 30 to 150 parts by weight, preferably 50 to 100 parts by weight per 100 parts by weight of the component (a) considering both drill workability, Tg and heat resistance. preferable.
[0024]
In addition to the above components (a), (b), (c) and (d), a curing accelerator, a filler other than aluminum hydroxide, a colorant, an oxidation, as long as the object of the present invention is not impaired An inhibitor, a reducing agent, an ultraviolet opaque agent and the like can be added. In particular, inorganic fillers are effective in improving flame retardancy. These may be used alone or in combination of two or more.
[0025]
In the present invention, when flame retardancy is considered with respect to the weight of the total organic resin solid content, the nitrogen content, which is the content of nitrogen element, is preferably 5% by weight or more. The total organic resin solid content is the total amount of (a) polyimide resin prepolymer, (d) non-halogen epoxy resin, and other organic resin weights blended with others. The nitrogen content is the content of nitrogen element relative to the total amount.
[0026]
According to the present invention, a glass substrate is impregnated with a polyimide resin varnish obtained by blending the components (a), (b), (c) and optionally (d) in a solvent, and then dried. A prepreg can be obtained. Conventional prepreg manufacturing methods can be used. The kind of glass substrate used here is not particularly limited. For example, a glass woven fabric, a glass nonwoven fabric, etc. are mentioned. The thing of thickness 0.02-0.4mm can be used according to the thickness of the target prepreg or laminated board. Here, the impregnation amount is shown as a resin content, and the resin content is a ratio of the total weight part of the organic resin solid content and the inorganic filler to the total weight of the prepreg. The impregnation amount or resin content is preferably 30 to 80% by weight, and more preferably 40 to 70% by weight. The resin content can be appropriately determined according to the performance of the target prepreg and the thickness of the insulating layer after lamination. The drying conditions for producing the prepreg can be freely selected according to the desired prepreg characteristics in the range of a drying temperature of 60 to 200 ° C. and a drying time of 1 to 30 minutes.
[0027]
A prepreg obtained according to the thickness of the target laminate is laminated, a metal foil is laminated on one side or both sides, and heated and pressed to produce a laminate. As the metal foil, copper foil or aluminum foil is mainly used, but other metal foils can also be used. The thickness of the metal foil is usually preferably 3 to 200 μm. 130-250 degreeC is preferable and the heating temperature at the time of laminated board manufacture has more preferable 160-200 degreeC. The pressure is preferably 0.5 to 10 MPa, more preferably 1 to 4 MPa. It can be appropriately determined depending on the prepreg characteristics, the capacity of the press, the thickness of the target laminate, and the like.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail based on examples. These examples do not limit the invention in any way. In addition, unless otherwise indicated in an Example, a part means a weight part.
[0029]
Example 1
100 parts of maleic acid N, N′-4,4′-diphenylmethane-bisimide and 30 parts of 4,4′-diaminodiphenylmethane are placed in 150 parts of ethylene glycol monomethyl ether and heated at 125 ° C. for 90 minutes under reflux. did. Thereafter, the liquid temperature was cooled to 80 ° C., 130 parts of o-cresol novolac type epoxy resin (manufactured by Toto Kasei Co., Ltd., trade name: YDCN-703S) was added, stirred for another 60 minutes, and then cooled to 30 ° C. did. Subsequently, 6 parts of dicyandiamide, 0.3 part of imidazole curing accelerator (trade name: Curesol C 11 ZA used, manufactured by Shikoku Kasei Co., Ltd.), 16 parts of trimethoxymonophenylsilane, aluminum hydroxide (gibbsite type) 320 And 108.1 parts of ethylene glycol monomethyl ether were added and stirred to prepare a resin varnish having a nonvolatile content of 70% by weight and a nitrogen content of 6.0% by weight. This varnish was impregnated into a 100 μm glass woven fabric (IPC product number # 2116 type) and dried in a dryer at 180 ° C. for 6 minutes to obtain a B-stage prepreg having a resin content of 60%.
[0030]
Example 2
In Example 1, except that 9.6 parts of monohydroxytriphenylsilane was used instead of trimethoxymonophenylsilane, the nonvolatile content was 70% by weight and the nitrogen content was 6.0% by weight. A resin varnish was obtained.
The obtained varnish was treated in the same manner as in Example 1 to obtain a B-stage prepreg having a resin content of 60%.
[0031]
Trisilane monophenylsilane and ethylene glycol monomethyl ether were placed in a glass flask equipped with an apparatus for adjusting and stirring the organosilane treatment A solution to prepare a 10 wt% solution of trimethoxymonophenylsilane. Further, while continuing stirring, 2 parts of aluminum hydroxide (gibbsite type) was added to 1 part of the solution to prepare an organosilane-treated A solution.
[0032]
Example 3
In Example 1, except that 16 parts of trimethoxymonophenylsilane, 320 parts of aluminum hydroxide (gibbsite type) and 108.1 parts of ethylene glycol monomethyl ether were used, 480 parts of the organosilane-treated A solution were used. In the same manner as in Example 1, a resin varnish having a nonvolatile content of 67% by weight and a nitrogen content of 6.0% by weight was obtained.
The obtained varnish was treated in the same manner as in Example 1 to obtain a B-stage prepreg having a resin content of 60%.
[0033]
Example 4
100 parts of maleic acid N, N′-4,4′-diphenylmethane-bisimide and 50 parts of 2,2-bis (4- (4-aminophenoxy) phenyl) propane are introduced into 150 parts of ethylene glycol monomethyl ether, and 125 parts. The mixture was heated at reflux at 90 ° C. for 90 minutes and stirred. After cooling to a liquid temperature of 100 ° C., 20 parts of benzoguanamine and 110 parts of a phenol novolac type epoxy resin (manufactured by Toto Kasei Co., Ltd., trade name: YDPN-638P are used) are added, and the mixture is further stirred for 90 minutes. 8 parts of dimethoxydiphenylsilane, 200 parts of aluminum hydroxide (gibbsite type) and 90 parts of ethylene glycol monomethyl ether were added and stirred to prepare a resin varnish having a nonvolatile content of 67% by weight and a nitrogen content of 6.7% by weight. The varnish was impregnated into a 50 μm glass woven fabric (IPC product number # 1080 type) and dried in a dryer at 170 ° C. for 7 minutes to obtain a B-stage prepreg having a resin content of 70%.
[0034]
Example 5
A resin varnish having a nonvolatile content of 67% by weight and a nitrogen content of 6.7% by weight was obtained in the same manner as in Example 4 except that 6 parts of monohydroxytriphenylsilane was used instead of dimethoxydiphenylsilane. It was. The obtained varnish was treated in the same manner as in Example 4 to obtain a B-stage prepreg having a resin content of 70%.
[0035]
Comparative Example 1
In Example 4, a resin varnish having a nonvolatile content of 63% by weight and a nitrogen content of 6.7% by weight was obtained in the same manner as in Example 4 except that the amount of aluminum hydroxide was changed to 120 parts. Using this varnish, a B-stage prepreg having a resin content of 68% was obtained in the same manner as in Example 4.
[0036]
Comparative Example 2
A varnish was synthesized in the same manner as in Example 1 except that the amount of ethylene glycol monomethyl ether was changed to 100 parts without using trimethoxymonophenylsilane in Example 1, and a B-stage having a resin content of 60%. A prepreg in state was obtained.
[0037]
Comparative Example 3
The same as Example 1 except that the amount of 4,4′-diaminodiphenylmethane in Example 1 was 20 parts, the amount of o-cresol novolac epoxy resin was 175 parts, and the amount of dicyandiamide was 5 parts. Thus, a resin varnish having a nonvolatile content of 71% by weight and a nitrogen content of 4.7% by weight was obtained. Using this varnish, a B-stage prepreg having a resin content of 59% was obtained in the same manner as in Example 1.
[0038]
Manufacturing method Examples 1, 2, 3 and Comparative Examples 1 and 2 of metal-clad laminates Overlap the four prepregs obtained in the above steps, and arrange a copper foil with a thickness of 18 μm on the outside, pressure A double-sided copper-clad laminate was obtained by heating and pressing at 3 MPa and a temperature of 200 ° C. for 80 minutes.
For Examples 4 and 5 and Comparative Example 3, 8 prepregs obtained were stacked, and a double-sided copper-clad laminate was obtained by the same lamination method.
[0039]
After etching the copper foil of the obtained double-sided copper-clad laminate, UL-94 heat resistance test, Tg measurement, and board solder heat resistance test were performed.
The results are shown in Table 1.
[0040]
The Tg was measured using a Rheogel E-4000 type viscoelasticity measuring device manufactured by UBM Co., Ltd.
The substrate solder heat resistance was evaluated by observing a base material immersed in a solder bath at 288 ° C. for 20 seconds after the moisture absorption treatment described in Table 1. Each symbol means ◯: no change, Δ: occurrence of mesuring, and x: occurrence of blistering.
[0041]
[Table 1]
Figure 0004055049
[0042]
As is clear from Table 1, the metal-clad laminate using the prepreg of the present invention achieved V-0 in the UL-94 heat resistance test without using a halogen element. Tg also had a high Tg of 230 ° C. or higher by the DVE method, and the substrate solder heat resistance was also good. On the other hand, in the comparative example, the amount of aluminum hydroxide was less than 50 parts by weight per 100 parts by weight of the organic resin solids, and the nitrogen content in the total organic resin solids was reduced to less than 5% by weight. In Comparative Example 3, V-0 could not be achieved in the heat resistance test. Further, in Comparative Example 2 in which the component (c) was not used, the heat resistance test was V-0, but the substrate solder heat resistance was poor and the desired performance could not be achieved.
[0043]
【The invention's effect】
The prepreg according to the present invention does not use a halogen element, has flame retardancy, has a high Tg, and has excellent substrate solder heat resistance. By using this, a metal-clad laminate for a printed wiring board can be obtained. it can. In addition, this laminate has excellent flame retardancy, and at the same time, does not contain a halogen element component that causes generation of harmful substances such as dioxin at the time of combustion, and is a metal-clad laminate that responds to environmental problems. is there.

Claims (6)

プリント配線板用プリプレグであって、(a)ポリイミド樹脂プレポリマー;(b)水酸化アルミニウムを有機樹脂固形分100重量部あたり50〜150重量部;および、(c)末端に水酸基と反応する官能基を1個以上有し、かつ炭化水素基として炭素数6〜12のアリール基を少なくとも1個以上有する有機シランを有機樹脂固形分100重量部あたり0.005〜15重量部全有機樹脂固形分中の窒素含有量が、5重量%以上でハロゲン元素を含有しない熱硬化性樹脂ワニスから得られたことを特徴とする、プリント配線板用のガラス基材ポリイミド樹脂プリプレグ。A printed wiring board prepreg, comprising: (a) a polyimide resin prepolymer; (b) 50 to 150 parts by weight of aluminum hydroxide per 100 parts by weight of organic resin solids ; and (c) a functional group that reacts with a hydroxyl group at the terminal. based on having one or more, and at least one organic silane organic resin solids 0.005 parts viewed contains per 100 parts by weight having more aryl group having 6 to 12 carbon atoms as the hydrocarbon group, the total organic A glass substrate polyimide resin prepreg for a printed wiring board, which is obtained from a thermosetting resin varnish having a nitrogen content in a resin solid content of 5% by weight or more and containing no halogen element. 該熱硬化性樹脂ワニスが、更に、(d)1分子中にエポキシ基を少なくとも2個以上有する非ハロゲン系エポキシ樹脂を含む、請求項1に記載のプリプレグ。The prepreg according to claim 1, wherein the thermosetting resin varnish further comprises (d) a non-halogen epoxy resin having at least two epoxy groups in one molecule. 該(c)成分中に炭化水素基として炭素数6〜12のアリール基が2つ以上含まれていることを特徴とする請求項1または2に記載のプリプレグ。The prepreg according to claim 1 or 2 , wherein the component (c) contains two or more aryl groups having 6 to 12 carbon atoms as hydrocarbon groups. 該(c)成分中に炭素数6〜12のアリール基が3つ以上含まれていることを特徴とする請求項1または2に記載のプリプレグ。The prepreg according to claim 1 or 2 , wherein the component (c) contains 3 or more aryl groups having 6 to 12 carbon atoms. 該(d)成分がフェノール類とホルムアルデヒドとの重縮合物のグリシジルエーテル化物である、請求項2〜4のいずれか1項記載のプリプレグ。The prepreg according to any one of claims 2 to 4 , wherein the component (d) is a glycidyl etherified product of a polycondensate of phenols and formaldehyde. 請求項1〜5のいずれか1項記載のプリプレグを少なくとも1枚以上積層し、その片面若しくは両面に金属箔を配して加熱加圧成形して得られる金属張り積層板。  A metal-clad laminate obtained by laminating at least one prepreg according to any one of claims 1 to 5 and arranging a metal foil on one side or both sides thereof, followed by heating and pressing.
JP2002028359A 2002-02-05 2002-02-05 Pre-preg for non-halogen printed wiring board and its use Expired - Lifetime JP4055049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028359A JP4055049B2 (en) 2002-02-05 2002-02-05 Pre-preg for non-halogen printed wiring board and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028359A JP4055049B2 (en) 2002-02-05 2002-02-05 Pre-preg for non-halogen printed wiring board and its use

Publications (2)

Publication Number Publication Date
JP2003229647A JP2003229647A (en) 2003-08-15
JP4055049B2 true JP4055049B2 (en) 2008-03-05

Family

ID=27749602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028359A Expired - Lifetime JP4055049B2 (en) 2002-02-05 2002-02-05 Pre-preg for non-halogen printed wiring board and its use

Country Status (1)

Country Link
JP (1) JP4055049B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050075024A1 (en) * 2003-10-01 2005-04-07 Ranken Paul F. Flame retardant epoxy prepregs, laminates, and printed wiring boards of enhanced thermal stability
JP2006176726A (en) * 2004-12-24 2006-07-06 Hitachi Chem Co Ltd Prepreg for printed wiring board and metal clad laminated board using it
JP5266685B2 (en) * 2006-09-29 2013-08-21 日立化成株式会社 Thermosetting resin composition, prepreg and laminate using the same

Also Published As

Publication number Publication date
JP2003229647A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP5186221B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
CN102822228B (en) Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
WO2012083727A1 (en) Halogen-free high-tg resin composition and prepreg and laminate fabricated by using the same
WO2018031103A1 (en) Curable epoxy composition
JP2017179035A (en) Resin composition, prepreg, metal clad laminate, printed wiring board and metal foil with resin
WO2000046816A1 (en) Thermoplastic resin composition having low permittivity, prepreg, laminated plate and laminated material for circuit using the same
JP2004175925A (en) Prepreg and laminate
TW201136980A (en) Epoxy resin composition, preprey and printed circuit board manufactured thereof
JP2003231762A (en) Prepreg and laminated sheet
JP4770019B2 (en) Prepreg and metal foil-clad laminate
JP3664124B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
JP4089173B2 (en) Pre-preg for printed wiring board and metal-clad laminate
JP2003147171A (en) Method for producing insulating resin composition, insulating resin composition, and copper-foil laminated insulating material and copper-clad laminate
JP2009120696A (en) Prepreg and metal-clad laminate
JP4055049B2 (en) Pre-preg for non-halogen printed wiring board and its use
JP2000239525A (en) Flame-retardant resin composition and layer insulation adhesive
JP2002249552A (en) Phosphorus-containing epoxy resin composition, resin sheet, metal foil having resin, prepreg, laminate, and multilayer board
JP2001081282A (en) Epoxy resin composition and flexible printed wiring board material containing the same
JP4202509B2 (en) Laminate for circuit
JP2002220435A (en) Phosphorus-containing epoxy resin composition, prepreg, resin-coated metal foil, adhesive sheet, laminated board and multilayer board, phosphorus-containing epoxy resin varnish for coating, phosphorus-containing epoxy resin sealing material, phosphorus-containing epoxy resin casting material and phosphorus-containing epoxy resin varnish for immersion
JP4714970B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
TWI301841B (en) Phosphormodifiziertes epoxidharz
JP4639439B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP2010090182A (en) Flame-retardant epoxy resin composition, prepreg, laminate sheet, and wiring board
JP2002012740A (en) Flame-retardant epoxy resin composition and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R151 Written notification of patent or utility model registration

Ref document number: 4055049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term