JP4054131B2 - Image forming method - Google Patents

Image forming method Download PDF

Info

Publication number
JP4054131B2
JP4054131B2 JP11274599A JP11274599A JP4054131B2 JP 4054131 B2 JP4054131 B2 JP 4054131B2 JP 11274599 A JP11274599 A JP 11274599A JP 11274599 A JP11274599 A JP 11274599A JP 4054131 B2 JP4054131 B2 JP 4054131B2
Authority
JP
Japan
Prior art keywords
silver
group
layer
dispersion
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11274599A
Other languages
Japanese (ja)
Other versions
JP2000305213A (en
Inventor
市三 戸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP11274599A priority Critical patent/JP4054131B2/en
Publication of JP2000305213A publication Critical patent/JP2000305213A/en
Application granted granted Critical
Publication of JP4054131B2 publication Critical patent/JP4054131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は熱現像感光材料を用いた画像形成方法に関するものである。
【従来の技術】
近年、医療分野において環境保全、省スペースの観点から処理廃液の減量が強く望まれている。そこで、レーザー・イメージセッターまたはレーザー・イメージャーにより効率的に露光させることができ、高解像度および鮮鋭さを有する鮮明な黒色画像を形成することができる医療診断用および写真技術用途の光感光性熱現像写真材料に関する技術が必要とされている。これら光感光性熱現像写真材料では、溶液系処理化学薬品の使用をなくし、より簡単で環境を損なわない熱現像処理システムを顧客に対して供給することができる。
【0002】
一般画像形成材料の分野でも同様の要求はあるが、医療用画像は微細な描写が要求されるため鮮鋭性、粒状性に優れる高画質が必要であるうえ、診断のし易さの観点から冷黒調の画像が好まれる特徴がある。現在、インクジェットプリンター、電子写真など顔料、染料を利用した各種ハードコピーシステムが一般画像形成システムとして流通しているが、医療用画像の出力システムとしては満足できるものがない。
【0003】
一方、有機銀塩を利用した熱画像形成システムが、例えば、米国特許3152904号、同3457075号の各明細書およびB.シェリー(Shely) による「熱によって処理される銀システム(Thermally Processed Silver Systems)」(イメージング・プロセッシーズ・アンド・マテリアルズ(Imaging Processes and Materials)Neblette 第8版、スタージ(Sturge)、V.ウオールワース(Walworth)、A.シェップ(Shepp) 編集、第2頁、1996年)に記載されている。特に、熱現像感光材料は、一般に、触媒活性量の光触媒(例、ハロゲン化銀)、還元剤、還元可能な銀塩(例、有機銀塩)、必要により銀の色調を制御する色調剤を、バインダーのマトリックス中に分散した感光性層を有している。熱現像感光材料は、画像露光後、高温(例えば80℃以上)に加熱し、ハロゲン化銀あるいは還元可能な銀塩(酸化剤として機能する)と還元剤との間の酸化還元反応により、黒色の銀画像を形成する。酸化還元反応は、露光で発生したハロゲン化銀の潜像の触媒作用により促進される。そのため、黒色の銀画像は、露光領域に形成される。米国特許2910377号、特公昭43-4924号をはじめとする多くの文献に開示されている。これら有機銀塩を利用した熱画像形成システムは医療用画像として満足される画質と色調を達成し得る。
【0004】
しかしながら、このような熱現像感光材料においては、熱現像にて画像を可視化させるため、その熱現像によるカブリが生じやすいことが問題となっていた。これらの問題点を解決するため、これまでに種々のカブリ防止剤が開発されてきた。カブリ防止剤の例としては、チオスルホン酸類、スルフィン酸類、水銀化合物、N−ハロゲノ化合物、リチウム塩、過酸化物、過硫酸塩、ロジウム塩、コバルト塩、パラジウム化合物、セリウム化合物、ジスルフィド化合物、ポリマー酸、ポリハロゲン化合物などが知られている。
【0005】
従来のカブリ防止技術として最も有効な方法は、カブリ防止剤として水銀化合物を用いる方法であった。感光材料中にカブリ防止剤として水銀化合物を使用することについては、例えば、米国特許第3589903号に開示されている。しかし、水銀化合物の使用は環境的観点から好ましくなく、非水銀系のカブリ防止剤の開発が望まれていた。非水銀系カブリ防止剤としては、上記の化合物が検討されてきたが、中でもポリハロゲン化合物(例えば、米国特許第3874946号、同4756999号、同5340712号、欧州特許第605981A1号、同622666A1号、同631176A1号、特公昭54−165号、特開平7−2781号に記載されている化合物)が良好なカブリ防止効果を有していることが報告されている。
【0006】
しかしながら、カブリ防止剤にポリハロゲン化合物を用いた場合に生保存時に感度が低下してしまうといった問題が生じ、根本的な見直しが必要とされた。
【0007】
【発明が解決しようとする課題】
本発明の目的は、生保存性がよい熱現像感光材料を用いて、カブリが低い画像形成方法を提供することである。
【0008】
【課題を解決するための手段】
本発明は、以下の手段によって達成された。(1)支持体上に少なくとも1種類の感光性ハロゲン化銀、非感光性有機銀塩、銀イオンのための還元剤、バインダーおよび下記一般式( II )で表されるポリハロゲン化合物を含有した画像形成層を溶媒の30wt%以上が水である塗布液を用いて塗布し乾燥して形成されたものであって、且つ前記感光性ハロゲン化銀が実質的に色増感されていない熱現像感光材料を、青域から紫外線域に発光ピークを有するレーザー光で露光した後、熱現像することを特徴とする画像形成方法。(2)前記バインダーがポリマーラテックスであることを特徴とする(1)に記載の画像形成方法。(3)前記ポリハロゲン化合物の固体微粒子分散物を含有することを特徴とする(1)または(2)に記載の画像形成方法。(4)前記ポリハロゲン化合物が下記一般式( II-b )で表される化合物であることを特徴とする(1)〜(3)のいずれかに記載の画像形成方法。
【0009】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明の熱現像感光材料は、支持体上に非感光性有機銀塩およびバインダーを含有する画像形成層を有し、この層側の層に感光性ハロゲン化銀、銀イオンのための還元剤およびポリハロゲン化合物を含有するものであり、画像形成層は、好ましくは、感光性ハロゲン化銀を含有する感光性層である。本発明の熱現像感光材料は青域から紫外線域(具体的には260〜450nmの波長域)のレーザー光露光用であり、感光性ハロゲン化銀は実質的に色増感されていないものである。すなわち、感光性ハロゲン化銀には分光増感色素の添加はなされておらず、感光性ハロゲン化銀1モルに対する分光増感色素の添加量は10-5モル以下であり、好ましくは全く含まれないことである。この場合、感光性ハロゲン化銀は2種以上用いることが好ましく、形状、大きさ、光学増感の程度等を変えた2〜4種のものを用いることが好ましい。このような混合比は、例えば2種用いるときは乳剤としての重量比で10/1〜1/10であることが好ましい。
【0010】
上記のような本発明の構成をとることによって、低カブリで写真性能に優れ、生保存性が良化する。これに対し、分光増感色素を用いると、露光の波長域が適合しないものとなり、かつ生保存性も悪化してしまう。またポリハロゲン化合物を含有させないと、カブリが上昇する。
【0011】
本発明に用いられるポリハロゲン化合物は下記式(II)で表される化合物である。
【0012】
【化1】

Figure 0004054131
【0013】
式(II)中、Qはアルキル基、アリール基またはヘテロ環基を表し、X1 およびX2 はそれぞれハロゲン原子を表す。Zは水素原子または電子吸引性基を表す。Yは−C(=O)−、−SO−または−SO2 −を表す。nは0または1を表す。
【0014】
次に、式(II)について詳細に説明する。Qはアルキル基、アリール基またはヘテロ環基を表す。Qで表されるアリール基は、単環または縮環していてもよく、好ましくは炭素数6〜30の単環または二環のアリール基(例えばフェニル、ナフチル等)であり、より好ましくはフェニル基、ナフチル基であり、更に好ましくはフェニル基である。
【0015】
Qで表されるヘテロ環基は、N、OまたはS原子の少なくとも一つを含む3ないし10員の飽和もしくは不飽和のヘテロ環基であり、これらは単環であっても良いし、更に他の環と縮合環を形成してもよい。
【0016】
ヘテロ環基として好ましくは、縮合環を有していてもよい5ないし6員の不飽和ヘテロ環基であり、より好ましくは縮合環を有していてもよい5ないし6員の芳香族ヘテロ環基である。更に好ましくは窒素原子を含む5ないし6員の芳香族ヘテロ環基であり、特に好ましくは窒素原子を1ないし4原子含む5ないし6員の縮合環を有していてもよい芳香族ヘテロ環基である。
【0017】
ヘテロ環基中のヘテロ環の具体例としては、例えばピロリジン、ピペリジン、ピペラジン、モルフォリン、チオフェン、フラン、ピロール、イミダゾール、ピラゾール、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアジアゾール、オキサジアゾール、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、チアゾール、オキサゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンズセレナゾール、インドレニン、テトラザインデンなどが挙げられる。ヘテロ環として好ましくは、イミダゾール、ピラゾール、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアジアゾール、オキサジアゾール、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、チアゾール、オキサゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、インドレニン、テトラザインデンであり、より好ましくはイミダゾール、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアゾール、トリアジン、チアジアゾール、オキサジアゾール、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、テトラゾール、チアゾール、オキサゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、テトラザインデンであり、更に好ましくはイミダゾール、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアゾール、トリアジン、チアジアゾール、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、テトラゾール、チアゾール、ベンズイミダゾール、ベンズチアゾールであり、特に好ましくはピリジン、チアジアゾール、キノリン、ベンズチアゾールである。
【0018】
Qで表されるアリール基およびヘテロ環は−(Y)n −CZ(X1 )(X2 )の他に置換基を有していても良く、置換基としては、例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、n−プロピル、iso−プロピル、n−ブチル、iso−ブチル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは2〜12、特に好ましくは2〜8であり、例えばプロパルギル、3−ペンチニル等が挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイル等が挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシル、フェニルスルホニルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、ヘテロ環基(例えばイミダゾリル、ピリジル、フリル、ピペリジル、モルホリノなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されていてもよい。また、置換基が二つ以上ある場合は、同じでも異なっていてもよい。
【0019】
置換基として好ましくはアルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、アシルオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、スルホニル基、ウレイド基、リン酸アミド基、ハロゲン原子、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヘテロ環基であり、より好ましくはアルキル基、アリール基、アルコキシ基、アリールオキシ基、アシル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、ウレイド基、リン酸アミド基、ハロゲン原子、シアノ基、ニトロ基、ヘテロ環基であり、更に好ましくはアルキル基、アリール基、アルコキシ基、アリールオキシ基、アシル基、アシルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、ハロゲン原子、シアノ基、ニトロ基、ヘテロ環基であり、特に好ましくはアルキル基、アリール基、ハロゲン原子である。
【0020】
Qで表されるアルキル基は直鎖、分岐、または環状であってもよく、好ましくは炭素数1〜30のものであり、より好ましくは炭素数1〜15のものであり、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、3級オクチル基などが挙げられる。
【0021】
Qで表されるアルキル基は−(Y)n −CZ(X1 )(X2 )の他に置換基を有していても良く、置換基としては、Qがヘテロ環基、あるいはアリール基の場合にとり得る置換基と同様なものが挙げられる。置換基として好ましくは、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、アルキルチオ基、アリールチオ基、ウレイド基、リン酸アミド基、ヒドロキシ基、ハロゲン原子、ヘテロ環基であり、より好ましくはアリール基、アルコキシ基、アリールオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、ウレイド基、リン酸アミド基、ハロゲン原子であり、更に好ましくはアリール基、アルコキシ基、アリールオキシ基、アシルアミノ基、スルホニルアミノ基、ウレイド基、リン酸アミド基である。
【0022】
これらの置換基は更に置換されていてもよい。また、置換基が二つ以上ある場合は、同じでも異なっていてもよい。
【0023】
Yは−C(=O)−、−SO−または−SO2 −を表し、好ましくは−C(=O)−、−SO2 −であり、より好ましくは−SO2 −である。
【0024】
nは、0または1を表し、好ましくは1である。
【0025】
1 、X2 は、ハロゲン原子を有し、X1 、X2 で表されるハロゲン原子は同一または互いに異なっていてもよくフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、好ましくは塩素原子、臭素原子、ヨウ素原子であり、より好ましくは塩素原子、臭素原子であり、特に好ましくは臭素原子である。
【0026】
Zは水素原子または電子吸引性基を表し、Zで表される電子吸引性基として好ましくは、σp値が0.01以上の置換基であり、より好ましくは0.1以上の置換基である。ハメットの置換基定数に関しては、Journal of Medicinal Chemistry,1973,Vol.16,No.11,1207-1216 等を参考にすることができる。電子吸引性基としては、例えばハロゲン原子(フッ素原子(σp値:0.06)、塩素原子(σp値:0.23)、臭素原子(σp値:0.23)、ヨウ素原子(σp値:0.18))、トリハロメチル基(トリブロモメチル(σp値:0.29)、トリクロロメチル(σp値:0.33)、トリフルオロメチル(σp値:0.54))、シアノ基(σp値:0.66)、ニトロ基(σp値:0.78)、脂肪族・アリールもしくは複素環スルホニル基(例えば、メタンスルホニル(σp値:0.72))、脂肪族・アリールもしくは複素環アシル基(例えば、アセチル(σp値:0.50)、ベンゾイル(σp値:0.43))、アルキニル基(例えば、C≡CH(σp値:0.23))、脂肪族・アリールもしくは複素環オキシカルボニル基(例えば、メトキシカルボニル(σp値:0.45)、フェノキシカルボニル(σp値:0.44))、カルバモイル基(σp値:0.36)、スルファモイル基(σp値:0.57)、などが挙げられる。
【0027】
Zは、好ましくは電子吸引性基であり、より好ましくはハロゲン原子、脂肪族・アリールもしくは複素環スルホニル基、脂肪族・アリールもしくは複素環アシル基、脂肪族・アリールもしくは複素環オキシカルボニル基、カルバモイル基、スルファモイル基であり、特に好ましくはハロゲン原子である。ハロゲン原子の中でも、好ましくは塩素原子、臭素原子、ヨウ素原子であり、更に好ましくは塩素原子、臭素原子であり、特に好ましくは臭素原子である。
【0028】
式(II)で表される化合物のうち、好ましくは下記式(II−a)で表される化合物である。
【0029】
【化2】
Figure 0004054131
【0030】
式中、Qは式(II)におけるそれと同義であり、また好ましい範囲も同様である。また、Qがとり得る置換基は式(II)におけるQがとり得る置換基と同義である。X1 、X2 、Y、Zはそれぞれ式(II)におけるそれらと同義であり、また好ましい範囲も同様である。
【0031】
式(II)で表される化合物のうち、より好ましくは式(II−b)で表される化合物である。
【0032】
【化3】
Figure 0004054131
【0033】
式中、Qは式(II)におけるそれと同義であり、また好ましい範囲も同様である。また、Qがとり得る置換基は式(II)におけるQがとり得る置換基と同義である。X1 、X2 、Zは式(II)におけるそれらと同義であり、また好ましい範囲も同様である。
【0034】
以下に式(II)で表される化合物の具体例を挙げるが、本発明はこれらに限定されるものではない。
【0035】
【化4】
Figure 0004054131
【0036】
【化5】
Figure 0004054131
【0037】
【化6】
Figure 0004054131
【0038】
【化7】
Figure 0004054131
【0039】
【化8】
Figure 0004054131
【0040】
本発明の式(II)の化合物は粒子サイズの小さい、凝集のない微粒子を得る目的で、分散剤を使用した固体微粒子分散物とする方法で添加してもよい。本発明の式(II)の化合物を固体微粒子分散化する方法は、分散助剤の存在下で公知の微細化手段(例えば、ボールミル、振動ボールミル、遊星ボールミル、サンドミル、コロイドミル、ジェットミル、ローラーミル)を用い、機械的に分散することができる。
【0041】
分散剤を使用して本発明の式(II)の化合物を固体微粒子化する際には、例えば、ポリアクリル酸、アクリル酸の共重合体、マレイン酸共重合体、マレイン酸モノエステル共重合体、アクリロイルメチルプロパンスルホン酸共重合体、などの合成アニオンポリマー、カルボキシメチルデンプン、カルボキシメチルセルロースなどの半合成アニオンポリマー、アルギン酸、ペクチン酸などのアニオン性ポリマー、特開昭52-92716号、WO88/04794 号などに記載のアニオン性界面活性剤、特願平7-350753号に記載の化合物、あるいは公知のアニオン性、ノニオン性、カチオン性界面活性剤や、その他ポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の公知のポリマー、或いはゼラチン等の自然界に存在する高分子化合物を適宜選択して用いることができる。
【0042】
分散助剤は、分散前に本発明の式(II)の化合物の粉末またはウェットケーキ状態の本発明の式(II)の化合物と混合し、スラリーとして分散機に送り込むのは一般的な方法であるが、予め本発明の化合物と混ぜ合わせた状態で熱処理や溶媒による処理を施して粉末またはウェットケーキとしても良い。分散前後または分散中に適当なpH調整剤によりpHコントロールしても良い。
【0043】
機械的に分散する以外にも、pHコントロールすることで溶媒中に粗分散し、その後、分散助剤の存在下でpHを変化させて微粒子化させても良い。このとき、粗分散に用いる溶媒として有機溶媒を使用しても良く、通常有機溶媒は微粒子化終了後除去される。
【0044】
調製された分散物は、保存時の微粒子の沈降を抑える目的で撹拌しながら保存したり、親水性コロイドにより粘性の高い状態(例えば、ゼラチンを使用しゼリー状にした状態)で保存したりすることもできる。また、保存時の雑菌などの繁殖を防止する目的で防腐剤を添加することもできる。
【0045】
本発明の式(II)の化合物の添加位置に限定はなく、画像形成層、保護層、その他の層に添加される。有機銀塩を含む層と同一層や、ハロゲン化銀を含む層と同一層であることが特に好ましい。
【0046】
本発明の式(II)の化合物は1種のみ用いても2種以上併用してもよい。
【0047】
本発明の式(II)の化合物は画像形成層を有する面に銀1モル当たりの1×10-6〜0.5モルの量含まれることが好ましく、1×10-5〜1×10-1モル含まれることがさらに好ましい。
【0048】
本発明に用いられる感光性ハロゲン化銀は、ハロゲン組成として特に制限はなく、塩化銀、塩臭化銀、臭化銀、ヨウ臭化銀、ヨウ塩臭化銀を用いることができる。粒子内におけるハロゲン組成の分布は均一であってもよく、ハロゲン組成がステップ状に変化したものでもよく、或いは連続的に変化したものでもよい。また、コア/シェル構造を有するハロゲン化銀粒子を好ましく用いることができる。構造として好ましくいものは2〜5重構造であり、より好ましくは2〜4重構造のコア/シェル粒子を用いることができる。また塩化銀または塩臭化銀粒子の表面に臭化銀を局在させる技術も好ましく用いることができる。
【0049】
感光性ハロゲン化銀の形成方法は当業界ではよく知られており、例えばリサーチディスクロージャー1978年6月の第17029号、および米国特許第3,700,458号に記載されている方法を用いることができるが、具体的にはゼラチンあるいは他のポリマー溶液中に銀供給化合物およびハロゲン供給化合物を添加することにより感光性ハロゲン化銀を調製し、その後で有機銀塩と混合する方法を用いる。
【0050】
感光性ハロゲン化銀の平均粒子サイズは、画像形成後の白濁を低く抑える目的のために小さいことが好ましく具体的には0.20μm以下、より好ましくは0.01μm以上0.15μm以下、更に好ましくは0.02μm以上0.12μm以下がよい。ここでいう粒子サイズとは、ハロゲン化銀粒子が立方体あるいは八面体のいわゆる正常晶である場合、その他正常晶でない場合、例えば球状粒子、棒状粒子等の場合には、ハロゲン化銀粒子の体積と同等な球を考えたときの直径をいい、ハロゲン化銀粒子が平板状粒子である場合には主表面の投影面積と同面積の円像に換算したときの直径をいう。平均粒子サイズはその平均値をいう。
粒子サイズ分布はいわゆる単分散であることが好ましい。その場合の粒子サイズの変動係数は35%以下であることが好ましく、25%以下であることがより好ましい。
【0051】
ハロゲン化銀粒子の形状としては立方体、八面体、平板状粒子、球状粒子、棒状粒子、ジャガイモ状粒子等を挙げることができるが、本発明においては特に立方体状粒子、平板状粒子が好ましい。平板状ハロゲン化銀粒子を用いる場合の平均アスペクト比として好ましい値は100:1〜2:1、より好ましくは50:1〜3:1である。さらに、ハロゲン化銀粒子のコーナーが丸まった粒子も好ましく用いることができる。感光性ハロゲン化銀粒子の外表面の面指数(ミラー指数)については特に制限はないが、[100]面の占める割合が高いことが好ましい。その割合としては50%以上が好ましく、65%以上がより好ましく、80%以上が更に好ましい。ミラー指数[100]面の比率は増感色素の吸着における[111]面と[100]面との吸着依存性を利用したT.Tani;J.Imaging Sci.,29、165(1985年)に記載の方法により求めることができる。
【0052】
本発明の感光性ハロゲン化銀粒子は、周期律表の第VII族あるいは第VIII族(7〜10族)の金属または金属錯体を含有する。周期律表の第VII族あるいは第VIII族の金属または金属錯体の中心金属として好ましくはロジウム、レニウム、ルテニウム、オスミウム、イリジウムである。これら金属錯体は1種類でもよいし、同種金属および異種金属の錯体を2種以上併用してもよい。好ましい含有率は銀1モルに対し1×10-9モルから1×10-3モルの範囲が好ましく、1×10-8モルから1×10-4モルの範囲がより好ましい。具体的な金属錯体の構造としては特開平7-225449号等に記載された構造の金属錯体を用いることができる。
【0053】
本発明に用いられるロジウム化合物としては、水溶性ロジウム化合物を用いることができる。例えば、ハロゲン化ロジウム(III)化合物、またはロジウム錯塩で配位子としてハロゲン、アミン類、オキザラト等を持つもの、例えば、ヘキサクロロロジウム(III)錯塩、ペンタクロロアコロジウム(III)錯塩、テトラクロロジアコロジウム(III)錯塩、ヘキサブロモロジウム(III)錯塩、ヘキサアンミンロジウム(III)錯塩、トリザラトロジウム(III)錯塩等が挙げられる。これらのロジウム化合物は、水あるいは適当な溶媒に溶解して用いられるが、ロジウム化合物の溶液を安定化させるために一般によく行われる方法、すなわち、ハロゲン化水素水溶液(例えば塩酸、臭酸、フッ酸等)、あるいはハロゲン化アルカリ(例えばKCl、NaCl、KBr、NaBr等)を添加する方法を用いることができる。水溶性ロジウムを用いる代わりにハロゲン化銀調製時に、あらかじめロジウムをドープしてある別のハロゲン化銀粒子を添加して溶解させることも可能である。
【0054】
これらのロジウム化合物の添加量はハロゲン化銀1モル当たり1×10-8モル〜5×10-6モルの範囲が好ましく、特に好ましくは5×10-8モル〜1×10-6モルである。
【0055】
これらの化合物の添加は、ハロゲン化銀乳剤粒子の製造時および乳剤を塗布する前の各段階において適宜行うことができるが、特に乳剤形成時に添加し、ハロゲン化銀粒子中に組み込まれることが好ましい。
【0056】
本発明に用いられるレニウム、ルテニウム、オスミウムは特開昭63-2042号、特開平1-285941号、同2-20852号、同2-20855号等に記載された水溶性錯塩の形で添加される。特に好ましいものとして、以下の式で示される六配位錯体が挙げられる。
[ML6]n-
ここでMはRu、ReまたはOsを表し、Lは配位子を表し、nは0、1、2、3または4を表す。
【0057】
この場合、対イオンは重要性を持たず、アンモニウムもしくはアルカリ金属イオンが用いられる。
【0058】
また好ましい配位子としてはハロゲン化物配位子、シアン化物配位子、シアン酸化物配位子、ニトロシル配位子、チオニトロシル配位子等が挙げられる。以下に本発明に用いられる具体的錯体の例を示すが、本発明はこれに限定されるものではない。
【0059】
[ReCl6]3-、[ReBr6]3-、[ReCl5(NO)]2-、[Re(NS)Br5]2- [Re(NO)(CN)5]2-、[Re(O)2(CN)4]3-、[RuCl6]3-、[RuCl4(H2O)2]-、[RuCl5(H2O)]2-、[RuCl5(NO)]2-、[RuBr5(NS)]2-、[Ru(CO)3Cl3]2-、[Ru(CO)Cl5]2-、[Ru(CO)Br5]2-、[OsCl6]3-、[OsCl5(NO)]2-、[Os(NO)(CN)5]2-、[Os(NS)Br5]2-、[Os(O)2(CN)4]4-
【0060】
これらの化合物の添加量はハロゲン化銀1モル当たり1×10-9モル〜1×10-5モルの範囲が好ましく、特に好ましくは1×10-8モル〜1×10-6モルである。
【0061】
これらの化合物の添加は、ハロゲン化銀乳剤粒子の製造時および乳剤を塗布する前の各段階において適宜行うことができるが、特に乳剤形成時に添加し、ハロゲン化銀粒子中に組み込まれることが好ましい。
【0062】
これらの化合物をハロゲン化銀の粒子形成中に添加してハロゲン化銀粒子中に組み込むには、金属錯体の粉末もしくはNaCl、KClと一緒に溶解した水溶液を、粒子形成中の水溶性塩または水溶性ハライド溶液中に添加しておく方法、あるいは銀塩とハライド溶液が同時に混合されるとき第3の溶液として添加し、3液同時混合の方法でハロゲン化銀粒子を調製する方法、あるいは粒子形成中に必要量の金属錯体の水溶液を反応容器に投入する方法などがある。特に粉末もしくはNaCl、KClと一緒に溶解した水溶液を、水溶性ハライド溶液に添加する方法が好ましい。
【0063】
粒子表面に添加するには、粒子形成直後または物理熟成時途中もしくは終了時または化学熟成時に必要量の金属錯体の水溶液を反応容器に投入することもできる。
【0064】
本発明で用いられるイリジウム化合物としては種々のものを使用できるが、例えばヘキサクロロイリジウム、ヘキサアンミンイリジウム、トリオキザラトイリジウム、ヘキサシアノイリジウム、ペンタクロロニトロシルイリジウム等が挙げられる。これらのイリジウム化合物は、水あるいは適当な溶媒に溶解して用いられるが、イリジウム化合物の溶液を安定化させるために一般によく行われる方法、すなわち、ハロゲン化水素水溶液(例えば塩酸、臭酸、フッ酸等)、あるいはハロゲン化アルカリ(例えばKCl、NaCl、KBr、NaBr等)を添加する方法を用いることができる。水溶性イリジウムを用いる代わりにハロゲン化銀調製時に、あらかじめイリジウムをドープしてある別のハロゲン化銀粒子を添加して溶解させることも可能である。これらイリジウム化合物の添加量はハロゲン化銀1モル当たり1×10-8モル〜1×10-3モルの範囲が好ましく、1×10-7モル〜5×10-4モルの範囲がより好ましい。
【0065】
さらに本発明に用いられるハロゲン化銀粒子に、コバルト、鉄、ニッケル、クロム、パラジウム、白金、金、タリウム、銅、鉛、等の金属原子を含有してもよい。コバルト、鉄、クロム、さらにルテニウムの化合物については六シアノ金属錯体を好ましく用いることができる。具体例としては、フェリシアン酸イオン、フェロシアン酸イオン、ヘキサシアノコバルト酸イオン、ヘキサシアノクロム酸イオン、ヘキサシアノルテニウム酸イオンなどが挙げられるが、これらに限定されるものではない。ハロゲン化銀中の金属錯体は均一に含有させても、コア部に高濃度に含有させてもよく、あるいはシェル部に高濃度に含有させてもよく、特に制限はない。
【0066】
上記金属はハロゲン化銀1モル当たり1×10-9〜1×10-4モルが好ましい。また、上記金属を含有させるには単塩、複塩、または錯塩の形の金属塩にして粒子調製時に添加することができる。
【0067】
感光性ハロゲン化銀粒子はヌードル法、フロキュレーション法等、当業界で知られている方法の水洗により脱塩することができるが本発明においては脱塩してもしなくてもよい。
【0068】
本発明のハロゲン化銀乳剤は化学増感とを施すことが好ましい。化学増感の方法としては、硫黄増感法、セレン増感法、テルル増感法、貴金属増感法などの知られている方法を用いることができる。
【0069】
化学増感法は複数組み合わせて使用することができ、例えば、硫黄増感法と金増感法、硫黄増感法とセレン増感法またはテルル増感法、金増感法とセレン増感法またはテルル増感法、硫黄増感法とセレン増感法またはテルル増感法と金増感法、硫黄増感法とセレン増感法とテルル増感法、硫黄増感法とセレン増感法とテルル増感法と金増感法などが挙げられる。
【0070】
本発明に好ましく用いられる硫黄増感は、通常、硫黄増感剤を添加して、40℃以上の高温で乳剤を一定時間攪拌することにより行われる。硫黄増感剤としては公知の化合物を使用することができ、例えば、ゼラチン中に含まれる硫黄化合物のほか、種々の硫黄化合物、例えばチオ硫酸塩、チオ尿素類、チアゾール類、ローダニン類等を用いることができる。好ましい硫黄化合物は、チオ硫酸塩、チオ尿素化合物である。硫黄増感剤の添加量は、化学熟成時のpH、温度、ハロゲン化銀粒子の大きさなど種々の条件下で変化するが、ハロゲン化銀1モル当たり1×10-7〜1×10-2モルであり、より好ましくは1×10-5〜1×10-3モルである。
【0071】
本発明のハロゲン化銀乳剤に金増感を施す場合に用いられる金増感剤としては、金の酸化数が+1価でも+3価でもよく、金増感剤として通常用いられる金化合物を用いることができる。代表的な例としては塩化金酸、カリウムクロロオーレート、オーリックトリクロライド、カリウムオーリックチオシアネート、カリウムヨードオーレート、テトラシアノオーリックアシド、アンモニウムオーロチオシアネート、ピリジルトリクロロゴールドなどが挙げられる。
【0072】
金増感剤の添加量は種々の条件により異なるが、目安としてはハロゲン化銀1モル当たり1×10-7モル以上1×10-3モル以下、より好ましくは1×10-6モル以上5×10-4モル以下である。
【0073】
本発明に用いられるセレン増感剤としては、公知のセレン化合物を用いることができる。すなわち、通常、不安定型および/または非不安定型セレン化合物を添加して40℃以上の高温で乳剤を一定時間攪拌することにより行われる。不安定型セレン化合物としては特公昭44-15748号、同43-13489号、特開平4-25832号、同4-109240号、同4-324855号等に記載の化合物を用いることができる。特に特開平4-324855号中の一般式(VIII)および(IX)で示される化合物を用いることが好ましい。
【0074】
本発明に用いられるテルル増感剤は、ハロゲン化銀粒子表面または内部に、増感核になると推定されるテルル化銀を生成させる化合物である。ハロゲン化銀乳剤中のテルル化銀生成速度については特開平5-313284号に記載の方法で試験することができる。テルル増感剤としては例えばジアシルテルリド類、ビス(オキシカルボニル)テルリド類、ビス(カルバモイル)テルリド類、ジアシルテルリド類、ビス(オキシカルボニル)ジテルリド類、ビス(カルバモイル)ジテルリド類、P=Te結合を有する化合物、テルロカルボン酸塩類、Te-オルガニルテルロカルボン酸エステル類、ジ(ポリ)テルリド類、テルリド類、テルロール類、テルロアセタール類、テルロスルホナート類、P-Te結合を有する化合物、含Teヘテロ環類、テルロカルボニル化合物、無機テルル化合物、コロイド状テルルなどを用いることができる。具体的には、米国特許第1,623,499号、同第3,320,069号、同第3,772,031号、英国特許第235,211号、同第1,121,496号、同第1,295,462号、同第1,396,696号、カナダ特許第800,958号、特開平4-204640号、特願平3-53693号、同3-131598号、同4-129787号、ジャーナル・オブ・ケミカル・ソサイアティー・ケミカル・コミュニケーション(J. Chem. Soc. Chem. Commun.),635(1980)、ibid,1102(1979)、ibid ,645(1979)、ジャーナル・オブ・ケミカル・ソサイアティー・パーキン・トランザクション1 (J.Chem.Soc.Perkin.Trans.1),2191(1980)、S.パタイ(S.Patai)編、ザ・ケミストリー・オブ・オーガニック・セレニウム・アンド・テルリウム・カンパウンズ(The Chemistry of Organic Serenium and Tellunium Compounds),Vol.1(1986)、同 Vol.2(1987)に記載の化合物を用いることができる。特に特開平5-313284号中の一般式(II)、(III)、(IV)で示される化合物が好ましい。
【0075】
本発明で用いられるセレンおよびテルル増感剤の使用量は、使用するハロゲン化銀粒子、化学熟成条件等によって変わるが、一般にハロゲン化銀1モル当たり1×10-8〜1×10-2モル、好ましくは1×10-7〜1×10-3モル程度を用いる。本発明における化学増感の条件としては特に制限はないが、pHとしては5〜8、pAgとしては6〜11、好ましくは7〜10であり、温度としては40〜95℃、好ましくは45〜85℃である。
【0076】
本発明に用いるハロゲン化銀乳剤にはハロゲン化銀粒子の形成または物理熟成の過程においてカドミウム塩、亜硫酸塩、鉛塩、タリウム塩などを共存させてもよい。
【0077】
本発明においては、還元増感を用いることができる。還元増感法の具体的な化合物としてはアスコルビン酸、二酸化チオ尿素の他に例えば、塩化第一スズ、アミノイミノメタンスルフィン酸、ヒドラジン誘導体、ボラン化合物、シラン化合物、ポリアミン化合物等を用いることができる。また、乳剤のpHを7以上またはpAgを8.3以下に保持して熟成することにより還元増感することができる。また、粒子形成中に銀イオンのシングルアディション部分を導入することにより還元増感することができる。
【0078】
本発明のハロゲン化銀乳剤は、欧州特許公開第293,917号に示される方法により、チオスルホン酸化合物を添加してもよい。
【0079】
本発明に用いられる感光材料中の感光性ハロゲン化銀乳剤は、一種だけでもよいし、二種以上(例えば、平均粒子サイズの異なるもの、ハロゲン組成の異なるもの、晶癖の異なるもの、化学増感の条件の異なるもの)併用してもよい。感度の異なる感光性ハロゲン化銀を複数種用いることで階調を調節することができる。これらに関する技術としては特開昭57-119341号、同53-106125号、同47-3929号、同48-55730号、同46-5187号、同50-73627号、同57-150841号などが挙げられる。感度差としてはそれぞれの乳剤で0.2logE以上の差を持たせることが好ましい。
【0080】
感光性ハロゲン化銀の添加量は、感材1m2当たりの塗布銀量で示して、0.03〜0.6g/m2であることが好ましく、0.05〜0.4g/m2であることがさらに好ましく、0.1〜0.4g/m2であることが最も好ましく、有機銀塩1モルに対しては、感光性ハロゲン化銀0.01モル以上0.5モル以下が好ましく、0.02モル以上0.3モル以下がより好ましく、0.03モル以上0.25モル以下が特に好ましい。
【0081】
本発明に用いることのできる有機銀塩は、光に対して比較的安定であるが、露光された光触媒(感光性ハロゲン化銀の潜像など)および還元剤の存在下で、80℃或いはそれ以上に加熱された場合に銀画像を形成する銀塩である。有機銀塩は銀イオンを還元できる源を含む任意の有機物質であってよい。このような非感光性の有機銀塩については、特開平10-62899号の段落番号0048〜0049、欧州特許公開第0803763A1号の第18ページ第24行〜第19ページ第37行に記載されている。有機酸の銀塩、特に(炭素数が10〜30、好ましくは15〜28の)長鎖脂肪族カルボン酸の銀塩が好ましい。有機銀塩は、好ましくは画像形成層の約5〜70wt%を構成することができる。好ましい有機銀塩はカルボキシル基を有する有機化合物の銀塩を含む。これらの例は、脂肪族カルボン酸の銀塩および芳香族カルボン酸の銀塩を含むがこれらに限定されることはない。脂肪族カルボン酸の銀塩の好ましい例としては、ベヘン酸銀、アラキジン酸銀、ステアリン酸銀、オレイン酸銀、ラウリン酸銀、カプロン酸銀、ミリスチン酸銀、パルミチン酸銀、マレイン酸銀、フマル酸銀、酒石酸銀、リノール酸銀、酪酸銀および樟脳酸銀、これらの混合物などを含む。
【0082】
本発明に用いることができる有機銀塩の形状としては特に制限はないが、本発明においてはりん片状の有機銀塩が好ましい。本発明において、りん片状の有機銀塩とは、次のようにして定義する。有機酸銀塩を電子顕微鏡で観察し、有機酸銀塩粒子の形状を直方体と近似し、この直方体の辺を一番短かい方からa、b、cとした(cはbと同じであってもよい。)とき、短い方の数値a、bで計算し、次のようにしてxを求める。
x=b/a
【0083】
このようにして200個程度の粒子についてxを求め、その平均値x(平均)としたとき、x(平均)≧1.5の関係を満たすものをりん片状とする。好ましくは30≧x(平均)≧1.5、より好ましくは20≧x(平均)≧2.0である。因みに針状とは1≦x(平均)<1.5である。
【0084】
りん片状粒子において、aはbとcを辺とする面を主平面とした平板状粒子の厚さとみることができる。aの平均は0.01μm 以上0.23μm が好ましく0.1μm 以上0.20μm 以下がより好ましい。c/bの平均は好ましくは1以上6以下、より好ましくは1.05以上4以下、さらに好ましくは1.1以上3以下、特に好ましくは1.1以上2以下である。
【0085】
有機銀塩の粒子サイズ分布は単分散であることが好ましい。単分散とは短軸、長軸それぞれの長さの標準偏差を短軸、長軸それぞれで割った値の100分率が好ましくは100%以下、より好ましくは80%以下、更に好ましくは50%以下である。有機銀塩の形状の測定方法としては有機銀塩分散物の透過型電子顕微鏡像より求めることができる。単分散性を測定する別の方法として、有機銀塩の体積加重平均直径の標準偏差を求める方法があり、体積加重平均直径で割った値の百分率(変動係数)が好ましくは100%以下、より好ましくは80%以下、更に好ましくは50%以下である。測定方法としては例えば液中に分散した有機銀塩にレーザー光を照射し、その散乱光のゆらぎの時間変化に対する自己相関関数を求めることにより得られた粒子サイズ(体積加重平均直径)から求めることができる。
【0086】
本発明に用いられる有機酸銀は、上記に示した有機酸のアルカリ金属塩(Na塩,K塩,Li塩等が挙げられる)溶液または懸濁液と硝酸銀を反応させることで調製される。本発明の有機酸アルカリ金属塩は、上記有機酸をアルカリ処理することによって得られる。本発明の有機酸銀は任意の好適な容器中で回分式または連続式で行うことができる。反応容器中の攪拌は粒子の要求される特性によって任意の攪拌方法で攪拌することができる。有機酸銀の調製法としては、有機酸アルカリ金属塩溶液あるいは懸濁液の入った反応容器に硝酸銀水溶液を徐々にあるいは急激に添加する方法、硝酸銀水溶液の入った反応容器に予め調製した有機酸アルカリ金属塩溶液あるいは懸濁液を徐々にあるいは急激に添加する方法、予め調製した硝酸銀水溶液および有機酸アルカリ金属塩溶液または懸濁液を反応容器中に同時に添加する方法のいずれもが好ましく用いることができる。
【0087】
硝酸銀水溶液および有機酸アルカリ金属塩溶液または懸濁液は調製する有機酸銀の粒子サイズ制御のために任意の濃度の物を用いることができ、また任意の添加速度で添加することができる。硝酸銀水溶液および有機酸アルカリ金属塩溶液または懸濁液の添加方法としては、添加速度一定で添加する方法、任意の時間関数による加速添加法あるいは減速添加法にて添加することができる。また反応液に対し、液面に添加してもよく、また液中に添加してもよい。予め調製した硝酸銀水溶液および有機酸アルカリ金属塩溶液または懸濁液を反応容器中に同時に添加する方法の場合には、硝酸銀水溶液あるいは有機酸アルカリ金属塩溶液または懸濁液のいずれかを先行させて添加することもできるが、硝酸銀水溶液を先行させて添加することが好ましい。先行度としては総添加量の0から50vol%が好ましく、0から25vol%が特に好ましい。また特開平9-127643号公報等に記載のように反応中の反応液のpHないしは銀電位を制御しながら添加する方法も好ましく用いることができる。
【0088】
添加される硝酸銀水溶液や有機酸アルカリ金属塩溶液または懸濁液は粒子の要求される特性によりpHを調整することができる。pH調整のために任意の酸やアルカリを添加することができる。また、粒子の要求される特性により、例えば調製する有機酸銀の粒子サイズの制御のため反応容器中の温度を任意に設定することができるが、添加される硝酸銀水溶液や有機酸アルカリ金属塩溶液または懸濁液も任意の温度に調整することができる。有機酸アルカリ金属塩溶液または懸濁液は液の流動性を確保するために、50℃以上に加熱保温することが好ましい。
【0089】
本発明に用いる有機酸銀は第3アルコールの存在下で調製されることが好ましい。本発明に用いる第3アルコールは総炭素数15以下の物が好ましく、10以下が特に好ましい。好ましい第3アルコールの例としては、tert-ブタノール等が挙げられるが、本発明はこれに限定されない。
【0090】
本発明に用いられる第3アルコールの添加時期は有機酸銀調製時のいずれのタイミングでも良いが、有機酸アルカリ金属塩の調製時に添加して、有機酸アルカリ金属塩を溶解して用いることが好ましい。また、本発明の第3アルコールの使用量は有機酸銀調製時の溶媒としてのH2Oに対して重量比で0.01〜10の範囲で任意に使用することができるが、0.03〜1の範囲が好ましい。
【0091】
本発明において好ましいりん片状の有機酸銀塩は、水溶性銀塩を含む水溶液と有機酸アルカリ金属塩を含む第3アルコール水溶液とを反応容器内で反応させる(反応容器内の液に有機酸アルカリ金属塩を含む第3アルコール水溶液を添加する工程を含む。)際に、反応容器内の液(好ましくは、先行して入れた水溶性銀塩を含む水溶液、または水溶性銀塩を含む水溶液を先行することなく有機酸アルカリ金属塩を含む第3アルコール水溶液とはじめから同時に添加する場合は、後述のように、水もしくは水と第3アルコールとの混合溶媒であり、水溶性銀塩を含む水溶液を先行して入れる場合においても水または水と第3アルコールとの混合溶媒をあらかじめ入れておいてもよい。)と添加する有機酸アルカリ金属塩を含む第3アルコール水溶液との温度差を20℃以上85℃以下とする方法で製造されることが好ましい。
【0092】
このような温度差を有機酸アルカリ金属塩を含む第3アルコール水溶液の添加中にて維持することによって、有機酸銀塩の結晶形態等が好ましく制御される。
【0093】
この水溶性銀塩としては硝酸銀が好ましく、水溶液における水溶性銀塩濃度としては、0.03mol/l以上6.5mol/l以下が好ましく、より好ましくは、0.1mol/l以上5mol/l以下であり、この水溶液のpHとしては2以上6以下が好ましく、より好ましくはpH3.5以上6以下である。
【0094】
また、炭素数4〜6の第3アルコールが含まれていてもよく、その場合は水溶性銀塩の水溶液の全体積に対し、体積として70%以下であり、好ましくは50%以下である。また、その水溶液の温度としては0℃以上50℃以下が好ましく、5℃以上30℃以下がより好ましく、後述のように、水溶性銀塩を含む水溶液と有機酸アルカリ金属塩の第3アルコール水溶液を同時添加する場合は、5℃以上15℃以下が最も好ましい。
【0095】
有機酸アルカリ金属塩のアルカリ金属は、具体的にはNa、Kである。有機酸アルカリ金属塩は、有機酸にNaOHまたはKOHを添加することにより調製される。このとき、アルカリの量を有機酸の等量以下にして、未反応の有機酸を残存させることが好ましい。この場合の、残存有機酸量は全有機酸1molに対し3mol%以上50mol%以下であり、好ましくは3mol%以上30mol%以下である。また、アルカリを所望の量以上に添加した後に、硝酸、硫酸等の酸を添加し、余剰のアルカリ分を中和させることで調製してもよい。
【0096】
また、有機酸銀塩の要求される特性によりpHを調節することができる。pH調節のためには、任意の酸やアルカリを使用することができる。
【0097】
さらに、本発明に用いる水溶性銀塩を含む水溶液、有機酸アルカリ金属塩の第3アルコール水溶液、あるいは反応容器の液には、例えば特開昭62−65035号の一般式(1)で示されるような化合物、また、特開昭62−150240号に記載のような、水溶性基含有Nヘテロ環化合物、特開昭50−101019号記載のような無機過酸化物、特開昭51−78319号記載のようなイオウ化合物、特開昭57−643号記載のジスルフィド化合物、また過酸化水素等を添加することができる。
【0098】
本発明の有機酸アルカリ金属塩の第3アルコール水溶液としては、液の均一性を得るため炭素数4〜6の第3アルコールと水との混合溶媒であることが好ましい。炭素数がこれを越えると水との相溶性が無く好ましくない。炭素数4〜6の第3アルコールの中でも、最も水との相溶性のあるtert−ブタノールが最も好ましい。第3アルコール以外の他のアルコールは還元性を有し、有機酸銀塩形成時に弊害を生じるため先に述べたように好ましくない。有機酸アルカリ金属塩の第3アルコール水溶液に併用される第3アルコール量は、この第3アルコール水溶液中の水分の体積に対し、溶媒体積として3%以上70%以下であり、好ましくは5%以上50%以下である。
【0099】
本発明に用いる有機酸アルカリ金属塩の第3アルコール水溶液における有機酸アルカリ金属塩の濃度は、重量比として、7wt%以上50wt%以下であり、好ましくは、7wt%以上45wt%以下であり、さらに好ましくは、10wt%以上40wt%以下である。
【0100】
本発明の反応容器に添加する有機酸アルカリ金属塩の第3アルコール水溶液の温度としては、有機酸アルカリ金属塩の結晶化、固化の現象を避けるに必要な温度に保っておく目的で50℃以上90℃以下が好ましく、より好ましくは60℃以上85℃以下がより好ましく、65℃以上85℃以下が最も好ましい。また、反応の温度を一定にコントロールするために上記範囲から選ばれるある温度で一定にコントロールされることが好ましい。
【0101】
本発明の有機酸銀塩は、i)水溶性銀塩を含む水溶液が先に反応容器に全量存在する水溶液中に有機酸アルカリ金属塩の第3アルコール水溶液をシングル添加する方法か、またはii)水溶性銀塩の水溶液と有機酸アルカリ金属塩の第3アルコール水溶液が、反応容器に同時に添加される時期が存在する方法(同時添加法)によって製造される。本発明においては、有機酸銀塩の平均粒子サイズをコントロールし、分布を狭くする点で後者の同時に添加される方法が好ましい。その場合、総添加量の30vol%以上が同時に添加されることが好ましく、より好ましくは50〜75vol%が同時に添加されることである。いずれかを先行して添加する場合は水溶性銀塩の溶液を先行させる方が好ましい。
【0102】
いずれの場合においても、反応容器中の液(前述のように先行して添加された水溶性銀塩の水溶液または先行して水溶性銀塩の水溶液を添加しない場合には、後述のようにあらかじめ反応容器中に入れられている溶媒をいう。)の温度は、好ましくは5℃以上75℃以下、より好ましくは5℃以上60℃以下、最も好ましくは10℃以上50℃以下である。反応の全行程にわたって前記温度から選ばれるある一定の温度にコントロールされることが好ましいが、前記温度範囲内でいくつかの温度パターンでコントロールすることも好ましい。
【0103】
本発明において、有機酸アルカリ金属塩の第3アルコール水溶液と反応容器中の液との温度の温度差は、20℃以上85℃以下が好ましく、より好ましくは30℃以上80℃以下である。この場合有機酸アルカリ金属塩の第3アルコール水溶液の温度の方が高いことが好ましい。
【0104】
これにより、高温の有機酸アルカリ金属塩の第3アルコール水溶液が反応容器で急冷されて微結晶状に析出する速度と、水溶性銀塩との反応で有機酸銀塩化する速度が好ましく制御され、有機酸銀塩の結晶形態、結晶サイズ、結晶サイズ分布を好ましく制御することができる。また同時に熱現像材料、特に熱現像感光材料として性能をより向上させることができる。
【0105】
反応容器中には、あらかじめ溶媒を含有させておいてもよく、あらかじめ入れられる溶媒には水が好ましく用いられるが、前記第3アルコールとの混合溶媒も好ましく用いられる。
【0106】
本発明の有機酸アルカリ金属の第3アルコール水溶液、水溶性銀塩の水溶液、あるいは反応液には水性媒体可溶な分散助剤を添加することができる。分散助剤としては、形成した有機酸銀塩を分散可能なものであればいずれのものでもよい。具体的な例は、後述の有機酸銀塩の分散助剤の記載に準じる。
【0107】
本発明の有機酸銀塩調製法において、銀塩形成後に脱塩・脱水工程を行うことが好ましい。その方法は特に制限はなく、周知・慣用の手段を用いることができる。例えば、遠心濾過、吸引濾過、限外濾過、凝集法によるフロック形成水洗等の公知の濾過方法、また、遠心分離沈降による上澄み除去等も好ましく用いられる。脱塩・脱水は1回でもよいし、複数繰り返してもよい。水の添加および除去を連続的に行ってもよいし、個別に行ってもよい。脱塩・脱水は最終的に脱水された水の伝導度が好ましくは300μS/cm以下、より好ましくは100μS/cm以下、最も好ましくは60μS/cm以下になる程度に行う。この場合の伝導度の下限に特に制限はないが、通常5μS/cm程度である。
【0108】
さらに、熱現像感光材料の塗布面状を良好にするためには、有機酸銀塩の水分散物を得、これを高圧で高速流に変換し、その後圧力降下することによって再分散し、微細水分散物とすることが好ましい。この場合の分散媒は水のみであることが好ましいが、20wt% 以下であれば有機溶媒を含んでいてもよい。
【0109】
有機酸銀塩を微粒子分散化する方法は、分散助剤の存在下で公知の微細化手段(例えば、高速ミキサー、ホモジナイザー、高速衝撃ミル、バンバリーミキサー、ホモミキサー、ニーダー、ボールミル、振動ボールミル、遊星ボールミル、アトライター、サンドミル、ビーズミル、コロイドミル、ジェットミル、ローラーミル、トロンミル、高速ストーンミル)を用い、機械的に分散することができる。
【0110】
分散時に、感光性銀塩を共存させると、カブリが上昇し、感度が著しく低下するため、分散時には感光性銀塩を実質的に含まないことがより好ましい。本発明は、分散される水分散液中での感光性銀塩量は、その液中の有機酸銀塩1molに対し0.1mol%以下であり、積極的な感光性銀塩の添加は行わないものである。
【0111】
本発明において、高S/Nで、粒子サイズが小さく、凝集のない均一な有機銀塩固体分散物を得るには画像形成媒体である有機銀塩粒子の破損や高温化を生じさせない範囲で、大きな力を均一に与えることが好ましい。そのためには有機銀塩および分散剤水溶液からなる水分散物を高速流に変換した後、圧力降下させる分散法が好ましい。
【0112】
本発明において、上記のような再分散法を実施するのに用いられる分散装置およびその技術については、例えば「分散系レオロジーと分散化技術」(梶内俊夫、薄井洋基 著、1991、信山社出版(株)、p357〜403)、「化学工学の進歩 第24集」(社団法人 化学工学会東海支部 編、1990、槙書店、p184〜185)、特開昭59−49832号、米国特許4533254号、特開平8−137044号、特開平8−238848号、特開平2−261525号、特開平1−94933号等に詳しいが、本発明での再分散法は、少なくとも有機酸銀塩を含む水分散液を高圧ポンプ等で加圧して配管内に送入した後、配管内に設けられた細いスリットを通過させ、この後に分散液に急激な圧力低下を生じさせることにより微細な分散を行う方法である。
【0113】
本発明が関連する高圧ホモジナイザーについては、一般には(a)分散質が狭間隙(75μm 〜350μm 程度)を高圧、高速で通過する際に生じる「せん断力」、(b)高圧化の狭い空間で液-液衝突、あるいは壁面衝突させるときに生じる衝撃力は変化させずにその後の圧力降下によるキャビテーション力をさらに強くし、均一で効率の良い分散が行われると考えられている。この種の分散装置としては、古くはゴーリンホモジナイザーが挙げられるが、この装置では、高圧で送られた被分散液が円柱面上の狭い間隙で高速流に変換され、その勢いで周囲の壁面に衝突し、その衝撃力で乳化・分散が行われる。上記液−液衝突としては、マイクロフルイダイザーのY型チャンバー、後述の特開平8-103642号に記載のような球形型の逆止弁を利用した球形チャンバーなどが挙げられ、液−壁面衝突としては、マイクロフルイダイザーのZ型チャンバー等が挙げられる。使用圧力は一般には100〜600kg/cm2、流速は数m〜30m/秒の範囲であり、分散効率を上げるために高速流部を鋸刃状にして衝突回数を増やすなどの工夫を施したものも考案されている。このような装置の代表例としてゴーリンホモジナイザー、マイクロフルイデックス・インターナショナル・コーポレーション社製のマイクロフルイダイザー、みづほ工業(株)製のマイクロフルイダイザー、特殊機化工業(株)製のナノマイザー等が挙げられる。特開平8-238848号、同8-103642号、USP4533254号にも記載されている。
【0114】
本発明の有機酸銀塩においては、流速、圧力降下時の差圧と処理回数の調節によって、所望の粒子サイズに分散することができるが、写真特性と粒子サイズの点から、流速が200m/秒〜600m/秒、圧力降下時の差圧が900〜3000kg/cm2の範囲が好ましく、さらに流速が300m/秒〜600m/秒、圧力降下時の差圧が1500〜3000kg/cm2の範囲であることがより好ましい。分散処理回数は必要に応じて選択できる。通常は1〜10回の範囲が選ばれるが、生産性の観点で1〜3回程度が選ばれる。高圧下でこのような水分散液を高温にすることは、分散性・写真性の観点で好ましくなく、90℃を越えるような高温では粒子サイズが大きくなりやすくなるとともに、カブリが高くなる傾向がある。従って、本発明では、前記の高圧、高速流に変換する前の工程もしくは、圧力降下させた後の工程、あるいはこれら両工程に冷却装置を含み、このような水分散の温度が冷却工程により5℃〜90℃の範囲に保たれていることが好ましく、さらに好ましくは5℃〜80℃の範囲、特に5℃〜65℃の範囲に保たれていることが好ましい。特に、1500〜3000kg/cm2の範囲の高圧の分散時には、前記の冷却工程を設置することが有効である。冷却装置は、その所要熱交換量に応じて、2重管や3重管にスタチックミキサーを使用したもの、多管式熱交換器、蛇管式熱交換器等を適宜選択することができる。また、熱交換の効率を上げるために、使用圧力を考慮して、管の太さ、肉厚や材質などの好適なものを選べばよい。冷却器に使用する冷媒は、熱交換量から、20℃の井水や冷凍機で処理した5〜10℃の冷水、また、必要に応じて−30℃のエチレングリコール/水等の冷媒を使用することができる。
【0115】
有機酸銀塩を分散剤を使用して固体微粒子化する際には、例えば、ポリアクリル酸、アクリル酸の共重合体、マレイン酸共重合体、マレイン酸モノエステル共重合体、アクリロイルメチルプロパンスルホン酸共重合体、などの合成アニオンポリマー、カルボキシメチルデンプン、カルボキシメチルセルロースなどの半合成アニオンポリマー、アルギン酸、ペクチン酸などのアニオン性ポリマー、特開昭52-92716号、WO88/04794号などに記載のアニオン性界面活性剤、特願平7-350753号に記載の化合物、あるいは公知のアニオン性、ノニオン性、カチオン性界面活性剤や、その他ポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の公知のポリマー、或いはゼラチン等の自然界に存在する高分子化合物を適宜選択して用いることができる。
【0116】
分散助剤は、分散前に有機酸銀塩の粉末またはウェットケーキ状態の有機酸銀塩と混合し、スラリーとして分散機に送り込むのは一般的な方法であるが、予め有機酸銀塩と混ぜ合わせた状態で熱処理や溶媒による処理を施して有機酸銀塩粉末またはウェットケーキとしても良い。分散前後または分散中に適当なpH調製剤によりpHコントロールしても良い。
【0117】
機械的に分散する以外にも、pHコントロールすることで溶媒中に粗分散し、その後、分散助剤の存在下でpHを変化させて微粒子化させても良い。このとき、粗分散に用いる溶媒として有機酸溶媒を使用しても良く、通常有機溶媒は微粒子化終了後除去される。
【0118】
調製された分散物は、保存時の微粒子の沈降を抑える目的で撹拌しながら保存したり、親水性コロイドにより粘性の高い状態(例えば、ゼラチンを使用しゼリー状にした状態)で保存したりすることもできる。また、保存時の雑菌などの繁殖を防止する目的で防腐剤を添加することもできる。
【0119】
本発明の有機酸銀塩の調製法にて調製された有機酸銀塩は、水溶媒中で分散された後、感光性銀塩水溶液と混合して感光性画像形成媒体塗布液として供給されることが好ましい。
【0120】
分散操作に先だって、原料液は、粗分散(予備分散)される。粗分散する手段としては公知の分散手段(例えば、高速ミキサー、ホモジナイザー、高速衝撃ミル、バンバリーミキサー、ホモミキサー、ニーダー、ボールミル、振動ボールミル、遊星ボールミル、アトライター、サンドミル、ビーズミル、コロイドミル、ジェットミル、ローラーミル、トロンミル、高速ストーンミル)を用いることができる。機械的に分散する以外にも、pHコントロールすることで溶媒中に粗分散し、その後、分散助剤の存在下でpHを変化させて微粒子化させても良い。このとき、粗分散に用いる溶媒として有機溶媒を使用しても良く、通常有機溶媒は微粒子化終了後除去される。
【0121】
感光性銀塩水溶液は、微細分散された後に混合され、感光性画像形成媒体塗布液を製造する。このような塗布液を用いて熱現像感光材料を作製するとヘイズが低く、低カブリで高感度の熱現像感光材料が得られる。これに対し、高圧、高速流に変換して分散する時に、感光性銀塩を共存させると、カブリが上昇し、感度が著しく低下する。また、分散媒として水ではなく、有機溶剤を用いると、ヘイズが高くなり、カブリが上昇し、感度が低下しやすくなる。一方、感光性銀塩水溶液を混合する方法にかえて、分散液中の有機銀塩の一部を感光性銀塩に変換するコンバージョン法を用いると感度が低下する。
【0122】
上記において、高圧、高速化に変換して分散される水分散液は、実質的に感光性銀塩を含まないものであり、その含有量は非感光性の有機銀塩に対して0.1モル%以下であり、積極的な感光性銀塩の添加は行わないものである。
【0123】
本発明の有機銀塩固体微粒子分散物の粒子サイズ(体積加重平均直径)は、例えば液中に分散した固体微粒子分散物にレーザー光を照射し、その散乱光のゆらぎの時間変化に対する自己相関関数を求めることにより得られた粒子サイズ(体積加重平均直径)から求めることができる。平均粒子サイズ0.05μm以上10.0μm以下の固体微粒子分散物が好ましい。より好ましくは平均粒子サイズ0.1μm以上5.0μm以下、更に好ましくは平均粒子サイズ0.1μm以上2.0μm以下である。
【0124】
本発明に用いる有機銀塩固体微粒子分散物は、少なくとも有機銀塩と水から成るものである。有機銀塩と水との割合は特に限定されるものではないが、有機銀塩の全体に占める割合は5〜50wt%であることが好ましく、特に10〜30wt%の範囲が好ましい。前述の分散助剤を用いることは好ましいが、粒子サイズを最小にするのに適した範囲で最少量使用するのが好ましく、有機銀塩に対して1〜30wt%、特に3〜15wt%の範囲が好ましい。
【0125】
本発明では有機銀塩水分散液と感光性銀塩水分散液を混合して感光材料を製造することが可能であるが、有機銀塩と感光性銀塩の混合比率は目的に応じて選べるが、有機銀塩に対する感光性銀塩の割合は1〜30モル%の範囲が好ましく、更に3〜20モル%、特に5〜15モル%の範囲が好ましい。混合する際に2種以上の有機銀塩水分散液と2種以上の感光性銀塩水分散液を混合することは、写真特性の調節のために好ましく用いられる方法である。
【0126】
本発明の有機銀塩は所望の量で使用できるが、感材1m2当たりの塗布量で示した場合、銀量として0.1〜5g/m2が好ましく、さらに好ましくは1〜3g/m2である。
【0127】
本発明の熱現像感光材料には有機銀塩のための還元剤を含む。有機銀塩のための還元剤は、銀イオンを金属銀に還元する任意の物質、好ましくは有機物質であってよい。フェニドン、ハイドロキノンおよびカテコールなどの従来の写真現像剤は有用であるが、ヒンダードフェノール還元剤(例えば、ビス(2−ヒドロキシ−3−t−ブチル−5−メチルフェニル)メタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、4,4−エチリデン−ビス(2−t−ブチル−6−メチルフェノール)、1,1−ビス(2−ヒドロキシ−3,5−ジメチルフェニル)−3,5,5−トリメチルヘキサン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン)が好ましい。このような還元剤は、特開平10-62899号の段落番号0052〜0053や、欧州特許公開第0803764A1号の第7ページ第34行〜第18ページ第12行に記載されている。
還元剤の添加量は0.01〜5.0g/m2であることが好ましく、0.1〜3.0g/m2であることがより好ましく、画像形成層を有する面の銀1モルに対しては5〜50%モル含まれることが好ましく、10〜40モル%で含まれることがさらに好ましい。還元剤の添加層は画像形成層を有する面のいかなる層でも良い。画像形成層以外の層に添加する場合は銀1モルに対して10〜50モル%と多めに使用することが好ましい。また、還元剤は現像時のみ有効に機能を持つように誘導化されたいわゆるプレカーサーであってもよい。
【0128】
本発明の還元剤は、溶液、粉末、固体微粒子分散物などいかなる方法で添加してもよい。固体微粒子分散は公知の微細化手段(例えば、ボールミル、振動ボールミル、サンドミル、コロイドミル、ジェットミル、ローラーミルなど)で行われる。また、固体微粒子分散する際に分散助剤を用いてもよい。
【0129】
別々に調製した感光性ハロゲン化銀と有機銀塩の混合方法および混合条件については、それぞれ調製終了したハロゲン化銀粒子と有機銀塩を高速撹拌機やボールミル、サンドミル、コロイドミル、振動ミル、ホモジナイザー等で混合する方法や、あるいは有機銀塩の調製中のいずれかのタイミングで調製終了した感光性ハロゲン化銀を混合して有機銀塩を調製する方法等があるが、本発明の効果が十分に現れる限りにおいては特に制限はない。
【0130】
本発明のハロゲン化銀の画像形成層塗布液中への好ましい添加時期は、塗布する180分前から直前、好ましくは60分前から10秒前にであるが、混合方法および混合条件については本発明の効果が十分に現れる限りにおいては特に制限はない。具体的な混合方法としては添加流量とコーターへの送液量から計算した平均滞留時間を所望の時間となるようにしたタンクでの混合する方法やN.Harnby、M.F.Edwards、A.W.Nienow著、高橋幸司訳"液体混合技術"(日刊工業新聞社刊、1989年)の第8章等に記載されているスタチックミキサーなどを使用する方法がある。
【0131】
本発明においては、有機銀塩含有層が溶媒の30wt%以上が水である塗布液を用いて塗布し、乾燥して形成される場合に、さらに有機銀塩含有層のバインダーが水系溶媒(水溶媒)に可溶または分散可能で、特に25℃60%RHでの平衡含水率が2wt%以下のポリマーのラテックスからなる場合に向上する。最も好ましい形態は、イオン伝導度が2.5mS/cm以下になるように調製されたものであり、このような調製法としてポリマー合成後分離機能膜を用いて精製処理する方法が挙げられる。
【0132】
ここでいう前記ポリマーが可溶または分散可能である水系溶媒とは、水または水に70wt%以下の水混和性の有機溶媒を混合したものである。水混和性の有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルコール系、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ系、酢酸エチル、ジメチルホルミアミドなどを挙げることができる。
【0133】
なお、ポリマーが熱力学的に溶解しておらず、いわゆる分散状態で存在している系の場合にも、ここでは水系溶媒という言葉を使用する。
【0134】
また「25℃60%RHにおける平衡含水率」とは、25℃60%RHの雰囲気下で調湿平衡にあるポリマーの重量W1と25℃で絶乾状態にあるポリマーの重量W0を用いて以下のように表すことができる。
25℃60%RHにおける平衡含水率=[(W1-W0)/W0]×100(wt%)
【0135】
含水率の定義と測定法については、例えば高分子工学講座14、高分子材料試験法(高分子学会編、地人書館)を参考にすることができる。
【0136】
本発明のバインダーポリマーの25℃60%RHにおける平衡含水率は2wt%以下であることが好ましいが、より好ましくは0.01wt%以上1.5wt%以下、さらに好ましくは0.02wt%以上1wt%以下が望ましい。
【0137】
本発明においては水系溶媒に分散可能なポリマーが特に好ましい。
【0138】
分散状態の例としては、固体ポリマーの微粒子が分散しているラテックスやポリマー分子が分子状態またはミセルを形成して分散しているものなどがあるが、いずれも好ましい。
【0139】
本発明において好ましい態様としては、アクリル樹脂、ポリエステル樹脂、ゴム系樹脂(例えばSBR樹脂)、ポリウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニリデン樹脂、ポリオレフィン樹脂等の疎水性ポリマーを好ましく用いることができる。ポリマーとしては直鎖のポリマーでも枝分かれしたポリマーでもまた架橋されたポリマーでもよい。ポリマーとしては単一のモノマーが重合したいわゆるホモポリマーでもよいし、2種類以上のモノマーが重合したコポリマーでもよい。コポリマーの場合はランダムコポリマーでも、ブロックコポリマーでもよい。ポリマーの分子量は数平均分子量で5000〜1000000、好ましくは10000〜200000がよい。分子量が小さすぎるものは乳剤層の力学強度が不十分であり、大きすぎるものは成膜性が悪く好ましくない。
【0140】
前記「水系溶媒」とは、組成の30wt%以上が水である分散媒をいう。分散状態としては乳化分散したもの、ミセル分散したもの、更に分子中に親水性部位を持ったポリマーを分子状態で分散したものなど、どのようなものでもよいが、これらのうちでラテックスが特に好ましい。
【0141】
好ましいポリマーラテックスの具体例としては以下のものを挙げることができる。以下では原料モノマーを用いて表し、括弧内の数値はwt%、分子量は数平均分子量である。
【0142】
P-1;-MMA(70)-EA(27)-MAA(3)-のラテックス(分子量37000)
P-2;-MMA(70)-2EHA(20)-St(5)-AA(5)-のラテックス(分子量40000)
P-3;-St(50)-Bu(47)-MAA(3)-のラテックス(分子量45000)
P-4;-St(68)-Bu(29)-AA(3)-のラテックス(分子量60000)
P-5;-St(70)-Bu(27)-IA(3)-のラテックス(分子量120000)
P-6;-St(75)-Bu(24)-AA(1)-のラテックス(分子量108000)
P-7;-St(60)-Bu(35)-DVB(3)-MAA(2)-のラテックス(分子量150000)
P-8;-St(70)-Bu(25)-DVB(2)-AA(3)-のラテックス(分子量280000)
P-9;-VC(50)-MMA(20)-EA(20)-AN(5)-AA(5)-のラテックス(分子量80000)
P-10;-VDC(85)-MMA(5)-EA(5)-MAA(5)-のラテックス(分子量67000)
P-11;-Et(90)-MAA(10)-のラテックス(分子量12000)
P-12;-St(70)-2EHA(27)-AA(3)のラテックス(分子量130000)
P-13;-MMA(63)-EA(35)- AA(2)のラテックス(分子量33000)
【0143】
上記構造の略号は以下のモノマーを表す。MMA;メチルメタクリレート,EA;エチルアクリレート、MAA;メタクリル酸,2EHA;2-エチルヘキシルアクリレート,St;スチレン,Bu;ブタジエン,AA;アクリル酸,DVB;ジビニルベンゼン,VC;塩化ビニル,AN;アクリロニトリル,VDC;塩化ビニリデン,Et;エチレン,IA;イタコン酸。
【0144】
以上に記載したポリマーラテックスは市販もされていて、以下のようなポリマーが利用できる。アクリル樹脂の例としては、セビアンA-4635,46583,4601(以上ダイセル化学工業(株)製)、Nipol Lx811、814、821、820、857(以上日本ゼオン(株)製)など、ポリエステル樹脂の例としては、FINETEX ES650、611、675、850(以上大日本インキ化学(株)製)、WD-size、WMS(以上イーストマンケミカル製)など、ポリウレタン樹脂の例としては、HYDRAN AP10、20、30、40(以上大日本インキ化学(株)製)など、ゴム系樹脂の例としては、LACSTAR 7310K、3307B、4700H、7132C(以上大日本インキ化学(株)製)、Nipol Lx416、410、438C、2507(以上日本ゼオン(株)製)など、塩化ビニル樹脂の例としては、G351、G576(以上日本ゼオン(株)製)など、塩化ビニリデン樹脂の例としては、L502、L513(以上旭化成工業(株)製)など、オレフィン樹脂の例としては、ケミパールS120、SA100(以上三井石油化学(株)製)などを挙げることができる。
【0145】
これらのポリマーラテックスは単独で用いてもよいし、必要に応じて2種以上ブレンドしてもよい。
【0146】
本発明に用いられるポリマーラテックスとしては、特に、スチレン-ブタジエン共重合体のラテックスが好ましい。スチレン-ブタジエン共重合体におけるスチレンのモノマー単位とブタジエンのモノマー単位との重量比は40:60〜95:5であることが好ましい。また、スチレンのモノマー単位とブタジエンのモノマー単位との共重合体に占める割合は60〜99wt%であることが好ましい。好ましい分子量の範囲は前記と同様である。
【0147】
本発明に用いることが好ましいスチレン-ブタジエン共重合体のラテックスとしては、前記のP-3〜P-8、市販品であるLACSTAR-3307B、7132C、Nipol Lx416等が挙げられる。
【0148】
本発明の感光材料の有機銀塩含有層には必要に応じてゼラチン、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルセルロースなどの親水性ポリマーを添加してもよい。これらの親水性ポリマーの添加量は有機銀塩含有層の全バインダーの30wt%以下、より好ましくは20wt%以下が好ましい。
【0149】
本発明の有機銀塩含有層(即ち、画像形成層)は、ポリマーラテックスとを用いて形成されたものであるが、有機銀塩含有層のバインダーの量は、全バインダー/有機銀塩の重量比が1/10〜10/1、更には1/5〜4/1の範囲が好ましい。
【0150】
また、このような有機銀塩含有層は、通常、感光性銀塩である感光性ハロゲン化銀が含有された感光性層(乳剤層)でもあり、このような場合の、全バインダー/ハロゲン化銀の重量比は400〜5、より好ましくは200〜10の範囲が好ましい。
【0151】
本発明の画像形成層の全バインダー量は0.2〜30g/m2、より好ましくは1〜15g/m2の範囲が好ましい。本発明の画像形成層には架橋のための架橋剤、塗布性改良のための界面活性剤などを添加してもよい。
【0152】
本発明において感光材料の有機銀塩含有層塗布液の溶媒(ここでは簡単のため、溶媒と分散媒をあわせて溶媒と表す)は、水を30wt%以上含む水系溶媒である。水以外の成分としてはメチルアルコール、エチルアルコール、イソプロピルアルコール、メチルセロソルブ、エチルセロソルブ、ジメチルホルムアミド、酢酸エチルなど任意の水混和性有機溶媒を用いてよい。塗布液の溶媒の水含有率は50wt%以上、より好ましくは70wt%以上が好ましい。好ましい溶媒組成の例を挙げると、水の他、水/メチルアルコール=90/10、水/メチルアルコール=70/30、水/メチルアルコール/ジメチルホルムアミド=80/15/5、水/メチルアルコール/エチルセロソルブ=85/10/5、水/メチルアルコール/イソプロピルアルコール=85/10/5などがある(数値はwt%)。
【0153】
本発明におけるハロゲン化銀乳剤または/および有機銀塩は、カブリ防止剤、安定剤および安定剤前駆体によって、付加的なカブリの生成に対して更に保護され、在庫貯蔵中における感度の低下に対して安定化することができる。本発明のポリハロゲン化合物と組合せて使用することができる適当なカブリ防止剤、安定剤および安定剤前駆体は、特開平10-62899号の段落番号0070、欧州特許公開第0803764A1号の第20ページ第57行〜第21ページ第7行に記載の特許のものが挙げられる。
【0154】
このようなカブリ防止剤は、溶液、粉末、固体微粒子分散物などいかなる方法で添加してもよい。固体微粒子分散は公知の微細化手段(例えば、ボールミル、振動ボールミル、サンドミル、コロイドミル、ジェットミル、ローラーミルなど)で行われる。また、固体微粒子分散する際に、アニオン性界面活性剤(例えばトリイソプロピルナフタレンスルホン酸ナトリウム(3つのイソプロピル基の置換位置の異なるものの混合物)などの分散助剤を用いてもよい。
【0155】
本発明における熱現像感光材料は高感度化やカブリ防止を目的としてアゾリウム塩や安息香酸類を含有しても良い。アゾリウム塩としては、特開昭59-193447号記載の一般式(XI)で表される化合物、特公昭55-12581号記載の化合物、特開昭60-153039号記載の一般式(II)で表される化合物が挙げられる。安息香酸類はいかなる安息香酸誘導体でもよいが、好ましい構造の例としては、米国特許4,784,939号、同4,152,160号、特願平8-151242号、同8-151241号、同8-98051号などに記載の化合物が挙げられる。アゾリウム塩や安息香酸類は感光材料のいかなる部位に添加しても良いが、添加層としては感光性層を有する面の層に添加することが好ましく、有機銀塩含有層に添加することがさらに好ましい。アゾリウム塩や安息香酸類の添加時期としては塗布液調製のいかなる工程で行っても良く、有機銀塩含有層に添加する場合は有機銀塩調製時から塗布液調製時のいかなる工程でも良いが有機銀塩調製後から塗布直前が好ましい。アゾリウム塩や安息香酸類の添加法としては粉末、溶液、微粒子分散物などいかなる方法で行っても良い。また、増感色素、還元剤、色調剤など他の添加物と混合した溶液として添加しても良い。本発明においてアゾリウム塩や安息香酸類の添加量としてはいかなる量でも良いが、銀1モル当たり1×10-6モル以上2モル以下が好ましく、1×10-3モル以上0.5モル以下がさらに好ましい。
【0156】
本発明には現像を抑制あるいは促進させ現像を制御するため、現像前後の保存性を向上させるためなどにメルカプト化合物、ジスルフィド化合物、チオン化合物を含有させることができる。
【0157】
このようなメルカプト化合物、ジスルフィド化合物、チオン化合物としては特開平10-62899号の段落番号0067〜0069、特開平10-186572号の一般式(I)で表される化合物およびその具体例として段落番号0033〜0052、欧州特許公開第0803764A1号の第20ページ第36〜56行に記載されている。中でもメルカプト置換複素芳香族化合物が好ましく、2-メルカプトベンズイミダゾール、2-メルカプト-5-メチルベンゾイミダゾール、2-メルカプトベンズオキサゾール、2-メルカプトベンゾチアゾール、2-メルカプト-5-メチルベンズイミダゾール、6-エトキシ-2-メルカプトベンゾチアゾール、2,2'-ジチオビス-(ベンゾチアゾール、3-メルカプト-1,2,4-トリアゾール、4,5-ジフェニル-2-イミダゾールチオール、2-メルカプトイミダゾール、1-エチル-2-メルカプトベンズイミダゾール、2-メルカプトキノリン、8-メルカプトプリン、2-メルカプト-4(3H)-キナゾリノン、7-トリフルオロメチル-4-キノリンチオール、2,3,5,6-テトラクロロ-4-ピリジンチオール、4-アミノ-6-ヒドロキシ-2-メルカプトピリミジンモノヒドレート、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、3-アミノ-5-メルカプト-1,2,4-トリアゾール、4-ヒドキロシ-2-メルカプトピリミジン、2-メルカプトピリミジン、4,6-ジアミノ-2-メルカプトピリミジン、2-メルカプト-4-メチルピリミジンヒドロクロリド、3-メルカプト-5-フェニル-1,2,4-トリアゾール、2-メルカプト-4-フェニルオキサゾール、3-メルカプト-4-フェニル-5-へプチル-1,2-4-トリアゾールなどが挙げられる。
【0158】
これらのメルカプト化合物の添加量としては乳剤層中に銀1モル当たり0.001〜1.0モルの範囲が好ましく、さらに好ましくは、銀の1モル当たり0.01〜0.3モルの量である。
【0159】
画像を向上させる「色調剤」として知られる添加剤を含むと光学濃度が高くなることがあり、本発明では色調剤の添加が好ましい。また、色調剤は黒色銀画像を形成させる上でも有利になることがある。色調剤は画像形成層を有する面に銀1モル当たりの0.1〜50モル%の量含まれることが好ましく、0.5〜20モル%含まれることがさらに好ましい。また、色調剤は現像時のみ有効に機能を持つように誘導化されたいわゆるプレカーサーであってもよい。
【0160】
このような色調剤は、特開平10-62899号の段落番号0054〜0055、欧州特許公開第0803764A1号の第21ページ第23〜48行に記載されている色調剤としては、フタラジノン、フタラジノン誘導体もしくは金属塩、または4-(1-ナフチル)フタラジノン、6-クロロフタラジノン、5,7-ジメトキシフタラジノンおよび2,3-ジヒドロ-1,4-フタラジンジオンなどの誘導体;フタラジノンとフタル酸誘導体(例えば、フタル酸、4-メチルフタル酸、4-ニトロフタル酸およびテトラクロロ無水フタル酸など)との組合せ;フタラジン類(フタラジン、フタラジン誘導体もしくは金属塩、または4-(1-ナフチル)フタラジン、6-イソプロピルフタラジン、6-t-ブチルフラタジン、6-クロロフタラジン、5,7-ジメトキシフタラジンおよび2,3-ジヒドロフタラジンなどの誘導体);フタラジン類とフタル酸誘導体(例えば、フタル酸、4-メチルフタル酸、4-ニトロフタル酸およびテトラクロロ無水フタル酸など)との組合せが好ましく、特にフタラジン類とフタル酸誘導体の組合せが好ましい。
【0161】
本発明の色調剤は、溶液、粉末、固体微粒子分散物などいかなる方法で添加してもよい。固体微粒子分散は公知の微細化手段(例えば、ボールミル、振動ボールミル、サンドミル、コロイドミル、ジェットミル、ローラーミルなど)で行われる。また、固体微粒子分散する際に分散助剤を用いてもよい。
【0162】
本発明における画像形成層(好ましくは感光性層)には、可塑剤および潤滑剤として多価アルコール(例えば、米国特許第2,960,404号に記載された種類のグリセリンおよびジオール)、米国特許第2,588,765号および同第3,121,060号に記載の脂肪酸またはエステル、英国特許第955,061号に記載のシリコーン樹脂などを用いることができる。
【0163】
本発明は、超硬調画像形成のため超硬調化剤を用いることができる。例えば、米国特許第5,464,738号、同5,496,695号、同6,512,411号、同5,536,622号、特願平7-228627号、同8-215822号、同8-130842号、同8-148113号、同8-156378号、同8-148111号、同8-148116号に記載のヒドラジン誘導体、あるいは、特願平8-83566号に記載の四級窒素原子を有する化合物や米国特許第5,545,515号に記載のアクリロニトリル化合物を用いることができる。化合物の具体例としては、前記米国特許第5,464,738号の化合物1〜10、同5,496,695号のH-1〜H-28、特願平8-215822号のI-1〜I-86、同8-130842号のH-1〜H-62、同8-148113号の1-1〜1-21、同8-148111号の1〜50、同8-148116号の1〜40、同8-83566号のP-1〜P-26、およびT-1〜T-18、米国特許第5,545,515号のCN-1〜CN-13などが挙げられる。
【0164】
また、本発明は超硬調画像形成のために、前記の超硬調化剤とともに硬調化促進剤を併用することができる。例えば、米国特許第5,545,505号に記載のアミン化合物、具体的にはAM-1〜AM-5、同5,545,507号に記載のヒドロキサム酸類、具体的にはHA-1〜HA-11、同5,545,507号に記載のアクリロニトリル類、具体的にはCN-1〜CN-13、同5,558,983号に記載のヒドラジン化合物、具体的にはCA-1〜CA-6、特願平8-132836号に記載のオニュ−ム塩類、具体的にはA-1〜A-42、B-1〜B-27、C-1〜C-14などを用いることができる。
【0165】
これらの超硬調化剤、および硬調化促進剤の合成方法、添加方法、添加量等は、それぞれの前記引用特許に記載されているように行うことができる。
【0166】
本発明における熱現像感光材料は画像形成層の付着防止などの目的で表面保護層を設けることができる。
【0167】
本発明の表面保護層のバインダーとしてはいかなるポリマーでもよいが、カルボン酸残基を有するポリマーを100mg/m2以上5g/m2以下含むことが好ましい。ここでいうカルボキシル残基を有するポリマーとしては天然高分子(ゼラチン、アルギン酸など)、変性天然高分子(カルボキシメチルセルロース、フタル化ゼラチンなど)、合成高分子(ポリメタクリレート、ポリアクリレート、ポリアルキルメタクリレート/アクリレート共重合体、ポリスチレン/ポリメタクリレート共重合体など)などが挙げられる。このようなポリマーのカルボキシ残基の含有量としてはポリマー100g当たり1×10-2モル以上1.4モル以下であることが好ましい。また、カルボン酸残基はアルカリ金属イオン、アルカリ土類金属イオン、有機カチオンなどと塩を形成してもよい。
【0168】
また、表面保護層には、バインダーとしてポリビニルアルコール(PVA)を用いることも好ましく、完全けん化物のPVA−105[ポリビニルアルコール(PVA)含有率94.0wt% 以上、けん化度98.5±0.5モル%、酢酸ナトリウム含有率1.5wt% 以下、揮発分5.0wt% 以下、粘度(4wt% 、20℃)5.6±0.4CPS]、部分けん化物のPVA−205[PVA含有率94.0wt% 、けん化度88.0±1.5モル%、酢酸ナトリウム含有率1.0wt% 、揮発分5.0wt% 、粘度(4wt% 、20℃)5.0±0.4CPS]、変性ポリビニルアルコールのMP−102、MP−202、MP−203、R−1130、R−2105(以上、クラレ(株)製の商品名)などが挙げられる。
【0169】
保護層(1層当たり)のポリビニルアルコール塗布量(支持体1m2当たり)としては0.3g/m2〜4.0g/m2が好ましく、0.3g/m2〜2.0g/m2がより好ましい。
【0170】
本発明の表面保護層としては、いかなる付着防止材料を使用してもよい。付着防止材料の例としては、ワックス、シリカ粒子、スチレン含有エラストマー性ブロックコポリマー(例えば、スチレン-ブタジエン-スチレン、スチレン-イソプレン-スチレン)、酢酸セルロース、セルロースアセテートブチレート、セルロースプロピオネートやこれらの混合物などがある。また、表面保護層には架橋のための架橋剤、塗布性改良のための界面活性剤などを添加してもよい。
【0171】
本発明における画像形成層または画像形成層の保護層には、米国特許第3,253,921号、同第2,274,782号、同第2,527,583号および同第2,956,879号に記載されているような光吸収物質およびフィルター染料を使用することができる。また、例えば米国特許第3,282,699号に記載のように染料を媒染することができる。フィルター染料の使用量としては露光波長での吸光度が0.1〜3.0であることが好ましく、0.2〜1.5が特に好ましい。
【0172】
本発明における画像形成層または画像形成層の保護層には、艶消剤、例えばデンプン、二酸化チタン、酸化亜鉛、シリカ、米国特許第2,992,101号および同第2,701,245号に記載された種類のビーズを含むポリマービーズなどを含有することができる。
【0173】
本発明の画像形成層塗布液の調製温度は30℃以上65℃以下がよく、さらに好ましい温度は35℃以上60℃未満、より好ましい温度は35℃以上55℃以下である。また、ポリマーラテックス添加直後の画像形成層塗布液の温度が30℃以上65℃以下で維持されることが好ましい。また、ポリマーラテックス添加前に還元剤と有機銀塩が混合されていることが好ましい。
【0174】
本発明における有機銀塩含有流体または熱画像形成層塗布液は、いわゆるチキソトロピー流体であることが好ましい。チキソトロピー性とは剪断速度の増加に伴い、粘度が低下する性質を言う。本発明の粘度測定にはいかなる装置を使用してもよいが、レオメトリックスファーイースト株式会社製RFSフルードスペクトロメーターが好ましく用いられ25℃で測定される。ここで、本発明における有機銀塩含有流体もしくは熱画像形成層塗布液は剪断速度0.1S-1における粘度は400mPa・s以上100,000mPa・s以下が好ましく、さらに好ましくは500mPa・s以上20,000mPa・s以下である。また、剪断速度1000S-1においては1mPa・s以上200mPa・s以下が好ましく、さらに好ましくは5mPa・s以上80mPa・s以下である。
【0175】
チキソトロピー性を発現する系は各種知られており高分子刊行会編「講座・レオロジー」、室井、森野共著「高分子ラテックス」(高分子刊行会発行)などに記載されている。流体がチキソトロピー性を発現させるには固体微粒子を多く含有することが必要である。また、チキソトロピー性を強くするには増粘線形高分子を含有させること、含有する固体微粒子の異方形でアスペクト比が大きくすること、アルカリ増粘、界面活性剤の使用などが有効である。
【0176】
本発明の熱現像写真用乳剤は、支持体上に一またはそれ以上の層を構成する。一層の構成は有機銀塩、ハロゲン化銀、現像剤およびバインダー、ならびに色調剤、被覆助剤および他の補助剤などの所望による追加の材料を含まなければならない。二層の構成は、第1乳剤層(通常は支持体に隣接した層)中に有機銀塩およびハロゲン化銀を含み、第2層または両層中にいくつかの他の成分を含まなければならない。しかし、全ての成分を含む単一乳剤層および保護トップコートを含んでなる二層の構成も考えられる。多色感光性熱現像写真材料の構成は、各色についてこれらの二層の組合せを含んでよく、また、米国特許第4,708,928号に記載されているように単一層内に全ての成分を含んでいてもよい。多染料多色感光性熱現像写真材料の場合、各乳剤層は、一般に、米国特許第4,460,681号に記載されているように、各感光性層の間に官能性もしくは非官能性のバリアー層を使用することにより、互いに区別されて保持される。
【0177】
本発明の感光性層には色調改良、レーザー露光時の干渉縞発生防止、イラジエーション防止の観点から各種染料や顔料を用いることができる。これらについてはWO98/36322号に詳細に記載されている。本発明の感光性層に用いる好ましい染料および顔料としてはアントラキノン染料、アゾメチン染料、インドアニリン染料、アゾ染料、アントラキノン系のインダントロン顔料(C.I. Pigment Blue 60など)、フタロシアニン顔料(C.I. Pigment Blue 15等の銅フタロシアニン、C.I. Pigment Blue 16等の無金属フタロシアニンなど)、染付けレーキ顔料系のトリアリールカルボニル顔料、インジゴ、無機顔料(群青、コバルトブルーなど)が挙げられる。これらの染料や顔料の添加法としては、溶液、乳化物、固体微粒子分散物、高分子媒染剤に媒染された状態などいかなる方法でも良い。これらの化合物の使用量は目的の吸収量によって決められるが、一般的に感光材料1m2当たり1μg以上1g以下の範囲で用いることが好ましい。
【0178】
本発明においてはアンチハレーション層を感光性層に対して光源から遠い側に設けることができる。アンチハレーション層は所望の波長範囲での最大吸収が0.3以上2以下であることが好ましく、さらに好ましくは0.5以上2以下の露光波長の吸収であり、かつ処理後の可視領域においての吸収が0.001以上0.5未満であることが好ましく、さらに好ましくは0.001以上0.3未満の光学濃度を有する層であることが好ましい。
【0179】
本発明でハレーション防止染料を使用する場合、こうした染料は波長範囲で目的の吸収を有し、処理後に可視領域での吸収が充分少なく、上記アンチハレーション層の好ましい吸光度スペクトルの形状が得られればいかなる化合物でも良い。例えば以下に挙げるものが開示されているが本発明はこれに限定されるものではない。単独の染料としては特開昭59-56458号、特開平2-216140号、同7-13295号、同7-11432号、米国特許5,380,635号記載、特開平2-68539号公報第13頁左下欄1行目から同第14頁左下欄9行目、同3-24539号公報第14頁左下欄から同第16頁右下欄記載の化合物があり、処理で消色する染料としては特開昭52-139136号、同53-132334号、同56-501480号、同57-16060号、同57-68831号、同57-101835号、同59-182436号、特開平7-36145号、同7-199409号、特公昭48-33692号、同50-16648号、特公平2-41734号、米国特許4,088,497号、同4,283,487号、同4,548,896号、同5,187,049号がある。
【0180】
本発明では熱現像感光材料の非感光性層に消色染料と塩基プレカーサーとを添加して、非感光性層をフィルター層またはアンチハレーション層として機能させることが好ましい。熱現像感光材料は一般に、感光性層に加えて非感光性層を有する。非感光性層は、その配置から(1)感光性層の上(支持体よりも遠い側)に設けられる保護層、(2)複数の感光性層の間や感光性層と保護層の間に設けられる中間層、(3)感光性層と支持体との間に設けられる下塗り層、(4)感光性層の反対側に設けられるバック層に分類できる。フィルター層は、(1)または(2)の層として感光材料に設けられる。アンチハレーション層は、(3)または(4)の層として感光材料に設けられる。
【0181】
消色染料と塩基プレカーサーとは、同一の非感光性層に添加することが好ましい。ただし、隣接する二つの非感光性層に別々に添加してもよい。また、二つの非感光性層の間にバリアー層を設けてもよい。
【0182】
消色染料を非感光性層に添加する方法としては、溶液、乳化物、固体微粒子分散物あるいはポリマー含浸物を非感光性層の塗布液に添加する方法が採用できる。また、ポリマー媒染剤を用いて非感光性層に染料を添加してもよい。これらの添加方法は、通常の熱現像感光材料に染料を添加する方法と同様である。ポリマー含浸物に用いるラテックスについては、米国特許4199363号、西独特許公開25141274号、同2541230号、欧州特許公開029104号の各明細書および特公昭53−41091号公報に記載がある。また、ポリマーを溶解した溶液中に染料を添加する乳化方法については、国際公開番号88/00723号明細書に記載がある。
【0183】
消色染料の添加量は、染料の用途により決定する。一般には、目的とする波長で測定したときの光学濃度(吸光度)が0.1を越える量で使用する。光学濃度は、0.2乃至2であることが好ましい。このような光学濃度を得るための染料の使用量は、一般に0.001乃至1g/m2程度である。好ましくは、0.005乃至0.8g/m2程度であり、特に好ましくは、0.01乃至0.2g/m2程度である。
【0184】
なお、このように染料を消色すると、光学濃度を0.1以下に低下させることができる。二種類以上の消色染料を、熱消色型記録材料や熱現像感光材料において併用してもよい。同様に、二種類以上の塩基プレカーサーを併用してもよい。
【0185】
本発明における熱現像感光材料は、支持体の一方の側に少なくとも1層のハロゲン化銀乳剤を含む感光性層を有し、他方の側にバック層を有する、いわゆる片面感光材料であることが好ましい。
【0186】
本発明において片面感光材料は、搬送性改良のためにマット剤を添加しても良い。マット剤は、一般に水に不溶性の有機または無機化合物の微粒子である。マット剤としては任意のものを使用でき、例えば米国特許第1,939,213号、同2,701,245号、同2,322,037号、同3,262,782号、同3,539,344号、同3,767,448号等の各明細書に記載の有機マット剤、同1,260,772号、同2,192,241号、同3,257,206号、同3,370,951号、同3,523,022号、同3,769,020号等の各明細書に記載の無機マット剤など当業界で良く知られたものを用いることができる。例えば具体的にはマット剤として用いることのできる有機化合物の例としては、水分散性ビニル重合体の例としてポリメチルアクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、アクリロニトリル-α-メチルスチレン共重合体、ポリスチレン、スチレン-ジビニルベンゼン共重合体、ポリビニルアセテート、ポリエチレンカーボネート、ポリテトラフルオロエチレンなど、セルロース誘導体の例としてはメチルセルロース、セルロースアセテート、セルロースアセテートプロピオネートなど、澱粉誘導体の例としてカルボキシ澱粉、カルボキシニトロフェニル澱粉、尿素-ホルムアルデヒド-澱粉反応物など、公知の硬化剤で硬化したゼラチンおよびコアセルベート硬化して微少カプセル中空粒体とした硬化ゼラチンなど好ましく用いることができる。無機化合物の例としては二酸化珪素、二酸化チタン、二酸化マグネシウム、酸化アルミニウム、硫酸バリウム、炭酸カルシウム、公知の方法で減感した塩化銀、同じく臭化銀、ガラス、珪藻土などを好ましく用いることができる。上記のマット剤は必要に応じて異なる種類の物質を混合して用いることができる。マット剤の大きさ、形状に特に限定はなく、任意の粒径のものを用いることができる。本発明の実施に際しては0.1μm〜30μmの粒径のものを用いるのが好ましく、2μm〜10μmの平均粒径のものを用いるのが更に好ましい。また、マット剤の粒径分布は狭くても広くても良い。一方、マット剤は感材のヘイズ、表面光沢に大きく影響することから、マット剤作製時あるいは複数のマット剤の混合により、粒径、形状および粒径分布を必要に応じた状態にすることが好ましい。
【0187】
マット剤は感光材料1m2当たりの塗布量で示した場合、好ましくは1〜400mg/m2、より好ましくは5〜300mg/m2である。
【0188】
また、乳剤面のマット度は星屑故障が生じなければいかようでも良いが、ベック平滑度が50秒以上10000秒以下が好ましく、特に80秒以上10000秒以下が好ましい。
【0189】
本発明においてバック層のマット度としてはベック平滑度が1200秒以下10秒以上が好ましく、700秒以下30秒以上が好ましく、さらに好ましくは500秒以下50秒以上である。
【0190】
本発明において、マット剤は感光材料の最外表面層もしくは最外表面層として機能する層、あるいは外表面に近い層に含有されるのが好ましく、またいわゆる保護層として作用する層に含有されることが好ましい。
【0191】
本発明においてバック層の好適なバインダーは透明または半透明で、一般に無色であり、天然ポリマー、合成樹脂やポリマーおよびコポリマー、その他フィルムを形成する媒体、例えば:ゼラチン、アラビアゴム、ポリ(ビニルアルコール)、ヒドロキシエチルセルロース、セルロースアセテート、セルロースアセテートブチレート、ポリ(ビニルピロリドン)、カゼイン、デンプン、ポリ(アクリル酸)、ポリ(メチルメタクリル酸)、ポリ(塩化ビニル)、ポリ(メタクリル酸)、コポリ(スチレン-無水マレイン酸)、コポリ(スチレン-アクリロニトリル)、コポリ(スチレン-ブタジエン)、ポリ(ビニルアセタール)類(例えば、ポリ(ビニルホルマール)およびポリ(ビニルブチラール))、ポリ(エステル)類、ポリ(ウレタン)類、フェノキシ樹脂、ポリ(塩化ビニリデン)、ポリ(エポキシド)類、ポリ(カーボネート)類、ポリ(ビニルアセテート)、セルロースエステル類、ポリ(アミド)類がある。バインダーは水または有機溶媒またはエマルジョンから被覆形成してもよい。
【0192】
本発明においてバック層は、所望の波長範囲での最大吸収が0.3以上2以下であることが好ましく、さらに好ましくは0.5以上2以下の吸収であり、かつ処理後の可視領域においての吸収が0.001以上0.5未満であることが好ましく、さらに好ましくは0.001以上0.3未満の光学濃度を有する層であることが好ましい。また、バック層に用いるハレーション防止染料の例としては前述のアンチハレーション層と同じである。
【0193】
本発明の熱現像感光材料には米国特許第4,460,681号および同第4,374,921号に示されるような裏面抵抗性加熱層(backside resistive heating layer)を使用することもできる。
【0194】
本発明の画像形成層(好ましくは感光性層)、保護層、バック層など各層には硬膜剤を用いても良い。硬膜剤の例としてはT.H.James著"THE THEORY OF THE PHOTOGRAPHIC PROCESS FOURTH EDITION"(Macmillan Publishing Co., Inc.刊、1977年刊)77頁から87頁に記載の各方法があり、同書78頁など記載の多価金属イオン、米国特許4,281,060号、特開平6-208193号などのポリイソシアネート類、米国特許4,791,042号などのエポキシ化合物類、特開昭62-89048号などのビニルスルホン系化合物類が好ましく用いられる。
【0195】
硬膜剤は溶液として添加され、この溶液の保護層塗布液中への添加時期は、塗布する180分前から直前、好ましくは60分前から10秒前であるが、混合方法および混合条件については本発明の効果が十分に現れる限りにおいては特に制限はない。具体的な混合方法としては添加流量とコーターへの送液量から計算した平均滞留時間を所望の時間となるようにしたタンクでの混合する方法やN.Harnby、M.F.Edwards、A.W.Nienow著、高橋幸司訳"液体混合技術"(日刊工業新聞社刊、1989年)の第8章等に記載されているスタチックミキサーなどを使用する方法がある。
【0196】
本発明には塗布性、帯電改良などを目的として界面活性剤を用いても良い。界面活性剤の例としては、ノニオン系、アニオン系、カチオン系、フッ素系などいかなるものも適宜用いられる。具体的には、特開昭62-170950号、米国特許5,380,644号などに記載のフッ素系高分子界面活性剤、特開昭60-244945号、特開昭63-188135号などに記載のフッ素系界面活性剤、米国特許3,885,965号などに記載のポリシロキ酸系界面活性剤、特開平6-301140号などに記載のポリアルキレンオキサイドやアニオン系界面活性剤などが挙げられる。
【0197】
本発明に用いられる溶剤の例としては新版溶剤ポケットブック(オーム社、1994年刊)などに挙げられるが、本発明はこれに限定されるものではない。また、本発明で使用する溶剤の沸点としては40℃以上180℃以下のものが好ましい。
【0198】
本発明の溶剤の例としてはヘキサン、シクロヘキサン、トルエン、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、酢酸エチル、1,1,1-トリクロロエタン、テトラヒドロフラン、トリエチルアミン、チオフェン、トリフルオロエタノール、パーフルオロペンタン、キシレン、n-ブタノール、フェノール、メチルイソブチルケトン、シクロヘキサノン、酢酸ブチル、炭酸ジエチル、クロロベンゼン、ジブチルエーテル、アニソール、エチレングリコールジエチルエーテル、N,N-ジメチルホルムアミド、モルホリン、プロパンスルトン、パーフルオロトリブチルアミン、水などが挙げられる。
【0199】
本発明における熱現像用写真乳剤は、種々の支持体上に被覆させることができる。典型的な支持体は、ポリエステルフィルム、下塗りポリエステルフィルム、ポリ(エチレンテレフタレート)フィルム、ポリエチレンナフタレートフィルム、硝酸セルロースフィルム、セルロースエステルフィルム、ポリ(ビニルアセタール)フィルム、ポリカーボネートフィルムおよび関連するまたは樹脂状の材料、ならびにガラス、紙、金属などを含む。可撓性基材、特に、バライタおよび/または部分的にアセチル化されたα-オレフィンポリマー、特にポリエチレン、ポリプロピレン、エチレン−ブテンコポリマーなどの炭素数2〜10であるα-オレフィンのポリマーによりコートされた紙支持体が、典型的に用いられる。このような支持体は透明であっても不透明であってもよいが、透明であることが好ましい。透明支持体は青色染料(例えば、特開平8-240877号実施例記載の染料-1)で着色されていてもよい。
【0200】
本発明における感光材料は、帯電防止または導電性層、例えば、可溶性塩(例えば塩化物、硝酸塩など)、蒸着金属層、米国特許第2,861,056号および同第3,206,312号に記載のようなイオン性ポリマーまたは米国特許第3,428,451号に記載のような不溶性無機塩などを含む層などを有してもよい。
【0201】
熱現像感光材料は、モノシート型(受像材料のような他のシートを使用せずに、熱現像感光材料上に画像を形成できる型)であることが好ましい。
【0202】
熱現像感光材料には、さらに、酸化防止剤、安定化剤、可塑剤、紫外線吸収剤あるいは被覆助剤を添加してもよい。各種の添加剤は、感光性層あるいは非感光性層のいずれかに添加する。それらについてWO98/36322号、EP803764A1号、特開平10−186567号、同10−18568号等の各明細書を参考にすることができる。
【0203】
本発明における感光性層には、可塑剤および潤滑剤として多価アルコール(例えば、米国特許第2,960,404号に記載された種類のグリセリンおよびジオール)、米国特許第2,588,765号および同第3,121,060号に記載の脂肪酸またはエステル、英国特許第955,061号に記載のシリコーン樹脂などを用いることができる。
【0204】
本発明における熱現像感光材料を用いてカラー画像を得る方法としては特開平7-13295号10頁左欄43行目から11左欄40行目に記載の方法がある。また、カラー染料画像の安定剤としては英国特許第1,326,889号、米国特許第3,432,300号、同第3,698,909号、同第3,574,627号、同第3,573,050号、同第3,764,337号および同第4,042,394号に例示されている。
【0205】
本発明における熱現像感光材料はいかなる方法で塗布されても良い。具体的には、エクストルージョンコーティング、スライドコーティング、カーテンコーティング、浸漬コーティング、ナイフコーティング、フローコーティング、または米国特許第2,681,294号に記載の種類のホッパーを用いる押出コーティングを含む種々のコーティング操作が用いられ、Stephen F. Kistler、Petert M. Schweizer著"LIQUID FILM COATING"(CHAPMAN & HALL社刊、1997年)399頁から536頁記載のエクストルージョンコーティング、またはスライドコーティング好ましく用いられ、特に好ましくはスライドコーティングが用いられる。スライドコーティングに使用されるスライドコーターの形状の例は同書427頁のFigure 11b.1にある。また、所望により同書399頁から536頁記載の方法、米国特許第2,761,791号および英国特許第837,095号に記載の方法により2層またはそれ以上の層を同時に被覆することができる。
【0206】
本発明における熱現像感光材料の中に追加の層、例えば移動染料画像を受容するための染料受容層、反射印刷が望まれる場合の不透明化層、保護トップコート層および光熱写真技術において既知のプライマー層などを含むことができる。本発明の熱現像感光材料はその感光材料一枚のみで画像形成できることが好ましく、受像層等の画像形成に必要な機能性層が別の感材とならないことが好ましい。
【0207】
本発明の熱現像感光材料に用いることのできる技術としては、EP803764A1号、EP883022A1号、WO98/36322号、特開平9-281637、同9-297367号、同9-304869号、同9-311405号、同9-329865号、同10-10669号、同10-62899号、同10-69023号、同10-186568号、同10-90823号、同10-171063号、同10-186565号、同10-186567号、同10-186569号、同10-186570号、同10-186571号、同10-186572号、同10-197974号、同10-197982号、同10-197983号、同10-197985号、同10-197986号、同10-197987号、同10-207001号、同10-207004号、同10-221807号、同10-282601号、同10-288823号、同10-288824号、同10-307365号、同10-312038号、同10-339934号、同11-7100号、同11-15105号、同11-24200号、同11-24201号、同11-30832号も挙げられる。
【0208】
本発明の熱現像感光材料はいかなる方法で現像されても良いが、通常イメージワイズに露光した熱現像感光材料を昇温して現像される。好ましい現像温度としては80〜250℃であり、さらに好ましくは100〜140℃である。現像時間としては1〜180秒が好ましく、10〜90秒がさらに好ましく、10〜40秒が特に好ましい。
【0209】
熱現像の方式としてはプレートヒーター方式が好ましい。プレートヒーター方式による熱現像方式とは特願平9−229684号、特願平10−177610号に記載の方法が好ましく、潜像を形成した熱現像感光材料を熱現像部にて加熱手段に接触させることにより可視像を得る熱現像装置であって、前記加熱手段がプレートヒータからなり、かつ前記プレートヒータの一方の面に沿って複数個の押えローラが対向配設され、前記押えローラと前記プレートヒータとの間に前記熱現像感光材料を通過させて熱現像を行うことを特徴とする熱現像装置である。プレートヒータを2〜6段に分けて先端部については1〜10℃程度温度を下げることが好ましい。このような方法は特開昭54-30032号にも記載されており、熱現像感光材料に含有している水分や有機溶媒を系外に除外させることができ、また、急激に熱現像感光材料が加熱されることでの熱現像感光材料の支持体形状の変化を押さえることもできる。
【0210】
本発明の露光光源としては青域から紫外線域のレーザーならばいかなるものでもよく、半導体レーザーダイオード(GaAlAsなど)、ZnSe、GaN、色素レーザー、エクサイマーレーザー、ガスレーザー、GaN LED(発光ダイオード)アレイなどが挙げられる。また、バルク直接変換SHGレーザー、SHG固体レーザー、GaN半導体レーザーなども好ましい。
【0211】
バルク直接変換SHGレーザーは、720nm〜900nmの波長のシングルモード半導体レーザーをMgO−LiNbO3ドメイン反転バルク結晶からなるバルク型の波長変換素子に入射し、波長変換素子内にてそのレーザー光を共振させ、もしくは、1パスで通過させ、半導体レーザー光を半分の波長の360nm〜450nmの紫外〜青の波長帯の第二高周波(SHG)に変換し短波長レーザー光を得るものである。出力は、半導体レーザー(LD)の出力に応じて変えることができ、1mW〜100mWの出力を得ることが可能となる。特にバルクドメイン反転結晶を用いれば、反転周期を変えることによって、前述した任意の波長のSHG光を得ることが可能である。さらに、バンドパスフィルター等の波長選択素子を用いて、LD光を波長ロックすることにより、LD光の波長変化を抑制できるため、LDを直接変調しても波長変化を生じることがないので、安定にSHG光を発生できる。その結果、AOM(AO(音響光学)変調)等の外部変調器を用いることなく、LDを直接変調することにて紫外〜青色のSHGレーザー光の変調出力を得ることが可能となる。特に、SHG光を露光に用いた場合は、通常の半導体レーザーとは異なり、SHG光がLDに戻ってもLDとは波長が異なるので、LDは、戻り光による不安定性によるノイズを生じることがないので、安定な画像記録が可能となる。
【0212】
SHG固体レーザーは、500mW〜2W程度の赤外(809nm)〜赤色(680nm)のブロードエリア型のLDによって固体レーザー結晶(Nd:YAGやCr:LiCAF等)を励起し、固体レーザー結晶片端面とミラーによって共振器を構成し、固体レーザー光を発振させ、その共振器内部にMgO−LiNbO3ドメイン反転バルク型波長変換素子等を挿入することで、固体レーザー光をSHG光に波長変換し、紫外〜青の発振を得ることが可能となる。この際に、ブリュースター板で偏光制御し、エタロンによって単一縦モード化し、高効率化および低ノイズ化を図っている。この構成では、高出力の励起LDを用いることができるので、10mW〜300mWの出力が得られる。しかしながら、固体レーザーの場合は、変調スピードは、固体レーザー結晶の蛍光寿命で決められてしまうので、画像記録用のような高速変調はできない。従って、AOM等による外部変調素子が必要である。また、SHG光を露光に用いた場合は、通常のLDとは異なり、SHG光が固体レーザーに戻っても固体レーザーとは波長が異なるので、SHG固体レーザーは、戻り光による不安定性によるノイズを生じることがないので、安定な画像記録が可能となる。
【0213】
近年、380nm〜450nmの発振が可能なInGaNを活性層とするGaN系半導体レーザーが実用化されてきた。400nmにおいて、2mWで1万時間の寿命が持つようになってきた。このレーザーは、上記SHG光を発生する波長変換技術を用いないので、非常に低コストな光源である。また、外部変調器を用いることなく、LDの直接変調も可能である。現状では、出力が数mWであるために、高出力な光源は実用化されていないが、結晶性の改善によって30mW〜100mWの高出力光を得ることが可能である。
【0214】
導波路型SHG光源としては、次のものがある。SHGは、オフカットMgOドープLiNbO3(特開平9−218431号)により作製し、励起半導体レーザーの波長が800〜1000nmで、出力が100〜200mWの時、波長400〜500nmの数十mWのSHG光を得ることができる。LDは、波長ロックし更に波長チューニング可能な構造(分布ブラッグ型 DBR:Distributed Bragg Reflector、分布帰還型DFB:Distributed feedback)であることが望ましい。この場合、導波路周期反転ドメインSHGの位相整合波長に発振波長を調整可能なため、SHG効率の最大値に調整でき、結果として出力光量を最大にできる。
【0215】
変調機能付き光源の例で導波路型EOM(電気光学変調)・SHG光源がある。励起半導体レーザーは、導波路へ結合後、EOMでオン/オフされる。オンの時、周期反転ドメイン導波路へ導波し、オフの時、もう一方の導波路に切り替えられる。オンの場合、励起レーザーは、第二高調波に変換される。オフの時は、第二高調波への変換は起こらず、第二高調波を利用光に用いる場合は、この状態がオフとなる(特開平10−161165号参照)。励起半導体レーザーの波長が800nm〜1000nmで、出力が100〜200mWの時、波長400〜500nmの数十mWのSHG光を得ることができる。LDは、波長ロックし更に波長チューニング可能な構造(分布ブラッグ型 DBR:Distributed Bragg Reflector、分布帰還型DFB:Distributed feedback)であることが望ましい。この場合、導波路周期反転ドメインSHGの位相整合波長に発振波長を調整可能なため、SHG効率の最大値に調整でき、結果として出力光量を最大にできる。EOMは、特開平7−146457号によるセルフアライメント法によりプロトン交換アニール導波路と電極を作製できる。更に、特開平10−133237号により電極にメッキ処理を行い、電気抵抗を下げ、変調速度を上げ作製できる。EOMに用いた基板はXカットMgOドープLiNbO3あるいはオフ基板MgOドープLiNbO3(特開平9−218431号)。変調速度は、数10MHzの周波数で変調可能で画像形成用光源としては、十分な性能が得られる。
【0216】
レーザー光はシングルモードレーザーが利用できるが、本発明のような熱現像感光材料は露光時のヘイズが低く、干渉縞が発生しやすい傾向にあり、この干渉縞発生防止技術としては、特開平5-113548号などに開示されているレーザー光を感光材料に対して斜めに入光させる技術や、WO95/31754号などに開示されているマルチモードレーザーを利用する方法が知られており、これらの技術を用いることができる。
【0217】
本発明の熱現像感光材料を露光するにはSPIE vol.169 Laser Printing 116-128頁(1979)、特開平4-51043号、WO95/31754号などに開示されているようにレーザー光が重なるように露光し、走査線が見えないようにすることが好ましい。
レーザー出力としては、1mW以上のものが好ましく、10mW以上のものがより好ましく、40mW以上の高出力のものが更に好ましい。その上限には特に制限はないが、1W程度である。その際、複数のレーザーを合波してもよい。レーザー光の径としてはガウシアンビームの1/e2スポットサイズで30〜200μm程度とすることができる。
【0218】
本発明の熱現像感光材料は、銀画像による黒白画像を形成し、医療診断用の熱現像感光材料、工業写真用熱現像感光材料、印刷用熱現像感光材料、COM用の熱現像感光材料として使用されることが好ましい。これらの使用において、形成された黒白画像をもとにして、医療診断用では富士写真フイルム(株)製の複製用フィルムMI-Dupに複製画像を形成したり、印刷用では富士写真フイルム(株)製の返し用フイルムDO-175,PDO-100やオフセット印刷版に画像を形成するためのマスクとして使用できることは言うまでもない。
【実施例】
以下、本発明を実施例によって具体的に説明する。
実施例1
【0219】
(PET支持体の作成)
テレフタル酸とエチレングリコ−ルを用い、常法に従い固有粘度IV=0.66(フェノ−ル/テトラクロルエタン=6/4(重量比)中25℃で測定)のPETを得た。これをペレット化した後130℃で4時間乾燥し、300℃で溶融後T型ダイから押し出して急冷し、熱固定後の膜厚が175μmになるような厚みの未延伸フィルムを作成した。
【0220】
これを、周速の異なるロ−ルを用い3.3倍に縦延伸、ついでテンタ−で4.5倍に横延伸を実施した。この時の温度はそれぞれ、110℃、130℃であった。この後、240℃で20秒間熱固定後これと同じ温度で横方向に4%緩和した。この後テンタ−のチャック部をスリットした後、両端にナ−ル加工を行い、4kg/cm2で巻き取り、厚み175μm のロ−ルを得た。
【0221】
(表面コロナ処理)
ピラー社製ソリッドステートコロナ処理機6KVAモデルを用い、支持体の両面を室温下において20m/分で処理した。この時の電流、電圧の読み取り値から、支持体には0.375kV・A・分/m2の処理がなされていることがわかった。この時の処理周波数は9.6kHz、電極と誘電体ロ−ルのギャップクリアランスは1.6mmであった。
【0222】
(下塗り支持体の作成)
(1)下塗層塗布液の作成
処方▲1▼(感光層側下塗り層用)
高松油脂(株)製ペスレジンA-515GB(30wt%溶液) 234g
ポリエチレングリコールモノノニルフェニルエーテル
(平均エチレンオキシド数=8.5) 10wt%溶液 21.5g
綜研化学(株)製 MP-1000(ポリマー微粒子) 0.91g
蒸留水 744ml
処方▲2▼(バック面第1層用)
ブタジエン−スチレン共重合体ラテックス 131g
(固形分40wt% 、ブタジエン/スチレン重量比=32/68)
2,4−ジクロロ−6−ヒドロキシ−S−
トリアジンナトリウム塩 8wt%水溶液 5.1g
ラウリルベンゼンスルホン酸ナトリウムの1wt% 水溶液 10ml
蒸留水 854ml
処方▲3▼(バック面側第2層用)
SnO2/SbO (9/1重量比、平均粒径0.038μm、17wt%分散物) 62g
ゼラチン(10wt%水溶液) 65.7g
信越化学(株)製 メトローズTC-5(2wt%水溶液) 6.3g
綜研化学(株)製 MP-1000(ポリマー微粒子) 0.01g
ドデシルベンゼンスルホン酸ナトリウムの1wt% 水溶液 10ml
蒸留水 856ml
【0223】
(下塗り支持体の作成)
上記厚さ175μmの2軸延伸ポリエチレンテレフタレート支持体の両面それぞれに、上記コロナ放電処理を施した後、片面(感光性層面)に下塗り塗布液処方▲1▼をワイヤーバーでウエット塗布量が6.6ml/m2(片面当たり)になるように塗布して180℃で5分間乾燥し、ついでこの裏面(バック面)に下塗り塗布液処方▲2▼をワイヤーバーでウエット塗布量が5.7ml/m2になるように塗布して180℃で5分間乾燥し、更に裏面(バック面)に下塗り塗布液処方▲3▼をワイヤーバーでウエット塗布量が5.7ml/m2になるように塗布して180℃で6分間乾燥して下塗り支持体を作成した。
【0224】
(バック面塗布液の調製)
(塩基プレカーサーの固体微粒子分散液(a)の調製)
塩基プレカーサー化合物11を64g、ジフェニルスルフォン化合物12を28gおよび花王(株)製界面活性剤デモールN 10g を蒸留水220mlと混合し、混合液をサンドミル(1/4 Gallonサンドグラインダーミル、アイメックス(株)製)を用いてビーズ分散し、平均粒子径0.2μmの、塩基プレカーサー化合物の固体微粒子分散液(a)を得た。
【0225】
(染料固体微粒子分散液の調製)
シアニン染料化合物13を9.6gおよびP-ドデシルベンゼンスルフォン酸ナトリウム5.8gを蒸留水305mlと混合し、混合液をサンドミル(1/4 Gallonサンドグラインダーミル、アイメックス(株)製)を用いてビーズ分散して平均粒子径0.2μmの染料固体微粒子分散液を得た。
【0226】
(ハレーション防止層塗布液の調製)
ゼラチン17g、ポリアクリルアミド9.6g、上記塩基プレカーサーの固体微粒子分散液(a)70g、上記染料固体微粒子分散液56g、ポリメチルメタクリレート微粒子(平均粒子サイズ6.5μm)1.5g、ポリエチレンスルフォン酸ナトリウム2.2g、青色染料化合物14を0.2g、H2Oを844ml混合し、ハレーション防止層塗布液を調製した。
【0227】
(バック面保護層塗布液の調製)
容器を40℃に保温し、ゼラチン50g、ポリスチレンスルフォン酸ナトリウム0.2g、N,N-エチレンビス(ビニルスルフォンアセトアミド) 2.4g、t-オクチルフェノキシエトキシエタンスルフォン酸ナトリウム1g、化合物4を30mg、C8F17SO3K 32mg、C8F17SO2N(C3H7)(CH2CH2O)4(CH2)4-SO3Na 64mg、アクリル酸/エチルアクリレート共重合体(共重合重量比5/95)8.8g、H2Oを950ml混合してバック面保護層塗布液とした。
【0228】
《ハロゲン化銀粒子1−Rの調製》
蒸留水1421ccに1wt%臭化カリウム溶液8.0ccを加え、さらに1N硝酸を8.2cc、フタル化ゼラチン20gを添加した液をチタンコートしたステンレス製反応壺中で攪拌しながら、37℃に液温を保ち、硝酸銀37.04gに蒸留水を加え159ccに希釈した溶液Aと臭化カリウム32.6gを蒸留水にて容量200ccに希釈した溶液Bを準備し、コントロールダブルジェット法でpAgを8.1に維持しながら、溶液Aの全量を一定流量で1分間かけて添加した。溶液Bは、コントロールドダブルジェット法にて添加した。その後3.5wt%の過酸化水素水溶液を30cc添加し、さらに化合物1の3wt%水溶液を36cc添加した。その後、再び溶液Aを蒸留水で希釈して317.5ccにした溶液A2と、溶液Bに対して最終的に銀1モル当たり1×10-4モルになるよう化合物2を溶解し、液量を溶液Bの2倍の400ccまで蒸留水で希釈した溶液B2を用いて、やはりコントロールドダブルジェット法にて、pAgを8.1に維持しながら、一定流量で溶液A2を10分間かけて全量添加した。溶液B2は、コントロールドダブルジェット法で添加した。その後、化合物3の0.5wt%メタノール溶液を50cc添加し、さらに硝酸銀でpAgを7.5に上げてから1N硫酸を用いてpHを3.8に調製し、攪拌を止め、沈降/脱塩/水洗工程を行い、脱イオンゼラチン3.5gを加えて1Nの水酸化ナトリウムを添加して、pH6.0、pAg8.2に調整してハロゲン化銀分散物を作成した。
【0229】
できあがったハロゲン化銀乳剤中の粒子は、平均球相当径0.053μm、球相当径の変動係数18%の純臭化銀粒子であった。粒子サイズ等は、電子顕微鏡を用い1000個の粒子の平均から求めた。この粒子の[100]面比率は、クベルカムンク法を用いて85%と求められた。
【0230】
上記乳剤を38℃に攪拌しながら維持して、化合物4を0.035g(3.5wt%メタノール溶液で添加)加え、40分後に分光増感色素Aの固体分散物(ゼラチン水溶液)を銀1モル当たり5×10-3モル加え、1分後に47℃に昇温し、20分後に化合物5を銀1モルに対して3×10-5モル加え、さらに2分後にテルル増感剤Bを銀1モル当たり5×10-5モル加えて90分間熟成した。熟成終了間際に、化合物6の0.5wt%メタノール溶液を5ccを加え、温度を31℃に下げ、化合物7の3.5wt%メタノール溶液5cc、化合物3を銀1モル当たり7×10-3モルおよび化合物8を銀1モルに対して6.4×10-3モルを添加して、ハロゲン化銀乳剤1−Rを作成した。
【0231】
《ハロゲン化銀粒子2−Rの調製》
ハロゲン化銀乳剤1−Rの調製において、粒子形成時の液温37℃を27℃に変更する以外は同様にして平均球相当径0.038μm、球相当径の変動係数20%の純臭化銀立方体粒子乳剤の調製した。ハロゲン化銀乳剤1−Rと同様に沈殿/脱塩/水洗/分散を行った。更に分光増感色素Aの添加量を銀1モル当たり6×10-3モルに変えた以外は乳剤1−Rと同様にして分光増感、化学増感および化合物3、化合物8の添加を行い、ハロゲン化銀乳剤2−Rを得た。
【0232】
《ハロゲン化銀粒子1−Vの調製》
ハロゲン化銀乳剤1−Rの調製において、分光増感色素Aの添加を行わない以外は乳剤1−Rと同様にして、ハロゲン化銀乳剤1−Vを得た。
【0233】
《ハロゲン化銀粒子2−Vの調製》
ハロゲン化銀乳剤2−Rの調製において、分光増感色素Aの添加を行わない以外は乳剤2−Rと同様にして、ハロゲン化銀乳剤2−Vを得た。
【0234】
《塗布液用混合乳剤Aの調製》
表1に記載のとおりハロゲン化銀乳剤を混合し、化合物9を1wt%水溶液にて銀1モル当たり7×10-3モル添加した。
【0235】
《りん片状脂肪酸銀塩の調製》
ヘンケル社製ベヘン酸(製品名EdenorC22-85R)87.6g、蒸留水423ml、5N-NaOH水溶液49.2ml、tert-ブタノール120mlを混合し、75℃にて1時間攪拌し反応させ、ベヘン酸ナトリウム溶液を得た。別に、硝酸銀40.4gの水溶液206.2ml(pH4.0)を用意し、10℃にて保温した。635mlの蒸留水と30mlのtert−ブタノールを入れた反応容器を30℃に保温し、撹拌しながら先のベヘン酸ナトリウム溶液の全量と硝酸銀水溶液の全量を流量一定でそれぞれ62分10秒と60分かけて添加した。このとき、硝酸銀水溶液添加開始後7分20秒間は硝酸銀水溶液のみが添加されるようにし、そのあとベヘン酸ナトリウム溶液を添加開始し、硝酸銀水溶液の添加終了後9分30秒間はベヘン酸ナトリウム溶液のみが添加されるようにした。このとき、反応容器内の温度は30℃とし、液温度が一定になるように外温コントロールした。また、ベヘン酸ナトリウム溶液の添加系の配管は、スチームトレースにより保温し、添加ノズル先端の出口の液温度が75℃になるようにスチーム開度を調製した。また、硝酸銀水溶液の添加系の配管は、2重管の外側に冷水を循環させることにより保温した。ベヘン酸ナトリウム溶液の添加位置と硝酸銀水溶液の添加位置は撹拌軸を中心として対称的な配置とし、また反応液に接触しないような高さに調製した。
【0236】
ベヘン酸ナトリウム溶液を添加終了後、そのままの温度で20分間撹拌放置し、25℃に降温した。その後、吸引濾過で固形分を濾別し、固形分を濾過水の伝導度が30μS/cmになるまで水洗した。こうして脂肪酸銀塩を得た。得られた固形分は、乾燥させないでウエットケーキとして保管した。
【0237】
得られたベヘン酸銀粒子の形態を電子顕微鏡撮影により評価したところ、平均値でa=0.14μm、b=0.4μm、c=0.6μm、平均球相当径の変動係数15%のりん片状の結晶であった。(a,b,cは本文の規定)
【0238】
乾燥固形分100g相当のウエットケーキに対し、ポリビニルアルコール(商品名:PVA-205)7.4gおよび水を添加し、全体量を385gとしてからホモミキサーにて予備分散した。
【0239】
次に予備分散済みの原液を分散機(商品名:マイクロフルイダイザーM−110S−EH、マイクロフルイデックス・インターナショナル・コーポレーション製、G10Zインタラクションチャンバー使用)の圧力を1750kg/cm2に調節して、三回処理し、ベヘン酸銀分散物を得た。冷却操作は蛇管式熱交換器をインタラクションチャンバーの前後に各々装着し、冷媒の温度を調節することで18℃の分散温度に設定した。
【0240】
《還元剤の25wt%分散物の調製》
1,1-ビス(2-ヒドロキシ-3,5-ジメチルフェニル)-3,5,5-トリメチルヘキサン10kgと変性ポリビニルアルコール(クラレ(株)製、ポバールMP203)の20wt%水溶液10kgに、水16kgを添加して、良く混合してスラリーとした。このスラリーをダイアフラムポンプで送液し、平均直径0.5mmのジルコニアビーズを充填した横型サンドミル(UVM−2:アイメックス(株)製)にて3時間30分分散したのち、水を加えて還元剤の濃度が25wt%になるように調製し、還元剤分散物を得た。こうして得た還元剤分散物に含まれる還元剤粒子はメジアン径0.42μm、最大粒子径2.0μm以下であった。得られた還元剤分散物は孔径10.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0241】
《メルカプト化合物の10wt%分散物の調製》
化合物10を5kgと変性ポリビニルアルコール(クラレ(株)製ポバールMP203)の20wt%水溶液5kgに、水8.3kgを添加して、良く混合してスラリーとした。このスラリーをダイアフラムポンプで送液し、平均直径0.5mmのジルコニアビーズを充填した横型サンドミル(UVM−2:アイメックス(株)製)にて6時間分散したのち、水を加えてメルカプト化合物の濃度が10wt%になるように調製し、メルカプト分散物を得た。こうして得たメルカプト化合物分散物に含まれるメルカプト化合物粒子はメジアン径0.40μm、最大粒子径2.0μm以下であった。得られたメルカプト化合物分散物は孔径10.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0242】
《有機ポリハロゲン化合物の20wt%分散物−1の調製》
トリブロモメチルナフチルスルホン5kgと変性ポリビニルアルコール(クラレ(株)製ポバールMP203)の20wt%水溶液2.5kgと、トリイソプロピルナフタレンスルホン酸ナトリウムの20wt%水溶液213gと、水10kgを添加して、良く混合してスラリーとした。このスラリーをダイアフラムポンプで送液し、平均直径0.5mmのジルコニアビーズを充填した横型サンドミル(UVM−2:アイメックス(株)製)にて5時間分散したのち、水を加えて有機ポリハロゲン化合物の濃度が20wt%になるように調製し、有機ポリハロゲン化合物分散物を得た。こうして得たポリハロゲン化合物分散物に含まれる有機ポリハロゲン化合物粒子はメジアン径0.36μm、最大粒子径2.0μm以下であった。得られた有機ポリハロゲン化合物分散物は孔径3.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0243】
《有機ポリハロゲン化合物の20wt%分散物−2の調製》
有機ポリハロゲン化合物の20wt%分散物−1と同様に、但し、トリブロモメチルナフチルスルホン5kgの代わりにトリブロモメチル(4−(2,4,6−トリメチルフェニルスルホニル)フェニル)スルホン5kgを用い、分散、ろ過を行った。こうして得た有機ポリハロゲン化合物分散物に含まれる有機ポリハロゲン化合物粒子はメジアン径0.38μm、最大粒子径2.0μm以下であった。得られた有機ポリハロゲン化合物分散物は孔径3.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0244】
《有機ポリハロゲン化合物の20wt%分散物−3の調製》
有機ポリハロゲン化合物の20wt%分散物−1と同様に、但し、トリブロモメチルナフチルスルホン5kgの代わりにトリブロモメチルフェニルスルホン5kgを用い、分散、ろ過を行った。こうして得た有機ポリハロゲン化合物分散物に含まれる有機ポリハロゲン化合物粒子はメジアン径0.41μm、最大粒子径2.0μm以下であった。得られた有機ポリハロゲン化合物分散物は孔径3.0μmのポリプロピレン製フィルターにてろ過を行い、ゴミ等の異物を除去して収納した。
【0245】
《フタラジン化合物の10wt%メタノール溶液の調製》
6-イソプロピルフタラジン10gをメタノール90gに溶解して使用した。
【0246】
《顔料の20wt%分散物の調製》
C.I. Pigment Blue 60を64gと花王(株)製デモールNを6.4gに水250gを添加し良く混合してスラリーとした。平均直径0.5mmのジルコニアビーズ800gを用意してスラリーと一緒にベッセルに入れ、分散機(1/4Gサンドグラインダーミル:アイメックス(株)製)にて25時間分散し顔料分散物を得た。こうして得た顔料分散物に含まれる顔料粒子は平均粒径0.21μmであった。
【0247】
《SBRラテックス40wt%の調製》
限外濾過(UF)精製したSBRラテックスは以下のように得た。
下記のSBRラテックスを蒸留水で10倍に希釈したものをUF-精製用モジュールFS03-FC-FUY03A1(ダイセン・メンブレン・システム(株))を用いてイオン伝導度が1.5mS/cmになるまで希釈精製したものを用いた。この時のラテックス濃度は40wt%であった。
(SBRラテックス:-St(68)-Bu(29)-AA(3)-のラテックス)
【0248】
平均粒径0.1μm、濃度45wt%、25℃60%RHにおける平衡含水率0.6wt%、イオン伝導度4.2mS/cm(イオン伝導度の測定は東亜電波工業(株)製伝導度計CM-30S使用しラテックス原液(40wt%)を25℃にて測定)、pH8.2
【0249】
《乳剤層(感光性層)塗布液の調製》
上記で得た顔料の20wt%水分散物を1.1g、有機酸銀分散物103g、ポリビニルアルコールPVA-205(クラレ(株)製)の20wt%水溶液5g、上記25wt%還元剤分散物25g、有機ポリハロゲン化合物20wt%分散物-1,-2,-3を5:1:3(重量比)で総量11.5g(表1において無は未添加)、メルカプト化合物10wt%分散物6.2g、限外濾過(UF)精製したSBRラテックス40wt%を106g、フタラジン化合物の10wt%メタノール溶液を16mlを添加し、ハロゲン化銀混合乳剤Aを10gを良く混合し、乳剤層塗布液を調製し、そのままコーティングダイへ70ml/m2となるように送液し、塗布した。
【0250】
上記乳剤層塗布液の粘度は東京計器のB型粘度計で測定して、40℃(No.1ローター)で85[mPa・s]であった。
【0251】
レオメトリックスファーイースト株式会社製RFSフルードスペクトロメーターを使用した25℃での塗布液の粘度は剪断速度が0.1、1、10、100、1000[1/秒]においてそれぞれ1500、220、70、40、20[mPa・s]であった。
【0252】
《乳剤面中間層塗布液の調製》
ポリビニルアルコールPVA-205(クラレ(株)製)の10wt%水溶液772g、顔料の20wt%分散物0.7g、メチルメタクリレート/スチレン/2-エチルヘキシルアクリレート/ヒドロキシエチルメタクリレート/アクリル酸共重合体(共重合重量比59/9/26/5/1)ラテックス27.5wt%液226gにエアロゾールOT(アメリカンサイアナミド社製)の5wt%水溶液を2mlを加えて中間層塗布液とし、5ml/m2になるようにコーティングダイへ送液した。
塗布液の粘度はB型粘度計40℃(No.1ローター)で21[mPa・s]であった。
【0253】
《乳剤面保護層第1層塗布液の調製》
イナートゼラチン64gを水に溶解し、ラテックス[メチルメタクリレート/アクリル酸/N-メチロールアクリルアミド共重合体、共重合重量比93/3/4]16g、フタル酸の10wt%メタノール溶液を64ml、4-メチルフタル酸の10wt%水溶液74ml、1Nの硫酸を28ml、エアロゾールOT(アメリカンサイアナミド社製)の5wt%水溶液を5ml、フェノキシエタノール1gを加え、総量1000gになるように水を加えて塗布液とし、10ml/m2になるようにコーティングダイへ送液した。
塗布液の粘度はB型粘度計40℃(No.1ローター)で17[mPa・s]であった。
【0254】
《乳剤面保護層第2層塗布液の調製》
イナートゼラチン80gを水に溶解し、ラテックス[メチルメタクリレート/アクリル酸/N-メチロールアクリルアミド共重合体、共重合重量比93/3/4]20g、N-パーフルオロオクチルスルフォニル-N-プロピルアラニンカリウム塩の5wt%溶液を20ml、ポリエチレングリコールモノ(N-パーフルオロオクチルスルホニル-N-プロピル-2-アミノエチル)エーテル[エチレンオキシド平均重合度=15]の2wt%水溶液を50ml、エアロゾールOT(アメリカンサイアナミド社製)の5wt%溶液を16ml、ポリメチルメタクリレート微粒子(平均粒径4.0μm)25g、4-メチルフタル酸1.6g、フタル酸8.1g、1Nの硫酸を44ml、ベンゾイソチアゾリノン10mgに総量1555gとなるよう水を添加して、4wt%のクロムみょうばんと0.67wt%のフタル酸を含有する水溶液445mlを塗布直前にスタチックミキサーで混合したものを表面保護層塗布液とし、10ml/m2になるようにコーティングダイへ送液した。
塗布液の粘度はB型粘度計40℃(No.1ローター)で9[mPa・s]であった。
【0255】
《熱現像感光材料の作成》
上記下塗り支持体のバック面側に、ハレーション防止層塗布液を固体微粒子染料の固形分塗布量が0.04g/m2となるように、またバック面保護層塗布液をゼラチン塗布量が1g/m2となるように同時重層塗布し、乾燥し、ハレーション防止バック層を作成した。
【0256】
バック面と反対の面に下塗り面から乳剤層(ハロゲン化銀の塗布銀量0.14g/m2)、中間層、保護層第1層、保護層第2層の順番でスライドビード塗布方式にて同時重層塗布し、熱現像感光材料(表1)を作成した。
【0257】
塗布はスピード160m/minで行い、コーティングダイ先端と支持体との間隔を0.18mmに、また、塗布液の吐出スリット幅に対して塗布幅が左右ともに各0.5mm広がるように調節し、減圧室の圧力を大気圧に対して392Pa低く設定した。その際、支持体は帯電しないようにハンドリングおよび温湿度を制御した。引き続くチリングゾーンでは、乾球温度が18℃、湿球温度が12℃の風を30秒間吹き当てて、塗布液を冷却した後、つるまき式の浮上方式の乾燥ゾーンにて、乾球温度が30℃、湿球温度が18℃の乾燥風を200 秒間吹き当てた後70℃の乾燥ゾーンを30秒間通し、その後25℃に冷却して、塗布液中の溶剤の揮発を行った。チリングゾーンおよび乾燥ゾーンでの塗布液膜面に吹き当たる風の平均風速は7m/secであった。
【0258】
【化9】
Figure 0004054131
【0259】
【化10】
Figure 0004054131
【0260】
【化11】
Figure 0004054131
【0261】
(感度、カブリの評価)
レーザー感光計(詳細は下記)で感光材料を露光した後、感光材料を118℃で5秒、続いて122℃で16秒間処理(熱現像)し、得られた画像の評価を濃度計により行った。カブリ+3.0の濃度を出すレーザー出力値で感度を評価した。また、カブリについても評価した。
【0262】
レーザー感光計:35mW出力
下記波長のダイオードレーザー2本を合波
シングルモード
ガウシアンビームスポット1/e2が100μm
25μmピッチで副走査方向に送り、1画素を4回書き
a.660nmレーザー
b.428nmレーザー
(a.と同様に、但し、合波をしないでレーザー露光した。)
c.308nmレーザー
d.351nmレーザー
e.340nmレーザー
【0263】
(生保存性の評価)
感光材料を50℃1日経時させたサンプルの感度と経時させる前の感度との比で評価した。
生保存性=50℃1日経時後の感度/経時前の感度
【0264】
結果を表1にまとめた。
【0265】
【表1】
Figure 0004054131
【0266】
表1からわかるように本発明の熱現像感光材料を用いた画像形成方法はカブリが低く、また本発明の熱現像感光材料は生保存性がよい。
【0267】
【発明の効果】
本発明によれば、生保存性がよい熱現像感光材料を用いて、カブリが低い画像形成方法が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photothermographic material.Image forming method usingIt is about.
[Prior art]
In recent years, in the medical field, reduction of waste processing liquid has been strongly desired from the viewpoint of environmental protection and space saving. Therefore, photosensitive heat for medical diagnosis and photographic technology that can be efficiently exposed by a laser image setter or laser imager and can form a clear black image having high resolution and sharpness. There is a need for techniques relating to developed photographic materials. These photosensitive photothermographic materials can eliminate the use of solution processing chemicals and supply customers with a simpler heat development processing system that does not damage the environment.
[0002]
Although there is a similar requirement in the field of general image forming materials, medical images are required to have high image quality with excellent sharpness and graininess because they are required to be finely drawn, and are cooled from the viewpoint of ease of diagnosis. There is a feature that a black tone image is preferred. At present, various hard copy systems using pigments and dyes such as inkjet printers and electrophotography are distributed as general image forming systems. However, there is no satisfactory output system for medical images.
[0003]
On the other hand, thermal imaging systems using organic silver salts are disclosed in, for example, the specifications of U.S. Pat. Nos. 3,152,904 and 3,457,075 and B.I. “Thermally Processed Silver Systems” by Shely (Imaging Processes and Materials Neblette 8th Edition, Sturge, V. Walworth (Walworth, A. Shepp, edited, page 2, 1996). In particular, the photothermographic material generally contains a catalytically active amount of a photocatalyst (eg, silver halide), a reducing agent, a reducible silver salt (eg, an organic silver salt), and a color tone that controls the color tone of silver if necessary. And a photosensitive layer dispersed in a binder matrix. The photothermographic material is heated to a high temperature (for example, 80 ° C. or higher) after image exposure, and is blackened by an oxidation-reduction reaction between silver halide or a reducible silver salt (functioning as an oxidizing agent) and a reducing agent. Form a silver image. The oxidation-reduction reaction is promoted by the catalytic action of the latent image of silver halide generated by exposure. Therefore, a black silver image is formed in the exposure area. It is disclosed in many documents including US Pat. No. 2910377 and Japanese Examined Patent Publication No. 43-4924. Thermal image forming systems using these organic silver salts can achieve satisfactory image quality and color tone as medical images.
[0004]
However, in such a photothermographic material, since an image is visualized by heat development, fogging due to the heat development is likely to occur. In order to solve these problems, various antifoggants have been developed so far. Examples of antifoggants include thiosulfonic acids, sulfinic acids, mercury compounds, N-halogeno compounds, lithium salts, peroxides, persulfates, rhodium salts, cobalt salts, palladium compounds, cerium compounds, disulfide compounds, polymer acids Polyhalogen compounds and the like are known.
[0005]
The most effective method as a conventional antifogging technique is a method using a mercury compound as an antifoggant. The use of a mercury compound as an antifoggant in a light-sensitive material is disclosed in, for example, US Pat. No. 3,589,903. However, the use of mercury compounds is not preferred from an environmental point of view, and the development of non-mercury antifoggants has been desired. As the non-mercury antifoggant, the above-mentioned compounds have been studied. Among them, polyhalogen compounds (for example, U.S. Pat. Nos. 3,874,946, 4,756,999, 5,340,712, European Patents 605981A1, 622666A1, No. 631176A1, JP-B-54-165, and JP-A-7-2781) have been reported to have a good antifogging effect.
[0006]
However, when a polyhalogen compound is used as an antifoggant, there arises a problem that sensitivity is lowered during raw storage, and a fundamental review is required.
[0007]
[Problems to be solved by the invention]
The purpose of the present invention is toProvides image forming method with low fog using photothermographic material with good raw storage stabilityIt is to be.
[0008]
[Means for Solving the Problems]
  The present invention has been achieved by the following means. (1) On the support, at least one type of photosensitive silver halide, non-photosensitive organic silver salt, a reducing agent for silver ions, a binder, andThe following general formula ( II )An image forming layer containing a polyhalogen compound is formed by applying and drying a coating solution in which 30 wt% or more of the solvent is water, and the photosensitive silver halide is substantially increased in color. An image forming method comprising: exposing an unsensitized photothermographic material with a laser beam having a light emission peak from a blue region to an ultraviolet region and then thermally developing the material. (2) The binder is a polymer latex.(1)The image forming method described in 1. (3) A solid fine particle dispersion of the polyhalogen compound is contained.(1)Or(2)The image forming method described in 1. (4)The polyhalogen compound is represented by the following general formula ( II-b The image forming method according to any one of (1) to (3), wherein the compound is represented by the formula:
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The photothermographic material of the present invention has an image forming layer containing a non-photosensitive organic silver salt and a binder on a support, and a photosensitive silver halide and a reducing agent for silver ions on the layer side. The image forming layer is preferably a photosensitive layer containing photosensitive silver halide. The photothermographic material of the present invention is intended for laser light exposure in the blue region to the ultraviolet region (specifically, a wavelength region of 260 to 450 nm), and the photosensitive silver halide is substantially not color sensitized. is there. That is, no spectral sensitizing dye is added to the photosensitive silver halide, and the amount of the spectral sensitizing dye added per mole of the photosensitive silver halide is 10.-FiveIt is below the mole and preferably not contained at all. In this case, it is preferable to use two or more types of photosensitive silver halide, and it is preferable to use two to four types of silver halides having different shapes, sizes, optical sensitization levels, and the like. Such a mixing ratio is preferably 10/1 to 1/10 in terms of a weight ratio as an emulsion when two kinds are used.
[0010]
By adopting the configuration of the present invention as described above, the photographic performance is excellent with low fog, and the raw storability is improved. On the other hand, when a spectral sensitizing dye is used, the wavelength range of exposure is not suitable, and the raw storage stability is deteriorated. Further, when the polyhalogen compound is not contained, fog increases.
[0011]
  The present inventionUsed forPolyhalogen compoundsIs belowIt is a compound represented by the formula (II).
[0012]
[Chemical 1]
Figure 0004054131
[0013]
In the formula (II), Q represents an alkyl group, an aryl group or a heterocyclic group, and X1And X2Each represents a halogen atom. Z represents a hydrogen atom or an electron-withdrawing group. Y is -C (= O)-, -SO- or -SO.2-Represents. n represents 0 or 1.
[0014]
Next, Formula (II) will be described in detail. Q represents an alkyl group, an aryl group, or a heterocyclic group. The aryl group represented by Q may be monocyclic or condensed, and is preferably a monocyclic or bicyclic aryl group having 6 to 30 carbon atoms (for example, phenyl, naphthyl, etc.), more preferably phenyl. Group, a naphthyl group, and more preferably a phenyl group.
[0015]
The heterocyclic group represented by Q is a 3- to 10-membered saturated or unsaturated heterocyclic group containing at least one of N, O or S atoms, which may be monocyclic, A condensed ring may be formed with other rings.
[0016]
The heterocyclic group is preferably a 5- to 6-membered unsaturated heterocyclic group optionally having a condensed ring, more preferably a 5- to 6-membered aromatic heterocyclic ring optionally having a condensed ring. It is a group. More preferably, it is a 5- to 6-membered aromatic heterocyclic group containing a nitrogen atom, and particularly preferably an aromatic heterocyclic group optionally having a 5- to 6-membered condensed ring containing 1 to 4 nitrogen atoms It is.
[0017]
Specific examples of the heterocyclic ring in the heterocyclic group include pyrrolidine, piperidine, piperazine, morpholine, thiophene, furan, pyrrole, imidazole, pyrazole, pyridine, pyrimidine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine , Thiadiazole, oxadiazole, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, thiazole, oxazole, benzimidazole, benzoxazole, benzthiazole, benzselenazole, indolenine, tetra For example, Zainden. The heterocycle is preferably imidazole, pyrazole, pyridine, pyrimidine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiadiazole, oxadiazole, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, Phenanthroline, phenazine, tetrazole, thiazole, oxazole, benzimidazole, benzoxazole, benzthiazole, indolenine, tetrazaindene, more preferably imidazole, pyridine, pyrimidine, pyrazine, pyridazine, triazole, triazine, thiadiazole, oxadiazole , Quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, tetra , Thiazole, oxazole, benzimidazole, benzoxazole, benzthiazole, tetrazaindene, more preferably imidazole, pyridine, pyrimidine, pyrazine, pyridazine, triazole, triazine, thiadiazole, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline , Cinnoline, tetrazole, thiazole, benzimidazole and benzthiazole, particularly preferably pyridine, thiadiazole, quinoline and benzthiazole.
[0018]
The aryl group and heterocycle represented by Q are-(Y)n-CZ (X1) (X2) May have a substituent, and examples of the substituent include an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms). For example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.) An alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include vinyl, allyl, 2-butenyl, 3-pentenyl, etc.) An alkynyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms such as propargyl, 3-pen And aryl groups (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms, such as phenyl, p-methylphenyl, and naphthyl). Amino group (preferably having 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino) And an alkoxy group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and examples thereof include methoxy, ethoxy, butoxy and the like.) An aryloxy group (preferably having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, Phenyloxy, 2-naphthyloxy and the like), an acyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, for example, acetyl, benzoyl , Formyl, pivaloyl, etc.), alkoxycarbonyl groups (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc. An aryloxycarbonyl group (preferably having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 10 carbon atoms, such as phenyloxycarbonyl). Acyloxy group (preferably having 2 to 20 carbon atoms, more preferably having 2 to 16 carbon atoms, particularly preferably Has 2 to 10 carbon atoms, and examples thereof include acetoxy and benzoyloxy. ), An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino and benzoylamino), alkoxycarbonylamino group (Preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryloxycarbonylamino group (preferably having carbon number) 7 to 20, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonylamino, and the like, and sulfonylamino groups (preferably 1 to 20 carbon atoms, more preferably Has 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms. And sulfamoyl group (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl and methylsulfamoyl). , Dimethylsulfamoyl, phenylsulfamoyl, etc.), a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl). , Methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc.), an alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, Ethylthio etc.), arylthio group (preferably Has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and a sulfonyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, phenylsulfonyl, etc.), sulfinyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms). , Particularly preferably having 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), a ureido group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably carbon numbers). 1 to 12, for example, ureido, methylureido, phenylureido, etc.), phosphoric acid amide group (preferably Has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms. Examples thereof include diethyl phosphoric acid amide and phenyl phosphoric acid amide. ), Hydroxy group, mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, heterocyclic group (For example, imidazolyl, pyridyl, furyl, piperidyl, morpholino, etc. are mentioned). These substituents may be further substituted. Moreover, when there are two or more substituents, they may be the same or different.
[0019]
The substituent is preferably an alkyl group, alkenyl group, aryl group, alkoxy group, aryloxy group, acyloxy group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonyl Amino group, sulfonylamino group, sulfamoyl group, carbamoyl group, sulfonyl group, ureido group, phosphoric acid amide group, halogen atom, cyano group, sulfo group, carboxyl group, nitro group, heterocyclic group, more preferably alkyl group Aryl group, alkoxy group, aryloxy group, acyl group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, ureido group, An acid amide group, a halogen atom, a cyano group, a nitro group, and a heterocyclic group, more preferably an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an acyl group, an acylamino group, a sulfonylamino group, a sulfamoyl group, and a carbamoyl group A group, a halogen atom, a cyano group, a nitro group and a heterocyclic group, particularly preferably an alkyl group, an aryl group and a halogen atom.
[0020]
The alkyl group represented by Q may be linear, branched, or cyclic, and preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, such as a methyl group, Examples thereof include an ethyl group, an n-propyl group, an isopropyl group, and a tertiary octyl group.
[0021]
The alkyl group represented by Q is-(Y)n-CZ (X1) (X2) May have a substituent, and examples of the substituent include the same substituents that can be used when Q is a heterocyclic group or an aryl group. As the substituent, an alkenyl group, aryl group, alkoxy group, aryloxy group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, alkylthio group, arylthio group, ureido group, phosphorus Acid amide group, hydroxy group, halogen atom, heterocyclic group, more preferably aryl group, alkoxy group, aryloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, ureido group, A phosphoric acid amide group and a halogen atom, more preferably an aryl group, an alkoxy group, an aryloxy group, an acylamino group, a sulfonylamino group, a ureido group, and a phosphoric acid amide group.
[0022]
These substituents may be further substituted. Moreover, when there are two or more substituents, they may be the same or different.
[0023]
Y is -C (= O)-, -SO- or -SO.2-, Preferably -C (= O)-, -SO2-, More preferably -SO2-.
[0024]
n represents 0 or 1, and is preferably 1.
[0025]
X1, X2Has a halogen atom and X1, X2The halogen atoms represented by may be the same or different from each other, and are a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom, more preferably a chlorine atom or a bromine atom. And particularly preferably a bromine atom.
[0026]
Z represents a hydrogen atom or an electron-withdrawing group, and the electron-withdrawing group represented by Z is preferably a substituent having a σp value of 0.01 or more, more preferably a substituent of 0.1 or more. . Regarding the Hammett's substituent constant, Journal of Medicinal Chemistry, 1973, Vol. 16, No. 11, 1207-1216, etc. can be referred to. Examples of the electron attractive group include a halogen atom (fluorine atom (σp value: 0.06), chlorine atom (σp value: 0.23), bromine atom (σp value: 0.23), iodine atom (σp value: 0.18)), trihalomethyl group (tribromomethyl (σp value: 0.29), trichloromethyl (σp value: 0.33), trifluoromethyl (σp value: 0.54)), cyano group (σp Value: 0.66), nitro group (σp value: 0.78), aliphatic / aryl or heterocyclic sulfonyl group (for example, methanesulfonyl (σp value: 0.72)), aliphatic / aryl or heterocyclic acyl Groups (for example, acetyl (σp value: 0.50), benzoyl (σp value: 0.43)), alkynyl groups (for example, C≡CH (σp value: 0.23)), aliphatic / aryl or heterocyclic ring Oxycarbonyl groups (eg Examples include methoxycarbonyl (σp value: 0.45), phenoxycarbonyl (σp value: 0.44)), carbamoyl group (σp value: 0.36), sulfamoyl group (σp value: 0.57), and the like. It is done.
[0027]
Z is preferably an electron-withdrawing group, more preferably a halogen atom, aliphatic / aryl or heterocyclic sulfonyl group, aliphatic / aryl or heterocyclic acyl group, aliphatic / aryl or heterocyclic oxycarbonyl group, carbamoyl A sulfamoyl group, particularly preferably a halogen atom. Among the halogen atoms, a chlorine atom, a bromine atom and an iodine atom are preferable, a chlorine atom and a bromine atom are more preferable, and a bromine atom is particularly preferable.
[0028]
Of the compounds represented by the formula (II), a compound represented by the following formula (II-a) is preferable.
[0029]
[Chemical formula 2]
Figure 0004054131
[0030]
In the formula, Q has the same meaning as that in formula (II), and the preferred range is also the same. Moreover, the substituent which Q can take is synonymous with the substituent which Q in Formula (II) can take. X1, X2, Y and Z have the same meanings as those in formula (II), and preferred ranges are also the same.
[0031]
Of the compounds represented by the formula (II), the compound represented by the formula (II-b) is more preferable.
[0032]
[Chemical Formula 3]
Figure 0004054131
[0033]
In the formula, Q has the same meaning as that in formula (II), and the preferred range is also the same. Moreover, the substituent which Q can take is synonymous with the substituent which Q in Formula (II) can take. X1, X2, Z has the same meaning as those in formula (II), and the preferred range is also the same.
[0034]
Specific examples of the compound represented by the formula (II) are shown below, but the present invention is not limited thereto.
[0035]
[Formula 4]
Figure 0004054131
[0036]
[Chemical formula 5]
Figure 0004054131
[0037]
[Chemical 6]
Figure 0004054131
[0038]
[Chemical 7]
Figure 0004054131
[0039]
[Chemical 8]
Figure 0004054131
[0040]
The compound of the formula (II) of the present invention may be added by a method of obtaining a solid fine particle dispersion using a dispersant for the purpose of obtaining fine particles having a small particle size and no aggregation. The method of dispersing the compound of the formula (II) of the present invention into solid fine particles can be carried out by known finer means in the presence of a dispersion aid (for example, ball mill, vibration ball mill, planetary ball mill, sand mill, colloid mill, jet mill, roller). Mill) and can be mechanically dispersed.
[0041]
When the compound of the formula (II) of the present invention is made into solid fine particles using a dispersant, for example, polyacrylic acid, acrylic acid copolymer, maleic acid copolymer, maleic acid monoester copolymer Synthetic anionic polymers such as acryloylmethylpropane sulfonic acid copolymer, semi-synthetic anionic polymers such as carboxymethyl starch and carboxymethylcellulose, anionic polymers such as alginic acid and pectic acid, JP-A 52-92716, WO88 / 04794 Anionic surfactants described in No. 7, etc., compounds described in Japanese Patent Application No. 7-350753, or known anionic, nonionic, cationic surfactants, other polyvinyl alcohol, polyvinyl pyrrolidone, carboxymethyl cellulose, hydroxy Such as propylcellulose, hydroxypropylmethylcellulose, etc. A known polymer or a polymer compound existing in nature such as gelatin can be appropriately selected and used.
[0042]
The dispersion aid is generally mixed with the powder of the compound of the formula (II) of the present invention or the compound of the formula (II) of the present invention in a wet cake state before being dispersed, and sent to the disperser as a slurry. However, a powder or wet cake may be obtained by heat treatment or treatment with a solvent in a state of being mixed with the compound of the present invention in advance. The pH may be controlled with an appropriate pH adjuster before, during or after dispersion.
[0043]
In addition to mechanical dispersion, it may be coarsely dispersed in a solvent by controlling the pH, and then finely divided by changing the pH in the presence of a dispersion aid. At this time, an organic solvent may be used as a solvent used for the coarse dispersion, and the organic solvent is usually removed after the formation of fine particles.
[0044]
The prepared dispersion is stored with stirring for the purpose of suppressing sedimentation of fine particles during storage, or stored in a highly viscous state (for example, in a jelly state using gelatin) by a hydrophilic colloid. You can also In addition, a preservative can be added for the purpose of preventing the propagation of various bacteria during storage.
[0045]
The addition position of the compound of the formula (II) of the present invention is not limited, and it is added to the image forming layer, protective layer and other layers. The same layer as the layer containing the organic silver salt or the same layer as the layer containing the silver halide is particularly preferable.
[0046]
The compound of the formula (II) of the present invention may be used alone or in combination of two or more.
[0047]
The compound of the formula (II) of the present invention is 1 × 10 5 per mole of silver on the surface having an image forming layer.-6Preferably contained in an amount of ~ 0.5 mol, 1 x 10-Five~ 1x10-1More preferably, it is contained in moles.
[0048]
The photosensitive silver halide used in the present invention is not particularly limited as a halogen composition, and silver chloride, silver chlorobromide, silver bromide, silver iodobromide, silver iodochlorobromide can be used. The distribution of the halogen composition in the grains may be uniform, the halogen composition may be changed stepwise, or may be continuously changed. Further, silver halide grains having a core / shell structure can be preferably used. A preferable structure is a 2- to 5-fold structure, and more preferably 2- to 4-fold core / shell particles can be used. A technique of localizing silver bromide on the surface of silver chloride or silver chlorobromide grains can also be preferably used.
[0049]
Methods for forming photosensitive silver halide are well known in the art. For example, the methods described in Research Disclosure No. 17029 in June 1978 and U.S. Pat.No. 3,700,458 can be used. Specifically, a method is used in which a photosensitive silver halide is prepared by adding a silver supply compound and a halogen supply compound to gelatin or another polymer solution, and then mixed with an organic silver salt.
[0050]
The average grain size of the photosensitive silver halide is preferably small for the purpose of keeping the cloudiness after image formation low, specifically 0.20 μm or less, more preferably 0.01 μm or more and 0.15 μm or less, more preferably 0.02 μm. The thickness is preferably 0.12 μm or less. As used herein, the grain size refers to the volume of silver halide grains when the silver halide grains are cubic or octahedral so-called normal crystals, and other than normal crystals such as spherical grains and rod-like grains. This refers to the diameter when an equivalent sphere is considered. When the silver halide grain is a tabular grain, it means the diameter when converted into a circular image having the same area as the projected area of the main surface. The average particle size refers to the average value.
The particle size distribution is preferably so-called monodisperse. In this case, the variation coefficient of the particle size is preferably 35% or less, and more preferably 25% or less.
[0051]
Examples of the shape of the silver halide grains include cubes, octahedrons, tabular grains, spherical grains, rod-shaped grains, and potato grains. In the present invention, cubic grains and tabular grains are particularly preferred. When tabular silver halide grains are used, the average aspect ratio is preferably 100: 1 to 2: 1, more preferably 50: 1 to 3: 1. Further, grains having rounded corners of silver halide grains can be preferably used. The surface index (Miller index) of the outer surface of the photosensitive silver halide grain is not particularly limited, but it is preferable that the ratio of [100] plane is high. The ratio is preferably 50% or more, more preferably 65% or more, and still more preferably 80% or more. The ratio of the Miller index [100] plane is calculated by T. Tani; J. Imaging Sci., 29, 165 (1985), which uses the adsorption dependence of [111] plane and [100] plane in the adsorption of sensitizing dyes. It can be determined by the method described.
[0052]
The photosensitive silver halide grain of the present invention contains a metal or metal complex of Group VII or Group VIII (Group 7 to 10) of the periodic table. The central metal of the Group VII or Group VIII metal or metal complex of the periodic table is preferably rhodium, rhenium, ruthenium, osmium or iridium. One kind of these metal complexes may be used, or two or more kinds of complexes of the same metal and different metals may be used in combination. The preferred content is 1 x 10 per mole of silver-9From mole to 1 × 10-3The molar range is preferred, 1 × 10-8From mole to 1 × 10-FourA molar range is more preferred. As a specific metal complex structure, a metal complex having a structure described in JP-A-7-225449 can be used.
[0053]
As the rhodium compound used in the present invention, a water-soluble rhodium compound can be used. For example, a rhodium (III) halide compound or a rhodium complex salt having halogen, amines, oxalato, etc. as a ligand, for example, hexachlororhodium (III) complex salt, pentachloroacorodium (III) complex salt, tetrachlorodia Examples include a corodium (III) complex salt, a hexabromorhodium (III) complex salt, a hexaammine rhodium (III) complex salt, and a trizaratrodium (III) complex salt. These rhodium compounds are used by dissolving in water or an appropriate solvent, and are generally used in order to stabilize the rhodium compound solution, that is, an aqueous hydrogen halide solution (for example, hydrochloric acid, odorous acid, hydrofluoric acid). Etc.) or a method of adding an alkali halide (for example, KCl, NaCl, KBr, NaBr, etc.) can be used. Instead of using water-soluble rhodium, it is also possible to add another silver halide grain previously doped with rhodium and dissolve it at the time of silver halide preparation.
[0054]
The amount of these rhodium compounds added is 1 x 10 per mole of silver halide.-8Mol ~ 5 × 10-6The molar range is preferred, particularly preferably 5 × 10-8Mol ~ 1 × 10-6Is a mole.
[0055]
The addition of these compounds can be appropriately carried out at the time of production of the silver halide emulsion grains and at each stage before coating the emulsion, but it is particularly preferred that they are added during the formation of the emulsion and incorporated into the silver halide grains. .
[0056]
Rhenium, ruthenium and osmium used in the present invention are added in the form of water-soluble complex salts described in JP-A-63-2042, JP-A-1-285941, JP-A-2-20852, JP-A-2-20855, etc. The Particularly preferred is a hexacoordination complex represented by the following formula.
[ML6]n-
Here, M represents Ru, Re or Os, L represents a ligand, and n represents 0, 1, 2, 3 or 4.
[0057]
In this case, the counter ion has no significance and ammonium or alkali metal ions are used.
[0058]
Preferable ligands include a halide ligand, a cyanide ligand, a cyan oxide ligand, a nitrosyl ligand, a thionitrosyl ligand, and the like. Although the example of the specific complex used for this invention below is shown, this invention is not limited to this.
[0059]
[ReCl6]3-, [ReBr6]3-, [ReClFive(NO)]2-, [Re (NS) BrFive]2-  [Re (NO) (CN)Five]2-, [Re (O)2(CN)Four]3-, [RuCl6]3-, [RuClFour(H2O)2]-, [RuClFive(H2O)]2-, [RuClFive(NO)]2-, [RuBrFive(NS)]2-, [Ru (CO)ThreeClThree]2-, [Ru (CO) ClFive]2-, [Ru (CO) BrFive]2-, [OsCl6]3-, [OsClFive(NO)]2-, [Os (NO) (CN)Five]2-, [Os (NS) BrFive]2-, [Os (O)2(CN)Four]Four-,
[0060]
The amount of these compounds added is 1 x 10 per mole of silver halide.-9Mol ~ 1 × 10-FiveThe molar range is preferred, particularly preferably 1 × 10-8Mol ~ 1 × 10-6Is a mole.
[0061]
The addition of these compounds can be appropriately carried out at the time of production of the silver halide emulsion grains and at each stage before coating the emulsion, but it is particularly preferred that they are added during the formation of the emulsion and incorporated into the silver halide grains. .
[0062]
In order to add these compounds during silver halide grain formation and incorporate them into silver halide grains, a metal complex powder or an aqueous solution dissolved together with NaCl or KCl is used as a water-soluble salt or water-soluble solution during grain formation. A method of adding silver halide in a silver halide solution, or a method of adding silver salt and halide solution as a third solution when the silver salt and halide solution are mixed at the same time, or preparing silver halide grains by a method of three-liquid simultaneous mixing, or grain formation There is a method in which a required amount of an aqueous solution of a metal complex is put into a reaction vessel. In particular, a method of adding an aqueous solution dissolved with powder or NaCl or KCl to the water-soluble halide solution is preferable.
[0063]
In order to add to the particle surface, a necessary amount of an aqueous solution of a metal complex can be added to the reaction vessel immediately after the formation of the particle, during or after the physical ripening, or at the chemical ripening.
[0064]
Various compounds can be used as the iridium compound used in the present invention, and examples thereof include hexachloroiridium, hexaammineiridium, trioxalatoiridium, hexacyanoiridium, and pentachloronitrosyliridium. These iridium compounds are used by dissolving in water or an appropriate solvent, and are generally used in order to stabilize a solution of the iridium compound, that is, an aqueous hydrogen halide solution (for example, hydrochloric acid, odorous acid, hydrofluoric acid). Or a method of adding an alkali halide (for example, KCl, NaCl, KBr, NaBr, etc.). Instead of using water-soluble iridium, it is also possible to add another silver halide grain previously doped with iridium and dissolve it at the time of silver halide preparation. The amount of these iridium compounds added is 1 × 10 5 per mole of silver halide.-8Mol ~ 1 × 10-3The molar range is preferred, 1 × 10-7Mol ~ 5x10-FourA molar range is more preferred.
[0065]
Furthermore, the silver halide grains used in the present invention may contain metal atoms such as cobalt, iron, nickel, chromium, palladium, platinum, gold, thallium, copper and lead. For cobalt, iron, chromium and ruthenium compounds, hexacyano metal complexes can be preferably used. Specific examples include, but are not limited to, ferricyanate ions, ferrocyanate ions, hexacyanocobaltate ions, hexacyanochromate ions, and hexacyanoruthenate ions. The metal complex in the silver halide may be contained uniformly, may be contained in the core part at a high concentration, or may be contained in the shell part at a high concentration, and there is no particular limitation.
[0066]
The above metals are 1 x 10 per mole of silver halide-9~ 1 × 10-FourMole is preferred. In addition, in order to contain the above metal, a metal salt in the form of a single salt, a double salt, or a complex salt can be added at the time of particle preparation.
[0067]
The photosensitive silver halide grains can be desalted by washing with water by a method known in the art such as a noodle method or a flocculation method, but in the present invention, it may or may not be desalted.
[0068]
The silver halide emulsion of the present invention is preferably subjected to chemical sensitization. As the chemical sensitization method, known methods such as sulfur sensitization method, selenium sensitization method, tellurium sensitization method and noble metal sensitization method can be used.
[0069]
A plurality of chemical sensitization methods can be used in combination, for example, sulfur sensitization method and gold sensitization method, sulfur sensitization method and selenium sensitization method or tellurium sensitization method, gold sensitization method and selenium sensitization method. Or tellurium sensitizing method, sulfur sensitizing method and selenium sensitizing method or tellurium sensitizing method and gold sensitizing method, sulfur sensitizing method and selenium sensitizing method and tellurium sensitizing method, sulfur sensitizing method and selenium sensitizing method. And tellurium sensitization method and gold sensitization method.
[0070]
The sulfur sensitization preferably used in the present invention is usually carried out by adding a sulfur sensitizer and stirring the emulsion at a high temperature of 40 ° C. or higher for a predetermined time. Known compounds can be used as the sulfur sensitizer, for example, various sulfur compounds such as thiosulfate, thioureas, thiazoles, rhodanines, etc. in addition to sulfur compounds contained in gelatin. be able to. Preferred sulfur compounds are thiosulfate and thiourea compounds. The amount of sulfur sensitizer added varies under various conditions such as pH during chemical ripening, temperature, and the size of silver halide grains, but it is 1 x 10 per mole of silver halide.-7~ 1 × 10-2Mol, more preferably 1 × 10-Five~ 1 × 10-3Is a mole.
[0071]
As the gold sensitizer used for gold sensitization to the silver halide emulsion of the present invention, the oxidation number of gold may be +1 or +3, and gold compounds usually used as gold sensitizers are used. Can be used. Typical examples include chloroauric acid, potassium chloroaurate, auric trichloride, potassium auric thiocyanate, potassium iodoaurate, tetracyanoauric acid, ammonium aurothiocyanate, pyridyltrichlorogold, and the like.
[0072]
The amount of gold sensitizer added varies depending on various conditions, but as a guideline it is 1 x 10 per mole of silver halide.-7More than mole 1 × 10-3Mol or less, more preferably 1 × 10-6More than mole 5 × 10-FourIt is below the mole.
[0073]
A known selenium compound can be used as the selenium sensitizer used in the present invention. That is, it is usually carried out by adding unstable and / or non-unstable selenium compounds and stirring the emulsion at a high temperature of 40 ° C. or higher for a predetermined time. As the unstable selenium compound, compounds described in JP-B-44-15748, JP-A-43-13489, JP-A-4-25832, JP-A-4-109240 and JP-A-4-324855 can be used. In particular, it is preferable to use compounds represented by general formulas (VIII) and (IX) in JP-A-4-324855.
[0074]
The tellurium sensitizer used in the present invention is a compound that forms silver telluride presumed to be a sensitization nucleus on the surface or inside of a silver halide grain. The rate of silver telluride formation in the silver halide emulsion can be tested by the method described in JP-A-5-313284. Examples of tellurium sensitizers include diacyl tellurides, bis (oxycarbonyl) tellurides, bis (carbamoyl) tellurides, diacyl tellurides, bis (oxycarbonyl) ditellurides, bis (carbamoyl) ditellurides, P = Te Compounds having a bond, tellurocarboxylates, Te-organyl tellurocarboxylates, di (poly) tellurides, tellurides, tellurols, telluroacetals, tellurosulfonates, compounds having a P-Te bond, Te heterocycles, tellurocarbonyl compounds, inorganic tellurium compounds, colloidal tellurium and the like can be used. Specifically, U.S. Patent Nos. 1,623,499, 3,320,069, 3,772,031, British Patent Nos. 4-204640, Japanese Patent Application Nos. 3-53693, 3-131598, 4-129787, Journal of Chemical Society, Chemical Communication (J. Chem. Soc. Chem. Commun.), 635 (1980), ibid, 1102 (1979), ibid, 645 (1979), Journal of Chemical Society Perkin Transaction 1 (J.Chem.Soc.Perkin.Trans.1), 2191 (1980), S In S. Patai, The Chemistry of Organic Serenium and Tellunium Compounds, Vol. 1 (1986), Vol. 2 (1987) The described compounds can be used. In particular, compounds represented by the general formulas (II), (III) and (IV) in JP-A-5-313284 are preferred.
[0075]
The amount of selenium and tellurium sensitizers used in the present invention varies depending on the silver halide grains used, chemical ripening conditions, etc., but is generally 1 × 10 6 per mole of silver halide.-8~ 1 × 10-2Mole, preferably 1 × 10-7~ 1 × 10-3Use moles. The conditions for chemical sensitization in the present invention are not particularly limited, but the pH is 5 to 8, the pAg is 6 to 11, preferably 7 to 10, and the temperature is 40 to 95 ° C., preferably 45 to 85 ° C.
[0076]
In the silver halide emulsion used in the present invention, a cadmium salt, a sulfite salt, a lead salt, a thallium salt or the like may coexist in the process of silver halide grain formation or physical ripening.
[0077]
In the present invention, reduction sensitization can be used. As specific compounds of the reduction sensitization method, for example, stannous chloride, aminoiminomethanesulfinic acid, hydrazine derivatives, borane compounds, silane compounds, polyamine compounds, etc. can be used in addition to ascorbic acid and thiourea dioxide. . Further, reduction sensitization can be performed by ripening the emulsion while maintaining the pH at 7 or higher or pAg at 8.3 or lower. Further, reduction sensitization can be performed by introducing a single addition portion of silver ions during grain formation.
[0078]
A thiosulfonic acid compound may be added to the silver halide emulsion of the present invention by the method shown in European Patent Publication No. 293,917.
[0079]
The light-sensitive silver halide emulsion in the light-sensitive material used in the present invention may be one kind or two or more kinds (for example, those having different average grain sizes, different halogen compositions, different crystal habits, chemical increase). Those with different feeling conditions) may be used in combination. The gradation can be adjusted by using a plurality of types of photosensitive silver halides having different sensitivities. As technologies related to these, JP-A-57-119341, 53-106125, 47-3929, 48-55730, 46-5187, 50-73627, 57-150841, etc. Can be mentioned. As the sensitivity difference, it is preferable that each emulsion has a difference of 0.2 logE or more.
[0080]
The addition amount of photosensitive silver halide is 1m of sensitive material.2Indicated by the amount of silver applied per unit, 0.03 to 0.6 g / m2Preferably, 0.05 to 0.4 g / m2More preferably, 0.1 to 0.4 g / m2Most preferably, the photosensitive silver halide is from 0.01 mol to 0.5 mol, more preferably from 0.02 mol to 0.3 mol, and particularly preferably from 0.03 mol to 0.25 mol with respect to 1 mol of the organic silver salt. .
[0081]
The organic silver salt that can be used in the present invention is relatively stable to light, but is 80 ° C. or higher in the presence of an exposed photocatalyst (such as a latent image of photosensitive silver halide) and a reducing agent. It is a silver salt that forms a silver image when heated above. The organic silver salt may be any organic material containing a source capable of reducing silver ions. Such a non-photosensitive organic silver salt is described in paragraph Nos. 0048 to 0049 of JP-A No. 10-62899, page 18, line 24 to page 19, line 37 of European Patent Publication No. 080863A1. Yes. Silver salts of organic acids, particularly silver salts of long-chain aliphatic carboxylic acids (having 10 to 30, preferably 15 to 28 carbon atoms) are preferred. The organic silver salt can preferably constitute about 5 to 70 wt% of the image forming layer. Preferred organic silver salts include silver salts of organic compounds having a carboxyl group. Examples of these include, but are not limited to, silver salts of aliphatic carboxylic acids and silver salts of aromatic carboxylic acids. Preferred examples of the aliphatic carboxylic acid silver salt include silver behenate, silver arachidate, silver stearate, silver oleate, silver laurate, silver caproate, silver myristate, silver palmitate, silver maleate and fumarate. Silver acid, silver tartrate, silver linoleate, silver butyrate and silver camphorate, mixtures thereof, and the like.
[0082]
Although there is no restriction | limiting in particular as a shape of the organic silver salt which can be used for this invention, In the present invention, scaly organic silver salt is preferable. In the present invention, the scaly organic silver salt is defined as follows. The organic acid silver salt was observed with an electron microscope, the shape of the organic acid silver salt particle was approximated to a rectangular parallelepiped, and the sides of the rectangular parallelepiped were designated a, b, and c from the shortest side (c was the same as b). Then, the shorter numerical values a and b are calculated, and x is obtained as follows.
x = b / a
[0083]
In this way, x is obtained for about 200 particles, and when the average value x (average) is obtained, particles satisfying the relationship of x (average) ≧ 1.5 are defined as flakes. Preferably, 30 ≧ x (average) ≧ 1.5, more preferably 20 ≧ x (average) ≧ 2.0. Incidentally, the needle shape is 1 ≦ x (average) <1.5.
[0084]
In the flake shaped particle, a can be regarded as a thickness of a tabular particle having a main plane with b and c as sides. The average of a is preferably 0.01 μm or more and 0.23 μm, and more preferably 0.1 μm or more and 0.20 μm or less. The average of c / b is preferably 1 or more and 6 or less, more preferably 1.05 or more and 4 or less, further preferably 1.1 or more and 3 or less, and particularly preferably 1.1 or more and 2 or less.
[0085]
The particle size distribution of the organic silver salt is preferably monodispersed. Monodispersion is preferably 100% or less, more preferably 80% or less, and even more preferably 50% of the value obtained by dividing the standard deviation of the lengths of the short and long axes by the short and long axes, respectively. It is as follows. The method for measuring the shape of the organic silver salt can be determined from a transmission electron microscope image of the organic silver salt dispersion. As another method for measuring monodispersity, there is a method of obtaining the standard deviation of the volume weighted average diameter of the organic silver salt, and the percentage (variation coefficient) of the value divided by the volume weighted average diameter is preferably 100% or less, more Preferably it is 80% or less, more preferably 50% or less. As a measuring method, for example, it is obtained from the particle size (volume weighted average diameter) obtained by irradiating an organic silver salt dispersed in a liquid with laser light and obtaining an autocorrelation function with respect to temporal change of fluctuation of the scattered light. Can do.
[0086]
The organic acid silver used in the present invention is prepared by reacting a silver nitrate with a solution or suspension of an alkali metal salt (including Na salt, K salt, Li salt, etc.) of the organic acid shown above. The organic acid alkali metal salt of the present invention is obtained by subjecting the organic acid to an alkali treatment. The organic acid silver of the present invention can be run batchwise or continuously in any suitable container. Stirring in the reaction vessel can be performed by any stirring method depending on the required properties of the particles. The organic acid silver can be prepared by adding a silver nitrate aqueous solution gradually or rapidly to a reaction vessel containing an organic acid alkali metal salt solution or suspension, or an organic acid prepared in advance in a reaction vessel containing a silver nitrate aqueous solution. Any of the method of adding an alkali metal salt solution or suspension gradually or rapidly, and the method of simultaneously adding an aqueous silver nitrate solution and an organic acid alkali metal salt solution or suspension to a reaction vessel are preferably used. Can do.
[0087]
The silver nitrate aqueous solution and the organic acid alkali metal salt solution or suspension can be used at any concentration for controlling the particle size of the organic acid silver to be prepared, and can be added at any addition rate. As a method for adding the silver nitrate aqueous solution and the organic acid alkali metal salt solution or suspension, it can be added by a method of adding at a constant addition rate, an accelerated addition method or a slow addition method by an arbitrary time function. Moreover, you may add to a liquid level with respect to a reaction liquid, and may add in a liquid. In the case of a method in which a silver nitrate aqueous solution and an organic acid alkali metal salt solution or suspension prepared in advance are simultaneously added to the reaction vessel, either the silver nitrate aqueous solution or the organic acid alkali metal salt solution or suspension is preceded. Although it can be added, it is preferable to add the silver nitrate aqueous solution in advance. The leading degree is preferably from 0 to 50 vol%, particularly preferably from 0 to 25 vol%, based on the total amount added. Further, as described in JP-A-9-27643 and the like, a method of adding while controlling the pH or silver potential of the reaction solution during the reaction can be preferably used.
[0088]
The pH of the silver nitrate aqueous solution or organic acid alkali metal salt solution or suspension added can be adjusted according to the required properties of the particles. Any acid or alkali can be added for pH adjustment. Also, depending on the required properties of the particles, for example, the temperature in the reaction vessel can be arbitrarily set for controlling the particle size of the organic acid silver to be prepared, but the silver nitrate aqueous solution or organic acid alkali metal salt solution to be added Alternatively, the suspension can be adjusted to an arbitrary temperature. The organic acid alkali metal salt solution or suspension is preferably heated and kept at 50 ° C. or higher in order to ensure fluidity of the liquid.
[0089]
The organic acid silver used in the present invention is preferably prepared in the presence of a tertiary alcohol. The tertiary alcohol used in the present invention preferably has a total carbon number of 15 or less, particularly preferably 10 or less. Examples of preferred tertiary alcohols include tert-butanol, but the present invention is not limited thereto.
[0090]
The timing of addition of the tertiary alcohol used in the present invention may be any timing during the preparation of the organic acid silver, but it is preferably added during the preparation of the organic acid alkali metal salt to dissolve and use the organic acid alkali metal salt. . In addition, the amount of tertiary alcohol used in the present invention is H as a solvent in the preparation of organic acid silver.2Although it can be arbitrarily used within a range of 0.01 to 10 by weight with respect to O, a range of 0.03 to 1 is preferred.
[0091]
In the present invention, a preferred scaly organic acid silver salt is prepared by reacting an aqueous solution containing a water-soluble silver salt and an aqueous third alcohol solution containing an organic acid alkali metal salt in a reaction vessel (the organic acid is added to the solution in the reaction vessel). A step of adding a third alcohol aqueous solution containing an alkali metal salt.) (Preferably an aqueous solution containing a water-soluble silver salt previously added or an aqueous solution containing a water-soluble silver salt) Is added at the same time as the third alcohol aqueous solution containing the organic acid alkali metal salt without preceding, water or a mixed solvent of water and the third alcohol, as described later, and contains a water-soluble silver salt. Even when the aqueous solution is put in advance, water or a mixed solvent of water and a tertiary alcohol may be put in advance.) And the tertiary alcohol water containing the organic acid alkali metal salt to be added Are preferably prepared in a way that the temperature difference between the liquid and 20 ° C. or higher 85 ° C. or less.
[0092]
By maintaining such a temperature difference during the addition of the third alcohol aqueous solution containing the organic acid alkali metal salt, the crystal form or the like of the organic acid silver salt is preferably controlled.
[0093]
The water-soluble silver salt is preferably silver nitrate, and the water-soluble silver salt concentration in the aqueous solution is preferably 0.03 mol / l or more and 6.5 mol / l or less, more preferably 0.1 mol / l or more and 5 mol / l or less. The pH of this aqueous solution is preferably 2 or more and 6 or less, more preferably pH 3.5 or more and 6 or less.
[0094]
Moreover, the C4-C6 tertiary alcohol may be contained, In that case, it is 70% or less as a volume with respect to the whole volume of the aqueous solution of water-soluble silver salt, Preferably it is 50% or less. The temperature of the aqueous solution is preferably 0 ° C. or higher and 50 ° C. or lower, more preferably 5 ° C. or higher and 30 ° C. or lower. As described later, an aqueous solution containing a water-soluble silver salt and a third alcohol aqueous solution of an organic acid alkali metal salt Is preferably 5 ° C. or more and 15 ° C. or less.
[0095]
The alkali metal of the organic acid alkali metal salt is specifically Na or K. The organic acid alkali metal salt is prepared by adding NaOH or KOH to the organic acid. At this time, it is preferable that the amount of alkali is equal to or less than the amount of organic acid to leave unreacted organic acid. In this case, the amount of residual organic acid is 3 mol% or more and 50 mol% or less, preferably 3 mol% or more and 30 mol% or less with respect to 1 mol of all organic acids. Moreover, after adding an alkali more than desired amount, you may prepare by adding acids, such as nitric acid and a sulfuric acid, and neutralizing an excess alkali content.
[0096]
Further, the pH can be adjusted according to the required properties of the organic acid silver salt. For adjusting the pH, any acid or alkali can be used.
[0097]
Furthermore, an aqueous solution containing a water-soluble silver salt, a tertiary alcohol aqueous solution of an organic acid alkali metal salt, or a reaction vessel used in the present invention is represented by, for example, general formula (1) of JP-A-62-65035. Such compounds, water-soluble group-containing N heterocyclic compounds as described in JP-A No. 62-150240, inorganic peroxides as described in JP-A No. 50-101019, JP-A No. 51-78319 Sulfur compounds as described in JP-A No. 57-643, disulfide compounds as described in JP-A-57-643, hydrogen peroxide, and the like can be added.
[0098]
The third alcohol aqueous solution of the organic acid alkali metal salt of the present invention is preferably a mixed solvent of a C4-6 tertiary alcohol and water in order to obtain liquid uniformity. If the carbon number exceeds this, there is no compatibility with water, which is not preferable. Among tertiary alcohols having 4 to 6 carbon atoms, tert-butanol that is most compatible with water is most preferable. Alcohols other than tertiary alcohols are not preferred as described above because they have reducing properties and cause harmful effects when forming organic acid silver salts. The amount of the third alcohol used in the third alcohol aqueous solution of the organic acid alkali metal salt is 3% or more and 70% or less, preferably 5% or more, as a solvent volume with respect to the volume of water in the third alcohol aqueous solution. 50% or less.
[0099]
The concentration of the organic acid alkali metal salt in the third alcohol aqueous solution of the organic acid alkali metal salt used in the present invention is 7 wt% or more and 50 wt% or less as a weight ratio, preferably 7 wt% or more and 45 wt% or less. Preferably, it is 10 wt% or more and 40 wt% or less.
[0100]
The temperature of the third alcohol aqueous solution of the organic acid alkali metal salt added to the reaction vessel of the present invention is 50 ° C. or more for the purpose of keeping the temperature necessary to avoid the crystallization and solidification of the organic acid alkali metal salt. 90 ° C or lower is preferable, more preferably 60 ° C or higher and 85 ° C or lower is more preferable, and 65 ° C or higher and 85 ° C or lower is most preferable. Further, in order to control the temperature of the reaction to be constant, it is preferably controlled to be constant at a certain temperature selected from the above range.
[0101]
The organic acid silver salt of the present invention is obtained by i) a method in which a third alcohol aqueous solution of an organic acid alkali metal salt is added to an aqueous solution in which an aqueous solution containing a water-soluble silver salt is first present in the reaction vessel, or ii) An aqueous solution of a water-soluble silver salt and an aqueous solution of a tertiary alcohol of an organic acid alkali metal salt are produced by a method (simultaneous addition method) in which there is a time when they are simultaneously added to a reaction vessel. In the present invention, the latter method in which the average grain size of the organic acid silver salt is controlled and the distribution is narrowed is preferred in view of narrowing the distribution. In that case, it is preferable that 30 vol% or more of the total addition amount is added at the same time, and more preferably 50 to 75 vol% is added at the same time. When adding any of these in advance, it is preferable to precede the solution of the water-soluble silver salt.
[0102]
In either case, if the liquid in the reaction vessel (the aqueous solution of the water-soluble silver salt added previously as described above or the aqueous solution of the water-soluble silver salt is not added previously, as described later, The temperature of the solvent in the reaction vessel is preferably 5 ° C. or higher and 75 ° C. or lower, more preferably 5 ° C. or higher and 60 ° C. or lower, and most preferably 10 ° C. or higher and 50 ° C. or lower. The temperature is preferably controlled to a certain temperature selected from the above temperatures throughout the entire reaction process, but it is also preferable to control with several temperature patterns within the above temperature range.
[0103]
In the present invention, the temperature difference between the third alcohol aqueous solution of the organic acid alkali metal salt and the liquid in the reaction vessel is preferably 20 ° C. or higher and 85 ° C. or lower, more preferably 30 ° C. or higher and 80 ° C. or lower. In this case, it is preferable that the temperature of the tertiary alcohol aqueous solution of the organic acid alkali metal salt is higher.
[0104]
Thereby, the rate at which the third alcohol aqueous solution of the high-temperature organic acid alkali metal salt is rapidly cooled in the reaction vessel and precipitated in a fine crystal form, and the rate at which the organic acid silver salt is chlorinated by the reaction with the water-soluble silver salt are preferably controlled, The crystal form, crystal size, and crystal size distribution of the organic acid silver salt can be preferably controlled. At the same time, the performance can be further improved as a heat-developable material, particularly as a heat-developable photosensitive material.
[0105]
The reaction vessel may contain a solvent in advance, and water is preferably used as the solvent put in advance, but a mixed solvent with the third alcohol is also preferably used.
[0106]
An aqueous medium-soluble dispersion aid can be added to the aqueous solution of the organic acid alkali metal tertiary alcohol, the aqueous solution of the water-soluble silver salt, or the reaction solution of the present invention. Any dispersing aid may be used as long as it can disperse the formed organic acid silver salt. Specific examples conform to the description of the organic acid silver salt dispersion aid described below.
[0107]
In the method for preparing an organic acid silver salt of the present invention, it is preferable to perform a desalting / dehydrating step after the formation of the silver salt. The method is not particularly limited, and well-known and conventional means can be used. For example, known filtration methods such as centrifugal filtration, suction filtration, ultrafiltration, and flock-forming water washing by a coagulation method, and supernatant removal by centrifugal sedimentation are preferably used. Desalting / dehydration may be performed once or a plurality of times. Water may be added and removed continuously or separately. Desalting / dehydration is performed to such an extent that the conductivity of the finally dehydrated water is preferably 300 μS / cm or less, more preferably 100 μS / cm or less, and most preferably 60 μS / cm or less. The lower limit of the conductivity in this case is not particularly limited, but is usually about 5 μS / cm.
[0108]
Furthermore, in order to improve the coated surface shape of the photothermographic material, an aqueous dispersion of an organic acid silver salt is obtained, converted into a high-speed flow at high pressure, and then redispersed by dropping the pressure to obtain a fine dispersion. An aqueous dispersion is preferred. The dispersion medium in this case is preferably water only, but may contain an organic solvent as long as it is 20 wt% or less.
[0109]
The method for finely dispersing the organic acid silver salt is known in the presence of a dispersing aid, such as known finer means (for example, a high speed mixer, a homogenizer, a high speed impact mill, a Banbury mixer, a homomixer, a kneader, a ball mill, a vibrating ball mill, a planetary planet. A ball mill, an attritor, a sand mill, a bead mill, a colloid mill, a jet mill, a roller mill, a tron mill, and a high-speed stone mill) can be used for mechanical dispersion.
[0110]
When a photosensitive silver salt is allowed to coexist at the time of dispersion, the fog increases and the sensitivity is remarkably lowered. Therefore, it is more preferable that the photosensitive silver salt is not substantially contained at the time of dispersion. In the present invention, the amount of the photosensitive silver salt in the aqueous dispersion to be dispersed is 0.1 mol% or less with respect to 1 mol of the organic acid silver salt in the liquid, and positive addition of the photosensitive silver salt is performed. There is nothing.
[0111]
In the present invention, in order to obtain a uniform organic silver salt solid dispersion having a high S / N, a small particle size, and no agglomeration, the organic silver salt particles as an image forming medium are not damaged or heated at high temperatures. It is preferable to apply a large force uniformly. For this purpose, a dispersion method is preferred in which an aqueous dispersion composed of an organic silver salt and an aqueous dispersant is converted into a high-speed flow and then the pressure is dropped.
[0112]
In the present invention, for example, “dispersion rheology and dispersion technology” (Toshio Kajiuchi, Hiroki Arai, 1991, Shinyamasha) Publishing Co., Ltd., p. 357-403), “Progress of Chemical Engineering, Vol. 24” (Chemical Engineering Society, Tokai Branch, 1990, Sakai Shoten, p. 184-185), JP 59-49832 A, US Pat. No. 4,533,254 However, the redispersion method in the present invention contains at least an organic acid silver salt, as described in JP-A-8-137004, JP-A-8-238848, JP-A-2-261525, and JP-A-1-94933. After the aqueous dispersion is pressurized with a high-pressure pump or the like and fed into the pipe, it is passed through a narrow slit provided in the pipe, and then a sudden pressure drop is caused in the dispersion. It is a method of performing fine Do not distributed.
[0113]
For the high-pressure homogenizer to which the present invention relates, in general, (a) “shearing force” generated when the dispersoid passes through a narrow gap (about 75 μm to 350 μm) at high pressure and high speed; It is considered that the impact force generated when the liquid-liquid collision or the wall collision is made is not changed, and the cavitation force due to the subsequent pressure drop is further increased, and uniform and efficient dispersion is performed. In the past, this type of dispersing device includes a gorin homogenizer. In this device, the liquid to be dispersed sent at a high pressure is converted into a high-speed flow through a narrow gap on the cylindrical surface, and this force is applied to the surrounding wall surface. Colliding and emulsifying / dispersing by the impact force. Examples of the liquid-liquid collision include a Y-type chamber of a microfluidizer, a spherical chamber using a spherical check valve as described in JP-A-8-103642, which will be described later, and the like. Includes a Z-type chamber of a microfluidizer. The working pressure is generally 100-600kg / cm2The flow velocity is in the range of several m to 30 m / sec. In order to increase the dispersion efficiency, a high-speed flow portion is sawtoothed to increase the number of collisions has been devised. Typical examples of such devices include a Gorin homogenizer, a microfluidizer manufactured by Microfluidics International Corporation, a microfluidizer manufactured by Mizuho Industry Co., Ltd., and a nanomizer manufactured by Special Machine Industries Co., Ltd. . Also described in JP-A-8-238848, JP-A-8-103642 and USP4533254.
[0114]
In the organic acid silver salt of the present invention, it can be dispersed to a desired particle size by adjusting the flow rate, the differential pressure at the time of pressure drop and the number of treatments, but from the viewpoint of photographic characteristics and particle size, the flow rate is 200 m / Second to 600m / sec, differential pressure at pressure drop is 900 to 3000kg / cm2The flow rate is preferably 300 m / sec to 600 m / sec, and the differential pressure during pressure drop is 1500 to 3000 kg / cm.2More preferably, it is the range. The number of distributed processes can be selected as necessary. Usually, a range of 1 to 10 times is selected, but about 1 to 3 times is selected from the viewpoint of productivity. Increasing the temperature of such an aqueous dispersion under high pressure is not preferable from the viewpoint of dispersibility and photographic properties, and at high temperatures exceeding 90 ° C, the particle size tends to increase and fog tends to increase. is there. Accordingly, the present invention includes a cooling device in the process before the conversion to the high pressure and high speed flow, the process after the pressure drop, or both of these processes, and the temperature of such water dispersion is 5 by the cooling process. It is preferable that the temperature is maintained in the range of from 0C to 90C, more preferably in the range of from 5C to 80C, and particularly preferably in the range of from 5C to 65C. In particular, 1500 to 3000 kg / cm2It is effective to install the above cooling process at the time of high pressure dispersion in the above range. Depending on the required heat exchange amount, a cooling device using a static mixer in a double tube or triple tube, a multi-tube heat exchanger, a serpentine heat exchanger, or the like can be appropriately selected. In addition, in order to increase the efficiency of heat exchange, a suitable tube thickness, wall thickness, material, or the like may be selected in consideration of the operating pressure. The refrigerant used for the cooler is a heat exchanger such as 20 ° C. well water, 5-10 ° C. cold water treated with a refrigerator, or -30 ° C. ethylene glycol / water refrigerant, etc. can do.
[0115]
When organic acid silver salt is made into solid fine particles using a dispersant, for example, polyacrylic acid, acrylic acid copolymer, maleic acid copolymer, maleic acid monoester copolymer, acryloylmethylpropanesulfone Synthetic anionic polymers such as acid copolymers, semi-synthetic anionic polymers such as carboxymethyl starch and carboxymethyl cellulose, anionic polymers such as alginic acid and pectic acid, and the like described in JP-A-52-92716, WO88 / 04794, etc. Anionic surfactants, compounds described in Japanese Patent Application No. 7-350753, or known anionic, nonionic, cationic surfactants, other polyvinyl alcohol, polyvinyl pyrrolidone, carboxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl Known polymers such as methylcellulose, Alternatively, a polymer compound existing in nature such as gelatin can be appropriately selected and used.
[0116]
Dispersing aid is generally mixed with organic acid silver salt powder or wet cake organic acid silver salt before dispersion, and sent to the disperser as a slurry. It is good also as an organic acid silver salt powder or a wet cake by giving the heat processing and the process by a solvent in the combined state. The pH may be controlled with an appropriate pH adjusting agent before or after the dispersion.
[0117]
In addition to mechanical dispersion, it may be coarsely dispersed in a solvent by controlling the pH, and then finely divided by changing the pH in the presence of a dispersion aid. At this time, an organic acid solvent may be used as a solvent used for rough dispersion, and the organic solvent is usually removed after the formation of fine particles.
[0118]
The prepared dispersion is stored with stirring for the purpose of suppressing sedimentation of fine particles during storage, or stored in a highly viscous state (for example, in a jelly state using gelatin) by a hydrophilic colloid. You can also In addition, a preservative can be added for the purpose of preventing the propagation of various bacteria during storage.
[0119]
The organic acid silver salt prepared by the method for preparing an organic acid silver salt of the present invention is dispersed in an aqueous solvent, mixed with a photosensitive silver salt aqueous solution, and supplied as a photosensitive image forming medium coating solution. It is preferable.
[0120]
Prior to the dispersion operation, the raw material liquid is roughly dispersed (preliminary dispersion). As the means for coarse dispersion, known dispersion means (for example, high speed mixer, homogenizer, high speed impact mill, Banbury mixer, homomixer, kneader, ball mill, vibration ball mill, planetary ball mill, attritor, sand mill, bead mill, colloid mill, jet mill) , Roller mill, tron mill, high-speed stone mill). In addition to mechanical dispersion, it may be coarsely dispersed in a solvent by controlling the pH, and then finely divided by changing the pH in the presence of a dispersion aid. At this time, an organic solvent may be used as a solvent used for the coarse dispersion, and the organic solvent is usually removed after the formation of fine particles.
[0121]
The photosensitive silver salt aqueous solution is finely dispersed and then mixed to produce a photosensitive image forming medium coating solution. When a photothermographic material is produced using such a coating solution, a photothermographic material having low haze and low fog and high sensitivity can be obtained. On the other hand, when the photosensitive silver salt coexists when it is converted into a high-pressure and high-speed flow and dispersed, the fog rises and the sensitivity is remarkably lowered. Further, when an organic solvent is used as a dispersion medium instead of water, haze increases, fogging increases, and sensitivity tends to decrease. On the other hand, if the conversion method in which a part of the organic silver salt in the dispersion is converted into a photosensitive silver salt is used instead of the method of mixing the aqueous photosensitive silver salt solution, the sensitivity is lowered.
[0122]
In the above, the aqueous dispersion dispersed by being converted to high pressure and high speed is substantially free of photosensitive silver salt, and its content is 0.1 mol% relative to the non-photosensitive organic silver salt. In the following, no positive photosensitive silver salt is added.
[0123]
The particle size (volume weighted average diameter) of the organic silver salt solid fine particle dispersion of the present invention is, for example, an irradiation of laser light to a solid fine particle dispersion dispersed in a liquid, and an autocorrelation function with respect to temporal change of fluctuation of the scattered light. Can be determined from the particle size (volume weighted average diameter) obtained. A solid fine particle dispersion having an average particle size of 0.05 μm to 10.0 μm is preferable. More preferably, the average particle size is 0.1 μm or more and 5.0 μm or less, and still more preferably the average particle size is 0.1 μm or more and 2.0 μm or less.
[0124]
The organic silver salt solid fine particle dispersion used in the present invention comprises at least an organic silver salt and water. The ratio of the organic silver salt to water is not particularly limited, but the ratio of the organic silver salt to the whole is preferably 5 to 50 wt%, particularly preferably 10 to 30 wt%. It is preferable to use the above-mentioned dispersing aid, but it is preferable to use a minimum amount in a range suitable for minimizing the particle size, and it is in the range of 1 to 30 wt%, particularly 3 to 15 wt% with respect to the organic silver salt. Is preferred.
[0125]
In the present invention, it is possible to produce a photosensitive material by mixing an organic silver salt aqueous dispersion and a photosensitive silver salt aqueous dispersion, but the mixing ratio of the organic silver salt and the photosensitive silver salt can be selected according to the purpose. The ratio of the photosensitive silver salt to the organic silver salt is preferably in the range of 1 to 30 mol%, more preferably 3 to 20 mol%, particularly preferably 5 to 15 mol%. Mixing two or more organic silver salt aqueous dispersions and two or more photosensitive silver salt aqueous dispersions when mixing is a method preferably used for adjusting photographic characteristics.
[0126]
The organic silver salt of the present invention can be used in a desired amount, but the sensitive material is 1 m.2In terms of the amount of coating per unit, the silver amount is 0.1 to 5 g / m2Is preferred, more preferably 1 to 3 g / m2It is.
[0127]
The photothermographic material of the present invention contains a reducing agent for organic silver salt. The reducing agent for the organic silver salt may be any substance, preferably an organic substance, that reduces silver ions to metallic silver. Conventional photographic developers such as phenidone, hydroquinone and catechol are useful, but hindered phenol reducing agents such as bis (2-hydroxy-3-tert-butyl-5-methylphenyl) methane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 4,4-ethylidene-bis (2-tert-butyl-6-methylphenol), 1,1-bis (2-hydroxy-3,5-dimethylphenyl)- 3,5,5-trimethylhexane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane) are preferred. Such reducing agents are described in paragraph Nos. 0052 to 0053 of JP-A No. 10-62899 and page 7 line 34 to page 18 line 12 of European Patent Publication No. 0080374A1.
The amount of reducing agent added is 0.01 to 5.0 g / m.2Is preferably 0.1 to 3.0 g / m2More preferably, it is contained in an amount of 5 to 50% by mole, more preferably 10 to 40% by mole based on 1 mole of silver on the surface having the image forming layer. The addition layer of the reducing agent may be any layer on the surface having the image forming layer. When it is added to a layer other than the image forming layer, it is preferably used in a larger amount of 10 to 50 mol% relative to 1 mol of silver. The reducing agent may be a so-called precursor that is derivatized so as to have an effective function only during development.
[0128]
The reducing agent of the present invention may be added by any method such as a solution, a powder, or a solid fine particle dispersion. The solid fine particle dispersion is performed by a known finer means (for example, ball mill, vibrating ball mill, sand mill, colloid mill, jet mill, roller mill, etc.). A dispersion aid may be used when dispersing the solid fine particles.
[0129]
Regarding the mixing method and mixing conditions of the photosensitive silver halide and organic silver salt prepared separately, the silver halide grains and organic silver salt that were prepared separately were mixed with a high-speed stirrer, ball mill, sand mill, colloid mill, vibration mill, homogenizer, respectively. Etc., or a method of preparing an organic silver salt by mixing photosensitive silver halide that has been prepared at any timing during the preparation of the organic silver salt, etc., but the effect of the present invention is sufficient As long as it appears in, there is no particular limitation.
[0130]
The preferred addition time of the silver halide of the present invention to the image-forming layer coating solution is from 180 minutes before coating to immediately before, preferably from 60 minutes to 10 seconds before coating. There is no particular limitation as long as the effects of the invention are sufficiently exhibited. Specific mixing methods include mixing in a tank in which the average residence time calculated from the addition flow rate and the amount of liquid delivered to the coater is the desired time, and by N. Harnby, MFEdwards, AWNienow, Takahashi There is a method of using a static mixer described in Chapter 8 of "Liquid Mixing Technology" (published by Nikkan Kogyo Shimbun, 1989).
[0131]
In the present invention, when the organic silver salt-containing layer is formed using a coating solution in which 30 wt% or more of the solvent is water and dried, the binder of the organic silver salt-containing layer is further added to an aqueous solvent (water Solvent is soluble or dispersible in the solvent, and is improved particularly when it is made of a latex of a polymer having an equilibrium moisture content of 2 wt% or less at 25 ° C. and 60% RH. The most preferable form is one prepared so that the ionic conductivity is 2.5 mS / cm or less, and as such a preparation method, there is a method of purifying using a separation functional membrane after polymer synthesis.
[0132]
The aqueous solvent in which the polymer is soluble or dispersible here is a mixture of water or water with 70 wt% or less of a water-miscible organic solvent. Examples of the water-miscible organic solvent include alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol, cellosolvs such as methyl cellosolve, ethyl cellosolve and butyl cellosolve, ethyl acetate and dimethylformamide.
[0133]
In the case of a system in which the polymer is not dissolved thermodynamically and exists in a so-called dispersed state, the term aqueous solvent is used here.
[0134]
“Equilibrium moisture content at 25 ° C. and 60% RH” means the weight W1 of the polymer in the humidity-controlled equilibrium under the atmosphere of 25 ° C. and 60% RH and the weight W0 of the polymer in the absolutely dry state at 25 ° C. It can be expressed as
Equilibrium moisture content at 25 ℃ 60% RH = [(W1-W0) / W0] × 100 (wt%)
[0135]
For the definition and measurement method of the moisture content, for example, Polymer Engineering Course 14, Polymer Material Testing Method (Edited by Polymer Society, Jinshokan) can be referred to.
[0136]
The equilibrium water content of the binder polymer of the present invention at 25 ° C. and 60% RH is preferably 2 wt% or less, more preferably 0.01 wt% or more and 1.5 wt% or less, and further preferably 0.02 wt% or more and 1 wt% or less. .
[0137]
In the present invention, a polymer dispersible in an aqueous solvent is particularly preferred.
[0138]
Examples of the dispersed state include latex in which fine particles of solid polymer are dispersed and polymer molecules dispersed in a molecular state or forming micelles, and all are preferable.
[0139]
As a preferred embodiment in the present invention, it is preferable to use a hydrophobic polymer such as an acrylic resin, a polyester resin, a rubber-based resin (for example, an SBR resin), a polyurethane resin, a vinyl chloride resin, a vinyl acetate resin, a vinylidene chloride resin, and a polyolefin resin. it can. The polymer may be a linear polymer, a branched polymer, or a crosslinked polymer. The polymer may be a so-called homopolymer obtained by polymerizing a single monomer, or a copolymer obtained by polymerizing two or more types of monomers. In the case of a copolymer, it may be a random copolymer or a block copolymer. The molecular weight of the polymer is 5,000 to 100,000, preferably 10,000 to 200,000 in terms of number average molecular weight. When the molecular weight is too small, the mechanical strength of the emulsion layer is insufficient, and when the molecular weight is too large, the film formability is poor, which is not preferable.
[0140]
The “aqueous solvent” refers to a dispersion medium in which 30% by weight or more of the composition is water. The dispersion state may be any one such as an emulsified dispersion, a micelle-dispersed, or a polymer having a hydrophilic portion in the molecule dispersed in the molecular state, and among these, latex is particularly preferable. .
[0141]
Specific examples of preferable polymer latex include the following. Below, it represents using a raw material monomer, the numerical value in a parenthesis is wt%, and molecular weight is a number average molecular weight.
[0142]
Latex of P-1; -MMA (70) -EA (27) -MAA (3)-(molecular weight 37000)
P-2; -MMA (70) -2EHA (20) -St (5) -AA (5)-latex (molecular weight 40000)
Latex of P-3; -St (50) -Bu (47) -MAA (3)-(molecular weight 45000)
Latex of P-4; -St (68) -Bu (29) -AA (3)-(molecular weight 60000)
Latex of P-5; -St (70) -Bu (27) -IA (3)-(molecular weight 120,000)
Latex of P-6; -St (75) -Bu (24) -AA (1)-(molecular weight 108000)
Latex of P-7; -St (60) -Bu (35) -DVB (3) -MAA (2)-(molecular weight 150,000)
Latex of P-8; -St (70) -Bu (25) -DVB (2) -AA (3)-(molecular weight 280000)
Latex of P-9; -VC (50) -MMA (20) -EA (20) -AN (5) -AA (5)-(molecular weight 80000)
Latex of P-10; -VDC (85) -MMA (5) -EA (5) -MAA (5)-(molecular weight 67000)
Latex of P-11; -Et (90) -MAA (10)-(molecular weight 12000)
P-12; -St (70) -2EHA (27) -AA (3) latex (molecular weight 130000)
P-13; -MMA (63) -EA (35)-AA (2) latex (molecular weight 33000)
[0143]
The abbreviations for the above structures represent the following monomers. MMA; methyl methacrylate, EA; ethyl acrylate, MAA; methacrylic acid, 2EHA; 2-ethylhexyl acrylate, St; styrene, Bu; butadiene, AA; acrylic acid, DVB; divinylbenzene, VC; vinyl chloride, AN; Vinylidene chloride, Et; ethylene, IA; itaconic acid.
[0144]
The polymer latex described above is also commercially available, and the following polymers can be used. Examples of acrylic resins include Sebian A-4635,46583, 4601 (above manufactured by Daicel Chemical Industries, Ltd.), Nipol Lx811, 814, 821, 820, 857 (overly manufactured by Nippon Zeon Co., Ltd.), and other polyester resins. Examples include polyurethane resins such as FINETEX ES650, 611, 675, 850 (more from Dainippon Ink Chemical Co., Ltd.), WD-size, WMS (more from Eastman Chemical), HYDRAN AP10, 20, Examples of rubber resins such as 30, 40 (above Dainippon Ink Chemical Co., Ltd.) include LACSTAR 7310K, 3307B, 4700H, 7132C (above Dainippon Ink Chemical Co., Ltd.), Nipol Lx416, 410, 438C Examples of vinyl chloride resins such as G351, G576 (manufactured by Nippon Zeon Co., Ltd.), and examples of vinylidene chloride resins such as L502 and L513 (above Asahi Kasei Kogyo Co., Ltd.) Examples of olefin resins such as Chemipearl S120, SA100 (Mitsui Petrochemical Co., Ltd.) and the like. Kill.
[0145]
These polymer latexes may be used alone or in combination of two or more as required.
[0146]
The polymer latex used in the present invention is particularly preferably a styrene-butadiene copolymer latex. The weight ratio of the styrene monomer unit to the butadiene monomer unit in the styrene-butadiene copolymer is preferably 40:60 to 95: 5. The proportion of the styrene monomer unit and the butadiene monomer unit in the copolymer is preferably 60 to 99 wt%. The preferred molecular weight range is the same as described above.
[0147]
Examples of the latex of styrene-butadiene copolymer that is preferably used in the present invention include the above-mentioned P-3 to P-8, commercially available products LACSTAR-3307B, 7132C, Nipol Lx416, and the like.
[0148]
If necessary, a hydrophilic polymer such as gelatin, polyvinyl alcohol, methylcellulose, or hydroxypropylcellulose may be added to the organic silver salt-containing layer of the light-sensitive material of the present invention. The addition amount of these hydrophilic polymers is preferably 30 wt% or less, more preferably 20 wt% or less of the total binder of the organic silver salt-containing layer.
[0149]
The organic silver salt-containing layer (that is, the image forming layer) of the present invention is formed using a polymer latex. The amount of the binder in the organic silver salt-containing layer is the total weight of the binder / organic silver salt. The ratio is preferably in the range of 1/10 to 10/1, more preferably 1/5 to 4/1.
[0150]
Further, such an organic silver salt-containing layer is usually a photosensitive layer (emulsion layer) containing a photosensitive silver halide which is a photosensitive silver salt. The weight ratio of silver is preferably 400-5, more preferably 200-10.
[0151]
The total binder amount of the image forming layer of the present invention is 0.2 to 30 g / m.2, More preferably 1-15 g / m2The range of is preferable. The image forming layer of the present invention may contain a crosslinking agent for crosslinking, a surfactant for improving coating properties, and the like.
[0152]
In the present invention, the solvent of the coating solution for the organic silver salt-containing layer of the light-sensitive material (here, for simplicity, the solvent and the dispersion medium are collectively referred to as a solvent) is an aqueous solvent containing 30 wt% or more of water. As a component other than water, any water-miscible organic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, methyl cellosolve, ethyl cellosolve, dimethylformamide, and ethyl acetate may be used. The water content of the solvent of the coating solution is preferably 50 wt% or more, more preferably 70 wt% or more. Examples of preferred solvent compositions include water, water / methyl alcohol = 90/10, water / methyl alcohol = 70/30, water / methyl alcohol / dimethylformamide = 80/15/5, water / methyl alcohol / There are ethyl cellosolve = 85/10/5, water / methyl alcohol / isopropyl alcohol = 85/10/5, etc. (value is wt%).
[0153]
The silver halide emulsions and / or organic silver salts in the present invention are further protected against the formation of additional fog by antifoggants, stabilizers and stabilizer precursors, and against reduced sensitivity during inventory storage. Can be stabilized. Suitable antifoggants, stabilizers and stabilizer precursors that can be used in combination with the polyhalogen compounds of the present invention are disclosed in paragraph No. 0070 of JP-A-10-62899, page 20 of EP 080364A1. Patents described in the 57th line to the 21st page, the 7th line are listed.
[0154]
Such an antifoggant may be added by any method such as a solution, a powder, or a solid fine particle dispersion. The solid fine particle dispersion is performed by a known finer means (for example, ball mill, vibrating ball mill, sand mill, colloid mill, jet mill, roller mill, etc.). In addition, when dispersing the solid fine particles, a dispersion aid such as an anionic surfactant (for example, sodium triisopropyl naphthalenesulfonate (a mixture of three different isopropyl group substitution positions)) may be used.
[0155]
The photothermographic material in the invention may contain an azolium salt or a benzoic acid for the purpose of increasing sensitivity and preventing fogging. Examples of the azolium salt include compounds represented by general formula (XI) described in JP-A-59-193447, compounds described in JP-B-55-12581, and general formula (II) described in JP-A-60-153039. And the compounds represented. The benzoic acid compound may be any benzoic acid derivative. Examples of preferred structures include those described in U.S. Pat.Nos. 4,784,939, 4,152,160, Japanese Patent Application Nos. 8-151422, 8-15141, and 8-98051. Compounds. An azolium salt or benzoic acid may be added to any part of the photosensitive material, but the additive layer is preferably added to the layer having the photosensitive layer, and more preferably added to the organic silver salt-containing layer. . The azolium salt and benzoic acid may be added at any step in the coating solution preparation. When added to the organic silver salt-containing layer, any step from the preparation of the organic silver salt to the preparation of the coating solution may be used. It is preferable that the salt is prepared and immediately before coating. The azolium salt or benzoic acid may be added by any method such as powder, solution, or fine particle dispersion. Moreover, you may add as a solution mixed with other additives, such as a sensitizing dye, a reducing agent, and a color toning agent. In the present invention, the azolium salt and benzoic acid may be added in any amount, but 1 × 10 10 per silver mole.-6Moles to 2 moles, preferably 1 × 10-3More preferably, it is more than mol and less than 0.5 mol.
[0156]
In the present invention, a mercapto compound, a disulfide compound, and a thione compound can be contained in order to suppress or promote development to control development and to improve storage stability before and after development.
[0157]
Examples of such mercapto compounds, disulfide compounds, and thione compounds include paragraphs 0067 to 0069 of JP-A-10-62899, compounds represented by formula (I) of JP-A-10-186572, and paragraphs of specific examples thereof. 0033 to 0052, and on page 20, lines 36 to 56 of European Patent Publication No. 0808374A1. Among these, mercapto-substituted heteroaromatic compounds are preferable, such as 2-mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, 2-mercapto-5-methylbenzimidazole, 6- Ethoxy-2-mercaptobenzothiazole, 2,2'-dithiobis- (benzothiazole, 3-mercapto-1,2,4-triazole, 4,5-diphenyl-2-imidazolethiol, 2-mercaptoimidazole, 1-ethyl 2-mercaptobenzimidazole, 2-mercaptoquinoline, 8-mercaptopurine, 2-mercapto-4 (3H) -quinazolinone, 7-trifluoromethyl-4-quinolinethiol, 2,3,5,6-tetrachloro- 4-pyridinethiol, 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate, 2-amino-5-mercapto-1,3,4-thiadiazole, 3-amino-5-mercapto-1,2,4-triazole, 4-hydroxy-2-mercaptopyrimidine, 2-mercaptopyrimidine, 4,6-diamino-2-mercaptopyrimidine, 2-mercapto-4-methylpyrimidine hydro Chloride, 3-mercapto-5-phenyl-1,2,4-triazole, 2-mercapto-4-phenyloxazole, 3-mercapto-4-phenyl-5-heptyl-1,2-4-triazole, etc. It is done.
[0158]
The addition amount of these mercapto compounds is preferably in the range of 0.001 to 1.0 mol per mol of silver in the emulsion layer, and more preferably 0.01 to 0.3 mol per mol of silver.
[0159]
When an additive known as a “toning agent” for improving an image is included, the optical density may be increased, and in the present invention, the addition of a toning agent is preferable. The toning agent may also be advantageous in forming a black silver image. The color toning agent is preferably contained in the surface having the image forming layer in an amount of 0.1 to 50 mol% per 1 mol of silver, and more preferably 0.5 to 20 mol%. The toning agent may be a so-called precursor that is derivatized so as to have an effective function only during development.
[0160]
Such toning agents include phthalazinone, phthalazinone derivatives, or the toning agents described in paragraphs 0054 to 0055 of JP-A No. 10-62899, page 21, lines 23 to 48 of European Patent Publication No. 0803684A1. Metal salts or derivatives such as 4- (1-naphthyl) phthalazinone, 6-chlorophthalazinone, 5,7-dimethoxyphthalazinone and 2,3-dihydro-1,4-phthalazinedione; phthalazinone and phthalic acid derivatives (For example, phthalic acid, 4-methylphthalic acid, 4-nitrophthalic acid, and tetrachlorophthalic anhydride); phthalazines (phthalazine, phthalazine derivatives or metal salts, or 4- (1-naphthyl) phthalazine, 6- Derivatives such as isopropyl phthalazine, 6-t-butyl phthalazine, 6-chlorophthalazine, 5,7-dimethoxyphthalazine and 2,3-dihydrophthalazine); Tarajin and phthalic acid derivatives (e.g., phthalic acid, and 4-nitrophthalic acid and tetrachlorophthalic anhydride) a combination of the preferred, particularly combinations of phthalazine and phthalic acid derivatives.
[0161]
The toning agent of the present invention may be added by any method such as a solution, a powder, or a solid fine particle dispersion. The solid fine particle dispersion is performed by a known finer means (for example, ball mill, vibrating ball mill, sand mill, colloid mill, jet mill, roller mill, etc.). A dispersion aid may be used when dispersing the solid fine particles.
[0162]
In the image forming layer (preferably photosensitive layer) in the present invention, a polyhydric alcohol (for example, glycerol and diol of the type described in US Pat. No. 2,960,404), US Pat. No. 2,588,765 and The fatty acids or esters described in US Pat. No. 3,121,060, the silicone resin described in British Patent No. 955,061 and the like can be used.
[0163]
In the present invention, an ultrahigh contrast agent can be used to form an ultrahigh contrast image. For example, U.S. Patent Nos. 5,464,738, 5,496,695, 6,512,411, 5,536,622, Japanese Patent Application Nos. 7-228627, 8-215822, 8-130842, 8-148113, 8-156378 Hydrazine derivatives described in JP-A-8-148111 and 8-148116, compounds having a quaternary nitrogen atom described in Japanese Patent Application No. 8-83566, and acrylonitrile compounds described in US Pat. No. 5,545,515. Can be used. Specific examples of the compound include compounds 1 to 10 of the aforementioned US Pat. No. 5,464,738, H-1 to H-28 of 5,496,695, I-1 to I-86 of Japanese Patent Application No. 8-215822, and 8- 130842 H-1 to H-62, 8-148113 1-1 to 1-21, 8-148111 1-50, 8-148116 1-40, 8-83566 P-1 to P-26 and T-1 to T-18, CN-1 to CN-13 of US Pat. No. 5,545,515, and the like.
[0164]
Further, in the present invention, in order to form a super high contrast image, a high contrast accelerator can be used in combination with the super high contrast agent. For example, amine compounds described in U.S. Pat.No. 5,545,505, specifically, AM-1 to AM-5, hydroxamic acids described in 5,545,507, specifically HA-1 to HA-11, and 5,545,507 Described acrylonitriles, specifically CN-1 to CN-13, hydrazine compounds described in US Pat. No. 5,558,983, specifically CA-1 to CA-6, and ones described in Japanese Patent Application No. 8-132836 Salt, specifically A-1 to A-42, B-1 to B-27, C-1 to C-14, and the like can be used.
[0165]
The synthesis method, the addition method, the addition amount, and the like of these super-high contrast agents and high-contrast accelerators can be performed as described in the respective cited patents.
[0166]
In the photothermographic material of the invention, a surface protective layer can be provided for the purpose of preventing adhesion of the image forming layer.
[0167]
The binder for the surface protective layer of the present invention may be any polymer, but the polymer having a carboxylic acid residue is 100 mg / m.2More than 5g / m2It is preferable to include the following. Examples of the polymer having a carboxyl residue include natural polymers (gelatin, alginic acid, etc.), modified natural polymers (carboxymethylcellulose, phthalated gelatin, etc.), synthetic polymers (polymethacrylate, polyacrylate, polyalkylmethacrylate / acrylate). Copolymer, polystyrene / polymethacrylate copolymer, etc.). The content of carboxy residues in such polymers is 1 × 10 per 100 g of polymer.-2It is preferable that the amount is not less than mol and not more than 1.4 mol. In addition, the carboxylic acid residue may form a salt with an alkali metal ion, an alkaline earth metal ion, an organic cation or the like.
[0168]
Moreover, it is also preferable to use polyvinyl alcohol (PVA) as a binder for the surface protective layer, and PVA-105 of a fully saponified product [polyvinyl alcohol (PVA) content of 94.0 wt% or more, saponification degree 98.5 ± 0.00]. 5 mol%, sodium acetate content 1.5 wt% or less, volatile content 5.0 wt% or less, viscosity (4 wt%, 20 ° C.) 5.6 ± 0.4 CPS], partially saponified PVA-205 [PVA content 94.0 wt%, saponification degree 88.0 ± 1.5 mol%, sodium acetate content 1.0 wt%, volatile content 5.0 wt%, viscosity (4 wt%, 20 ° C.) 5.0 ± 0.4 CPS], Examples thereof include MP-102, MP-202, MP-203, R-1130, and R-2105 of modified polyvinyl alcohol (trade names manufactured by Kuraray Co., Ltd.).
[0169]
Polyvinyl alcohol coating amount of protective layer (per layer) (support 1m2As per) 0.3g / m2~ 4.0g / m2Is preferred, 0.3 g / m2~ 2.0 g / m2Is more preferable.
[0170]
Any adhesion preventing material may be used as the surface protective layer of the present invention. Examples of anti-adhesive materials include wax, silica particles, styrene-containing elastomeric block copolymers (e.g., styrene-butadiene-styrene, styrene-isoprene-styrene), cellulose acetate, cellulose acetate butyrate, cellulose propionate, and these There is a mixture. In addition, a crosslinking agent for crosslinking, a surfactant for improving coating properties, and the like may be added to the surface protective layer.
[0171]
In the image forming layer or protective layer of the image forming layer in the present invention, a light absorbing material and a filter dye as described in U.S. Pat.Nos. 3,253,921, 2,274,782, 2,527,583 and 2,956,879 are used. Can be used. For example, a dye can be mordanted as described in US Pat. No. 3,282,699. The amount of filter dye used is preferably an absorbance at an exposure wavelength of 0.1 to 3.0, particularly preferably 0.2 to 1.5.
[0172]
The image-forming layer or the protective layer of the image-forming layer in the present invention contains a matting agent such as starch, titanium dioxide, zinc oxide, silica, and beads of the type described in US Pat. Nos. 2,992,101 and 2,701,245. Polymer beads and the like can be contained.
[0173]
The preparation temperature of the image forming layer coating solution of the present invention is preferably from 30 ° C. to 65 ° C., more preferably from 35 ° C. to less than 60 ° C., and more preferably from 35 ° C. to 55 ° C. Further, it is preferable that the temperature of the image forming layer coating solution immediately after the addition of the polymer latex is maintained at 30 ° C. or more and 65 ° C. or less. Moreover, it is preferable that the reducing agent and the organic silver salt are mixed before adding the polymer latex.
[0174]
The organic silver salt-containing fluid or the thermal image forming layer coating solution in the present invention is preferably a so-called thixotropic fluid. Thixotropy refers to the property that the viscosity decreases as the shear rate increases. Although any apparatus may be used for the viscosity measurement of the present invention, an RFS fluid spectrometer manufactured by Rheometrics Far East Co., Ltd. is preferably used and measured at 25 ° C. Here, the organic silver salt-containing fluid or the thermal image forming layer coating liquid in the present invention has a shear rate of 0.1 S.-1The viscosity in is preferably 400 mPa · s or more and 100,000 mPa · s or less, and more preferably 500 mPa · s or more and 20,000 mPa · s or less. Also, shear rate 1000S-1Is preferably from 1 mPa · s to 200 mPa · s, more preferably from 5 mPa · s to 80 mPa · s.
[0175]
Various systems that exhibit thixotropic properties are known, and are described in “Lectures / Rheology” edited by Polymer Publishing Co., “Polymer Latex” (published by Polymer Publishing Co., Ltd.) co-authored by Muroi and Morino. In order for the fluid to exhibit thixotropy, it is necessary to contain a large amount of solid fine particles. In order to enhance the thixotropy, it is effective to contain a thickening linear polymer, increase the aspect ratio in the anisotropic shape of the contained solid fine particles, increase the alkali viscosity, and use a surfactant.
[0176]
The heat-developable photographic emulsion of the present invention comprises one or more layers on a support. One layer composition must contain organic silver salts, silver halides, developers and binders, and optional additional materials such as toning agents, coating aids and other aids. The two-layer configuration must contain an organic silver salt and silver halide in the first emulsion layer (usually the layer adjacent to the support) and some other components in the second or both layers. Don't be. However, a two-layer configuration comprising a single emulsion layer containing all components and a protective topcoat is also conceivable. The construction of a multicolor photosensitive photothermographic material may include a combination of these two layers for each color and includes all components in a single layer as described in US Pat. No. 4,708,928. Also good. In the case of a multi-dye multicolor photosensitive photothermographic material, each emulsion layer generally has a functional or non-functional barrier layer between each photosensitive layer as described in U.S. Pat.No. 4,460,681. By using, they are kept distinguished from each other.
[0177]
Various dyes and pigments can be used for the photosensitive layer of the present invention from the viewpoints of improving the color tone, preventing interference fringes from being generated during laser exposure, and preventing irradiation. These are described in detail in WO98 / 36322. Preferred dyes and pigments used in the photosensitive layer of the present invention include anthraquinone dyes, azomethine dyes, indoaniline dyes, azo dyes, anthraquinone-based indanthrone pigments (such as CI Pigment Blue 60), and phthalocyanine pigments (such as CI Pigment Blue 15). Copper phthalocyanine, metal-free phthalocyanine such as CI Pigment Blue 16), dyed lake pigment type triarylcarbonyl pigment, indigo, inorganic pigment (ultraviolet, cobalt blue, etc.). As a method for adding these dyes and pigments, any method such as a solution, an emulsion, a solid fine particle dispersion, or a state mordanted in a polymer mordant may be used. The amount of these compounds used is determined by the amount of absorption that is intended, but in general, 1m of photosensitive material is used.2It is preferably used in the range of 1 μg or more and 1 g or less.
[0178]
In the present invention, the antihalation layer can be provided on the side far from the light source with respect to the photosensitive layer. The antihalation layer preferably has a maximum absorption in a desired wavelength range of 0.3 or more and 2 or less, more preferably an absorption of an exposure wavelength of 0.5 or more and 2 or less, and an absorption in the visible region after processing of 0.001 or more It is preferably less than 0.5, more preferably a layer having an optical density of 0.001 or more and less than 0.3.
[0179]
When antihalation dyes are used in the present invention, such dyes have the desired absorption in the wavelength range, and have a sufficiently low absorption in the visible region after processing, so that any desired absorbance spectrum shape of the antihalation layer can be obtained. It may be a compound. For example, the following is disclosed, but the present invention is not limited to this. As a single dye, JP-A-59-56458, JP-A-2-216140, JP-A-7-13295, JP-A-111432, U.S. Pat.No. 5,380,635, JP-A-2-68539, page 13, lower left column From line 1 to page 14, lower left column, line 9, line 3-24539, page 14, lower left column to page 16, lower right column, the compounds described in Japanese Patent Application Laid-Open No. 52-139136, 53-132334, 56-501480, 57-16060, 57-68831, 57-101835, 59-182436, JP-A-7-36145, 7 -199409, JP-B-48-33692, JP-B-50-16648, JP-B-2-41734, US Patents 4,088,497, 4,283,487, 4,548,896, and 5,187,049.
[0180]
In the present invention, it is preferable to add a decoloring dye and a base precursor to the non-photosensitive layer of the photothermographic material so that the non-photosensitive layer functions as a filter layer or an antihalation layer. The photothermographic material generally has a non-photosensitive layer in addition to the photosensitive layer. The non-photosensitive layer includes (1) a protective layer provided on the photosensitive layer (on the side farther from the support), and (2) a plurality of photosensitive layers or between the photosensitive layer and the protective layer. (3) an undercoat layer provided between the photosensitive layer and the support, and (4) a back layer provided on the opposite side of the photosensitive layer. The filter layer is provided on the photosensitive material as the layer (1) or (2). The antihalation layer is provided on the photosensitive material as the layer (3) or (4).
[0181]
The decolorizing dye and the base precursor are preferably added to the same non-photosensitive layer. However, it may be added separately to two adjacent non-photosensitive layers. A barrier layer may be provided between the two non-photosensitive layers.
[0182]
As a method of adding the decoloring dye to the non-photosensitive layer, a method of adding a solution, an emulsion, a solid fine particle dispersion, or a polymer impregnated product to the coating solution for the non-photosensitive layer can be employed. Moreover, you may add dye to a non-photosensitive layer using a polymer mordant. These addition methods are the same as the method of adding a dye to a normal photothermographic material. The latex used for the polymer impregnation is described in U.S. Pat. No. 4,199,363, West German Patent Publication Nos. 25141274, 2541230, European Patent Publication No. 0291104, and Japanese Patent Publication No. 53-41091. An emulsification method in which a dye is added to a solution in which a polymer is dissolved is described in International Publication No. 88/00723.
[0183]
The amount of decoloring dye added is determined by the use of the dye. In general, the optical density (absorbance) measured at the target wavelength is used in an amount exceeding 0.1. The optical density is preferably 0.2 to 2. The amount of dye used to obtain such an optical density is generally 0.001 to 1 g / m.2Degree. Preferably, 0.005 to 0.8 g / m2And particularly preferably 0.01 to 0.2 g / m.2Degree.
[0184]
If the dye is decolored in this way, the optical density can be reduced to 0.1 or less. Two or more kinds of decoloring dyes may be used in combination in a heat decoloring type recording material or a photothermographic material. Similarly, two or more kinds of base precursors may be used in combination.
[0185]
The photothermographic material of the present invention is a so-called single-sided photosensitive material having a photosensitive layer containing at least one silver halide emulsion on one side of the support and a back layer on the other side. preferable.
[0186]
In the present invention, a matte agent may be added to the single-sided photosensitive material for improving the transportability. The matting agent is generally fine particles of an organic or inorganic compound that is insoluble in water. Any matting agent can be used.For example, organic matting agents described in U.S. Pat.Nos. 1,939,213, 2,701,245, 2,322,037, 3,262,782, 3,539,344, 3,767,448, etc. Those well known in the art such as the inorganic matting agents described in the respective specifications such as 1,260,772, 2,192,241, 3,257,206, 3,370,951, 3,523,022, and 3,769,020 can be used. For example, specific examples of organic compounds that can be used as matting agents include water-dispersible vinyl polymers such as polymethyl acrylate, polymethyl methacrylate, polyacrylonitrile, acrylonitrile-α-methylstyrene copolymer, polystyrene. , Styrene-divinylbenzene copolymer, polyvinyl acetate, polyethylene carbonate, polytetrafluoroethylene, etc. Examples of cellulose derivatives include methylcellulose, cellulose acetate, cellulose acetate propionate, etc. Examples of starch derivatives include carboxy starch, carboxynitrophenyl Preferably used for starch, urea-formaldehyde-starch reactants, gelatin hardened with known hardeners and hardened gelatin into cocapsulated hardened microcapsules Can be. As examples of the inorganic compound, silicon dioxide, titanium dioxide, magnesium dioxide, aluminum oxide, barium sulfate, calcium carbonate, silver chloride desensitized by a known method, silver bromide, glass, diatomaceous earth, and the like can be preferably used. The above matting agents can be used by mixing different kinds of substances as required. The size and shape of the matting agent are not particularly limited, and those having an arbitrary particle size can be used. In the practice of the present invention, those having a particle size of 0.1 μm to 30 μm are preferably used, and those having an average particle size of 2 μm to 10 μm are more preferably used. Further, the particle size distribution of the matting agent may be narrow or wide. On the other hand, since the matting agent greatly affects the haze and surface gloss of the light-sensitive material, the particle size, shape, and particle size distribution can be brought into a state as required by preparing the matting agent or mixing a plurality of matting agents. preferable.
[0187]
Matting agent is photosensitive material 1m2When expressed in terms of coating amount per unit, preferably 1 to 400 mg / m2, More preferably 5 to 300 mg / m2It is.
[0188]
The emulsion surface may have any mat degree as long as no stardust failure occurs, but the Beck smoothness is preferably from 50 seconds to 10,000 seconds, and particularly preferably from 80 seconds to 10,000 seconds.
[0189]
In the present invention, the matte degree of the back layer is preferably a Beck smoothness of 1200 seconds or less and 10 seconds or more, preferably 700 seconds or less and 30 seconds or more, and more preferably 500 seconds or less and 50 seconds or more.
[0190]
In the present invention, the matting agent is preferably contained in the outermost surface layer of the photosensitive material, the layer functioning as the outermost surface layer, or a layer close to the outer surface, and is contained in a layer acting as a so-called protective layer. It is preferable.
[0191]
In the present invention, a suitable binder for the back layer is transparent or translucent and generally colorless, and is a natural polymer, synthetic resin, polymer and copolymer, or other medium for forming a film, such as: gelatin, gum arabic, poly (vinyl alcohol) , Hydroxyethyl cellulose, cellulose acetate, cellulose acetate butyrate, poly (vinyl pyrrolidone), casein, starch, poly (acrylic acid), poly (methyl methacrylic acid), poly (vinyl chloride), poly (methacrylic acid), copoly (styrene) -Maleic anhydride), copoly (styrene-acrylonitrile), copoly (styrene-butadiene), poly (vinyl acetal) s (e.g. poly (vinyl formal) and poly (vinyl butyral)), poly (esters), poly (esters) Urethanes), phenoxy resin, poly (vinylidene chloride) ), Poly (epoxides), poly (carbonates), poly (vinyl acetate), cellulose esters, and poly (amides). The binder may be formed from water or an organic solvent or emulsion.
[0192]
In the present invention, the back layer preferably has a maximum absorption of 0.3 or more and 2 or less in a desired wavelength range, more preferably 0.5 or more and 2 or less, and an absorption in the visible region after processing of 0.001 or more. It is preferably less than 0.5, more preferably a layer having an optical density of 0.001 or more and less than 0.3. Examples of the antihalation dye used for the back layer are the same as those of the antihalation layer described above.
[0193]
In the photothermographic material of the present invention, a backside resistive heating layer as shown in U.S. Pat. Nos. 4,460,681 and 4,374,921 can also be used.
[0194]
A hardener may be used for each layer such as the image forming layer (preferably a photosensitive layer), protective layer, and back layer of the present invention. Examples of hardeners include each method described on pages 77 to 87 of "THE THEORY OF THE PHOTOGRAPHIC PROCESS FOURTH EDITION" (Macmillan Publishing Co., Inc., published in 1977) by THJames. Preferred are polyvalent metal ions, polyisocyanates such as US Pat. No. 4,281,060, JP-A-6-208193, epoxy compounds such as US Pat. No. 4,791,042, and vinyl sulfone compounds such as JP-A 62-89048. Used.
[0195]
The hardening agent is added as a solution, and the addition time of this solution to the protective layer coating solution is from 180 minutes before application, preferably from 60 minutes to 10 seconds before application. As long as the effects of the present invention are sufficiently exhibited, there is no particular limitation. Specific mixing methods include mixing in a tank in which the average residence time calculated from the addition flow rate and the amount of liquid delivered to the coater is the desired time, and by N. Harnby, MFEdwards, AWNienow, Takahashi There is a method of using a static mixer described in Chapter 8 of "Liquid Mixing Technology" (published by Nikkan Kogyo Shimbun, 1989).
[0196]
In the present invention, a surfactant may be used for the purpose of improving coating properties and charging. As an example of the surfactant, any nonionic, anionic, cationic, or fluorine-based one can be used as appropriate. Specifically, fluorine-based polymer surfactants described in JP-A-62-170950, US Pat. No. 5,380,644, etc., fluorine-based surfactants described in JP-A-60-244945, JP-A-63-188135, etc. Surfactants, polysiloxy acid surfactants described in U.S. Pat. No. 3,885,965, polyalkylene oxides and anionic surfactants described in JP-A-6-301140 and the like can be mentioned.
[0197]
Examples of the solvent used in the present invention include New Edition Solvent Pocket Book (Ohm, published in 1994), but the present invention is not limited thereto. The boiling point of the solvent used in the present invention is preferably 40 ° C. or higher and 180 ° C. or lower.
[0198]
Examples of the solvent of the present invention include hexane, cyclohexane, toluene, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, ethyl acetate, 1,1,1-trichloroethane, tetrahydrofuran, triethylamine, thiophene, trifluoroethanol, perfluoropentane, xylene. , N-butanol, phenol, methyl isobutyl ketone, cyclohexanone, butyl acetate, diethyl carbonate, chlorobenzene, dibutyl ether, anisole, ethylene glycol diethyl ether, N, N-dimethylformamide, morpholine, propane sultone, perfluorotributylamine, water, etc. Is mentioned.
[0199]
The photographic emulsion for heat development in the present invention can be coated on various supports. Typical supports are polyester film, primed polyester film, poly (ethylene terephthalate) film, polyethylene naphthalate film, cellulose nitrate film, cellulose ester film, poly (vinyl acetal) film, polycarbonate film and related or resinous Including materials, as well as glass, paper, metal and the like. Coated with a flexible substrate, in particular a baryter and / or a partially acetylated α-olefin polymer, in particular an α-olefin polymer having 2 to 10 carbon atoms such as polyethylene, polypropylene, ethylene-butene copolymer. A paper support is typically used. Such a support may be transparent or opaque, but is preferably transparent. The transparent support may be colored with a blue dye (for example, dye-1 described in Examples of JP-A-8-240877).
[0200]
The light-sensitive material in the present invention is an antistatic or conductive layer, for example, a soluble salt (for example, chloride, nitrate, etc.), a vapor-deposited metal layer, an ionic polymer as described in US Pat. Nos. 2,861,056 and 3,206,312 or A layer containing an insoluble inorganic salt as described in US Pat. No. 3,428,451 may be included.
[0201]
The photothermographic material is preferably a mono-sheet type (a type capable of forming an image on the photothermographic material without using another sheet such as an image receiving material).
[0202]
An antioxidant, a stabilizer, a plasticizer, an ultraviolet absorber, or a coating aid may be further added to the photothermographic material. Various additives are added to either the photosensitive layer or the non-photosensitive layer. With respect to these, the respective specifications such as WO98 / 36322, EP803764A1, JP-A-10-186567, and 10-18568 can be referred to.
[0203]
In the photosensitive layer of the present invention, a polyhydric alcohol (for example, glycerin and diol of the type described in US Pat. No. 2,960,404), a plasticizer and a lubricant described in US Pat. Nos. 2,588,765 and 3,121,060 are used. Fatty acids or esters, silicone resins described in British Patent No. 955,061 and the like can be used.
[0204]
As a method for obtaining a color image using the photothermographic material in the invention, there is a method described in JP-A-7-13295, page 10, left column, line 43 to 11, left column, line 40. Examples of color dye image stabilizers include British Patent 1,326,889, U.S. Patent 3,432,300, 3,698,909, 3,574,627, 3,573,050, 3,764,337 and 4,042,394. Yes.
[0205]
The photothermographic material in the invention may be applied by any method. Specifically, various coating operations are used, including extrusion coating, slide coating, curtain coating, dip coating, knife coating, flow coating, or extrusion coating using a hopper of the type described in U.S. Pat. Stephen F. Kistler, Petert M. Schweizer "LIQUID FILM COATING" (CHAPMAN & HALL, 1997), pages 399 to 536, preferably used for extrusion coating or slide coating, particularly preferably used for slide coating It is done. An example of the shape of the slide coater used for slide coating is shown in Figure 11b.1 on page 427 of the same book. If desired, two or more layers can be simultaneously coated by the method described on pages 399 to 536 of the same document, the method described in US Pat. No. 2,761,791 and British Patent No. 837,095.
[0206]
Additional layers in the photothermographic material of the present invention, such as a dye-receiving layer for receiving a moving dye image, an opacifying layer when reflective printing is desired, a protective topcoat layer, and a primer known in the photothermographic art Layers can be included. It is preferable that the photothermographic material of the present invention can form an image with only one photosensitive material, and it is preferable that a functional layer necessary for image formation such as an image receiving layer does not become another photosensitive material.
[0207]
Techniques that can be used for the photothermographic material of the present invention include EP803764A1, EP883022A1, WO98 / 36322, JP-A-9-281637, 9-297367, 9-304869, and 9-311405. 9-329865, 10-10669, 10-62899, 10-69023, 10-186568, 10-90823, 10-171063, 10-186565, 10-186567, 10-186569, 10-186570, 10-186571, 10-186572, 10-197974, 10-197982, 10-197983, 10-18683 197985, 10-197986, 10-197987, 10-207001, 10-207004, 10-221807, 10-282601, 10-288823, 10-288824, 10-288824 10-307365, 10-312038, 10-339934, 11-7100, 11-15105, 11-24200, 11-24201, 11-30832 It is done.
[0208]
The photothermographic material of the present invention may be developed by any method, but is usually developed by raising the temperature of the photothermographic material exposed imagewise. The preferred development temperature is 80 to 250 ° C, more preferably 100 to 140 ° C. The development time is preferably 1 to 180 seconds, more preferably 10 to 90 seconds, and particularly preferably 10 to 40 seconds.
[0209]
A plate heater method is preferred as the heat development method. The heat development method using the plate heater method is preferably the method described in Japanese Patent Application No. 9-229684 and Japanese Patent Application No. 10-177610, in which the photothermographic material on which the latent image is formed is brought into contact with the heating means in the heat developing unit. A heat developing device that obtains a visible image by causing the heating means to be a plate heater, and a plurality of pressing rollers are arranged to face each other along one surface of the plate heater; The photothermographic apparatus performs thermal development by passing the photothermographic material between the plate heater and the plate heater. It is preferable to divide the plate heater into 2 to 6 stages and lower the temperature about 1 to 10 ° C. at the tip. Such a method is also described in JP-A-54-30032, which can exclude moisture and organic solvents contained in the photothermographic material out of the system, and can be rapidly developed in the photothermographic material. It is also possible to suppress changes in the shape of the support of the photothermographic material due to heating of the photothermographic material.
[0210]
The exposure light source of the present invention may be any laser in the blue to ultraviolet range, such as a semiconductor laser diode (GaAlAs, etc.), ZnSe, GaN, dye laser, excimer laser, gas laser, GaN LED (light emitting diode) array. Etc. Also preferred are bulk direct conversion SHG lasers, SHG solid lasers, GaN semiconductor lasers, and the like.
[0211]
The bulk direct conversion SHG laser is a single mode semiconductor laser with a wavelength of 720 nm to 900 nm, which is MgO-LiNbO.ThreeThe laser beam is incident on a bulk type wavelength conversion element made of domain-inverted bulk crystal, and the laser beam is resonated in the wavelength conversion element, or is passed through in one pass, and the semiconductor laser beam is an ultraviolet light having a half wavelength of 360 nm to 450 nm. Converted to second high frequency (SHG) in the blue wavelength band to obtain short wavelength laser light. The output can be changed according to the output of the semiconductor laser (LD), and an output of 1 mW to 100 mW can be obtained. In particular, when a bulk domain inversion crystal is used, it is possible to obtain SHG light having an arbitrary wavelength as described above by changing the inversion period. Furthermore, the wavelength change of the LD light can be suppressed by wavelength-locking the LD light by using a wavelength selection element such as a band pass filter, so that even if the LD is directly modulated, the wavelength change does not occur, so that it is stable. SHG light can be generated. As a result, it is possible to obtain a modulation output of ultraviolet to blue SHG laser light by directly modulating the LD without using an external modulator such as AOM (AO (acousto-optic) modulation). In particular, when SHG light is used for exposure, unlike ordinary semiconductor lasers, even if SHG light returns to the LD, the wavelength of the LD differs from that of the LD. Therefore, the LD may generate noise due to instability due to the return light. Therefore, stable image recording is possible.
[0212]
The SHG solid-state laser excites a solid laser crystal (Nd: YAG, Cr: LiCAF, etc.) with an infrared (809 nm) to red (680 nm) broad area type LD of about 500 mW to 2 W, A resonator is constituted by a mirror to oscillate solid-state laser light, and MgO-LiNbO is contained inside the resonator.ThreeBy inserting a domain inversion bulk wavelength conversion element or the like, it is possible to convert the wavelength of solid laser light into SHG light and obtain ultraviolet to blue oscillation. At this time, polarization is controlled by a Brewster plate, and a single longitudinal mode is made by an etalon to achieve high efficiency and low noise. In this configuration, since a high-power excitation LD can be used, an output of 10 mW to 300 mW can be obtained. However, in the case of a solid-state laser, since the modulation speed is determined by the fluorescence lifetime of the solid-state laser crystal, high-speed modulation such as that for image recording cannot be performed. Therefore, an external modulation element such as AOM is required. Also, when SHG light is used for exposure, unlike ordinary LD, the wavelength of SHG light is different from that of solid laser even if SHG light returns to the solid laser. Since it does not occur, stable image recording becomes possible.
[0213]
In recent years, GaN-based semiconductor lasers using InGaN as an active layer capable of oscillation at 380 nm to 450 nm have been put into practical use. At 400 nm, it has come to have a lifetime of 10,000 hours at 2 mW. Since this laser does not use the wavelength conversion technology for generating the SHG light, it is a very low-cost light source. Also, direct modulation of the LD is possible without using an external modulator. At present, since the output is several mW, a high output light source has not been put into practical use, but it is possible to obtain high output light of 30 mW to 100 mW by improving the crystallinity.
[0214]
Examples of the waveguide type SHG light source include the following. SHG is an off-cut MgO-doped LiNbOThreeWhen the wavelength of the pumped semiconductor laser is 800 to 1000 nm and the output is 100 to 200 mW, SHG light having a wavelength of 400 to 500 nm and several tens of mW can be obtained. The LD preferably has a wavelength-locked and wavelength-tunable structure (distributed Bragg type DBR: Distributed Bragg Reflector, distributed feedback type DFB: Distributed feedback). In this case, since the oscillation wavelength can be adjusted to the phase matching wavelength of the waveguide period inversion domain SHG, it can be adjusted to the maximum value of the SHG efficiency, and as a result, the output light quantity can be maximized.
[0215]
An example of a light source with a modulation function is a waveguide type EOM (electro-optic modulation) / SHG light source. The pumped semiconductor laser is turned on / off by EOM after coupling to the waveguide. When turned on, the light is guided to the periodic inversion domain waveguide, and when turned off, it is switched to the other waveguide. When on, the excitation laser is converted to the second harmonic. When it is off, conversion to the second harmonic does not occur, and this state is turned off when the second harmonic is used for the utilized light (see JP-A-10-161165). When the wavelength of the pumping semiconductor laser is 800 nm to 1000 nm and the output is 100 to 200 mW, SHG light having a wavelength of 400 to 500 nm and several tens of mW can be obtained. The LD preferably has a wavelength-locked and wavelength-tunable structure (distributed Bragg type DBR: Distributed Bragg Reflector, distributed feedback type DFB: Distributed feedback). In this case, since the oscillation wavelength can be adjusted to the phase matching wavelength of the waveguide period inversion domain SHG, it can be adjusted to the maximum value of the SHG efficiency, and as a result, the output light quantity can be maximized. The EOM can produce a proton exchange annealed waveguide and electrode by the self-alignment method disclosed in Japanese Patent Laid-Open No. 7-146457. Further, according to Japanese Patent Laid-Open No. 10-133237, the electrode can be plated to reduce the electrical resistance and increase the modulation speed. The substrate used for EOM is X-cut MgO-doped LiNbOThreeOr off-substrate MgO-doped LiNbOThree(Japanese Patent Laid-Open No. 9-218431). The modulation speed can be modulated at a frequency of several tens of MHz, and sufficient performance can be obtained as an image forming light source.
[0216]
As the laser beam, a single mode laser can be used. However, the photothermographic material as in the present invention has a low haze at the time of exposure and tends to generate interference fringes. -113548 etc. are known to illuminate the photosensitive material obliquely with respect to the photosensitive material, and a method using a multimode laser disclosed in WO95 / 31754 etc. Technology can be used.
[0217]
In order to expose the photothermographic material of the present invention, laser light is superimposed as disclosed in SPIE vol. 169 Laser Printing, pages 116-128 (1979), JP-A-4-51043, WO95 / 31754, etc. It is preferable to expose the scanning line so that the scanning line is not visible.
The laser output is preferably 1 mW or more, more preferably 10 mW or more, and even more preferably 40 mW or more. The upper limit is not particularly limited, but is about 1 W. At that time, a plurality of lasers may be combined. Laser beam diameter is 1 / e of Gaussian beam2The spot size can be about 30 to 200 μm.
[0218]
The photothermographic material of the present invention forms a black and white image by a silver image, and is used as a photothermographic material for medical diagnosis, a photothermographic material for industrial photography, a photothermographic material for printing, and a photothermographic material for COM. It is preferably used. In these uses, based on the black-and-white image formed, a duplicate image is formed on a copy film MI-Dup manufactured by Fuji Photo Film Co., Ltd. for medical diagnosis, and Fuji Photo Film Co., Ltd. is used for printing. Needless to say, it can be used as a mask for forming an image on the return film DO-175, PDO-100 or offset printing plate.
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
[0219]
(PET support creation)
Using terephthalic acid and ethylene glycol, PET having an intrinsic viscosity of IV = 0.66 (measured in phenol / tetrachloroethane = 6/4 (weight ratio) at 25 ° C.) was obtained according to a conventional method. This was pelletized, dried at 130 ° C. for 4 hours, melted at 300 ° C., extruded from a T-die, and rapidly cooled to prepare an unstretched film having a thickness of 175 μm after heat setting.
[0220]
This was longitudinally stretched 3.3 times using rolls with different peripheral speeds and then stretched 4.5 times with a tenter. The temperatures at this time were 110 ° C. and 130 ° C., respectively. Thereafter, the film was heat-fixed at 240 ° C. for 20 seconds and relaxed by 4% in the lateral direction at the same temperature. After slitting the chuck part of the tenter, knurling is performed on both ends, and 4kg / cm2And a roll having a thickness of 175 μm was obtained.
[0221]
(Surface corona treatment)
Using a solid state corona treatment machine 6KVA model manufactured by Pillar, both surfaces of the support were treated at room temperature at 20 m / min. From the current and voltage readings at this time, the support is 0.375 kV · A · min / m2It was found that the process was done. The treatment frequency at this time was 9.6 kHz, and the gap clearance between the electrode and the dielectric roll was 1.6 mm.
[0222]
(Create an undercoat support)
(1) Preparation of undercoat layer coating solution
Formulation (1) (for the undercoat layer on the photosensitive layer side)
Takamatsu Oil & Fat Co., Ltd. Pes Resin A-515GB (30wt% solution) 234g
Polyethylene glycol monononyl phenyl ether
(Average number of ethylene oxide = 8.5) 10wt% solution 21.5g
Soken Chemical Co., Ltd. MP-1000 (polymer fine particles) 0.91 g
Distilled water 744ml
Formulation (2) (for back layer 1st layer)
Butadiene-styrene copolymer latex 131g
(Solid content 40wt%, butadiene / styrene weight ratio = 32/68)
2,4-dichloro-6-hydroxy-S-
Triazine sodium salt 8wt% aqueous solution 5.1g
10% 1wt% aqueous solution of sodium laurylbenzenesulfonate
Distilled water 854ml
Formula (3) (Back side 2nd layer)
SnO2/ SbO (9/1 weight ratio, average particle size 0.038μm, 17wt% dispersion) 62g
Gelatin (10wt% aqueous solution) 65.7g
METRONE TC-5 (2wt% aqueous solution) 6.3g made by Shin-Etsu Chemical Co., Ltd.
MP-1000 (Polymer fine particles) manufactured by Soken Chemical Co., Ltd.0.01g
10ml of 1wt% aqueous solution of sodium dodecylbenzenesulfonate
856 ml of distilled water
[0223]
(Preparation of undercoat support)
After applying the above corona discharge treatment to both sides of the biaxially stretched polyethylene terephthalate support having a thickness of 175 μm, the undercoat coating solution formulation {circle around (1)} is applied to one side (photosensitive layer surface) with a wire bar at a wet coating amount of 6.6 ml. / m2(Per side) and dry at 180 ° C. for 5 minutes, and then apply the undercoat coating solution formulation (2) on the back (back side) with a wire bar at a wet coating amount of 5.7 ml / m.2And then dry at 180 ° C. for 5 minutes, and then apply the undercoat coating solution formulation (3) on the back surface (back surface) with a wire bar at a wet coating amount of 5.7 ml / m.2And then dried at 180 ° C. for 6 minutes to prepare an undercoat support.
[0224]
(Preparation of back surface coating solution)
(Preparation of solid fine particle dispersion (a) of base precursor)
64 g of the base precursor compound 11, 28 g of the diphenylsulfone compound 12 and 10 g of the surfactant Demol N made by Kao Corporation were mixed with 220 ml of distilled water, and the mixture was mixed with a sand mill (1/4 Gallon Sand Grinder Mill, Imex Corporation) To obtain a solid fine particle dispersion (a) of a base precursor compound having an average particle size of 0.2 μm.
[0225]
(Preparation of dye solid fine particle dispersion)
9.6 g of cyanine dye compound 13 and 5.8 g of sodium P-dodecylbenzenesulfonate are mixed with 305 ml of distilled water, and the mixture is bead-dispersed using a sand mill (1/4 Gallon sand grinder mill, manufactured by IMEX Co., Ltd.). Thus, a dye solid fine particle dispersion having an average particle size of 0.2 μm was obtained.
[0226]
(Preparation of antihalation layer coating solution)
Gelatin 17 g, polyacrylamide 9.6 g, solid fine particle dispersion (a) 70 g of the above basic precursor, 56 g of the above dye solid fine particle dispersion 1.5 g of polymethyl methacrylate fine particles (average particle size 6.5 μm), 2.2 g of sodium polyethylene sulfonate, Blue dye compound 14 0.2g, H2844 ml of O was mixed to prepare an antihalation layer coating solution.
[0227]
(Preparation of back surface protective layer coating solution)
The container was kept at 40 ° C., 50 g of gelatin, 0.2 g of sodium polystyrenesulfonate, 2.4 g of N, N-ethylenebis (vinylsulfonacetamide), 1 g of sodium t-octylphenoxyethoxyethanesulfonate, 30 mg of compound 4, C8F17SOThreeK 32mg, C8F17SO2N (CThreeH7) (CH2CH2O)Four(CH2)Four-SOThreeNa 64mg, acrylic acid / ethyl acrylate copolymer (copolymerization weight ratio 5/95) 8.8g, H2950 ml of O was mixed to prepare a back surface protective layer coating solution.
[0228]
<< Preparation of silver halide grain 1-R >>
Add 8.0cc of 1wt% potassium bromide solution to 1421cc of distilled water, and further add 8.2cc of 1N nitric acid and 20g of phthalated gelatin. Keeping solution A prepared by adding distilled water to 37.04 g of silver nitrate and diluting to 159 cc, and preparing solution B by diluting 32.6 g of potassium bromide to 200 cc with distilled water, while maintaining pAg at 8.1 by the control double jet method The whole amount of solution A was added at a constant flow rate over 1 minute. Solution B was added by the controlled double jet method. Thereafter, 30 cc of a 3.5 wt% aqueous hydrogen peroxide solution was added, and 36 cc of a 3 wt% aqueous solution of Compound 1 was further added. Then, solution A2 again diluted with distilled water to 317.5 cc, and finally solution B was 1 × 10 per mole of silver-FourDissolve compound 2 to a molar ratio and use solution B2 diluted with distilled water to 400 cc, twice the amount of solution B, while maintaining pAg at 8.1 by the controlled double jet method. Solution A2 was added in total over 10 minutes at the flow rate. Solution B2 was added by the controlled double jet method. After that, add 50cc of 0.5wt% methanol solution of compound 3, raise the pAg to 7.5 with silver nitrate, adjust the pH to 3.8 with 1N sulfuric acid, stop stirring, perform precipitation / desalting / water washing process. Then, 3.5 g of deionized gelatin was added, and 1N sodium hydroxide was added to adjust the pH to 6.0 and pAg 8.2 to prepare a silver halide dispersion.
[0229]
Grains in the resulting silver halide emulsion were pure silver bromide grains having an average sphere equivalent diameter of 0.053 μm and a sphere equivalent diameter variation coefficient of 18%. The particle size and the like were determined from an average of 1000 particles using an electron microscope. The [100] face ratio of the particles was determined to be 85% using the Kubelka-Munk method.
[0230]
While maintaining the above emulsion at 38 ° C. with stirring, 0.035 g of compound 4 (added with 3.5 wt% methanol solution) was added, and after 40 minutes, a solid dispersion of spectral sensitizing dye A (gelatin aqueous solution) per mol of silver 5 × 10-3Mole was added, and after 1 minute, the temperature was raised to 47 ° C., and after 20 minutes, compound 5 was added 3 × 10-Five2 minutes later, tellurium sensitizer B was added at 5 x 10 per mole of silver.-FiveMole was added and aged for 90 minutes. At the end of ripening, 5 cc of a 0.5 wt% methanol solution of compound 6 was added and the temperature was lowered to 31 ° C., 5 cc of a 3.5 wt% methanol solution of compound 7 and 7 × 10 5 of compound 3 per mole of silver-3Mole and compound 8 is 6.4 x 10 per mole of silver-3Mole was added to make silver halide emulsion 1-R.
[0231]
<< Preparation of silver halide grains 2-R >>
In the preparation of silver halide emulsion 1-R, pure silver bromide having an average sphere equivalent diameter of 0.038 μm and a sphere equivalent diameter variation coefficient of 20% was used except that the liquid temperature during grain formation was changed to 37 ° C. A cubic grain emulsion was prepared. Precipitation / desalting / washing / dispersion was carried out in the same manner as silver halide emulsion 1-R. Furthermore, the addition amount of spectral sensitizing dye A is 6 × 10 6 per mol of silver.-3A silver halide emulsion 2-R was obtained by performing spectral sensitization, chemical sensitization and addition of compound 3 and compound 8 in the same manner as in emulsion 1-R except that the amount was changed to mol.
[0232]
<< Preparation of silver halide grains 1-V >>
In the preparation of silver halide emulsion 1-R, silver halide emulsion 1-V was obtained in the same manner as emulsion 1-R, except that spectral sensitizing dye A was not added.
[0233]
<< Preparation of silver halide grains 2-V >>
A silver halide emulsion 2-V was obtained in the same manner as the emulsion 2-R, except that the spectral sensitizing dye A was not added in the preparation of the silver halide emulsion 2-R.
[0234]
<Preparation of mixed emulsion A for coating solution>
As shown in Table 1, the silver halide emulsion was mixed, and Compound 9 was added in a 1 wt% aqueous solution to 7 x 10 per mol of silver.-3Mole was added.
[0235]
<< Preparation of flake fatty acid silver salt >>
Henkel behenic acid (product name Edenor C22-85R) 87.6g, distilled water 423ml, 5N-NaOH aqueous solution 49.2ml, tert-butanol 120ml are mixed and stirred at 75 ° C for 1 hour to react sodium behenate solution. Obtained. Separately, 206.2 ml (pH 4.0) of an aqueous solution of 40.4 g of silver nitrate was prepared and kept warm at 10 ° C. A reaction vessel containing 635 ml of distilled water and 30 ml of tert-butanol is kept at 30 ° C., and while stirring, the total amount of the previous sodium behenate solution and the total amount of silver nitrate aqueous solution are 62 minutes 10 seconds and 60 minutes, respectively, at a constant flow rate. Added over time. At this time, only the silver nitrate aqueous solution is added for 7 minutes and 20 seconds after the start of the addition of the silver nitrate aqueous solution, and then the addition of the sodium behenate solution is started. After the addition of the silver nitrate aqueous solution, only the sodium behenate solution is added for 9 minutes and 30 seconds. Was added. At this time, the temperature in the reaction vessel was 30 ° C., and the external temperature was controlled so that the liquid temperature was constant. Further, the pipe of the addition system of the sodium behenate solution was kept warm by steam tracing, and the steam opening degree was adjusted so that the liquid temperature at the outlet of the addition nozzle tip was 75 ° C. Moreover, the piping of the addition system of the silver nitrate aqueous solution was kept warm by circulating cold water outside the double pipe. The addition position of the sodium behenate solution and the addition position of the aqueous silver nitrate solution were arranged symmetrically around the stirring axis, and were adjusted so as not to contact the reaction solution.
[0236]
After completion of the addition of the sodium behenate solution, the mixture was left stirring for 20 minutes at the same temperature, and the temperature was lowered to 25 ° C. Thereafter, the solid content was separated by suction filtration, and the solid content was washed with water until the conductivity of the filtered water reached 30 μS / cm. Thus, a fatty acid silver salt was obtained. The obtained solid content was stored as a wet cake without drying.
[0237]
When the morphology of the obtained silver behenate particles was evaluated by electron micrograph, the average value was a = 0.14 μm, b = 0.4 μm, c = 0.6 μm, and the flake-like shape with a coefficient of variation of 15% of the average equivalent sphere diameter. It was a crystal. (A, b, and c are the provisions of the text)
[0238]
7.4 g of polyvinyl alcohol (trade name: PVA-205) and water were added to the wet cake equivalent to 100 g of the dry solid content to make the total amount 385 g, and then pre-dispersed with a homomixer.
[0239]
Next, the pre-dispersed stock solution is subjected to a pressure of 1750 kg / cm of the disperser (trade name: Microfluidizer M-110S-EH, manufactured by Microfluidics International Corporation, G10Z interaction chamber).2And was treated three times to obtain a silver behenate dispersion. The cooling operation was set to a dispersion temperature of 18 ° C. by installing a serpentine heat exchanger before and after the interaction chamber and adjusting the temperature of the refrigerant.
[0240]
<Preparation of 25 wt% dispersion of reducing agent>
10kg of 1,1-bis (2-hydroxy-3,5-dimethylphenyl) -3,5,5-trimethylhexane and 10kg of 20wt% aqueous solution of modified polyvinyl alcohol (Kuraray Co., Ltd., Poval MP203), 16kg of water Was added and mixed well to obtain a slurry. This slurry was fed with a diaphragm pump and dispersed in a horizontal sand mill (UVM-2: manufactured by Imex Co., Ltd.) filled with zirconia beads having an average diameter of 0.5 mm for 3 hours and 30 minutes. The concentration was adjusted to 25 wt% to obtain a reducing agent dispersion. The reducing agent particles contained in the reducing agent dispersion thus obtained had a median diameter of 0.42 μm and a maximum particle diameter of 2.0 μm or less. The obtained reducing agent dispersion was filtered through a polypropylene filter having a pore size of 10.0 μm to remove foreign substances such as dust and stored.
[0241]
<Preparation of 10 wt% dispersion of mercapto compound>
8.3 kg of water was added to 5 kg of a 20 wt% aqueous solution of Compound 10 and 5 kg of modified polyvinyl alcohol (Poval MP203 manufactured by Kuraray Co., Ltd.) and mixed well to form a slurry. This slurry is fed with a diaphragm pump and dispersed in a horizontal sand mill (UVM-2: manufactured by Imex Co., Ltd.) filled with zirconia beads having an average diameter of 0.5 mm for 6 hours, and then water is added to increase the concentration of the mercapto compound. A mercapto dispersion was obtained by adjusting to 10 wt%. The mercapto compound particles contained in the mercapto compound dispersion thus obtained had a median diameter of 0.40 μm and a maximum particle diameter of 2.0 μm or less. The obtained mercapto compound dispersion was filtered through a polypropylene filter having a pore size of 10.0 μm to remove foreign substances such as dust and stored.
[0242]
<< Preparation of Organic Polyhalogen Compound 20wt% Dispersion-1 >>
Add 5 kg of tribromomethylnaphthylsulfone, 2.5 kg of 20 wt% aqueous solution of modified polyvinyl alcohol (Poval MP203 manufactured by Kuraray Co., Ltd.), 213 g of 20 wt% aqueous solution of sodium triisopropylnaphthalenesulfonate and 10 kg of water and mix well. To make a slurry. This slurry was fed with a diaphragm pump and dispersed for 5 hours in a horizontal sand mill (UVM-2: manufactured by Imex Co., Ltd.) filled with zirconia beads having an average diameter of 0.5 mm. Then, water was added to the organic polyhalogen compound. The concentration was adjusted to 20 wt% to obtain an organic polyhalogen compound dispersion. The organic polyhalogen compound particles contained in the polyhalogen compound dispersion thus obtained had a median diameter of 0.36 μm and a maximum particle diameter of 2.0 μm or less. The obtained organic polyhalogen compound dispersion was filtered through a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust and stored.
[0243]
<< Preparation of Organic Polyhalogen Compound 20wt% Dispersion-2 >>
Similar to 20 wt% dispersion-1 of organic polyhalogen compound, except that 5 kg of tribromomethyl (4- (2,4,6-trimethylphenylsulfonyl) phenyl) sulfone is used instead of 5 kg of tribromomethylnaphthylsulfone, Dispersion and filtration were performed. The organic polyhalogen compound particles contained in the organic polyhalogen compound dispersion thus obtained had a median diameter of 0.38 μm and a maximum particle diameter of 2.0 μm or less. The obtained organic polyhalogen compound dispersion was filtered through a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust and stored.
[0244]
<< Preparation of 20 wt% Dispersion-3 of Organic Polyhalogen Compound >>
Dispersion and filtration were performed in the same manner as 20 wt% dispersion-1 of organic polyhalogen compound, except that 5 kg of tribromomethylphenylsulfone was used instead of 5 kg of tribromomethylnaphthylsulfone. The organic polyhalogen compound particles contained in the organic polyhalogen compound dispersion thus obtained had a median diameter of 0.41 μm and a maximum particle diameter of 2.0 μm or less. The obtained organic polyhalogen compound dispersion was filtered through a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust and stored.
[0245]
<< Preparation of 10wt% methanol solution of phthalazine compound >>
10 g of 6-isopropylphthalazine was dissolved in 90 g of methanol and used.
[0246]
<< Preparation of 20wt% dispersion of pigment >>
A slurry was prepared by adding 64 g of C.I. Pigment Blue 60 and 6.4 g of Kamol Co., Ltd. demole N to 250 g of water and mixing well. 800 g of zirconia beads having an average diameter of 0.5 mm were prepared and placed in a vessel together with the slurry, and dispersed for 25 hours with a disperser (1/4 G sand grinder mill: manufactured by IMEX Co., Ltd.) to obtain a pigment dispersion. The pigment particles contained in the pigment dispersion thus obtained had an average particle size of 0.21 μm.
[0247]
<< Preparation of SBR Latex 40wt% >>
The ultrafiltration (UF) purified SBR latex was obtained as follows.
The following SBR latex diluted 10 times with distilled water is diluted with UF-Purification Module FS03-FC-FUY03A1 (Daisen Membrane System Co., Ltd.) until the ionic conductivity reaches 1.5 mS / cm. The purified product was used. The latex concentration at this time was 40 wt%.
(SBR latex: Latex of -St (68) -Bu (29) -AA (3)-)
[0248]
Average particle size 0.1μm, concentration 45wt%, equilibrium moisture content 0.6wt% at 25 ℃ 60% RH, ion conductivity 4.2mS / cm (Ion conductivity is measured by Toa Denki Kogyo Co., Ltd. conductivity meter CM-30S Used latex stock solution (40wt% measured at 25 ° C), pH8.2
[0249]
<< Preparation of emulsion layer (photosensitive layer) coating solution >>
1.1 g of the 20 wt% aqueous dispersion of the pigment obtained above, 103 g of organic acid silver dispersion, 5 g of 20 wt% aqueous solution of polyvinyl alcohol PVA-205 (manufactured by Kuraray Co., Ltd.), 25 g of 25 wt% reducing agent dispersion, organic Polyhalogen compound 20wt% dispersion-1, -2, -3 in 5: 1: 3 (weight ratio) 11.5g in total (not added in Table 1), mercapto compound 10wt% dispersion 6.2g, limit Add 106 g of 40 wt% SBR latex purified by filtration (UF), 16 ml of 10 wt% methanol solution of phthalazine compound, mix 10 g of silver halide mixed emulsion A well, and prepare an emulsion layer coating solution. 70ml / m2Then, the solution was fed and applied.
[0250]
The viscosity of the emulsion layer coating solution was 85 [mPa · s] at 40 ° C. (No. 1 rotor) as measured with a B-type viscometer of Tokyo Keiki.
[0251]
The viscosity of the coating solution at 25 ° C using an RFS fluid spectrometer manufactured by Rheometrics Far East Co., Ltd. is 1500, 220, 70, 40 at shear rates of 0.1, 1, 10, 100, and 1000 [1 / second], respectively. 20 [mPa · s].
[0252]
<Preparation of emulsion surface intermediate layer coating solution>
772 g of 10 wt% aqueous solution of polyvinyl alcohol PVA-205 (manufactured by Kuraray Co., Ltd.), 0.7 g of 20 wt% dispersion of pigment, methyl methacrylate / styrene / 2-ethylhexyl acrylate / hydroxyethyl methacrylate / acrylic acid copolymer (copolymerization weight) Ratio 59/9/26/5/1) Add 2ml of 5wt% aqueous solution of Aerosol OT (American Cyanamid) to 226g of 27.5wt% latex solution to make an intermediate layer coating solution, 5ml / m2Then, the solution was fed to the coating die.
The viscosity of the coating solution was 21 [mPa · s] at a B-type viscometer of 40 ° C. (No. 1 rotor).
[0253]
<< Preparation of emulsion surface protective layer first layer coating solution >>
64 g of inert gelatin is dissolved in water, 16 g of latex [methyl methacrylate / acrylic acid / N-methylolacrylamide copolymer, copolymer weight ratio 93/3/4], 64 ml of 10 wt% methanol solution of phthalic acid, 4-methylphthal 74 ml of 10 wt% aqueous solution of acid, 28 ml of 1N sulfuric acid, 5 ml of 5 wt% aqueous solution of aerosol OT (American Cyanamid Co., Ltd.), 1 g of phenoxyethanol, add water to a total amount of 1000 g, and make a coating solution, 10ml / m2Then, the solution was fed to the coating die.
The viscosity of the coating solution was 17 [mPa · s] at 40 ° C. (No. 1 rotor) with a B-type viscometer.
[0254]
<< Preparation of emulsion surface protective layer second layer coating solution >>
80 g of inert gelatin dissolved in water, latex [methyl methacrylate / acrylic acid / N-methylolacrylamide copolymer, copolymer weight ratio 93/3/4] 20 g, N-perfluorooctylsulfonyl-N-propylalanine potassium salt 20 ml of a 5 wt% solution, 50 ml of a 2 wt% aqueous solution of polyethylene glycol mono (N-perfluorooctylsulfonyl-N-propyl-2-aminoethyl) ether [ethylene oxide average polymerization degree = 15], Aerosol OT (American Cyana) 15% polymethylmethacrylate microparticles (average particle size 4.0μm), 25g, 4-methylphthalic acid 1.6g, phthalic acid 8.1g, 44 ml of 1N sulfuric acid, benzoisothiazolinone 10mg total amount 1555g Water was added to the surface, and 445 ml of an aqueous solution containing 4 wt% chromium alum and 0.67 wt% phthalic acid was mixed with a static mixer immediately before application. And Mamoruso coating solution, 10ml / m2Then, the solution was fed to the coating die.
The viscosity of the coating solution was 9 [mPa · s] at 40 ° C. (No. 1 rotor) with a B-type viscometer.
[0255]
<Creation of photothermographic material>
On the back surface side of the undercoat support, the antihalation layer coating solution has a solid content of solid particulate dye of 0.04 g / m.2In addition, the coating amount of the back surface protective layer is 1 g / m.2Then, simultaneous multilayer coating was applied and dried to prepare an antihalation back layer.
[0256]
Emulsion layer from the undercoat surface to the surface opposite to the back surface (silver halide coating silver amount 0.14 g / m2), An intermediate layer, a protective layer first layer, and a protective layer second layer were simultaneously coated in the order of slide beads to form a photothermographic material (Table 1).
[0257]
Application is performed at a speed of 160 m / min, the distance between the coating die tip and the support is 0.18 mm, and the application width is adjusted to be 0.5 mm wider on both the left and right sides of the discharge slit width of the coating solution. Was set to 392 Pa lower than the atmospheric pressure. At that time, handling and temperature / humidity were controlled so that the support was not charged. In the subsequent chilling zone, air with a dry bulb temperature of 18 ° C and a wet bulb temperature of 12 ° C was blown for 30 seconds to cool the coating solution, and then the dry bulb temperature was changed in the suspension-type floating drying zone. After blowing dry air of 30 ° C. and wet bulb temperature of 18 ° C. for 200 seconds, passing through a drying zone of 70 ° C. for 30 seconds, and then cooling to 25 ° C., the solvent in the coating solution was volatilized. The average wind speed of the wind sprayed on the coating liquid film surface in the chilling zone and the drying zone was 7 m / sec.
[0258]
[Chemical 9]
Figure 0004054131
[0259]
Embedded image
Figure 0004054131
[0260]
Embedded image
Figure 0004054131
[0261]
(Evaluation of sensitivity and fog)
After exposing the photosensitive material with a laser sensitometer (details below), the photosensitive material is processed (thermal development) at 118 ° C for 5 seconds and then at 122 ° C for 16 seconds, and the resulting image is evaluated with a densitometer. It was. Sensitivity was evaluated by a laser output value for producing a density of fog + 3.0. The fog was also evaluated.
[0262]
Laser sensitometer: 35mW output
Combines two diode lasers with the following wavelengths
Single mode
Gaussian beam spot 1 / e2Is 100μm
Send in the sub-scanning direction at a pitch of 25μm and write one pixel four times
a. 660nm laser
b. 428nm laser
(Similar to a., Except that laser exposure was performed without multiplexing.)
c. 308nm laser
d. 351nm laser
e. 340nm laser
[0263]
(Evaluation of raw preservation)
The photosensitive material was evaluated by the ratio of the sensitivity of the sample aged at 50 ° C. for 1 day to the sensitivity before the aging.
Raw storage stability = sensitivity after aging at 50 ° C./sensitivity before aging
[0264]
The results are summarized in Table 1.
[0265]
[Table 1]
Figure 0004054131
[0266]
  As can be seen from Table 1, the photothermographic material of the present inventionThe image forming method usingLow fog,The photothermographic material of the present invention isGood raw preservation.
[0267]
【The invention's effect】
According to the present invention, a photothermographic material having good raw storage stability.Using,Low fogImage forming methodIs provided.

Claims (4)

支持体上に少なくとも1種類の感光性ハロゲン化銀、非感光性有機銀塩、銀イオンのための還元剤、バインダーおよび下記一般式( II )で表されるポリハロゲン化合物を含有した画像形成層を溶媒の30wt%以上が水である塗布液を用いて塗布し乾燥して形成されたものであって、且つ前記感光性ハロゲン化銀が実質的に色増感されていない熱現像感光材料を、青域から紫外線域に発光ピークを有するレーザー光で露光した後、熱現像することを特徴とする画像形成方法
Figure 0004054131
(一般式( II )中、Qはアルキル基、アリール基またはヘテロ環基を表し、X およびX はそれぞれハロゲン原子を表す。Zは水素原子または電子吸引性基を表す。Yは−C(=O)−、−SO−または−SO −を表す。nは0または1を表す。)
An image forming layer containing at least one photosensitive silver halide, non-photosensitive organic silver salt, a reducing agent for silver ions, a binder and a polyhalogen compound represented by the following general formula ( II ) on a support A photothermographic material wherein the photosensitive silver halide is substantially not sensitized by applying a coating solution containing 30 wt% or more of water as a solvent, followed by drying. An image forming method comprising : performing exposure with a laser beam having a light emission peak in a blue region to an ultraviolet region, followed by heat development :
Figure 0004054131
(In general formula ( II ), Q represents an alkyl group, an aryl group or a heterocyclic group, X 1 and X 2 each represent a halogen atom, Z represents a hydrogen atom or an electron-withdrawing group, and Y represents —C. (═O) —, —SO— or —SO 2 —, wherein n represents 0 or 1) .
前記バインダーがポリマーラテックスであることを特徴とする請求項1に記載の画像形成方法。  The image forming method according to claim 1, wherein the binder is a polymer latex. 前記ポリハロゲン化合物の固体微粒子分散物を含有することを特徴とする請求項1または請求項2に記載の画像形成方法。  The image forming method according to claim 1, further comprising a solid fine particle dispersion of the polyhalogen compound. 前記ポリハロゲン化合物が下記一般式(The polyhalogen compound is represented by the following general formula ( IIII −b)で表される化合物であることを特徴とする請求項1〜請求項3のいずれか1項に記載の画像形成方法:The image forming method according to any one of claims 1 to 3, wherein the compound is a compound represented by -b):
Figure 0004054131
Figure 0004054131
(一般式((General formula ( IIII −b)中、Q、X-B), Q, X 1 、X, X 2 、Zは一般式(, Z is a general formula ( IIII )におけるそれらと同義である。). )) .
JP11274599A 1999-04-20 1999-04-20 Image forming method Expired - Fee Related JP4054131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11274599A JP4054131B2 (en) 1999-04-20 1999-04-20 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11274599A JP4054131B2 (en) 1999-04-20 1999-04-20 Image forming method

Publications (2)

Publication Number Publication Date
JP2000305213A JP2000305213A (en) 2000-11-02
JP4054131B2 true JP4054131B2 (en) 2008-02-27

Family

ID=14594501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11274599A Expired - Fee Related JP4054131B2 (en) 1999-04-20 1999-04-20 Image forming method

Country Status (1)

Country Link
JP (1) JP4054131B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4037090B2 (en) 2001-07-12 2008-01-23 富士フイルム株式会社 Image forming method on photothermographic material
ATE317135T1 (en) 2001-07-12 2006-02-15 Fuji Photo Film Co Ltd IMAGING PROCESS
DE60217267T2 (en) 2001-11-13 2007-05-03 FUJI PHOTO FILM CO., LTD., Minamiashigara Photothermographic material and its use in a process of forming an image
JP2004279435A (en) 2002-10-21 2004-10-07 Fuji Photo Film Co Ltd Heat-developable photosensitive material and image forming method
US7381520B2 (en) 2002-12-03 2008-06-03 Fujifilm Corporation Photothermographic material

Also Published As

Publication number Publication date
JP2000305213A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP4043663B2 (en) Photothermographic material
JP2002090934A (en) Heat developable image recording material
JP2000330232A (en) Heat developable photosensitive material
JP4054131B2 (en) Image forming method
JP4299400B2 (en) Thermally developed image forming material
JP4011238B2 (en) Photothermographic material
JP3901410B2 (en) Black and white photothermographic material and method for producing the same
JP2004054127A (en) Heat developing photosensitive material and method for manufacturing photosensitive silver halide used for same
JP4169922B2 (en) Thermal development recording material
JP4008153B2 (en) Photothermographic material
JP4299951B2 (en) Photothermographic material
JP4117018B2 (en) Image forming method using photothermographic material
JP4183869B2 (en) Photothermographic material
JP4224200B2 (en) Photothermographic material
JP4015325B2 (en) Photothermographic material
JP4021586B2 (en) Photothermographic material
JP2003315951A (en) Heat-developable photosensitive material
JP2001194749A (en) Method for producing heat developable image recording material
JP4015784B2 (en) Photothermographic material
JP3927334B2 (en) Thermal development method of photothermographic material
JP2002082411A (en) Heat developable photosensitive material
JP4191350B2 (en) Photothermographic material
JP2002107868A (en) Method for preparing silver salt of fatty acid and heat- developable image recording material
JP4004778B2 (en) Photothermographic material
JP2002062615A (en) Heat developable photosensitive material

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees