JP4054081B2 - Optical wavelength division multiplexing system and apparatus - Google Patents

Optical wavelength division multiplexing system and apparatus Download PDF

Info

Publication number
JP4054081B2
JP4054081B2 JP30428096A JP30428096A JP4054081B2 JP 4054081 B2 JP4054081 B2 JP 4054081B2 JP 30428096 A JP30428096 A JP 30428096A JP 30428096 A JP30428096 A JP 30428096A JP 4054081 B2 JP4054081 B2 JP 4054081B2
Authority
JP
Japan
Prior art keywords
optical
signal
wavelength
output
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30428096A
Other languages
Japanese (ja)
Other versions
JPH10145337A (en
Inventor
洋 中元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30428096A priority Critical patent/JP4054081B2/en
Publication of JPH10145337A publication Critical patent/JPH10145337A/en
Application granted granted Critical
Publication of JP4054081B2 publication Critical patent/JP4054081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光波長多重伝送システム及びその装置に関し、更に詳しくは各波長の光信号を光波長多重して送信し、必要なら光伝送路の光波長多重信号を光増幅して中継・交換し、光伝送路の光波長多重信号を各波長の光信号に分波して各波長の光信号を受信する光波長多重伝送システム及びその装置に関する。
【0002】
近年、伝送容量の拡大と柔軟なネットワークの構築のため、光波長多重(WDM : Wavelength Division Multiplexing)伝送システムが検討されている。光波長多重伝送システムでは、各光波長を個別の通信チャネルとして利用できるので、大容量の光信号の光路を切り替えて通信し、柔軟かつ高速のネットワークを構築できる。
【0003】
【従来の技術】
図13,図14は従来技術を説明する図(1),(2)で、図13は従来の光波長多重伝送システムを構成する光中継器の構成を示している。
光伝送網より各波長λ1〜λ6の光信号λ1〜λ6が光中継器に入力する。なお、波長λ1には各単一波長λ11〜λ16が合波されている場合もある。波長λ2〜λ6についても同様である。但し、以下の説明では説明の簡単のために各光信号λ1〜λ6は夫々単一波長とする。
【0004】
各光信号λ1〜λ6は光合波器で合波(光波長多重)され、光増幅器に入力する。光増幅器は、例えばエルビウムドープファイバを備え、該ファイバは励起用レーザダイオード(LD)からの励起光により励起されている。光波長多重光信号はエルビウムドープファイバで光増幅され、光分岐を介して光分波器に至る。更に光分波器で各波長の光信号λ1〜λ6に分波され、光クロスコネクトスイッチによりスイッチング(光交換)される。
【0005】
この場合に、上記光増幅器は、入力の光波長多重信号を光波長多重数に応じた光出力一定制御の下で光増幅することにより、各波長の光出力一定制御を能率良く実現している。具体的に言うと、増幅後の光信号より分岐された分岐光λ1〜λ6はフォトディテクタPDで光電変換され、更にレベル検出部LVDにより光波長多重光信号の信号レベル(振幅レベル)が検出される。該検出レベルは差動アンプDAで基準レベルREF(例えば合波チャネル数m×チャネル当たりの基準レベル△REF)と比較され、その誤差信号が差動アンプDAにより増幅されて前記励起用LDに負帰還される。これによりエルビウムドープファイバの光出力は一定制御され、よって各波長信号λ1〜λ6の光出力も一定制御される。
【0006】
ところで、この種のシステムでは、例えば光信号λ1〜λmで通信中に、送信機の挿抜(又は送信の開始/停止)により例えば光信号λ1が挿抜されることがある。ここままでは、上記光波長多重信号の光出力一定制御により、各波長の光出力はm/(m+1)又はm/(m−1)に変化してしまう。係る場合には、中継器制御部は、網側よりその旨の知らせを受けて基準レベルREFをREF±△REFに変更することにより、各波長の光信号はレベル一定に保たれる。
【0007】
【発明が解決しようとする課題】
しかるに、この種の光波長多重伝送システムでは、上記異なる波長の光信号が1つの光ファイバに入るため、ある光波長の信号が所定の割当波長から逸脱して別のチャネルの波長に近くなると、光受信機ではその光は干渉(雑音)となり伝送品質が著しく劣化する問題があった。
【0008】
また、上記の如く光増幅器により光波長多重信号の出力一定制御を行う方式では、ある光信号の突然の挿抜に対して光増幅器が適正に応答できず、光増幅器の出力にオーバシュート/アンダシュートが発生する問題があった。以下、これを具体的説明する。
図14は従来の光増幅器の動作タイミングチャートを示しており、図14(A)は光信号(光送信機)が挿入された場合を示している。例えば光信号λ1,λ2の通信中に光信号λ3が急に挿入されると、基準レベルREFを変更してもそのタイミング誤差等により、負帰還系が過敏に応答して光増幅器の出力は図示の如く一時的に低下していた。
【0009】
図14(B)は光信号(光送信機)が削除された場合を示している。例えば光信号λ1,λ2の通信中に光信号λ3が急に削除されると、基準レベルREFを変更してもそのタイミング誤差等により、負帰還系が過敏に応答して光増幅器の出力は図示の如く一時的に上昇していた。
上記いずれにしても光増幅器におけるこの様なオーバシュート/アンダシュートの増幅作用は、他の通信中チャネルλ1,λ2の各光信号レベルに悪影響を与えるばかりか、装置を劣化させる可能性があった。
【0010】
本発明の目的は、光波長逸脱によるチャネル間のクロストークを有効に検出する光波長多重伝送システム及びその装置を提供することにある。
【0011】
【課題を解決するための手段】
上記の課題は例えば図1(A)の構成により解決される。即ち、本発明(1)の光波長多重伝送システムは、各波長の光信号を送信する複数の光送信装置OSと、各光送信装置の出力信号を合波して光伝送路に送出する光合波器と、光伝送路の光波長多重信号を光増幅する光増幅器と、光伝送路の光波長多重信号を各波長の光信号に分波する光分波器と、光分波器の各出力信号を受信する複数の光受信装置ORとを備える光波長多重伝送システムにおいて、前記各光送信装置OSは高ビットレートの光主信号に低周波の光制御信号を一定の割合で重畳して送信すると共に、光伝送路における光波長多重信号の一部を光分岐して該分岐光より所望単一波長の光信号を抽出し、かつ該抽出光信号の光電変換信号を高周波の主信号成分と低周波の制御信号成分とに分離して各分離信号の信号レベルを検出すると共に、得られた前記分離された主信号成分の信号レベルと、前記分離された制御信号成分の信号レベルの比が予め定められた範囲から逸脱していることにより光信号間における光波長間干渉に基づくクロストークの存在を検出する光波長間干渉(クロストーク)検出手段を備えるものである。
【0012】
本発明(1)においては、光送信装置OSは高ビットレートの光主信号に低周波の光制御信号を一定の割合で重畳して送信する。従って、通常ならある波長の光信号からは主信号成分の信号レベルに対し一定割合の制御信号成分の信号レベルが検出される筈である。
しかし、ある波長の光信号に他のチャネルより波長の逸脱した光信号が混入した様な場合には、チャネル間の信号干渉により、前記ある波長の主信号成分の信号レベルとその制御信号成分の信号レベルとの間には一定の関係(割合等)が得られない。同時に前記他のチャネルの主信号成分の信号レベルとその制御信号成分の信号レベルとの間にも一定の関係(割合等)が得られない。
【0013】
従って、光波長多重信号の分岐光より所望単一波長の光信号を抽出してその主信号成分の信号レベルとその制御信号成分の信号レベルとの間の比につき一定の関係有無を調べることにより、光波長間干渉(クロストーク)の存在を有効に検出できる。
【0017】
しかし、ある波長の光信号に他のチャネルより波長の逸脱した光信号が混入した様な場合には、チャネル間の信号干渉により、前記ある波長の制御信号は正常に復調できない。同時に前記他のチャネルの制御信号も正常に復調できない。
従って、光波長多重信号の分岐光より所望単一波長の光信号を抽出してその制御信号の復調可否、又は復調されても誤りが多い、等の状態を監視することにより、光波長間干渉に基づくクロストークの存在を有効に検出できる。
【0018】
好ましくは、この光波長多重伝送システムは、各波長の光信号を送信する複数の光送信装置OSと、各光送信装置の出力信号を合波して光伝送路に送出する光合波器と、光伝送路の光波長多重信号を光波長多重数に応じた光出力一定制御の下で光増幅する光増幅器と、光増幅器の出力信号を各波長の光信号に分波する光分波器と、光分波器の各出力信号を受信する複数の光受信装置ORとを備える光波長多重伝送システムにおいて、送信側単一波長の光信号経路に設けられ、該経路への光信号の挿入/削除に際し、該光信号の増加/減少の速度を緩やかに変化させる光振幅制御手段を備えるものである。
【0019】
この様な光振幅制御手段は、図示しないが、光送信装置OSの中、又は光送信装置OSと光合波器の間に設けられる。光信号の挿入/削除とは、光送信装置(パッケージ)の挿抜、又は光送信装置の送信開始/停止を意味する。光振幅制御手段は、光信号の挿入/削除に際し、これに連動して光信号の増加/減少の速度を緩やかに変化させる。光送信装置OSの中では、光源又は外部光変調器のバイアスを緩やかに変化させる方法で光振幅制御手段を実現できる。またそれ以外の場所では、光経路に光透過率可変減衰器を挿入してその光透過率を緩やかに変化させる方法で光振幅制御手段を実現できる。
【0020】
光信号の挿入/削除に際し、光信号の増加/減少の速度を緩やかに変化させれば、光増幅器が光伝送路の光波長多重信号を光波長多重数に応じた光出力一定制御の下で光増幅していても、オーバシュート/アンダシュートの発生を有効に抑制できる。
また好ましくは、この光増幅器は、各波長の光信号を送信する複数の光送信装置OSと、各光送信装置の出力信号を合波して光伝送路に送出する光合波器と、光伝送路の光波長多重信号を光増幅する光増幅器と、光増幅器の出力信号を各波長の光信号に分波する光分波器と、光分波器の各出力信号を受信する複数の光受信装置ORとを備える光波長多重伝送システムの前記光増幅器において、入力の光波長多重信号を光増幅する光増幅部と、光増幅部の出力信号の一部を光分岐して該分岐光より所望単一波長の光信号を抽出し、かつ該抽出光信号の光電変換信号に基づきその信号レベルを検出すると共に、該信号レベルが一定となるように前記光増幅部の増幅利得を制御する利得制御部とを備えるものである。
【0021】
この光増幅器においては、光増幅部は入力の光波長多重信号を光増幅するが、利得制御部は、光増幅後の分岐光より所望単一波長の光信号を抽出し、該抽出光信号の光電変換信号に基づき検出した信号レベルが一定となるように前記光増幅部の増幅利得を制御する。即ち、光波長多重信号の出力一定制御では無く、ある波長信号の出力一定制御により、結果として全波長信号の出力一定制御を実現している。
【0022】
因みに、どの光信号を利得制御の基準とするかは、予め網側より知らされる。網側は、光増幅器に入る光信号の波長数、光増幅後の所要光出力から、どの光信号を利得制御対象にし、その出力制御値はいくらであるかを知らせる。
従って、他の任意の光信号が挿入/削除されても、その部分には関知しないのでオーバシュート/アンダシュートは発生せず、常に全波長信号の出力が一定に制御される。
【0023】
また好ましくはこの光増幅器は、各波長の光信号を送信する複数の光送信装置OSと、各光送信装置の出力信号を合波して光伝送路に送出する光合波器と、光伝送路の光波長多重信号を光増幅する光増幅器と、光増幅器の出力信号を各波長の光信号に分波する光分波器と、光分波器の各出力信号を受信する複数の光受信装置ORとを備える光波長多重伝送システムの前記光増幅器において、入力の光波長多重信号を光増幅する光増幅部と、光増幅部の出力信号の一部を光分岐して該分岐光より各単一波長の光信号を抽出し、かつ各抽出光信号の光電変換信号につき夫々信号レベルを検出すると共に、これらの内の何れか1の信号レベルを選択し、該信号レベルが一定となるように前記光増幅部の増幅利得を制御する利得制御部とを備えるものである。
【0024】
この光増幅器においては、利得制御部は、光増幅後の分岐光より各波長の光信号を抽出し、得られた各信号レベルの中から1の信号レベルを選択する構成となっている。一般に、光増幅後の分岐光よりある波長の光信号を抽出するには光フィルタを使用するが、単一の光フィルタでその波長選択性を変えるのは困難であるため、例えばファブリペロー型光分波器を使用すると共に、各分波信号を光電変換して各信号レベルを検出し、これらの内の何れか1つをアナログスイチで選択する構成とする。従って、実現容易である。
【0025】
好ましくは、上記光増幅器において、光増幅前の光波長多重信号の一部を光分岐して該分岐光より各単一波長の光信号を抽出し、かつ各抽出光信号の光電変換信号につき夫々信号レベルを検出すると共に、これらの内の光信号が存在する何れか1のチャネル情報を選択し、これを前記利得制御部における利得制御用光信号又は利得制御用信号レベルの選択用信号となす光信号検出部を備える。
【0026】
これにより、光信号検出部は、光増幅前の光波長多重信号に基づき、いずれのチャネルに光信号が存在するかを自動的に検出し、そのチャネル番号の情報を利得制御部に知らせる。従って、この場合の光増幅器は、網側からの通知を受けなくても、自動的に利得制御用光信号又は利得制御用信号レベルを選択できる。
【0027】
また、本発明()の光中継装置は、一定の割合で低周波光制御信号を重畳された各波長の光送信信号を合波して光伝送路に送信する複数の光送端装置TXと、複数の光送端装置の出力信号を合波すると共に、その出力信号を光増幅し、かつその出力信号を前記合波した各光信号に分波し、必要なら光信号路の交換を行う光中継装置と、光中継装置の出力信号を各波長の光受信信号に分波して受信する複数の光受端装置RXとを備える光波長多重伝送システムの前記光中継装置において、光増幅信号の一部を光分岐して該分岐光より所望単一波長の光信号を抽出し、かつ該抽出光信号の光電変換信号を高周波の主信号成分と低周波の制御信号成分とに分離して各分離信号の信号レベルを検出すると共に、得られた前記分離された主信号成分の信号レベルと、前記分離された制御信号成分の信号レベルとの比が予め定められた範囲から逸脱していることにより光信号間における光波長間干渉に基づくのクロストークの存在を検出する光波長間干渉検出部を備えるものである。
【0028】
光中継装置にこの様な光波長間干渉検出部を備えることにより、クロストークの存在の検出を能率良く行える。
【0030】
光中継装置にこの様な光波長間干渉検出部を備えることにより、クロストーク存在の検出を能率良く行える。
また好ましくは、この光中継装置は、各波長の光送信信号を合波して光伝送路に送信する複数の光送端装置TXと、複数の光送端装置の出力信号を合波すると共に、その出力信号を光波長多重数に応じた振幅一定制御の下で光増幅し、かつその出力信号を前記合波した各光信号に分波し、必要なら光信号路の交換を行う光中継装置と、光中継装置の出力信号を各波長の光受信信号に分波して受信する複数の光受端装置RXとを備える光波長多重伝送システムの前記光中継装置において、光中継装置における合波前の各光信号受信経路に設けられ、該経路への光信号の挿入/削除に際し、該光信号の透過量を緩やかに変更する透過量可変光減衰器を備えるものである。
【0031】
従って、光中継装置の光増幅器が入力の光波長多重信号をその光波長多重数に応じた振幅一定制御の下で光増幅する場合でも、該光中継装置における合波前の各光信号受信経路にこの様な透過量可変光減衰器を備えることにより、光増幅器におけるオーバシュート/アンダシュートの発生を能率良く抑制できる。
また好ましくは、この光送信装置は、各波長の光信号を送信する複数の光送信装置OSと、各光送信装置の出力信号を合波して光伝送路に送出する光合波器と、光伝送路の光波長多重信号を光波長多重数に応じた振幅一定制御の下で光増幅する光増幅器と、光増幅器の出力信号を各波長の光信号に分波する光分波器と、光分波器の各出力信号を受信する複数の光受信装置ORとを備える光波長多重伝送システムの前記光送信装置において、光源と、光源の光出力を変調する電界吸収型又はマッハツェンダ型素子等よりなる外部光変調器と、外部光変調器による光信号送信の開始/停止に際し、前記外部光変調器に加えるバイアス制御信号を緩やかに変化させるバイアス制御回路とを備えるものである。
【0032】
従って、光増幅器が光伝送路の光波長多重信号を光波長多重数に応じた振幅一定制御の下で光増幅する場合でも、光送信装置がこの様なバイアス制御回路を備えることにより、光増幅器におけるオーバシュート/アンダシュートの発生を能率良く抑制できる。
また好ましくは、この光送信装置は、各波長の光信号を送信する複数の光送信装置OSと、各光送信装置の出力信号を合波して光伝送路に送出する光合波器と、必要なら光伝送路の光波長多重信号を光増幅する光増幅器と、光伝送路の光波長多重信号を各波長の光信号に分波する光分波器と、光分波器の各出力信号を受信する複数の光受信装置ORとを備える光波長多重伝送システムの前記光送信装置において、光源となるレーザダイオードと、前記レーザダイオードの後方監視用光のモニタ出力に基づき該レーザダイオードの光出力を一定に制御するバイアス電流制御部と、前記レーザダイオードの動作温度のモニタ出力に基づき該レーザダイオードの動作温度を一定に制御する動作温度制御部と、前記レーザダイオードのバイアス電流のモニタ出力に基づき、該レーザダイオードの光波長が一定となるように、前記動作温度制御部の温度設定値を制御する波長一定制御部とを備えるものである。
【0033】
一般に、光源となるレーザダイオードは、その出力ビームの光波長がレーザダイオードの動作(周囲)温度の変化に応じて所定の関係により変化する性質を持っている。また、レーザダイオードの光出力は該レーザダイオードのバイアス(駆動)電流と所定の関係にあり、その光出力一定制御を行うと、レーザダイオード特性のバラツキや、経年劣化により光出力とバイアス電流との関係も変化する。かくしてバイアス電流が変化すると、レーザダイオードの動作温度も変化し、出力ビームの光波長も変化してしまう。そこで、波長一定制御部はレーザダイオードのバイアス電流のモニタ出力に基づき、該レーザダイオードの光波長が一定となるように、サーミスタやペルチェ冷却素子等を含む動作温度制御部の温度設定値を制御する。従って、レーザビームの光出力のみならず、光波長も一定に制御され、有害なクロストークの発生を未然に防止できる。
【0034】
また好ましくは、この光送信装置は、各波長の光信号を送信する複数の光送信装置OSと、各光送信装置の出力信号を合波して光伝送路に送出する光合波器と、必要なら光伝送路の光波長多重信号を光増幅する光増幅器と、光増幅器の出力信号を各波長の光信号に分波する光分波器と、光分波器の各出力信号を受信する複数の光受信装置ORとを備える光波長多重伝送システムの前記光送信装置において、光源となるレーザダイオードと、前記レーザダイオードの光出力を変調する外部光変調器と、前記外部光変調器の出力信号の一部を光分岐して得たモニタ出力に基づき該外部光変調器の光出力を一定に制御する前記レーザダイオードのバイアス電流制御部と、前記レーザダイオードの動作温度のモニタ出力に基づき該レーザダイオードの動作温度を一定に制御する動作温度制御部と、前記レーザダイオードのバイアス電流のモニタ出力に基づき、該レーザダイオードの光波長が一定となるように、前記動作温度制御部の温度設定値を制御する波長一定制御部とを備えるものである。
【0035】
これにより、バイアス電流制御部は、外部光変調器出力の分岐光のモニタ出力に基づき該外部光変調器の光出力を一定に制御するするので、網側に出力高安定な光信号を提供できる。
【0036】
【発明の実施の形態】
以下、添付図面に従って本発明に好適なる複数の実施の形態を詳細に説明する。なお、全図を通して同一符号は同一又は相当部分を示すものとする。
図2は実施の形態による光波長多重伝送システムの概略構成を示す図で、この光波長多重伝送システムは、光送端装置TX1〜TXnと、光中継器RG11〜RG22と、光受端装置RX1〜RXnと、これらの間の伝送制御の集中管理を行う中央の制御局100とを備える。図は1方向の伝送を示すが、逆方向の伝送も同様である。
【0037】
各光送端装置TXには、複数の光送信機OS1〜OS6が搭載され、夫々が入力のデータ信号に基づき異なる波長λ1〜λ6の光信号λ1〜λ6を出力する。光信号λ1〜λ6は光合波器OMUXで合波され、光伝送路を介して光中継器RGに至る。光中継器RGの入力の各光波長多重信号は光合波器OMUXで合波され、光増幅器で光増幅され、光分波器ODMXで分波され、更に光クロスコネクトスイッチOCCSで光経路を切り替えられ、所要の出力ポ−トに出力される。光受端装置RXでは入力の光波長多重信号が光分波器ODMXで分波され、夫々が光受信機ORで受信され、データ信号が復調される。
【0038】
この光受信装置ORは、図示しないが、光フィルタで所要の波長の信号だけを取り出し、O/Eによって電気信号に変換する。光フィルタとして透過帯域が変化する可変光フィルタを用いると、すべてのチャネルの信号を受信できる。
係る構成により、ある光送端装置TXと光受端装置RXの間で通信の要求があると、該要求は制御局100に通知され、制御局100では光経路、波長を設定してその情報を光送端装置TX、光受端装置RX、光中継器ORに通知する。この場合に、光経路の設定は同一波長が一つのファイバに入らないように行われる。同一ファイバに入らなければネットワークで繋がっている複数の光送信機OSや光受信機ORが同一波長を使うことは許される。
【0039】
光送信機OSは、この通知を基に光送信機OS、光受信機OR、光経路、波長等の識別情報(上記制御信号に相当)をある一定の比率(数パーセント)で主信号に重畳する。この重畳信号は主信号(数GHz程度)に比べ十分に低速(数KHz程度)である。
なお、上記光中継器RGを2段構成としたのは、光経路設定に冗長性を持たせるためであり、冗長性が必要ないときは、1段構成としてもよい。また光送端装置TXや光受端装置RXは夫々一つの光送信機OS、光受信機ORのみを有するとしてもよい。
【0040】
図3は第1の実施の形態による光中継器の構成を示す図で、光波長多重信号路におけるクロストークの存在を制御信号成分の重畳比、又は制御信号の復調不可に基づき検出する場合を示している。
1又は2以上の光入力信号は光合波器で合波され、光増幅器で光増幅され、光分波器で分波される。なお、この例の光増幅器が光出力一定制御を行うか否かは問わない。更に図示の如く、光増幅器と光分波器の間に光分岐を設け、光増幅後の光波長多重信号の一部を光分岐する。この分岐光は、可変波長フィルタにより所望単一波長の光信号が抽出され、フォトディテクタPDで光電変換される。
【0041】
この可変波長フィルタは、例えばファブリペロー型光分波器と、各分波光の選択(光スイッチ)回路とから成り、中継器制御部からの波長選択信号WSに従い、対応する波長の光信号を抽出する。
なお、この中継器制御部は、通信ラインを介して制御局100と接続しており、該制御局100からのクロスコネクトスイッチOCCSの制御信号XSやその他の各種制御信号を受けると共に、クロストークが検出された様な場合は、その旨を制御局100に通知し、これを受けた制御局100は、通信経路の再設定を行うことも可能である。
【0042】
主題に戻り、上記得られた電気信号には、高周波のデータ信号に低周波の制御信号が、数パーセント程度の振幅で重畳されている。高周波のデータ信号成分はハイパスフィルタHPFで分離され、レベル検出部LVD1で振幅レベルが検出される。一方、低周波の制御信号成分はローパスフィルタLPFで分離され、レベル検出部LVD2で振幅レベル(例えばピークツーピークレベル)が検出される。クロストーク判定部は、データ信号の振幅レベルと制御信号の振幅レベルとを比較すると共に、光送信機における重畳比率に、光増幅器における光雑音等を考慮したものより、検出した重畳比率が逸脱した(例えば小さくなった)様な場合は、干渉光が入ってきたものと判断し、クロストークの存在を検出する。
【0043】
一方、前記ローパスフィルタLPFで分離された低周波の制御信号成分は復調器DEMで復調される。なお、この復調器DEMとしては、制御信号のASK/FSK/PSK変調等に応じて対応する復調器DEMが設けられる。復調器DEMによる制御信号の復調信号及び復調器DEMにおける復調可否の状態信号CDは、中継器制御部に渡され、これを受けた中継器制御部は、復調が正常に行われなかった場合、又は復調データのCRC検査等に基づき復調データに何度も誤りが含まれている場合、等には干渉光が入ってきたものと判断し、クロストークの存在を検出する。
【0044】
なお、簡略化として、高周波のデータ信号の分離を行わず、PDの光電流に対する制御信号成分の比を比較してもよい。
また、この様なクロストーク検出手段は、光中継器のみならず、光波長多重伝送路の何処に設けられても良いことは明らかである。
図4は第1の実施の形態による光中継器の動作タイミングチャートを示す図で、図4(A)はクロストークが存在しない正常時の場合を示している。
【0045】
光出力一定の光信号λ1に対し、図示の如く、制御信号1=1の区間はa%の正弦波信号が重畳され、制御信号1=0の区間は正弦波信号が重畳されない。従って、この場合のクロストーク判定部では、略所定(a%)の重畳比率が検出され、クロストークの存在は検出されない。また制御信号1も正しく復調され、クロストークの存在は検出されない。
【0046】
図4(B)はクロストーク混入時の場合を示している。
上記光信号λ1に対し、ある割合でクロストーク光(λ1の側に波長の逸脱した光信号)が混入すると、光信号λ1の振幅レベルが増大(但し、加算される場合)するばかりか、制御信号1の振幅レベルは、クロストーク光の制御信号2の干渉位相に応じて、図示の如く増減する。従って、この場合のクロストーク判定部で検出される重畳比率は略所定(a%)より逸脱し、よってクロストークの存在が検出される。又は、制御信号1が正しく復調されないことにより、クロストークの存在が検出される。
【0047】
なお、データ信号の振幅と、制御信号の振幅は、上記重畳比以外にも、任意の方法で比較できる。
図5は第2の実施の形態による光中継器の構成を示す図で、クロストークの存在を各波長の光信号の信号レベル(光パワー)の一様性有無等に基づき検出する場合を示している。
【0048】
1又は2以上の光入力信号は光合波器で合波され、光増幅器による光波長多重数に応じた出力一定制御の下で光増幅され、光分波器で分波される。更に、図示の如く光増幅器と光分波器の間に光分岐を設け、光増幅後の光波長多重信号の一部を光分岐する。この分岐光は、可変波長フィルタによりある波長の光信号が抽出され、フォトディテクタPDで光電変換される。なお、この場合の電気信号には、高周波のデータ信号に低周波の制御信号が数パーセント程度の振幅で重畳されていても良いし、又は重畳されていなくても良い。そして、上記光電変換された電気信号につきレベル検出部LVDで振幅レベル(光パワーに相当)が検出される。
【0049】
この場合に、クロストーク判定部は、ある光信号の振幅レベルが所定より増大し、又は減少した事によりクロストークの存在を検出する。光波長多重信号の出力一定制御の下では、例えば光信号λ1に光信号λ2の一部が漏れ混んでも、光波長多重信号全体の出力レベルに変化はない。しかし、増幅光内部の波長配分に着目すると、光信号λ1の光パワーは増大し、かつ光信号λ2の光パワーは減少している。従って、ある光信号の振幅レベルと所定値とを比較する事でクロストークの存在を検出できる。
【0050】
ところで、上記の如くある光信号λ1の光パワーのみを検出するのでは、例えばその光送信機OS1の不調等により光出力λ1に増/減が生じていても、クロストークの存在を検出してしまう場合が生じ得る。しかし、この場合は、光信号λ1の光パワーの増/減に伴い、残り各チャネルの光信号は光波長多重信号の出力一定制御の作用により一様(各チャネルで平等)にその影響を受けてこれらの光出力を一様に減/増されることになる。即ち、例えば光信号λ1が増大すると、残り各光信号λ2〜λ6の光出力は一様に減少し、また光信号λ1が減少すると残り各光信号λ2〜λ6の光出力は一様に増大する。即ち、光信号λ1の振幅レベルのみ異なり、残り各光信号λ2〜λ6の振幅レベルは互いに同一と言うパターンが生じる。これは上記クロストークのパターンと区別できる。
【0051】
そこで、クロストーク判定部は、好ましくは可変波長フィルタを可変制御して各光信号の光パワーを検出し、これらの大小のパターンを調べる。もし、ある光信号λ1の光出力が相対的に小で、かつ他のある光信号λ2の光出力が相対的に大である様な場合はクロストークの存在を検出できる。逆も同様である。
なお、後者の各光信号の光パワーの一様性有無を調べる方式は、光パワーの相対的判定に基づくので、光増幅器が光波長多重信号の光出力一定制御を行わない場合にも適用できることは明らかである。
【0052】
図6は第3の実施の形態による光中継器を説明する図で、送信側で光信号が急に挿抜されても、光増幅器におけるオーバシュート/アンダシュートの発生を抑制できる場合を示している。
図6(A)に第3の実施の形態による光中継器の構成を示す。
この光中継器では、図示の如く、光合波器の各入力ポートの側に光スイッチOSW1〜OSW6が挿入されている。光増幅器は図13のものと同様で良いが、光増幅部をエルビウムドープファイバに代え、他の半導体光増幅素子を使用しても良い。
【0053】
図6(B)に一例の光スイッチの構成を示す。
入力の光ビームは偏光子により偏光され、レンズにより平行行光され、磁気光学結晶に導かれる。磁気光学結晶には電磁石により光路と平行に磁界Hが加えられ、磁界Hの強さに応じて、偏光の回転角が異なる。回転を受けた偏光はレンズで集光され、検光子に至る。この時の偏光が検光子と平行の場合は光ビームが出力され、また直角の場合は光ビームが出力されない。この場合に、磁界Hを急激に変化させれば光スイッチとなり、出力の光ビームは急峻にON/OFFする。しかし、本実施の形態では磁界H(駆動電流I)を緩やか変化させることにより、出力の光ビームを緩やかにON/OFFさせる。即ち、この光スイッチはこのON/OFFの遷移区間では光透過量可変減衰器の様に作用する。
【0054】
図7は第3の実施の形態による光中継器の動作タイミングチャートで、図7(A)は光信号(光送信機)が急に挿入された場合を示している。
ここでは、光信号λ3の挿入に同期して、利得制御部に加える基準レベルREFを滑らかに変化させる。及び又は利得制御部のレスポンスに比較的大きな時定数を持たせる。係る構成では、例えば光信号λ1,λ2の通信中に光信号λ3が急に挿入されても、光スイッチOSW3の作用により、光信号λ3の振幅は図示の如く滑らかに上昇する。一方、基準レベルREFもこれに略同期して滑らかに上昇し、及び又は利得制御部のレスポンスにも比較的大きな時定数があるので、光中継器制御部からの光スイッチOSW3のONタイミングが多少ずれても、差動アンプDAに大きな誤差電圧の検出は生じない。また誤差電圧が多少生じても利得制御部におけるレスポンスの時定数により、利得に大きな変化は生じない。その結果、光増幅器の光出力は一時的に低下することなく滑らかに上昇し、その後新たな基準レベルREFに基づくレベル一定制御に落ちつく。
【0055】
図7(B)は光信号(光送信機)を削除する場合を示している。
例えば光信号λ1,λ2の通信中に光信号λ3を削除する場合は、まず光スイッチOSW3の作用により、光信号λ3の振幅は図示の如く滑らかに下降する。一方、基準レベルREFもこれに略同期して滑らかに下降し、及び又は利得制御部のレスポンスにも比較的大きな時定数があるので、光中継器制御部からの光スイッチOSW3のOFFタイミングが多少ずれても、差動アンプDAに大きな誤差電圧の検出は生じない。また誤差電圧が多少生じても利得制御部におけるレスポンスの時定数により、利得に大きな変化は生じない。その結果、光増幅器の光出力は一時的に上昇することなく滑らかに下降し、その後新たな基準レベルREFに基づくレベル一定制御に落ちつく。その後、λ3を削除できる様にする。
【0056】
図8は第4の実施の形態による光中継器の構成を示す図で、光増幅器が光波長多重信号の出力一定制御を行うのではなく、ある光信号の出力一定制御を行うことにより、結果として光波長多重信号の出力一定制御が得られる場合を示している。
増幅光の一部を光分岐で分岐すると共に、光フィルタ(ファブリペロー型光分波器等)で各波長の光信号を抽出し、夫々をフォトディテクタPDで光電変換してレベル検出部LVDにより信号レベル(振幅レベル/光パワー等)L1〜L6をモニタする。更にアナログスイッチ(アナログセレクタ)で何れかのチャネルの信号レベルLiを選択し、これを差動アンプDAで基準レベルREF(但し、この場合は常に1波長分の△REF)と比較し、得られた誤差信号を増幅して励起用レーザダイオードの駆動回路に負帰還し、こうして何れか1のチャネルの光出力が一定となる様にループを形成する。
【0057】
従って、例えば入力の光信号λ1,λ2のうち、例えば光信号λ1の信号レベルL1をモニタして光出力一定制御を行っている場合に、もし光信号λ3が急にに挿入されても、光増幅器の帰還ループには何らの影響もないから、光増幅器の出力には各一定のレベルに増幅された光信号λ1,λ2の上に同じく一定のレベルに増幅された光信号λ3が合成される。逆も同様である。
【0058】
かくして、ある光信号の出力一定制御を行うことにより、結果として光波長多重信号の出力一定制御が得られる。しかも、この場合の各光信号(モニタ用光信号を除く)は従来と同様に急に挿抜されても良く、光増幅器におけるオーバシュート/アンダシュートの問題は生じない。
なお、例えばモニタ中の光信号λ1が挿抜される場合は、制御局100からの通知により、予めモニタ対象の光信号を例えば他の光信号λ2に変更する。制御局100からの通知は、光信号λ1に重畳される制御信号で知らされても良いし、又は制御局100からの直接のルートCMSGで知らされても良い。
【0059】
また、上記本実施の形態では各波長λ1〜λ6毎にフォトディテクタPDとレベル検出部LVDを備える構成を示したが、これに限らない。図示しないが、例えばファブリペロー型光分波器と光スイッチ(光セレクタ)とにより光フィルタを構成し、中継器制御部からの波長選択信号WSにより、任意単一波長の光信号を抽出するように構成しても良い。この場合は、アナログセレクタ、及び1チャネル分を残して他のPDやLVDを省略できる。
【0060】
また、エルビウムドープファイバに代え、半導体光増幅素子を使用できることは言うまでも無い。
図9は第5の実施の形態による光中継器の構成を示す図で、上記図8の構成に、モニタ用光信号の自動検出部を付加した場合を示している。
図示の如く、光増幅器の前段で光合波器の出力の一部を光分岐で分岐し、光フィルタで各波長の光信号を抽出し、夫々をフォトディテクタPDで光電変換してレベル検出部LVDにより各信号レベル(光パワー/振幅レベル等)をモニタする。更に入力解析部で信号レベルが所定以上のチャネルを検出し、そのチャネル番号をエンコードしてアナログセレクタの選択信号LSとなし、これをアナログセレクタの選択入力Sに加える。その結果、アナログセレクタは常に光信号の存在するチャネルの光信号を自動的にモニタ対象に選択する事になる。
【0061】
なお、入力解析部に優先選択の機能を付加することで、複数チャネルに光信号が存在する場合でも、優先順位の高いチャネルを優先的に選択できる。
また、上記利得制御部にファブリペロー型光分波器と光スイッチ(光セレクタ)とからなる光フィルタを採用した場合は、入力解析部の選択信号LSを該光フィルタの選択信号WSとして使用する。
【0062】
図10は第1の実施の形態による光送信機を説明する図で、光信号の急な挿抜時における上記オーバシュート/アンダシュートの発生を緩和すべく光送信機の外部光変調器に電界吸収型光変調器を使用した場合を示している。
図10(A)に第1の実施の形態による光送信機の構成を示す。
光出力一定制御された光源(例えばレーザダイオード)からの光ビームは電界吸収型光変調器で光強度が変調され、光ネットワークに送信される。
【0063】
図10(B)に電界吸収型光変調器の消光特性を示す。
電界吸収型光変調器は、図示の如く、素子に加えるバイイアス電圧(印加電界)を高くすると消光特性(挿入損失)が増加し、バイイアス電圧(印加電界)を低くすると消光特性(挿入損失)が減少する特性を有する。
図10(A)に戻り、駆動回路は入力の高ビットレートの送信データを高周波(GHzオーダ)のデータ駆動信号に変換する。バイアス制御回路は入力の送信付勢/消勢の制御信号TXEに従い図示の如くハイレベルからローレベル又はローレベルからハイレベルに緩やかに遷移するようなバイアス制御信号を生成する。また必要なら、低周波発振器は、入力の制御データの1/0に従い低周波の正弦波信号を発生/消勢する。なお、ここでは制御信号の重畳方式としてASK変調の場合を述べるが、他にFSKやPSK変調等を採用しても良い。そして、低周波重畳回路は、上記高ビットレートのデータ駆動信号に低周波のバイアス制御信号や低周波数の制御信号を重畳して電界吸収型光変調器に加える。
【0064】
係る光送信機(パッケージ)のシステムへの活線挿入を行う時は、まず送信制御信号TXE=0(消勢)により電界吸収型光変調器に高いバイアス電圧を加え得る状態で、光送信機を活線挿入し、電界吸収型光変調器の光透過率を非常に小さくしておく。次に光源のレーザダイオードLDを立ち上げ、LDのバイアス電流や動作温度が所定の設定状態になるのを待つ。次に何らかの送信データ(バーストデータ等)を加えると共に、送信制御信号TXE=1(付勢)となして電界吸収型光変調器のバイアス電圧を徐々に低下させる。これに伴い、出力の光信号は徐々に光パワーを増す。
【0065】
また、光送信機を抜去する場合は、まず送信制御信号TXE=0(消勢)として電界吸収型光変調器に徐々に高いバイアス電圧を加え、透過率を非常に小さくする。これに伴い、出力の光信号は徐々に光パワーを減少する。次にLDのバイアス電流をゼロにして消灯し、光送信機を抜去する。
従って、この場合の光中継器には図6で述べた様な光スイチOSW1〜OSW6を設けなくても、上記オーバシュート/アンダシュートの発生を有効に抑制できる。
【0066】
なお、上記バイアス制御信号は電界吸収型光変調器の変調信号に重畳したが、光源のバイアス駆動信号に重畳しても良い。この点は、低周波の制御信号についても同様である。
また、上記電界吸収型光変調器に他に、マッハツェンダ型光変調器を使用しても良い。
【0067】
図11は第2の実施の形態による光送信機を説明する図で、光源の光出力一定制御(APC)及び光波長一定制御を行う光送信機の一例を示している。
図において、光源がレーザダイオードLDの場合は、LD素子の前面のみならず、LDE素子の後面からも主ビームと同等程度又は一定割合のバック光が得られる。この様なLDのバック光をフォトディテクタPDで光電変換し、レベル検出部LVDで光パワーをモニタする。更に差動アンプDA3で該モニタ信号と光出力を決定する基準レベルREF3とを比較し、得られた誤差信号を増幅してこれをバイアス電流駆動回路に負帰還し、LDのバック光(即ち、前方の主ビーム)の光出力が一定となるようにLDのバイアス電流Ibを制御する。
【0068】
しかし、一般にLDは特性のバラツキや経年変化等により、一定の光出力を得るためのバイアス電流Ibは変化する。LDのバイアス電流Ibが変化すると、LDの動作温度も変化し、これに伴い光ビームの波長も変化する。光ビームの波長変化は、上記チャネル間のクロストークの原因となるので、光波長を一定に維持しなくてはならない。
【0069】
そこで、LD素子にペルチェ冷却素子を接触させると共に、LDのバイアス電流駆動回路よりバイアス電流Ibをモニタする。更に差動アンプDA2で該モニタ信号とLDのバイアス電流の基準レベルREF2とを比較し、得られた誤差信号を増幅して該誤差に対応する温度制御レベルREF1を生成する。
一方、LD素子にサーミスタを接触させて固定抵抗Rとの抵抗分割によりLD素子の動作温度を検出する。そして、差動アンプDA1により該温度検出信号と前記生成した温度制御レベルREF1とを比較し、得られた誤差信号を増幅してこれをペルチェ冷却素子に負帰還し、LD素子の動作温度一定制御を行う。但し、この場合は、LDのバイアス電流Ibの変化に応じて、ペルチェ冷却素子の設定温度REF1が変化し、これに伴いLDは新たな動作温度に引き込まれ、維持される。これに伴いLDの光波長は一定に維持される。
【0070】
例えば、一般的なLDでは光出力一定制御のため、バイアス電流IbがamA増えたとすると、光ビームの波長は(a/100)nm程度波長が伸びるとされている。そこで、LD素子の動作温度を(a/10)deg程度下げることにより光波長一定制御を行う。
本実施の形態ではLDのバック光を利用するので構造簡単となり、光送信機性能の高安定化と共に小型化、低価格化が図れる。
【0071】
図12は第3の実施の形態による光送信機を説明する図で、光源の光出力一定制御(APC)及び光波長一定制御を行う光送信機の他の例を示している。
ここでは外部光変調器にLiNb03 によるマッハツェンダ型光変調器(MZ光変調器)を使用している。MZ光変調器では、LDからの光ビームを2光路に分岐すると共に、各光路設けた非対称の進行波電極A,B間にデータ信号及びバイアス信号等からなる電界を加えることで、各光路を通る光に位相差(光路差)を生じさせ、これらを合成することで、位相差がπの時は出力光信号=0、位相差が0,2π等の時は出力光信号=1の振幅変調を行う。
【0072】
図示の如く、MZ光変調器の光出力信号の一部を光分岐で分岐し、フォトディテクタPDで光電変換してレベル検出部LVDによりMZ光変調器の光出力をモニタする。更に差動アンプDA3で該モニタ信号をMZ光変調器の光出力を決定する基準レベルREF3と比較し、得られた誤差信号を増幅してこれをLDのバイアス電流駆動回路に負帰還し、MZ光変調器の光出力が一定となるようにバイアス電流Ibを制御する。
【0073】
また、LD素子にペルチェ冷却素子を接触させると共に、前記バイアス電流駆動回路よりLDのバイアス電流Ibをモニタする。更に差動アンプDA2で該モニタ信号とLDのバイアス電流の基準レベルREF2とを比較し、得られた誤差信号を増幅して該誤差に対応する温度制御信号レベルREF1を生成する。
一方、LD素子にサーミスタを接触させて固定抵抗Rとの抵抗分割によりLD素子の動作温度を検出する。そして、差動アンプDA1により該温度検出信号と前記生成した温度制御信号レベルREF1とを比較し、得られた誤差信号を増幅してこれをペルチェ冷却素子に負帰還し、LD素子の動作温度一定制御を行う。但し、この場合は、LDのバイアス電流Ibの変化に応じて、ペルチェ冷却素子の設定温度REF1が変化し、これに伴いLDは新たな動作温度に引き込まれ、維持される。これに伴いLDの光波長は一定に維持される。
【0074】
本実施の形態では外部光変調器の光出力に基づき光出力一定制御を行うので、光伝送路に高精度、高安定の光信号を提供できる。
なお、上記マッハツェンダ型光変調器に代えて、他の電界吸収型光変調等を使用しても良い。
また、上記各実施の形態では本発明の各特徴部分を中心に述べたが、各特徴部分を適宜に組み合わせることで様々な構成の光波長多重伝送システムが構築されることは言うまでも無い。
【0075】
また、上記本発明に好適なる複数の実施の形態を述べたが、本発明思想を逸脱しない範囲内で、各部の構成、制御、及びこれらの組合せの様々な変更が行えることは言うまでも無い。
【0076】
【発明の効果】
以上述べた如く本発明によれば、光波長逸脱によるチャネル間のクロストークを有効に検出し、迅速に対処出来るため、光波長多重伝送システムの実用化、普及に寄与する所が極めて大きい。
【図面の簡単な説明】
【図1】図1は本発明の原理を説明する図である。
【図2】図2は実施の形態による光波長多重伝送システムの概略構成を示す図である。
【図3】図3は第1の実施の形態による光中継器の構成を示す図である。
【図4】図4は第1の実施の形態による光中継器の動作タイミングチャートを示す図である。
【図5】図5は第2の実施の形態による光中継器の構成を示す図である。
【図6】図6は第3の実施の形態による光中継器を説明する図である。
【図7】図7は第3の実施の形態による光中継器の動作タイミングチャートである。
【図8】図8は第4の実施の形態による光中継器の構成を示す図である。
【図9】図9は第5の実施の形態による光中継器の構成を示す図である。
【図10】図10は第1の実施の形態による光送信機を説明する図である。
【図11】図11は第2の実施の形態による光送信機を説明する図である。
【図12】図12は第3の実施の形態による光送信機を説明する図である。
【図13】図13は従来技術を説明する図(1)である。
【図14】図14は従来技術を説明する図(2)である。
【符号の説明】
100 制御局
DA 差動アンプ
LD レーザダイオード
LVD レベル検出部
PD フォトディテクタ
OA 光増幅器
OCCS 光クロスコネクトスイッチ
ODMX 光分波器
OMUX 光合波器
OR 光受信機
OS 光送信機
RG 光中継器
RGCT 中継器制御部
RX 光受端装置
RXCT 受端装置制御部
TX 光送端装置
TXCT 送端装置制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical wavelength multiplex transmission system and an apparatus thereof, and more specifically, transmits an optical signal of each wavelength by optical wavelength multiplexing, and if necessary, optically amplifies the optical wavelength multiplexed signal of the optical transmission path to relay and exchange, The present invention relates to an optical wavelength division multiplexing transmission system and an apparatus for receiving an optical signal of each wavelength by demultiplexing an optical wavelength division multiplexed signal of an optical transmission line into an optical signal of each wavelength.
[0002]
In recent years, a wavelength division multiplexing (WDM) transmission system has been studied in order to expand transmission capacity and construct a flexible network. In the optical wavelength division multiplexing transmission system, each optical wavelength can be used as an individual communication channel, so that a flexible and high-speed network can be constructed by switching the optical path of a large-capacity optical signal.
[0003]
[Prior art]
FIGS. 13 and 14 are diagrams (1) and (2) for explaining the prior art, and FIG. 13 shows a configuration of an optical repeater constituting a conventional optical wavelength division multiplexing transmission system.
Optical signals λ1 to λ6 of wavelengths λ1 to λ6 are input to the optical repeater from the optical transmission network. In some cases, each wavelength λ1 is combined with each of the single wavelengths λ11 to λ16. The same applies to the wavelengths λ2 to λ6. However, in the following description, each of the optical signals λ1 to λ6 has a single wavelength for simplicity of description.
[0004]
The optical signals λ1 to λ6 are multiplexed (optical wavelength multiplexing) by an optical multiplexer and input to an optical amplifier. The optical amplifier includes, for example, an erbium-doped fiber, and the fiber is pumped by pumping light from a pumping laser diode (LD). The optical wavelength-multiplexed optical signal is optically amplified by an erbium-doped fiber and reaches an optical demultiplexer via an optical branch. Further, it is demultiplexed into optical signals λ1 to λ6 of each wavelength by an optical demultiplexer, and is switched (optical exchange) by an optical cross-connect switch.
[0005]
In this case, the optical amplifier efficiently realizes constant optical output control of each wavelength by optically amplifying the input optical wavelength multiplexed signal under constant optical output control according to the number of optical wavelength multiplexing. . Specifically, the branched lights λ1 to λ6 branched from the amplified optical signal are photoelectrically converted by the photodetector PD, and the signal level (amplitude level) of the optical wavelength multiplexed optical signal is detected by the level detector LVD. . The detection level is compared with a reference level REF (for example, the number m of combined channels × a reference level ΔREF per channel) by a differential amplifier DA, and the error signal is amplified by the differential amplifier DA and is negatively applied to the excitation LD. Returned. As a result, the optical output of the erbium-doped fiber is controlled to be constant, and thus the optical output of each wavelength signal λ1 to λ6 is also controlled to be constant.
[0006]
By the way, in this type of system, for example, the optical signal λ1 may be inserted / removed due to insertion / extraction of the transmitter (or transmission start / stop) during communication with the optical signals λ1 to λm. As it is, the optical output of each wavelength is changed to m / (m + 1) or m / (m−1) by the optical output constant control of the optical wavelength multiplexed signal. In such a case, the repeater control unit receives the notification from the network side and changes the reference level REF to REF ± ΔREF, so that the optical signal of each wavelength is kept constant.
[0007]
[Problems to be solved by the invention]
However, in this type of optical wavelength division multiplexing transmission system, the optical signals of the different wavelengths enter one optical fiber, so when a signal of a certain optical wavelength deviates from a predetermined assigned wavelength and approaches the wavelength of another channel, In the optical receiver, the light becomes interference (noise) and the transmission quality is remarkably deteriorated.
[0008]
Further, in the system in which the output of the optical wavelength multiplexed signal is controlled by the optical amplifier as described above, the optical amplifier cannot properly respond to a sudden insertion / extraction of a certain optical signal, and the overshoot / undershoot in the output of the optical amplifier. There was a problem that occurred. This will be specifically described below.
FIG. 14 shows an operation timing chart of a conventional optical amplifier, and FIG. 14A shows a case where an optical signal (optical transmitter) is inserted. For example, when the optical signal λ3 is suddenly inserted during the communication of the optical signals λ1 and λ2, the negative feedback system responds sensitively due to timing error etc. even if the reference level REF is changed, and the output of the optical amplifier is shown in the figure. It was temporarily lowered like this.
[0009]
FIG. 14B shows a case where the optical signal (optical transmitter) is deleted. For example, if the optical signal λ3 is abruptly deleted during the communication of the optical signals λ1 and λ2, the negative feedback system responds sensitively to the timing error etc. even if the reference level REF is changed, and the output of the optical amplifier is shown in the figure. It was rising temporarily like this.
In any case, such an overshoot / undershoot amplification effect in the optical amplifier not only adversely affects the optical signal levels of the other communication channels λ1 and λ2, but also may deteriorate the apparatus. .
[0010]
The object of the present invention is to effectively detect crosstalk between channels due to optical wavelength deviation. Do An object of the present invention is to provide an optical wavelength division multiplexing transmission system and an apparatus therefor.
[0011]
[Means for Solving the Problems]
The above problem is solved by the configuration of FIG. In other words, the optical wavelength division multiplexing transmission system of the present invention (1) is a combination of a plurality of optical transmission devices OS that transmit optical signals of the respective wavelengths and the output signals of the respective optical transmission devices and sends them to the optical transmission line. Each of the optical demultiplexer, an optical amplifier that optically amplifies the optical wavelength multiplexed signal of the optical transmission line, an optical demultiplexer that demultiplexes the optical wavelength multiplexed signal of the optical transmission line into an optical signal of each wavelength, and an optical demultiplexer In an optical wavelength division multiplexing transmission system including a plurality of optical receivers OR for receiving an output signal, each optical transmitter OS superimposes a low-frequency optical control signal on a high-bit-rate optical main signal at a certain rate. A part of the optical wavelength division multiplexed signal in the optical transmission line is optically branched and an optical signal having a desired single wavelength is extracted from the branched light, and the photoelectric conversion signal of the extracted optical signal is converted into a high-frequency main signal component The signal level of each separated signal is detected by separating it into a low-frequency control signal component Together, the resulting The signal level of the separated main signal component and the separated control signal component Signal level When The optical wavelength interference (crosstalk) detecting means for detecting the presence of crosstalk based on interference between optical wavelengths between optical signals by deviating from the predetermined range.
[0012]
In the present invention (1), the optical transmitter OS transmits a low-frequency optical control signal superimposed on a high-bit-rate optical main signal at a certain rate. Therefore, the signal level of the control signal component at a certain ratio with respect to the signal level of the main signal component should normally be detected from the optical signal of a certain wavelength.
However, when an optical signal having a wavelength deviating from that of another channel is mixed in an optical signal of a certain wavelength, the signal level of the main signal component of the certain wavelength and its control signal component are A certain relationship (ratio, etc.) cannot be obtained with the signal level. At the same time, a certain relationship (ratio, etc.) cannot be obtained between the signal level of the main signal component of the other channel and the signal level of the control signal component.
[0013]
Therefore, by extracting an optical signal of a desired single wavelength from the branched light of an optical wavelength division multiplexed signal, by examining the presence or absence of a certain relationship with respect to the ratio between the signal level of the main signal component and the signal level of the control signal component The presence of interference between optical wavelengths (crosstalk) can be detected effectively.
[0017]
However, when an optical signal having a wavelength deviating from that of another channel is mixed in an optical signal having a certain wavelength, the control signal having the certain wavelength cannot be demodulated normally due to signal interference between channels. At the same time, the control signals of the other channels cannot be demodulated normally.
Therefore, by extracting the optical signal of the desired single wavelength from the branched light of the optical wavelength division multiplexed signal and monitoring whether the control signal can be demodulated or that there are many errors even when demodulated, the inter-optical wavelength interference Based on crosstalk Existence Can be detected effectively.
[0018]
Preferably this The optical wavelength division multiplexing transmission system includes a plurality of optical transmission devices OS that transmit optical signals of respective wavelengths, an optical multiplexer that multiplexes output signals of the respective optical transmission devices and sends them to an optical transmission line, An optical amplifier for optically amplifying the optical wavelength multiplexed signal under constant optical output control according to the optical wavelength multiplexing number, an optical demultiplexer for demultiplexing the output signal of the optical amplifier into an optical signal of each wavelength, and an optical demultiplexer; An optical wavelength multiplexing transmission system comprising a plurality of optical receivers OR for receiving each output signal of the optical device, provided in an optical signal path of a single wavelength on the transmission side, and when inserting / deleting an optical signal in the path, Optical amplitude control means for gently changing the increase / decrease rate of the optical signal is provided.
[0019]
Such an optical amplitude control means is provided in the optical transmission device OS or between the optical transmission device OS and the optical multiplexer (not shown). Insertion / deletion of an optical signal means insertion / removal of an optical transmission device (package) or transmission start / stop of the optical transmission device. The optical amplitude control means gently changes the increase / decrease rate of the optical signal in conjunction with the insertion / deletion of the optical signal. In the optical transmission device OS, the optical amplitude control means can be realized by a method of slowly changing the bias of the light source or the external optical modulator. At other locations, the light amplitude control means can be realized by inserting a variable light transmittance attenuator in the light path and gradually changing the light transmittance.
[0020]
If the rate of increase / decrease of the optical signal is changed gently during the insertion / deletion of the optical signal, the optical amplifier converts the optical wavelength multiplexed signal of the optical transmission line under the optical output constant control according to the optical wavelength multiplexing number. Even if optical amplification is performed, occurrence of overshoot / undershoot can be effectively suppressed.
Also Preferably this The optical amplifier includes a plurality of optical transmission devices OS that transmit optical signals of respective wavelengths, an optical multiplexer that combines the output signals of the respective optical transmission devices and sends them to an optical transmission line, and optical wavelength multiplexing of the optical transmission line An optical amplifier that optically amplifies a signal, an optical demultiplexer that demultiplexes an output signal of the optical amplifier into an optical signal of each wavelength, and a plurality of optical receivers OR that receive the output signals of the optical demultiplexer. In the optical amplifier of the optical wavelength division multiplexing transmission system, an optical amplifying unit for optically amplifying an input optical wavelength multiplexed signal, and a part of the output signal of the optical amplifying unit are optically branched, and light having a desired single wavelength from the branched light A gain control unit for extracting a signal and detecting the signal level based on a photoelectric conversion signal of the extracted optical signal and controlling the amplification gain of the optical amplification unit so that the signal level is constant; It is.
[0021]
this In the optical amplifier, the optical amplifying unit optically amplifies the input optical wavelength multiplexed signal, but the gain control unit extracts an optical signal having a desired single wavelength from the branched light after optical amplification, and photoelectrically extracts the extracted optical signal. The amplification gain of the optical amplifying unit is controlled so that the signal level detected based on the converted signal is constant. That is, the output constant control of all wavelength signals is realized by the output constant control of a certain wavelength signal, not the output constant control of the optical wavelength multiplexed signal.
[0022]
Incidentally, which optical signal is used as a reference for gain control is previously known from the network side. The network side informs which optical signal is the target of gain control and how much its output control value is based on the number of wavelengths of the optical signal entering the optical amplifier and the required optical output after optical amplification.
Therefore, even if any other optical signal is inserted / removed, it does not know that portion, so overshoot / undershoot does not occur, and the output of all wavelength signals is always controlled to be constant.
[0023]
Also Preferably this The optical amplifier includes a plurality of optical transmission devices OS that transmit optical signals of respective wavelengths, an optical multiplexer that combines the output signals of the respective optical transmission devices and sends them to an optical transmission line, and optical wavelength multiplexing of the optical transmission line An optical amplifier that optically amplifies a signal, an optical demultiplexer that demultiplexes an output signal of the optical amplifier into an optical signal of each wavelength, and a plurality of optical receivers OR that receive the output signals of the optical demultiplexer. In the optical amplifier of the optical wavelength division multiplexing transmission system, an optical amplifying unit for optically amplifying an input optical wavelength multiplexed signal and a part of the output signal of the optical amplifying unit are optically branched and light of each single wavelength from the branched light The optical amplifying unit extracts a signal and detects a signal level for each photoelectric conversion signal of each extracted optical signal, selects one of these signal levels, and keeps the signal level constant. And a gain control unit for controlling the amplification gain.
[0024]
this In the optical amplifier, the gain control unit is configured to extract an optical signal of each wavelength from the branched light after optical amplification and select one signal level from the obtained signal levels. In general, an optical filter is used to extract an optical signal having a certain wavelength from the branched light after optical amplification. However, since it is difficult to change the wavelength selectivity with a single optical filter, for example, Fabry-Perot light A demultiplexer is used, and each demultiplexed signal is photoelectrically converted to detect each signal level, and any one of them is selected by an analog switch. Therefore, it is easy to realize.
[0025]
Preferably, in the optical amplifier, a part of the optical wavelength multiplexed signal before optical amplification is optically branched to extract an optical signal of each single wavelength from the branched light, and for each photoelectric conversion signal of each extracted optical signal While detecting the signal level, any one of the channel information in which the optical signal exists is selected, and this is used as the gain control optical signal or the gain control signal level selection signal in the gain control unit. An optical signal detector is provided.
[0026]
This The optical signal detector automatically detects in which channel the optical signal exists based on the optical wavelength multiplexed signal before optical amplification, and informs the gain controller of the channel number information. Accordingly, the optical amplifier in this case can automatically select the gain control optical signal or the gain control signal level without receiving notification from the network side.
[0027]
The present invention ( 2 ) Optical repeater At a certain rate A plurality of optical transmission devices TX that combine the optical transmission signals of each wavelength superimposed with the low-frequency optical control signal and transmit them to the optical transmission line, and combine the output signals of the multiple optical transmission devices, The output signal is optically amplified, and the output signal is demultiplexed into the combined optical signals, and if necessary, the optical signal path is switched. In the optical repeater of the optical wavelength division multiplexing transmission system comprising a plurality of optical receivers RX that demultiplex and receive the received signal, a part of the optical amplification signal is optically branched and a desired single wavelength is obtained from the branched light And the photoelectric conversion signal of the extracted optical signal is separated into a high-frequency main signal component and a low-frequency control signal component to detect the signal level of each separated signal, and the obtained separation The signal level of the separated main signal component and the signal of the separated control signal component In which an optical wavelength interference detection unit for detecting the presence of crosstalk of based on inter-optical wavelength interference between optical signals by the ratio of the bell deviates from a predetermined range.
[0028]
By providing such an inter-wavelength interference detector in the optical repeater, the presence of crosstalk can be detected efficiently.
[0030]
By providing such an inter-wavelength interference detector in the optical repeater, crosstalk of The presence can be detected efficiently.
Preferably, the optical repeater combines a plurality of optical transmission end devices TX that combine the optical transmission signals of the respective wavelengths and transmits them to the optical transmission line, and an output signal of the plurality of optical transmission end devices. Optical repeater that amplifies the output signal under constant amplitude control according to the number of multiplexed optical wavelengths, demultiplexes the output signal into the combined optical signals, and exchanges the optical signal path if necessary In the optical repeater of the optical wavelength division multiplexing transmission system, the optical repeater includes a device and a plurality of optical receivers RX that demultiplex and receive the output signal of the optical repeater into optical receive signals of each wavelength. A transmission amount variable optical attenuator is provided in each optical signal reception path before the wave and gently changes the transmission amount of the optical signal when the optical signal is inserted into or deleted from the path.
[0031]
Therefore, even when the optical amplifier of the optical repeater optically amplifies the input optical wavelength multiplexed signal under constant amplitude control according to the optical wavelength multiplexing number, each optical signal reception path before multiplexing in the optical repeater By providing such a transmission variable optical attenuator, it is possible to efficiently suppress the occurrence of overshoot / undershoot in the optical amplifier.
Also Preferably this The optical transmission device includes a plurality of optical transmission devices OS that transmit optical signals of respective wavelengths, an optical multiplexer that multiplexes output signals of the respective optical transmission devices and sends them to an optical transmission line, and an optical wavelength of the optical transmission line An optical amplifier that amplifies the multiplexed signal under constant amplitude control according to the number of multiplexed optical wavelengths, an optical demultiplexer that demultiplexes the output signal of the optical amplifier into an optical signal of each wavelength, and each of the optical demultiplexers In the optical transmitter of the optical wavelength division multiplexing transmission system comprising a plurality of optical receivers OR for receiving an output signal, an external optical modulator comprising a light source and an electroabsorption type or Mach-Zehnder type element for modulating the optical output of the light source And a bias control circuit that gently changes a bias control signal applied to the external optical modulator when starting / stopping optical signal transmission by the external optical modulator.
[0032]
Therefore, even when the optical amplifier optically amplifies the optical wavelength multiplex signal of the optical transmission line under constant amplitude control according to the number of optical wavelength multiplexes, the optical transmitter includes such a bias control circuit. The occurrence of overshoot / undershoot in can be efficiently suppressed.
Also Preferably this The optical transmission device includes a plurality of optical transmission devices OS that transmit optical signals of respective wavelengths, an optical multiplexer that combines the output signals of the respective optical transmission devices and sends them to the optical transmission line, and, if necessary, the optical transmission line. An optical amplifier that optically amplifies the optical wavelength multiplexed signal, an optical demultiplexer that demultiplexes the optical wavelength multiplexed signal of the optical transmission line into an optical signal of each wavelength, and a plurality of lights that receive each output signal of the optical demultiplexer In the optical transmission device of the optical wavelength division multiplex transmission system including the receiving device OR, a bias for controlling the optical output of the laser diode to be constant based on a laser diode serving as a light source and a monitor output of the rear monitoring light of the laser diode Based on a current control unit, an operating temperature control unit that controls the operating temperature of the laser diode to be constant based on a monitor output of the operating temperature of the laser diode, and a monitor output of the bias current of the laser diode, As the optical wavelength of the laser diode is constant, in which and a wavelength constant control section for controlling the temperature setpoint of the operating temperature control unit.
[0033]
In general, a laser diode serving as a light source has a property that the light wavelength of its output beam changes according to a predetermined relationship in accordance with a change in the operating (ambient) temperature of the laser diode. The optical output of the laser diode has a predetermined relationship with the bias (drive) current of the laser diode. When the optical output is controlled constant, the optical output and the bias current may vary due to variations in laser diode characteristics or aging. The relationship also changes. Thus, when the bias current changes, the operating temperature of the laser diode also changes, and the optical wavelength of the output beam also changes. Therefore, the constant wavelength control unit controls the temperature setting value of the operating temperature control unit including the thermistor, the Peltier cooling element, etc. based on the monitor output of the bias current of the laser diode so that the optical wavelength of the laser diode becomes constant. . Accordingly, not only the optical output of the laser beam but also the optical wavelength is controlled to be constant, so that harmful crosstalk can be prevented from occurring.
[0034]
Also Preferably this The optical transmission device includes a plurality of optical transmission devices OS that transmit optical signals of respective wavelengths, an optical multiplexer that combines the output signals of the respective optical transmission devices and sends them to the optical transmission line, and, if necessary, the optical transmission line. An optical amplifier that optically amplifies the optical wavelength multiplexed signal, an optical demultiplexer that demultiplexes the output signal of the optical amplifier into an optical signal of each wavelength, and a plurality of optical receivers OR that receive each output signal of the optical demultiplexer In the optical transmitter of the optical wavelength division multiplex transmission system comprising: a laser diode serving as a light source; an external optical modulator that modulates the optical output of the laser diode; and a part of the output signal of the external optical modulator The laser diode bias current control unit that controls the optical output of the external optical modulator to be constant based on the monitor output obtained by branching, and the operating temperature of the laser diode based on the monitor output of the operating temperature of the laser diode. Constant control An operating temperature control unit, and a constant wavelength control unit that controls a temperature setting value of the operating temperature control unit based on a monitor output of a bias current of the laser diode so that an optical wavelength of the laser diode is constant. It is to be prepared.
[0035]
This Since the bias current control unit controls the optical output of the external optical modulator to be constant based on the monitor output of the branched light output from the external optical modulator, it is possible to provide a highly stable optical signal on the network side.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plurality of preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings.
FIG. 2 is a diagram showing a schematic configuration of an optical wavelength division multiplexing transmission system according to the embodiment. This optical wavelength division multiplexing transmission system includes optical transmitting end devices TX1 to TXn, optical repeaters RG11 to RG22, and an optical receiving end device RX1. ˜RXn and a central control station 100 that performs centralized management of transmission control between them. The figure shows transmission in one direction, but transmission in the reverse direction is similar.
[0037]
Each optical transmitter TX is equipped with a plurality of optical transmitters OS1 to OS6, and each outputs optical signals λ1 to λ6 of different wavelengths λ1 to λ6 based on the input data signal. The optical signals λ1 to λ6 are multiplexed by the optical multiplexer OMUX and reach the optical repeater RG via the optical transmission path. Each optical wavelength multiplexed signal input to the optical repeater RG is multiplexed by an optical multiplexer OMUX, optically amplified by an optical amplifier, demultiplexed by an optical demultiplexer ODMX, and further switched by an optical cross-connect switch OCCS. And output to the required output port. In the optical receiving device RX, the input optical wavelength multiplexed signal is demultiplexed by the optical demultiplexer ODMX, each is received by the optical receiver OR, and the data signal is demodulated.
[0038]
Although not shown, this optical receiver OR takes out only a signal of a required wavelength with an optical filter and converts it into an electrical signal by O / E. If a variable optical filter whose transmission band changes is used as an optical filter, signals of all channels can be received.
With such a configuration, when there is a communication request between a certain optical transmission end device TX and optical reception end device RX, the request is notified to the control station 100, and the control station 100 sets the optical path and wavelength, and the information Is transmitted to the optical transmitting end device TX, the optical receiving end device RX, and the optical repeater OR. In this case, the optical path is set so that the same wavelength does not enter one fiber. If they do not enter the same fiber, a plurality of optical transmitters OS and optical receivers OR connected by a network are allowed to use the same wavelength.
[0039]
Based on this notification, the optical transmitter OS superimposes identification information (corresponding to the control signal) such as the optical transmitter OS, the optical receiver OR, the optical path, and the wavelength on the main signal at a certain ratio (several percent). To do. This superimposed signal is sufficiently slow (about several KHz) compared to the main signal (about several GHz).
The reason why the optical repeater RG has a two-stage configuration is to provide redundancy for optical path setting. When redundancy is not required, a one-stage configuration may be used. Further, the optical transmission end device TX and the optical reception end device RX may each have only one optical transmitter OS and optical receiver OR.
[0040]
FIG. 3 is a diagram showing the configuration of the optical repeater according to the first embodiment, in which the presence of crosstalk in the optical wavelength division multiplexing signal path is detected based on the superposition ratio of control signal components or the inability to demodulate control signals. Show.
One or more optical input signals are multiplexed by an optical multiplexer, optically amplified by an optical amplifier, and demultiplexed by an optical demultiplexer. It does not matter whether the optical amplifier of this example performs constant optical output control. Further, as shown in the drawing, an optical branch is provided between the optical amplifier and the optical demultiplexer, and a part of the optical wavelength multiplexed signal after optical amplification is optically branched. From this branched light, an optical signal having a desired single wavelength is extracted by a variable wavelength filter and is photoelectrically converted by a photodetector PD.
[0041]
This variable wavelength filter includes, for example, a Fabry-Perot optical demultiplexer and a selection (optical switch) circuit for each demultiplexed light, and extracts an optical signal having a corresponding wavelength in accordance with the wavelength selection signal WS from the repeater control unit. To do.
The repeater control unit is connected to the control station 100 via a communication line, receives the control signal XS of the cross-connect switch OCCS and other various control signals from the control station 100, and generates crosstalk. If it is detected, the control station 100 is notified of the fact, and the control station 100 that has received the notification can reset the communication path.
[0042]
Returning to the subject, in the obtained electrical signal, a low-frequency control signal is superimposed on the high-frequency data signal with an amplitude of about several percent. The high-frequency data signal component is separated by the high-pass filter HPF, and the amplitude level is detected by the level detection unit LVD1. On the other hand, the low-frequency control signal component is separated by the low-pass filter LPF, and the amplitude level (for example, peak-to-peak level) is detected by the level detection unit LVD2. The crosstalk determination unit compares the amplitude level of the data signal with the amplitude level of the control signal, and the detected superposition ratio deviates from the superposition ratio in the optical transmitter considering optical noise in the optical amplifier. In the case of (for example, becoming smaller), it is determined that interference light has entered, and the presence of crosstalk is detected.
[0043]
On the other hand, the low-frequency control signal component separated by the low-pass filter LPF is demodulated by the demodulator DEM. As the demodulator DEM, a corresponding demodulator DEM is provided in accordance with the ASK / FSK / PSK modulation of the control signal. The demodulated signal of the control signal by the demodulator DEM and the status signal CD of whether or not the demodulator DEM can be demodulated are passed to the repeater control unit, and the repeater control unit that has received this signal, when demodulation is not performed normally, Alternatively, when the demodulated data includes errors many times based on the CRC check of the demodulated data or the like, it is determined that interference light has entered, and the presence of crosstalk is detected.
[0044]
As a simplification, the ratio of the control signal component to the photocurrent of the PD may be compared without separating the high-frequency data signal.
Further, it is obvious that such a crosstalk detecting means may be provided not only in the optical repeater but also in the optical wavelength multiplexing transmission line.
FIG. 4 is a diagram showing an operation timing chart of the optical repeater according to the first embodiment, and FIG. 4 (A) shows a normal case where there is no crosstalk.
[0045]
As shown in the figure, an a% sine wave signal is superimposed in the section of the control signal 1 = 1 and the sine wave signal is not superimposed in the section of the control signal 1 = 0. Accordingly, the crosstalk determination unit in this case detects a substantially predetermined (a%) superposition ratio and does not detect the presence of crosstalk. Also, the control signal 1 is correctly demodulated and the presence of crosstalk is not detected.
[0046]
FIG. 4B shows a case where crosstalk is mixed.
If crosstalk light (an optical signal with a wavelength deviating toward λ1) is mixed with the optical signal λ1 at a certain ratio, not only the amplitude level of the optical signal λ1 increases (however, it is added), but also the control. The amplitude level of the signal 1 increases or decreases as illustrated in accordance with the interference phase of the control signal 2 of the crosstalk light. Therefore, the superposition ratio detected by the crosstalk determination unit in this case deviates from a predetermined value (a%), and thus the presence of crosstalk is detected. Alternatively, the presence of crosstalk is detected when the control signal 1 is not demodulated correctly.
[0047]
The amplitude of the data signal and the amplitude of the control signal can be compared by any method other than the superposition ratio.
FIG. 5 is a diagram showing the configuration of the optical repeater according to the second embodiment, and shows a case in which the presence of crosstalk is detected based on the presence / absence of signal level (optical power) uniformity of the optical signal of each wavelength. ing.
[0048]
One or more optical input signals are multiplexed by an optical multiplexer, optically amplified under constant output control according to the number of multiplexed optical wavelengths by an optical amplifier, and demultiplexed by an optical demultiplexer. Further, as shown, an optical branch is provided between the optical amplifier and the optical demultiplexer, and a part of the optical wavelength multiplexed signal after optical amplification is optically branched. From this branched light, an optical signal having a certain wavelength is extracted by a variable wavelength filter and is photoelectrically converted by the photodetector PD. Note that the low-frequency control signal may be superimposed on the high-frequency data signal with an amplitude of several percent or may not be superimposed on the electrical signal in this case. An amplitude level (corresponding to optical power) is detected by the level detection unit LVD for the photoelectrically converted electric signal.
[0049]
In this case, the crosstalk determination unit detects the presence of crosstalk when the amplitude level of a certain optical signal increases or decreases from a predetermined level. Under constant output control of the optical wavelength multiplexed signal, for example, even if a part of the optical signal λ2 leaks into the optical signal λ1, the output level of the entire optical wavelength multiplexed signal does not change. However, paying attention to the wavelength distribution inside the amplified light, the optical power of the optical signal λ1 increases and the optical power of the optical signal λ2 decreases. Therefore, the presence of crosstalk can be detected by comparing the amplitude level of a certain optical signal with a predetermined value.
[0050]
By the way, if only the optical power of the optical signal λ1 is detected as described above, the presence of crosstalk is detected even if the optical output λ1 increases / decreases due to, for example, malfunction of the optical transmitter OS1. May occur. However, in this case, as the optical power of the optical signal λ1 increases / decreases, the remaining optical signals of each channel are uniformly affected (equal to each channel) by the action of the optical wavelength multiplexed signal output constant control. Thus, these light outputs are uniformly reduced / increased. That is, for example, when the optical signal λ1 increases, the optical output of each remaining optical signal λ2 to λ6 decreases uniformly, and when the optical signal λ1 decreases, the optical output of each remaining optical signal λ2 to λ6 increases uniformly. . That is, there is a pattern in which only the amplitude level of the optical signal λ1 is different and the amplitude levels of the remaining optical signals λ2 to λ6 are the same. This can be distinguished from the crosstalk pattern.
[0051]
Therefore, the crosstalk determining unit preferably variably controls the variable wavelength filter to detect the optical power of each optical signal, and examines these large and small patterns. If the optical output of a certain optical signal λ1 is relatively small and the optical output of another optical signal λ2 is relatively large, the presence of crosstalk can be detected. The reverse is also true.
The latter method for checking the uniformity of the optical power of each optical signal is based on the relative determination of the optical power, so that it can be applied even when the optical amplifier does not perform constant optical output control of the optical wavelength multiplexed signal. Is clear.
[0052]
FIG. 6 is a diagram for explaining an optical repeater according to the third embodiment, and shows a case where occurrence of overshoot / undershoot in an optical amplifier can be suppressed even if an optical signal is suddenly inserted and removed on the transmission side. .
FIG. 6A shows the configuration of the optical repeater according to the third embodiment.
In this optical repeater, as shown in the figure, optical switches OSW1 to OSW6 are inserted on the side of each input port of the optical multiplexer. The optical amplifier may be the same as that shown in FIG. 13, but another semiconductor optical amplifying element may be used instead of the erbium-doped fiber.
[0053]
FIG. 6B shows a structure of an example optical switch.
The input light beam is polarized by a polarizer, parallel-lined by a lens, and guided to a magneto-optic crystal. A magneto-optical crystal is applied with a magnetic field H parallel to the optical path by an electromagnet, and the rotation angle of polarized light varies depending on the strength of the magnetic field H. The polarized light that has been rotated is collected by the lens and reaches the analyzer. If the polarization at this time is parallel to the analyzer, a light beam is output, and if it is perpendicular, no light beam is output. In this case, if the magnetic field H is rapidly changed, an optical switch is formed, and the output light beam is rapidly turned on / off. However, in the present embodiment, the output light beam is gradually turned ON / OFF by gently changing the magnetic field H (drive current I). In other words, this optical switch acts like an optical transmission variable attenuator in the ON / OFF transition section.
[0054]
FIG. 7 is an operation timing chart of the optical repeater according to the third embodiment, and FIG. 7A shows a case where an optical signal (optical transmitter) is suddenly inserted.
Here, the reference level REF applied to the gain controller is smoothly changed in synchronization with the insertion of the optical signal λ3. In addition, a relatively large time constant is given to the response of the gain control unit. In such a configuration, for example, even when the optical signal λ3 is suddenly inserted during communication of the optical signals λ1 and λ2, the amplitude of the optical signal λ3 rises smoothly as shown in the figure by the action of the optical switch OSW3. On the other hand, the reference level REF also rises smoothly almost in synchronization with this, and / or there is a relatively large time constant in the response of the gain control unit, so the ON timing of the optical switch OSW3 from the optical repeater control unit is somewhat Even if they deviate, a large error voltage is not detected in the differential amplifier DA. Even if some error voltage occurs, the gain does not change greatly due to the time constant of the response in the gain controller. As a result, the optical output of the optical amplifier rises smoothly without being temporarily reduced, and then falls to a constant level control based on a new reference level REF.
[0055]
FIG. 7B shows a case where the optical signal (optical transmitter) is deleted.
For example, when the optical signal λ3 is deleted during the communication of the optical signals λ1 and λ2, the amplitude of the optical signal λ3 drops smoothly as shown in the figure by the action of the optical switch OSW3. On the other hand, the reference level REF also falls smoothly in synchronism with this, and / or there is a relatively large time constant in the response of the gain controller, so the OFF timing of the optical switch OSW3 from the optical repeater controller is somewhat Even if they deviate, a large error voltage is not detected in the differential amplifier DA. Even if some error voltage occurs, the gain does not change greatly due to the time constant of the response in the gain controller. As a result, the optical output of the optical amplifier falls smoothly without rising temporarily, and then settles to a constant level control based on a new reference level REF. Thereafter, λ3 can be deleted.
[0056]
FIG. 8 is a diagram showing the configuration of the optical repeater according to the fourth embodiment. The optical amplifier does not perform constant output control of an optical wavelength multiplexed signal, but results by performing constant output control of a certain optical signal. As shown, the output constant control of the optical wavelength multiplexed signal can be obtained.
A part of the amplified light is branched by optical branching, and an optical signal of each wavelength is extracted by an optical filter (Fabry-Perot type optical demultiplexer, etc.), each is photoelectrically converted by a photodetector PD, and a signal is output by a level detection unit LVD. Levels (amplitude level / optical power etc.) L1 to L6 are monitored. Further, the signal level Li of any channel is selected by the analog switch (analog selector), and this is obtained by comparing it with the reference level REF (in this case, ΔREF for one wavelength in this case) by the differential amplifier DA. The error signal is amplified and negatively fed back to the drive circuit for the pumping laser diode, thus forming a loop so that the optical output of any one channel is constant.
[0057]
Therefore, for example, when the signal level L1 of the optical signal λ1 of the input optical signals λ1 and λ2 is monitored and the optical output constant control is performed, even if the optical signal λ3 is suddenly inserted, Since there is no influence on the feedback loop of the amplifier, the optical signal λ3 amplified to a constant level is synthesized on the optical signals λ1 and λ2 amplified to the constant level at the output of the optical amplifier. . The reverse is also true.
[0058]
Thus, by performing constant output control of an optical signal, it is possible to obtain constant output control of an optical wavelength multiplexed signal. In addition, each optical signal (except for the monitoring optical signal) in this case may be inserted and removed suddenly as in the conventional case, and the problem of overshoot / undershoot in the optical amplifier does not occur.
For example, when the optical signal λ1 being monitored is inserted / removed, the optical signal to be monitored is changed to, for example, another optical signal λ2 in advance by notification from the control station 100. The notification from the control station 100 may be notified by a control signal superimposed on the optical signal λ1, or may be notified by a direct route CMSG from the control station 100.
[0059]
In the above-described embodiment, the configuration in which the photodetector PD and the level detection unit LVD are provided for each of the wavelengths λ1 to λ6 has been described. However, the configuration is not limited thereto. Although not shown, for example, an optical filter is constituted by a Fabry-Perot type optical demultiplexer and an optical switch (optical selector), and an optical signal having an arbitrary single wavelength is extracted by a wavelength selection signal WS from the repeater control unit. You may comprise. In this case, other PDs and LVDs can be omitted, leaving the analog selector and one channel.
[0060]
Needless to say, a semiconductor optical amplifier can be used in place of the erbium-doped fiber.
FIG. 9 is a diagram showing a configuration of an optical repeater according to the fifth embodiment, and shows a case where an automatic detection unit for a monitoring optical signal is added to the configuration of FIG.
As shown in the figure, a part of the output of the optical multiplexer is branched by optical branching before the optical amplifier, the optical signal of each wavelength is extracted by the optical filter, and each is photoelectrically converted by the photodetector PD, and then by the level detection unit LVD. Each signal level (optical power / amplitude level, etc.) is monitored. Further, the input analysis unit detects a channel having a signal level equal to or higher than a predetermined level, encodes the channel number to generate an analog selector selection signal LS, and adds this to the analog selector selection input S. As a result, the analog selector always automatically selects the optical signal of the channel in which the optical signal exists as the monitoring target.
[0061]
Note that, by adding a priority selection function to the input analysis unit, even when optical signals exist in a plurality of channels, a channel with a higher priority can be preferentially selected.
Further, when an optical filter comprising a Fabry-Perot optical demultiplexer and an optical switch (optical selector) is adopted for the gain control unit, the selection signal LS of the input analysis unit is used as the selection signal WS of the optical filter. .
[0062]
FIG. 10 is a diagram for explaining the optical transmitter according to the first embodiment. In order to alleviate the occurrence of the overshoot / undershoot at the time of sudden insertion / extraction of an optical signal, the external optical modulator of the optical transmitter absorbs electric field. This shows a case where a type optical modulator is used.
FIG. 10A shows the configuration of the optical transmitter according to the first embodiment.
A light beam from a light source (for example, a laser diode) whose optical output is controlled to be constant is modulated in light intensity by an electroabsorption optical modulator and transmitted to an optical network.
[0063]
FIG. 10B shows the extinction characteristics of the electroabsorption optical modulator.
As shown in the figure, the electroabsorption optical modulator increases the extinction characteristic (insertion loss) when the bias voltage (applied electric field) applied to the element is increased, and the extinction characteristic (insertion loss) decreases when the bias voltage (applied electric field) is decreased. It has a decreasing property.
Returning to FIG. 10A, the driving circuit converts input high bit rate transmission data into a high frequency (GHz order) data driving signal. The bias control circuit generates a bias control signal that gently transitions from a high level to a low level or from a low level to a high level as shown in accordance with an input transmission energization / deactivation control signal TXE. If necessary, the low frequency oscillator generates / deactivates a low frequency sine wave signal according to 1/0 of the input control data. Here, although the case of ASK modulation is described as a control signal superposition method, FSK, PSK modulation, or the like may be adopted. The low frequency superimposing circuit superimposes a low frequency bias control signal or a low frequency control signal on the high bit rate data drive signal and applies the superimposed signal to the electroabsorption optical modulator.
[0064]
When hot-line insertion into the system of such an optical transmitter (package) is performed, the optical transmitter is first set in a state in which a high bias voltage can be applied to the electroabsorption optical modulator by the transmission control signal TXE = 0 (deactivation). Is inserted hot, and the light transmittance of the electroabsorption optical modulator is kept very small. Next, the laser diode LD of the light source is activated, and waits for the LD bias current and operating temperature to reach a predetermined setting state. Next, some transmission data (burst data or the like) is added, and the transmission control signal TXE = 1 (energized) to gradually decrease the bias voltage of the electroabsorption optical modulator. Accordingly, the output optical signal gradually increases its optical power.
[0065]
When the optical transmitter is removed, first, a transmission control signal TXE = 0 (extinguishment) is applied to the electroabsorption optical modulator to gradually increase the bias voltage, thereby making the transmittance very small. Along with this, the output optical signal gradually decreases the optical power. Next, the bias current of the LD is set to zero, the light is turned off, and the optical transmitter is removed.
Accordingly, the occurrence of the overshoot / undershoot can be effectively suppressed without providing the optical switches OSW1 to OSW6 as described in FIG. 6 in the optical repeater in this case.
[0066]
The bias control signal is superimposed on the modulation signal of the electroabsorption optical modulator, but may be superimposed on the bias drive signal of the light source. This also applies to the low frequency control signal.
In addition to the electroabsorption optical modulator, a Mach-Zehnder optical modulator may be used.
[0067]
FIG. 11 is a diagram for explaining an optical transmitter according to the second embodiment, and shows an example of an optical transmitter that performs constant optical output control (APC) and constant optical wavelength control of a light source.
In the figure, when the light source is a laser diode LD, not only the front surface of the LD element but also the rear surface of the LDE element can obtain back light of the same degree or a fixed ratio as the main beam. Such back light of the LD is photoelectrically converted by the photodetector PD, and the optical power is monitored by the level detection unit LVD. Further, the differential amplifier DA3 compares the monitor signal with a reference level REF3 that determines the optical output, amplifies the obtained error signal, and negatively feeds back this to the bias current driving circuit, so that the back light of the LD (ie, The bias current Ib of the LD is controlled so that the light output of the front main beam) is constant.
[0068]
In general, however, the bias current Ib for obtaining a constant light output varies depending on the variation in characteristics and aging of the LD. When the LD bias current Ib changes, the LD operating temperature also changes, and the wavelength of the light beam changes accordingly. Since the wavelength change of the light beam causes crosstalk between the channels, the light wavelength must be kept constant.
[0069]
Therefore, the Peltier cooling element is brought into contact with the LD element, and the bias current Ib is monitored from the bias current driving circuit of the LD. Further, the differential amplifier DA2 compares the monitor signal with the reference level REF2 of the LD bias current, amplifies the obtained error signal, and generates a temperature control level REF1 corresponding to the error.
On the other hand, a thermistor is brought into contact with the LD element, and the operating temperature of the LD element is detected by resistance division with the fixed resistor R. Then, the differential amplifier DA1 compares the temperature detection signal with the generated temperature control level REF1, amplifies the obtained error signal, and negatively feeds it back to the Peltier cooling element, thereby controlling the operating temperature of the LD element to be constant. I do. However, in this case, the set temperature REF1 of the Peltier cooling element changes according to the change in the bias current Ib of the LD, and accordingly, the LD is drawn into the new operating temperature and maintained. As a result, the optical wavelength of the LD is kept constant.
[0070]
For example, in a general LD, if the bias current Ib increases by amA for constant light output control, the wavelength of the light beam is said to increase by (a / 100) nm. Therefore, the optical wavelength constant control is performed by lowering the operating temperature of the LD element by about (a / 10) deg.
In this embodiment, since the back light of the LD is used, the structure is simplified, and the optical transmitter performance is highly stabilized, and the size and price can be reduced.
[0071]
FIG. 12 is a diagram for explaining an optical transmitter according to the third embodiment and shows another example of an optical transmitter that performs constant optical output control (APC) and constant optical wavelength control of a light source.
Here, LiNb0 is used as the external optical modulator. Three Mach-Zehnder type optical modulator (MZ optical modulator) is used. In the MZ optical modulator, the light beam from the LD is split into two optical paths, and an electric field composed of a data signal, a bias signal, and the like is applied between the asymmetric traveling wave electrodes A and B provided in the respective optical paths to A phase difference (optical path difference) is generated in the passing light, and these are combined. When the phase difference is π, the output optical signal = 0, and when the phase difference is 0, 2π, the amplitude of the output optical signal = 1 Modulate.
[0072]
As shown in the figure, a part of the optical output signal of the MZ optical modulator is branched by optical branching, photoelectrically converted by the photodetector PD, and the optical output of the MZ optical modulator is monitored by the level detector LVD. Further, the differential amplifier DA3 compares the monitor signal with a reference level REF3 that determines the optical output of the MZ optical modulator, amplifies the obtained error signal, and negatively feeds this back to the LD bias current drive circuit. The bias current Ib is controlled so that the optical output of the optical modulator becomes constant.
[0073]
Further, the Peltier cooling element is brought into contact with the LD element, and the bias current Ib of the LD is monitored from the bias current driving circuit. Further, the differential amplifier DA2 compares the monitor signal with the reference level REF2 of the LD bias current, amplifies the obtained error signal, and generates a temperature control signal level REF1 corresponding to the error.
On the other hand, a thermistor is brought into contact with the LD element, and the operating temperature of the LD element is detected by resistance division with the fixed resistor R. Then, the differential amplifier DA1 compares the temperature detection signal with the generated temperature control signal level REF1, amplifies the obtained error signal, and negatively feeds back this to the Peltier cooling element, so that the operating temperature of the LD element is constant. Take control. However, in this case, the set temperature REF1 of the Peltier cooling element changes according to the change in the bias current Ib of the LD, and accordingly, the LD is drawn into the new operating temperature and maintained. As a result, the optical wavelength of the LD is kept constant.
[0074]
In this embodiment, since the optical output constant control is performed based on the optical output of the external optical modulator, a highly accurate and highly stable optical signal can be provided to the optical transmission line.
Instead of the Mach-Zehnder type optical modulator, other electroabsorption type optical modulation or the like may be used.
In each of the above-described embodiments, each characteristic part of the present invention has been described. However, it goes without saying that optical wavelength multiplexing transmission systems having various configurations can be constructed by appropriately combining the characteristic parts.
[0075]
In addition, although a plurality of embodiments suitable for the present invention have been described, it goes without saying that various changes can be made to the configuration, control, and combination of each part without departing from the spirit of the present invention. .
[0076]
【The invention's effect】
As described above, according to the present invention, crosstalk between channels due to optical wavelength deviation can be detected effectively and dealt with quickly. For The place that contributes to the practical application and spread of optical wavelength division multiplexing transmission systems is extremely large.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the present invention.
FIG. 2 is a diagram showing a schematic configuration of an optical wavelength division multiplex transmission system according to an embodiment.
FIG. 3 is a diagram illustrating a configuration of an optical repeater according to the first embodiment;
FIG. 4 is a diagram showing an operation timing chart of the optical repeater according to the first embodiment.
FIG. 5 is a diagram illustrating a configuration of an optical repeater according to a second embodiment;
FIG. 6 is a diagram for explaining an optical repeater according to a third embodiment;
FIG. 7 is an operation timing chart of the optical repeater according to the third embodiment.
FIG. 8 is a diagram illustrating a configuration of an optical repeater according to a fourth embodiment;
FIG. 9 is a diagram illustrating a configuration of an optical repeater according to a fifth embodiment.
FIG. 10 is a diagram for explaining an optical transmitter according to the first embodiment;
FIG. 11 is a diagram for explaining an optical transmitter according to a second embodiment;
FIG. 12 is a diagram for explaining an optical transmitter according to a third embodiment;
FIG. 13 is a diagram (1) for explaining the prior art.
FIG. 14 is a diagram (2) for explaining the prior art.
[Explanation of symbols]
100 control station
DA differential amplifier
LD Laser diode
LVD level detector
PD photo detector
OA optical amplifier
OCCS optical cross-connect switch
ODMX optical demultiplexer
OMUX optical multiplexer
OR optical receiver
OS optical transmitter
RG optical repeater
RGCT repeater controller
RX light receiving device
RXCT receiving device controller
TX Optical transmission device
TXCT Transmitter control unit

Claims (2)

各波長の光信号を送信する複数の光送信装置と、各光送信装置の出力信号を合波して光伝送路に送出する光合波器と、光伝送路の光波長多重信号を光増幅する光増幅器と、光伝送路の光波長多重信号を各波長の光信号に分波する光分波器と、光分波器の各出力信号を受信する複数の光受信装置とを備える光波長多重伝送システムにおいて、
前記各光送信装置は高ビットレートの光主信号に低周波の光制御信号を一定の割合で重畳して送信すると共に、
光伝送路における光波長多重信号の一部を光分岐して該分岐光より所望単一波長の光信号を抽出し、かつ該抽出光信号の光電変換信号を高周波の主信号成分と低周波の制御信号成分とに分離して各分離信号の信号レベルを検出すると共に、得られた前記分離された主信号成分の信号レベルと、前記分離された制御信号成分の信号レベルとの比が予め定められた範囲から逸脱していることにより光信号間における光波長間干渉に基づくクロストークの存在を検出する光波長間干渉検出手段を備えることを特徴とする光波長多重伝送システム。
A plurality of optical transmission devices that transmit optical signals of each wavelength, an optical multiplexer that combines the output signals of each optical transmission device and sends them to the optical transmission line, and optically amplifies the optical wavelength multiplexed signal of the optical transmission line Optical wavelength multiplexing comprising: an optical amplifier; an optical demultiplexer that demultiplexes an optical wavelength multiplexed signal of the optical transmission line into an optical signal of each wavelength; and a plurality of optical receivers that receive the output signals of the optical demultiplexer In transmission systems,
Each optical transmission device transmits a low-frequency optical control signal superimposed on a high-bit-rate optical main signal at a certain rate, and
A part of the optical wavelength multiplexed signal in the optical transmission line is optically branched to extract an optical signal having a desired single wavelength from the branched light, and the photoelectric conversion signal of the extracted optical signal is converted into a high-frequency main signal component and a low-frequency signal. The signal level of each separated signal is detected separately from the control signal component, and the ratio between the obtained signal level of the separated main signal component and the signal level of the separated control signal component is determined in advance. An optical wavelength multiplex transmission system comprising: an optical wavelength interference detecting unit for detecting the presence of crosstalk based on interference between optical signals between optical signals by deviating from a specified range.
一定の割合で低周波光制御信号を重畳された各波長の光送信信号を合波して光伝送路に送信する複数の光送端装置と、複数の光送端装置の出力信号を合波すると共に、その出力信号を光増幅し、かつその出力信号を前記合波した各光信号に分波し、必要なら光信号路の交換を行う光中継装置と、光中継装置の出力信号を各波長の光受信信号に分波して受信する複数の光受端装置とを備える光波長多重伝送システムの前記光中継装置において、
光増幅信号の一部を光分岐して該分岐光より所望単一波長の光信号を抽出し、かつ該抽出光信号の光電変換信号を高周波の主信号成分と低周波の制御信号成分とに分離して各分離信号の信号レベルを検出すると共に、得られた前記分離された主信号成分の信号レベルと、前記分離された制御信号成分の信号レベルとの比が予め定められた範囲から逸脱していることにより光信号間における光波長間干渉に基づくのクロストークの存在を検出する光波長間干渉検出部を備えることを特徴とする光中継装置。
Multiple optical transmission devices that multiplex optical transmission signals of each wavelength superimposed with a low-frequency optical control signal at a fixed rate and transmit them to the optical transmission line, and output signals from multiple optical transmission devices And optically amplifying the output signal, demultiplexing the output signal into the combined optical signals, and exchanging the optical signal paths if necessary, and the output signals of the optical repeaters. In the optical repeater of an optical wavelength division multiplex transmission system comprising a plurality of optical receiving end devices that demultiplex and receive optical reception signals of wavelengths,
A part of the optical amplification signal is optically branched to extract an optical signal having a desired single wavelength from the branched light, and the photoelectric conversion signal of the extracted optical signal is converted into a high-frequency main signal component and a low-frequency control signal component. Separately, the signal level of each separated signal is detected, and the ratio between the obtained signal level of the separated main signal component and the signal level of the separated control signal component deviates from a predetermined range. An optical repeater comprising an optical inter-wavelength interference detector for detecting the presence of crosstalk based on inter-optical wavelength interference between optical signals.
JP30428096A 1996-11-15 1996-11-15 Optical wavelength division multiplexing system and apparatus Expired - Fee Related JP4054081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30428096A JP4054081B2 (en) 1996-11-15 1996-11-15 Optical wavelength division multiplexing system and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30428096A JP4054081B2 (en) 1996-11-15 1996-11-15 Optical wavelength division multiplexing system and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005321089A Division JP2006054929A (en) 2005-11-04 2005-11-04 Optical wavelength division multiplex transmission system and apparatus thereof

Publications (2)

Publication Number Publication Date
JPH10145337A JPH10145337A (en) 1998-05-29
JP4054081B2 true JP4054081B2 (en) 2008-02-27

Family

ID=17931142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30428096A Expired - Fee Related JP4054081B2 (en) 1996-11-15 1996-11-15 Optical wavelength division multiplexing system and apparatus

Country Status (1)

Country Link
JP (1) JP4054081B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260325A (en) 2004-03-09 2005-09-22 Fujitsu Ltd Wavelength multiplexing system
JP4765669B2 (en) 2006-02-28 2011-09-07 住友電気工業株式会社 Optical transmitter
US8107819B2 (en) * 2007-05-31 2012-01-31 Industrial Technology Research Institute Systems and methods for interference prediction
WO2009025033A1 (en) * 2007-08-21 2009-02-26 Nippon Telegraph And Telephone Corporation Optical current monitor circuit
CN104734778B (en) * 2013-12-20 2018-01-30 中国移动通信集团公司 The sending, receiving method and device of a kind of data-signal and monitoring signals
JP5986272B1 (en) * 2015-07-14 2016-09-06 日本電信電話株式会社 Inter-core crosstalk evaluation method and system
JP6631075B2 (en) * 2015-08-04 2020-01-15 富士通株式会社 Optical communication system, optical receiver, and optical transmitter

Also Published As

Publication number Publication date
JPH10145337A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
US8831436B2 (en) Method and apparatus for local optimization of an optical transmitter
US8625997B2 (en) Method and apparatus for local optimization of an optical transmitter
JP5557399B2 (en) Spatial division multiplexing apparatus including multi-core fiber and self-homodyne detection method
JP4336377B2 (en) Optical multichannel system
US5920414A (en) Wavelength division multiplexing optical transmission apparatus and optical repeater
EP3487091B1 (en) Method and system for establishing at least two bidirectional communication links using coherent detection
US8548333B2 (en) Transceiver photonic integrated circuit
US8971721B2 (en) Method and system for bidirectional optical communication
US20120087661A1 (en) Long Distance Transmission Of Incoherent Optical Signals In An Optical Network
US9614639B2 (en) Power control of optical signals having different polarizations
JP2006054929A (en) Optical wavelength division multiplex transmission system and apparatus thereof
JP3981013B2 (en) Receiver system and method for optical amplification backup
US7254327B1 (en) Switching status and performance monitoring technology for wavelength selective switch and optical networks
JP4054081B2 (en) Optical wavelength division multiplexing system and apparatus
JP3603082B2 (en) WDM transmission equipment
Heismann et al. Signal tracking and performance monitoring in multi-wavelength optical networks
JP3363133B2 (en) Wavelength division multiplexing transmission method and system
JP2004221968A (en) Optical transmission system
CA3006971A1 (en) Fast probing of signal quality in a wdm network
JP4361099B2 (en) Optical transceiver using wavelength stabilized light source
JP3831227B2 (en) Single core bidirectional transmission equipment
JP2000174701A (en) Optical switching circuit
EP1011217A2 (en) Optical repeater
CN115499066A (en) Receiving device, terminal, system and method of optical signal
JP2000201106A (en) Optical transmission system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040521

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees