JP4054132B2 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP4054132B2
JP4054132B2 JP12364299A JP12364299A JP4054132B2 JP 4054132 B2 JP4054132 B2 JP 4054132B2 JP 12364299 A JP12364299 A JP 12364299A JP 12364299 A JP12364299 A JP 12364299A JP 4054132 B2 JP4054132 B2 JP 4054132B2
Authority
JP
Japan
Prior art keywords
liquid crystal
film
light
crystal display
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12364299A
Other languages
Japanese (ja)
Other versions
JP2000314865A (en
Inventor
雅夫 大河原
哲也 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Display Corp
Original Assignee
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Display Corp filed Critical Kyocera Display Corp
Priority to JP12364299A priority Critical patent/JP4054132B2/en
Publication of JP2000314865A publication Critical patent/JP2000314865A/en
Application granted granted Critical
Publication of JP4054132B2 publication Critical patent/JP4054132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、黒背景に赤色の表示を行う液晶表示装置に関する。
【0002】
【従来の技術】
美粧性、視認性等の観点から、黒背景と赤色表示の組み合わせが好まれる用途があり、古くから電卓、広告文字板、車載用オーディオ等の表示部に採用されてきた。
【0003】
従来これらの用途においては、発光ダイオード、電界発光素子、プラズマディスプレイ等の自発光型の表示素子が用いられてきたが、外光下で表示が見えなくなる、いわゆるウォッシュアウト現象が生じるという問題があった。
【0004】
これに対して、半透過反射型もしくは反射型の液晶表示素子を用いることによりこの問題は回避可能で、例えば、ネガモードのツイストネマチック(TN)方式の半透過反射型液晶表示パネルと光源の主発光波長が620nm以上であるバックライトユニットとの組み合わせ、あるいは同方式の反射型液晶パネルと赤色フィルタ層との組み合わせにより、外光の影響を受けない表示が可能となる。
【0005】
しかしながら、この方式では表示密度に限界があり、1/16デューティ程度以上の時分割駆動で、いわゆるキャラクター表示と呼ばれる5×7ドットで構成されたアルファベット・数字表示、あるいは16×16ドットで構成された仮名・漢字表示等を行おうとすると、特定の角度でしか視認できなくなるという問題があった。
【0006】
一方、スーパーツイストネマチック(STN)方式を用いれば、表示密度の増大に伴う視認性の低下は避けられるが、白黒化のための光学補償板として位相差板を用いる方式を車載用途等のように使用温度範囲の広い環境に適用する場合には、高温時に非表示部分の背景色が変化しコントラストが低下するという問題が生じる。
【0007】
また、光学補償板として、表示用の液晶セルと同じねじれ角、セルギャップでねじれの方向が逆の液晶セル(干渉セル)を用いる方式によれば、この問題を回避できるが、この場合には両セルのギャップを相対的な関係を含めて高精度に制御して作成することが必要なため、生産性が低下するという問題があった。
【0008】
黒背景に赤色の表示を行うという2色表示の目的に特化して、上記のような白黒化のための光学補償板を用いない方式として、白色のバックライト光源を用いたときに透過光が励起電圧以下では青緑色、励起電圧以上では淡灰色を呈するいわゆるブルーモードの液晶表示パネルと赤のバックライトとを組み合わせる方式が考えられる。
【0009】
この方式によれば、透過光が表示部で赤、背景部では遮光されて黒となるが、外光下で見たときに反射光にブルーモードの背景色が視認され、表示品位が損われ、特に、バックライトの拡散板として背面側の偏光板の外側に配置された半透過反射性の拡散板を用いると、この傾向が著しくなるという問題があった。
【0010】
上記拡散板として、反射性が小さく、ブルーモードの色を補償する色材で着色した別置タイプの拡散板を用いればこの問題は回避できるが、液晶表示装置の構造が複雑になり組み立てが煩雑になる、また、薄型化も困難となる等の新たな問題が生じる。
【0011】
【発明が解決しようとする課題】
本発明は、以上のような従来の問題点を解決すべくなされたものであり、黒背景に赤色の表示を行う液晶表示装置であって、外光下においてもウォッシュアウト現象や背景色の変化が起こらず、構造が単純で、組み立てが容易で、しかも1/33デューティ程度までの時分割駆動が可能な液晶表示装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1に係る本発明の液晶表示装置の特徴は、透明電極と配向膜をそれぞれ有しほぼ平行に配置された一対の透明基板と周辺シール材とで囲まれた空間にねじれ角が180〜270゜に設定されたネマチック液晶からなる液晶層が挟持され、前記一対の透明基板の両外側に一対の偏光板を配してなるスーパーツイストネマチック方式の液晶表示パネルと、光源の主発光波長が620nm以上であるバックライトユニットとを有する黒背景に赤色の2色表示を行う液晶表示装置において、背面側偏光板が外側に半透過反射層を一体的に積層されたものであること、およびいずれか一方の透明基板の内面に感光性樹脂材料からなり、波長640nmおよび450nmの光透過率がそれぞれ70%以上、20%以下である透光膜が設けられ、かつ、前記透光膜が前記周辺シール材によるシール部のギャップと表示部分のギャップとが同じになるように前記周辺シール材の下にまで延長されており、前記液晶層がバックライト光源の主発光波長と最大吸収波長がほぼ一致する二色性色素を含有し、かつ、前面側の偏光板の偏光軸方向と前面基板の配向膜の配向方向とのなす角度が配向方向から液晶のねじれ方向に0〜30°であり、両偏光板の偏光軸方向がそれぞれほぼ一致し、白色のバックライト光源を用いたときに透過光が励起電圧以下では青色、励起電圧以上では淡色を呈する点にある。このような構成とすることで、外光下においてもウォッシュアウト現象や背景色の変化が起こらず、構造が単純で、組み立てが容易で、しかも1/33デューティ程度までの時分割駆動が可能な液晶表示装置が実現する。また、透光膜を周辺シール材の下にまで延長し、シール部のギャップと表示部分のギャップとを同じとしたことにより、セル作成上ギャップのコントロールがし易くなる。また、より高温まで優れた表示品位が保持されるようになる。
【0013】
請求項に係る本発明の液晶表示装置の特徴は、透光膜が感光性の樹脂材料からなり、かつ、絶縁抵抗が1012Ω/□以上である点にある。このような構成とすることで、透光膜の平滑性が向上し、平坦化層を介さずに透光膜上に直接透明電極を形成することが可能となるとともに、その場合にも隣接電極間のリークが防止され、滲みのない明瞭な表示が可能となる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。
【0015】
本発明の液晶表示装置は、図1に示すように、透明電極3,3と配向膜(図示せず)をそれぞれ有しほぼ平行に配置された一対の透明基板1,1と周辺シール材4とからなる空間にねじれ角を180〜270°に設定したネマチック液晶からなる液晶層7が挟持され、前記一対の透明基板1,1の両外側には、一対の偏光板5,5を配してなるスーパーツイストネマチック方式の液晶表示パネルと、光源9の主発光波長が620nm以上であるバックライトユニット8とを有し、これに駆動手段(図示せず)等が加わって構成される。
【0016】
本発明においては、背面側(図では下側)偏光板5が外側(図では下側)に半透過反射層6を一体的に積層されたものであること、およびいずれか一方の透明基板1の内面に、波長640nmおよび450nmの光透過率がそれぞれ70%以上、20%以下である透光膜2が設けられていることが重要である。
【0017】
上記半透過反射層6はバックライト光の拡散板の機能を兼ねるものであるが、背面側偏光板と積層一体化しておくことにより組立工程の簡略化および装置の薄型化が可能となる。半透過反射層を積層一体化した偏光板としては、透過率・反射率のバランス等の異なる種々のものが上市されているが、表示装置の用途に応じて適宜選定することが好ましい。
【0018】
本発明において、透光膜2は前記吸光特性に加えて、感光性樹脂材料からなるものであること、および絶縁抵抗が1012Ω/□以上であることが好ましい。感光性樹脂材料を用いることにより透光膜を平滑に形成し易くなり、平坦化層を介さずにその上に直接透明電極を形成することが可能となる。その場合に透光膜の絶縁抵抗が1012Ω/□以上であれば、隣接電極間のリークが防止され、滲みのない明瞭な表示が可能となり、絶縁のための保護層が不要となる。透光膜の材質としては、さらに工程温度に耐える耐熱性、透明電極パターニング時の薬液への耐性、所定の硬度を有するものが好ましい。
【0019】
透光膜材料のコーティングには、ロールコータ、バーコータ、スリットコータ等を用いることが可能であるが、膜厚ばらつきは色ばらつきおよびセルギャップばらつきの原因となるので、膜厚の均一性に優れるスピンコート法の採用が望ましい。この場合、材料の使用量を削減するために、バーコータあるいはスリットコータと併用してもよい。この例示以外でも、膜厚の均一性に優れる方法ならいずれの方法を採用してもよい。
【0020】
このようにして透光膜を形成した基板には、スパッタ法等で透明導電膜を形成する。透明導電膜の面抵抗値は素子のパターン設計により定められる値に設定されるが、30〜100Ω/□程度の範囲が通常採用される。以下、定法によりパターニングして透明電極が形成される。
【0021】
他方の基板にも、アルカリ防止膜、ITOを順次形成し、同様に透明電極を形成させる。透光膜を形成した基板には配向膜を膜厚60nm程度形成する。他方の基板にはチタニア、シリカを混合した無機系膜のような絶縁膜を例えばゾルゲル法にて印刷成膜を行った後に配向膜を成膜しラビング処理をすることが好ましい。無機膜は対向する基板間の短絡を防止するために有効である。
【0022】
基板間の間隙を制御するためのスペーサの散布と、周辺シール材の印刷とを、別々の基板に行うことが工程的に好ましい。基板の上下の導通をとるためにシール剤の一部に導電性ビーズを混合したものを用いることもできる。
【0023】
なお、透光膜を周辺シール材の下まで延長することにより、シール部のギャップと表示部分のギャップがほぼ同じとなるため、セル作成上ギャップのコントロールがし易くなるというメリットがある。
【0024】
透光膜を設けた基板と他方の基板を対向させ、熱圧着工程を通してシール材を硬化させ注入口、端子部等を切り出したのち、セルおよび液晶注入のためのボートを加熱し、液晶を真空注入法にて注入したのち、注入口をUV硬化型の樹脂で封止する等の方法で液晶セルが作成される。
【0025】
液晶層のねじれ角は180〜270°の範囲が採用されるが、高温でのドメイン発生が生じにくい点から、180〜240°とすることが好ましい。また、Δndとしては、0.8〜1.2μm程度が使用できるが、小さい領域では電圧無印加での透過率が低くなり、また大きい領域では透過率の視角依存性が大きい等の傾向があるため、0.9〜1.0μm程度が好ましい。このセルの両側に、電圧無印加時には透過率が低く、電圧印加時には透過率が高くなるいわゆるネガ型の液晶表示モードとなるように偏光板を設置する。
【0026】
なお、偏光板の設置角としては、一般的にはブルーモードと呼ばれる電圧無印加で透過率が低く、青から青緑を呈し、電圧印加時に透過率が高くほぼ無彩色を示すように偏光板を設置することも好ましい態様である。
【0027】
液晶層に赤色バックライトの主発光波長と最大吸収波長がほぼ一致する2色性色素を含有させると、さらに遮光度が上がるため好ましい。このとき、前面側の偏光板の偏光軸方向と前面基板の配向膜の配向方向とのなす角度を配向方向から液晶のねじれ方向に0〜30°とし、両偏光板の偏光軸方向をそれぞれほぼ一致させ、白色のバックライト光源を用いたときに、励起電圧以下では青色系の吸収色、励起電圧以上では淡色を呈するゲストホスト型液晶表示素子とすることも好ましい態様である。
【0028】
本発明で使用するバックライトユニットの主発光波長が620nm以上である光源としては、赤色LEDまたは赤色CCTが例示される。
【0029】
【実施例】
[例1]
ガラス基板にシリカのアルカリ防止膜をスパッタ法にて約20nmの厚さに成膜したマザー基板を用い、スピンコート法で赤色の感光性樹脂材料(新日鐵化学製V−259R−H)を約1μmの厚さとなるように塗布し、液晶セルの周辺に設けるシール部分およびそれより外側の部分が遮光させるようなフォトマスクを用いて、300mJの露光を行い、現像、乾燥、ベーキングを行った。このようにして形成された透光膜は、波長640nmおよび450nmの光透過率がそれぞれ88%および4%であり、絶縁抵抗値が3×1014Ω/□であった。
【0030】
このように透光膜を形成した基板に、230℃の温度でスパッタ法にて約100nmの透明導電膜を形成した。面抵抗値は約30Ω/□であった。この基板にフォトレジストを塗布したのち、セグメント表示の部分に電圧が印加されるように配線部分を遮光したフォトマスクを用い、露光、現像を行った後、エッチング液にて不要部分のITOを除去し、さらにNaOH水溶液にてレジストを剥離して、5×7ドットのキャラクターを2行表示するパターンの透明電極を形成させた。対向する基板にも、アルカリ防止膜、ITOを順次形成し、同様に透明電極を形成させた。
【0031】
遮光膜を形成した基板にはプレチルト角が5度程度となるポリイミド系の配向膜材料を用い、転写印刷法にて厚さ約60nmとなるように成膜した。対向する基板にはチタニア、シリカを混合した無機系の絶縁膜を形成するために、ゾルゲル法にて印刷成膜を行った。そののち、同様に配向膜を形成して焼成し、両基板をねじれ角が240°となるようにラビングした。
【0032】
片側の基板には6.75μmの直径を持つ積水ファインケミカル株式会社製のミクロパールを散布し、対向する基板には周辺シール材として三井化学株式会社製のストラクトボンドを液晶セルの周辺にスクリーン印刷法にて印刷した。対向する基板間の導通を取るための電極を設けた部分には、導電ビーズを混合したシール材を印刷した。
【0033】
これらの基板を対向させ、熱圧着工程を通して硬化させ、注入口、端子部等を切り出したのち、ネマチック−アイソトロピック相転移温度が110℃、Δnが0.14であり、所定のピッチとなるようにカイラル材が添加されたネマチック液晶を真空注入法にて注入し、注入口にUV硬化性のエポキシ樹脂を塗布して封止した。
【0034】
各セグメント部分のギャップを測定したところ、平均が6.7μmで、ばらつきが最大で0.05μm程度の偏差に収まっており、均一性の良好なセルが形成されていた。このセルの液晶層のΔndは0.94μmである。そののち、前面側には透過タイプの偏光板を、背面側には外側に半透過反射層を一体的に積層した偏光板を、それぞれ所定の角度にて貼り付け液晶表示パネルを完成させた。
【0035】
このようにして作成したパネルを1/16デューティで駆動し、背面に主発光波長が640μmの赤色LEDを光源とするバックライトを設置し、明るい環境および暗い環境で観察したところ、いずれの条件でも黒背景に赤の高品位の表示が得られた。
【0036】
[例2]
注入する液晶として例1と同様の液晶に最大吸収波長が約640nmのアントラキノン系の2色性色素を1%添加した液晶を使用したことおよびセルギャップを6.0μmとしたこと以外は実施例1と同様にして液晶セルを作成した。
【0037】
そののち、前面側には透過タイプの偏光板を前面側配向膜のラビング方向と透過軸をそろえて貼り付け、背面側には外側に半透過反射層を一体的に積層した偏光板を前面側の偏光板の偏光軸と一致させて貼り付けて、液晶表示パネルを完成させた。
【0038】
このようにして作成したパネルを1/16デューティで駆動し、背面に主発光波長が628μmの赤色LEDを光源とするバックライトを設置し、明るい環境および暗い環境で観察したところ、この場合も、いずれの条件でも黒背景に赤の高品位の表示が得られた。
【0039】
【発明の効果】
本発明により、黒背景に赤色の表示を行う液晶表示装置であって、外光下においてもウォッシュアウト現象や背景色の変化が起こらずに高品位の表示が保持され、構造が単純で、組み立てが容易で、しかも1/33デューティ程度までの時分割駆動が可能で、車載用途に好適な液晶表示装置が実現する。
【図面の簡単な説明】
【図1】本発明の液晶表示装置基本構成を示す模式的断面図。
【符号の説明】
1 透明基板
2 透光膜
3 透明電極
4 周辺シール材
5 偏光板
6 半透過反射層
7 液晶層
8 バックライトユニット
9 光源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display device that displays red on a black background.
[0002]
[Prior art]
From the viewpoint of cosmetics, visibility, etc., there is a use in which a combination of a black background and a red display is preferred, and it has been used for display parts such as calculators, advertising dials, and in-vehicle audio for a long time.
[0003]
Conventionally, in these applications, self-luminous display elements such as light-emitting diodes, electroluminescent elements, and plasma displays have been used. However, there is a problem that a so-called washout phenomenon occurs in which display is not visible under external light. It was.
[0004]
On the other hand, this problem can be avoided by using a transflective or reflective liquid crystal display element. For example, a negative mode twisted nematic (TN) transflective liquid crystal display panel and a main light emission of a light source A combination with a backlight unit having a wavelength of 620 nm or more, or a combination of a reflective liquid crystal panel of the same type and a red filter layer enables display that is not affected by external light.
[0005]
However, this system has a limit in display density, and is composed of 5 × 7 dots, which are so-called character displays, or 16 × 16 dots, with time-division driving of about 1/16 duty or more. However, when trying to display kana / kanji characters, there was a problem that they could only be seen at a specific angle.
[0006]
On the other hand, if the super twist nematic (STN) method is used, a decrease in visibility due to an increase in display density can be avoided, but a method using a phase difference plate as an optical compensator for black-and-white conversion is used as in-vehicle applications. When applied to an environment where the operating temperature range is wide, there arises a problem that the background color of the non-display portion changes at a high temperature and the contrast is lowered.
[0007]
In addition, according to the method using a liquid crystal cell (interference cell) in which the twist direction is the same as that of the liquid crystal cell for display as the optical compensator, and the direction of twist is reversed in the cell gap, this problem can be avoided. There is a problem that productivity is lowered because it is necessary to control and create a gap between both cells with high accuracy including a relative relationship.
[0008]
As a method that does not use the optical compensator for black and white as described above, specializing in the purpose of displaying two colors in red on a black background, the transmitted light is transmitted when a white backlight light source is used. A method of combining a so-called blue mode liquid crystal display panel, which is blue-green below the excitation voltage and light gray above the excitation voltage, and a red backlight is conceivable.
[0009]
According to this method, the transmitted light is red at the display unit and is blocked at the background unit to be black, but when viewed under external light, the blue mode background color is visible in the reflected light, and the display quality is impaired. In particular, when a transflective diffuser disposed outside the polarizing plate on the back side is used as the diffuser of the backlight, there is a problem that this tendency becomes remarkable.
[0010]
This problem can be avoided by using a separate diffusion plate colored with a colorant that compensates for the color of the blue mode as the diffusion plate, but the structure of the liquid crystal display device becomes complicated and the assembly is complicated. In addition, new problems such as difficulty in thinning occur.
[0011]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described conventional problems, and is a liquid crystal display device that displays red on a black background, and the washout phenomenon and background color change even under external light. An object of the present invention is to provide a liquid crystal display device that is simple in structure, easy to assemble, and capable of time-division driving up to about 1/33 duty.
[0012]
[Means for Solving the Problems]
The liquid crystal display device of the present invention according to claim 1 is characterized in that a twist angle is 180 to a space surrounded by a pair of transparent substrates each having a transparent electrode and an alignment film and arranged in parallel and a peripheral sealing material. A super twist nematic liquid crystal display panel in which a liquid crystal layer made of nematic liquid crystal set at 270 ° is sandwiched and a pair of polarizing plates are arranged on both outer sides of the pair of transparent substrates, and the main emission wavelength of the light source is In a liquid crystal display device that performs two-color display of red on a black background having a backlight unit of 620 nm or more, the back-side polarizing plate is formed by integrally laminating a transflective layer on the outside, and A light-transmitting film made of a photosensitive resin material on the inner surface of one of the transparent substrates and having a light transmittance of wavelengths of 640 nm and 450 nm of 70% or more and 20% or less, respectively, and The translucent film has been extended to the bottom of the peripheral sealing material such that the gap of the gap between the display portion of the seal portion becomes the same by the peripheral sealing material, the main emission wavelength of the liquid crystal layer is backlight source And the angle between the polarization axis direction of the polarizing plate on the front side and the alignment direction of the alignment film on the front substrate is 0 from the alignment direction to the twist direction of the liquid crystal. The polarization axis directions of both polarizing plates are substantially coincident with each other, and when using a white backlight source, the transmitted light is blue when the excitation voltage is lower than the excitation voltage, and is light when the excitation voltage is higher than the excitation voltage . With this configuration, the washout phenomenon and background color change do not occur even under external light, the structure is simple, the assembly is easy, and time-division driving up to about 1/33 duty is possible. A liquid crystal display device is realized. Further, by extending the translucent film below the peripheral sealing material and making the gap of the seal part and the gap of the display part the same, it becomes easy to control the gap in cell creation. In addition, excellent display quality is maintained even at higher temperatures.
[0013]
The liquid crystal display device of the present invention according to claim 2 is characterized in that the translucent film is made of a photosensitive resin material and has an insulation resistance of 10 12 Ω / □ or more. By adopting such a configuration, the smoothness of the translucent film is improved, and it is possible to form a transparent electrode directly on the translucent film without using a planarizing layer. Leakage between them is prevented, and clear display without bleeding becomes possible.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
As shown in FIG. 1, the liquid crystal display device of the present invention includes a pair of transparent substrates 1, 1 and a peripheral sealing material 4, each having transparent electrodes 3, 3 and an alignment film (not shown). A liquid crystal layer 7 made of nematic liquid crystal whose twist angle is set to 180 to 270 ° is sandwiched in a space consisting of the above, and a pair of polarizing plates 5, 5 are arranged on both outer sides of the pair of transparent substrates 1, 1. And a backlight unit 8 having a main light emission wavelength of 620 nm or more, and a driving means (not shown) or the like is added to the backlight unit 8.
[0016]
In the present invention, the back side (lower side in the figure) polarizing plate 5 is integrally laminated with the transflective layer 6 on the outer side (lower side in the figure), and either one of the transparent substrates 1. It is important that the light-transmitting film 2 having a light transmittance of wavelengths of 640 nm and 450 nm of 70% or more and 20% or less is provided on the inner surface.
[0017]
The transflective layer 6 also functions as a diffuser plate for backlight light. However, if the semi-transmissive reflective layer 6 is laminated and integrated with the back-side polarizing plate, the assembly process can be simplified and the apparatus can be made thinner. As a polarizing plate having a semi-transmissive reflective layer laminated and integrated, various types having different transmittance / reflectance balance and the like are on the market, but it is preferable to select appropriately according to the application of the display device.
[0018]
In the present invention, it is preferable that the light-transmitting film 2 is made of a photosensitive resin material in addition to the light absorption characteristics, and has an insulation resistance of 10 12 Ω / □ or more. By using the photosensitive resin material, it becomes easy to form a light-transmitting film smoothly, and it becomes possible to form a transparent electrode directly on the transparent film without using a planarizing layer. In that case, if the insulation resistance of the light-transmitting film is 10 12 Ω / □ or more, leakage between adjacent electrodes is prevented, clear display without bleeding is possible, and a protective layer for insulation becomes unnecessary. As a material for the light-transmitting film, a material having heat resistance that can withstand the process temperature, resistance to chemicals during patterning of the transparent electrode, and a predetermined hardness is preferable.
[0019]
A roll coater, bar coater, slit coater, etc. can be used for coating the translucent film material. However, since film thickness variations cause color variations and cell gap variations, spins with excellent film thickness uniformity can be used. Adopting a coating method is desirable. In this case, in order to reduce the amount of material used, it may be used in combination with a bar coater or a slit coater. In addition to this example, any method may be adopted as long as the method has excellent film thickness uniformity.
[0020]
A transparent conductive film is formed on the substrate on which the light-transmitting film is thus formed by a sputtering method or the like. The surface resistance value of the transparent conductive film is set to a value determined by the pattern design of the element, but a range of about 30 to 100Ω / □ is usually adopted. Thereafter, the transparent electrode is formed by patterning by a conventional method.
[0021]
An alkali prevention film and ITO are sequentially formed on the other substrate, and a transparent electrode is formed in the same manner. An alignment film having a thickness of about 60 nm is formed on the substrate on which the light-transmitting film is formed. On the other substrate, an insulating film such as an inorganic film in which titania and silica are mixed is preferably printed by, for example, a sol-gel method, and then an alignment film is formed to be rubbed. The inorganic film is effective for preventing a short circuit between the opposing substrates.
[0022]
It is preferable in terms of process that the spacers for controlling the gap between the substrates and the peripheral sealing material are printed on different substrates. In order to establish conduction between the upper and lower sides of the substrate, a part of the sealant mixed with conductive beads can be used.
[0023]
Note that by extending the light-transmitting film below the peripheral sealing material, the gap between the seal portion and the display portion becomes substantially the same, so that there is an advantage that it is easy to control the gap in cell creation.
[0024]
The substrate provided with the light-transmitting film is opposed to the other substrate, the sealing material is cured through the thermocompression bonding process, the injection port, the terminal portion, etc. are cut out, the cell and the liquid crystal injection boat are heated, and the liquid crystal is evacuated. After injecting by the injection method, a liquid crystal cell is produced by a method such as sealing the injection port with a UV curable resin.
[0025]
The twist angle of the liquid crystal layer is in the range of 180 to 270 °, but is preferably set to 180 to 240 ° from the viewpoint that domain generation at high temperatures hardly occurs. In addition, as Δnd, about 0.8 to 1.2 μm can be used. However, in a small region, the transmittance when no voltage is applied is low, and in a large region, there is a tendency that the viewing angle dependency of the transmittance is large. Therefore, about 0.9 to 1.0 μm is preferable. Polarizers are installed on both sides of the cell so that a so-called negative liquid crystal display mode is obtained in which the transmittance is low when no voltage is applied and the transmittance is high when a voltage is applied.
[0026]
As for the installation angle of the polarizing plate, the polarizing plate is generally called blue mode so that the transmittance is low when no voltage is applied, blue to blue-green, and the transmittance is high when the voltage is applied and the color is almost achromatic. It is also a preferable aspect to install.
[0027]
It is preferable that the liquid crystal layer contains a dichroic dye having the main emission wavelength of the red backlight and the maximum absorption wavelength substantially matching, since the degree of light shielding is further increased. At this time, the angle formed by the polarization axis direction of the polarizing plate on the front side and the alignment direction of the alignment film on the front substrate is 0 to 30 ° from the alignment direction to the twist direction of the liquid crystal, It is also a preferred embodiment that when a white backlight light source is used, a guest-host type liquid crystal display element that exhibits a blue absorption color below the excitation voltage and a light color above the excitation voltage.
[0028]
Examples of the light source having a main emission wavelength of the backlight unit used in the present invention of 620 nm or more include a red LED and a red CCT.
[0029]
【Example】
[Example 1]
Using a mother substrate in which a silica substrate is formed on a glass substrate with a thickness of about 20 nm by sputtering, a red photosensitive resin material (V-259R-H manufactured by Nippon Steel Chemical Co., Ltd.) is applied by spin coating. The film was applied to a thickness of about 1 μm and exposed to 300 mJ using a photomask that shielded light from the seal portion and the outer portion provided around the liquid crystal cell, followed by development, drying, and baking. . The thus formed light-transmitting film had light transmittances of wavelengths of 640 nm and 450 nm of 88% and 4%, respectively, and an insulation resistance value of 3 × 10 14 Ω / □.
[0030]
A transparent conductive film having a thickness of about 100 nm was formed by sputtering at a temperature of 230 ° C. on the substrate on which the light-transmitting film was thus formed. The sheet resistance value was about 30Ω / □. After applying photoresist to this substrate, use a photomask that shields the wiring so that voltage is applied to the segment display area, and after exposure and development, remove unnecessary ITO with an etchant. Further, the resist was stripped off with an aqueous NaOH solution to form a transparent electrode having a pattern displaying 2 rows of 5 × 7 dot characters. An alkali prevention film and ITO were sequentially formed on the opposing substrate, and a transparent electrode was similarly formed.
[0031]
A polyimide alignment film material having a pretilt angle of about 5 degrees was used for the substrate on which the light shielding film was formed, and the film was formed to a thickness of about 60 nm by a transfer printing method. In order to form an inorganic insulating film in which titania and silica were mixed on the opposing substrate, a printed film was formed by a sol-gel method. After that, an alignment film was similarly formed and baked, and both the substrates were rubbed so that the twist angle was 240 °.
[0032]
One side of the substrate is sprayed with micropearl made by Sekisui Fine Chemical Co., Ltd., which has a diameter of 6.75 μm, and the opposite substrate is screen printed with Mitsui Chemicals' struct bond as a peripheral sealing material around the liquid crystal cell. Printed at A seal material mixed with conductive beads was printed on a portion provided with an electrode for establishing conduction between opposing substrates.
[0033]
These substrates are made to face each other, cured through a thermocompression bonding process, and after cutting out the injection port, terminal portion, etc., the nematic-isotropic phase transition temperature is 110 ° C., Δn is 0.14, and a predetermined pitch is obtained. A nematic liquid crystal with a chiral material added thereto was injected by a vacuum injection method, and a UV curable epoxy resin was applied to the injection port and sealed.
[0034]
When the gap of each segment portion was measured, the average was 6.7 μm, and the variation was within a deviation of about 0.05 μm at the maximum, and cells with good uniformity were formed. Δnd of the liquid crystal layer of this cell is 0.94 μm. Thereafter, a transmissive type polarizing plate was attached to the front side and a polarizing plate integrally laminated with a semi-transmissive reflective layer on the back side was attached at a predetermined angle to complete the liquid crystal display panel.
[0035]
The panel produced in this way is driven at 1/16 duty, and a backlight using a red LED having a main emission wavelength of 640 μm as the light source is installed on the back, and observed in a bright environment and a dark environment. A high quality red display was obtained on a black background.
[0036]
[Example 2]
Example 1 except that the liquid crystal to be injected was the same liquid crystal as in Example 1 in which 1% of an anthraquinone dichroic dye having a maximum absorption wavelength of about 640 nm was added, and that the cell gap was 6.0 μm. A liquid crystal cell was prepared in the same manner as described above.
[0037]
After that, a transmissive type polarizing plate is attached on the front side with the rubbing direction and transmission axis of the front side alignment film aligned, and a polarizing plate with a semi-transparent reflective layer laminated on the back side on the front side. A liquid crystal display panel was completed by pasting it so as to coincide with the polarization axis of the polarizing plate.
[0038]
The panel thus produced was driven at 1/16 duty, and a backlight using a red LED having a main emission wavelength of 628 μm as a light source was installed on the back, and observed in a bright environment and a dark environment. Under either condition, a high-quality red display was obtained on a black background.
[0039]
【The invention's effect】
According to the present invention, a liquid crystal display device that displays red on a black background, which maintains a high-quality display without any washout phenomenon or background color change even under external light, has a simple structure, and is assembled Therefore, a time-division drive up to about 1/33 duty is possible, and a liquid crystal display device suitable for in-vehicle use is realized.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a basic configuration of a liquid crystal display device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Translucent film 3 Transparent electrode 4 Peripheral sealing material 5 Polarizing plate 6 Transflective layer 7 Liquid crystal layer 8 Backlight unit 9 Light source

Claims (2)

透明電極と配向膜をそれぞれ有しほぼ平行に配置された一対の透明基板と周辺シール材とで囲まれた空間にねじれ角が180〜270゜に設定されたネマチック液晶からなる液晶層が挟持され、前記一対の透明基板の両外側に一対の偏光板を配してなるスーパーツイストネマチック方式の液晶表示パネルと、光源の主発光波長が620nm以上であるバックライトユニットとを有する黒背景に赤色の2色表示を行う液晶表示装置において、
背面側偏光板が外側に半透過反射層を一体的に積層されたものであること、およびいずれか一方の透明基板の内面に感光性樹脂材料からなり、波長640nmおよび450nmの光透過率がそれぞれ70%以上、20%以下である透光膜が設けられ、かつ、前記透光膜が前記周辺シール材によるシール部のギャップと表示部分のギャップとが同じになるように前記周辺シール材の下にまで延長されており、前記液晶層がバックライト光源の主発光波長と最大吸収波長がほぼ一致する二色性色素を含有し、かつ、前面側の偏光板の偏光軸方向と前面基板の配向膜の配向方向とのなす角度が配向方向から液晶のねじれ方向に0〜30°であり、両偏光板の偏光軸方向がそれぞれほぼ一致し、白色のバックライト光源を用いたときに透過光が励起電圧以下では青色、励起電圧以上では淡色を呈することを特徴とする液晶表示装置。
A liquid crystal layer made of nematic liquid crystal having a twist angle of 180 to 270 ° is sandwiched between a space surrounded by a pair of transparent substrates and transparent sealing materials each having a transparent electrode and an alignment film, and a peripheral sealing material. A super twist nematic liquid crystal display panel in which a pair of polarizing plates are arranged on both outer sides of the pair of transparent substrates, and a backlight unit having a main light emission wavelength of 620 nm or more and a red background with a black background In a liquid crystal display device that performs two-color display,
The back side polarizing plate is integrally laminated with a transflective layer on the outside, and is made of a photosensitive resin material on the inner surface of one of the transparent substrates, and has a light transmittance of 640 nm and 450 nm, respectively. A translucent film of 70% or more and 20% or less is provided, and the translucent film is provided under the peripheral sealing material so that the gap of the sealing portion by the peripheral sealing material and the gap of the display portion are the same. The liquid crystal layer contains a dichroic dye whose main emission wavelength and the maximum absorption wavelength of the backlight light source substantially coincide with each other, and the polarization axis direction of the polarizing plate on the front side and the orientation of the front substrate The angle formed with the alignment direction of the film is 0 to 30 ° from the alignment direction to the twist direction of the liquid crystal, the polarization axis directions of the two polarizing plates are substantially coincided, and transmitted light is transmitted when a white backlight light source is used. Excitation electricity The liquid crystal display device, characterized in that the following exhibiting light-colored in blue, the excitation voltage or more.
前記透光膜が感光性の樹脂材料からなり、かつ、絶縁抵抗が1012Ω/□以上である請求項1に記載の液晶表示装置。 It said transparent film is made of photosensitive resin material, and a liquid crystal display device according to claim 1 insulation resistance of 10 12 Ω / □ or more.
JP12364299A 1999-04-30 1999-04-30 Liquid crystal display Expired - Fee Related JP4054132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12364299A JP4054132B2 (en) 1999-04-30 1999-04-30 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12364299A JP4054132B2 (en) 1999-04-30 1999-04-30 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2000314865A JP2000314865A (en) 2000-11-14
JP4054132B2 true JP4054132B2 (en) 2008-02-27

Family

ID=14865655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12364299A Expired - Fee Related JP4054132B2 (en) 1999-04-30 1999-04-30 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP4054132B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076211B2 (en) * 2007-06-08 2012-11-21 スタンレー電気株式会社 Liquid crystal display
JP2009036890A (en) * 2007-07-31 2009-02-19 Stanley Electric Co Ltd Liquid crystal display device

Also Published As

Publication number Publication date
JP2000314865A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
JP3335130B2 (en) Liquid crystal display
US4929060A (en) Color liquid crystal display device
US6738115B1 (en) Reflective LCD, semitransmitting reflective LCD and electronic device
JP2000075287A (en) Reflective liquid crystal display device
JPH1096887A (en) Color liquid crystal display element
US4964702A (en) Liquid crystal display device having a light shielding layer being a complementary color to the color filter
JP3723511B2 (en) Reflective / transmissive color liquid crystal display
JP3808356B2 (en) Liquid crystal display
JP4054132B2 (en) Liquid crystal display
US4828364A (en) Liquid crystal display device with light shield of specific transmittance
JP2000098411A (en) Color liquid crystal display device
JP2933258B2 (en) Liquid crystal display
JP4114336B2 (en) Color filter substrate, method for manufacturing color filter substrate, liquid crystal display panel, liquid crystal display device, and electronic apparatus
JP4484265B2 (en) Liquid crystal display
JP2803786B2 (en) Liquid crystal display device
JP4370758B2 (en) Electro-optical device substrate, method for manufacturing electro-optical device substrate, electro-optical device, and electronic apparatus
JPH10115704A (en) Reflection type color filter and liquid crystal display device
JP2757380B2 (en) Color liquid crystal display device
JP2545877B2 (en) Liquid crystal display
JP2001066586A (en) Liquid crystal display device
KR100556344B1 (en) Reflective-type liquid crystal display devices
JP2000241808A (en) Liquid crystal display element
JP2000056315A (en) Liquid crystal display element
JP2000338472A (en) Transmission type liquid crystal display device
JP2000098364A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees