JP4361099B2 - Optical transceiver using wavelength stabilized light source - Google Patents

Optical transceiver using wavelength stabilized light source Download PDF

Info

Publication number
JP4361099B2
JP4361099B2 JP2007091553A JP2007091553A JP4361099B2 JP 4361099 B2 JP4361099 B2 JP 4361099B2 JP 2007091553 A JP2007091553 A JP 2007091553A JP 2007091553 A JP2007091553 A JP 2007091553A JP 4361099 B2 JP4361099 B2 JP 4361099B2
Authority
JP
Japan
Prior art keywords
optical
signal
wavelength
point
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007091553A
Other languages
Japanese (ja)
Other versions
JP2008252545A (en
Inventor
一茂 米永
明秀 佐野
篤 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007091553A priority Critical patent/JP4361099B2/en
Publication of JP2008252545A publication Critical patent/JP2008252545A/en
Application granted granted Critical
Publication of JP4361099B2 publication Critical patent/JP4361099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、波長安定化光源を用いた光送受信機に関し、より詳細には、受信側に用いる復調用光フィルタの透過中心周波数を最適値に簡易に設定できる光送受信機に関する。   The present invention relates to an optical transceiver that uses a wavelength-stabilized light source, and more particularly to an optical transceiver that can easily set the transmission center frequency of a demodulation optical filter used on the receiving side to an optimum value.

光通信システムは、波長多重(WDM)技術により比較的容易に大容量化が可能となりつつあるが、一波長あたりのビットレートの高速化も盛んに研究されている。その理由は、一波長あたりビットレートを高速化することで、装置コストを低減し、装置を小型化、低消費電力化できることにより、システムトータルのイニシャルコスト、ランニングコストを低減できることにある。   Optical communication systems are becoming relatively easy to increase in capacity by wavelength division multiplexing (WDM) technology, but increasing the bit rate per wavelength is also being actively studied. The reason is that by increasing the bit rate per wavelength, the apparatus cost can be reduced, and the apparatus can be reduced in size and power consumption, thereby reducing the total initial cost and running cost of the system.

しかし、一波長あたりのビットレートの高速化は、原理的なOSNR耐力の劣化、波長分散(GVD)や偏波モード分散(PMD)による伝送距離制限、多段光フィルタリングによる通過ノード数制限、ファイバの非線形性によるファイバへの入力パワー制限などが顕著に表れるようになる。   However, the increase in bit rate per wavelength is due to degradation of the fundamental OSNR tolerance, transmission distance limitation by chromatic dispersion (GVD) and polarization mode dispersion (PMD), limitation of the number of passing nodes by multistage optical filtering, Limitation of input power to the fiber due to non-linearity, etc. will be noticeable.

これらの劣化要因への対策として、光位相変調(DPSK, DQPSKなど)の光遅延検波方式の検討が盛んになってきている。光位相変調方式は、受信装置にて位相変調信号をマッハツェンダ干渉計などの復調器を用いて強度変調符号に変換してから受光器で直接検波する。このときダブルバランスドレシーバを用いることで差動受光が可能となり識別感度が、強度変調信号をひとつの受光器で直接検波した場合に比べて3dB改善されることから、受光器にはダブルバランスドレシーバが用いられることが一般的である。   As countermeasures against these deterioration factors, optical delay detection methods using optical phase modulation (DPSK, DQPSK, etc.) have been studied actively. In the optical phase modulation method, a phase modulation signal is converted into an intensity modulation code using a demodulator such as a Mach-Zehnder interferometer in a receiving apparatus, and then directly detected by a light receiver. At this time, by using a double balanced receiver, differential light reception becomes possible, and the identification sensitivity is improved by 3 dB compared with the case where the intensity modulation signal is directly detected by one light receiver. In general, a receiver is used.

さて、マッハツェンダ干渉計を用いて位相変調信号を強度変調信号に復調するためには、マッハツェンダ干渉計の2つの経路の経路差を、信号光波長の変動に追随して波長レベルで制御しなくてはならない。これらを制御するための方法には、例えば、特許文献1にて説明されているように、干渉計の一方のアームに設けた位相シフタに制御用の低周波信号を重畳し、バランス型受光器の出力レベルに現れる前記制御用の低周波信号成分を利用して干渉計の一方のアームに設けた位相シフタを制御する方法がある。   Now, in order to demodulate the phase modulation signal into the intensity modulation signal using the Mach-Zehnder interferometer, the path difference between the two paths of the Mach-Zehnder interferometer must be controlled at the wavelength level following the fluctuation of the signal light wavelength. Must not. As a method for controlling these, for example, as described in Patent Document 1, a low-frequency signal for control is superimposed on a phase shifter provided on one arm of an interferometer, and a balanced light receiver. There is a method of controlling a phase shifter provided on one arm of the interferometer by utilizing the low frequency signal component for control appearing at the output level.

マッハツェンダ干渉計としては、PLC上に生成した光導波路タイプのものが市販されている。経路差の制御方法としては、基板の温度を制御する(通過帯域変化量:1.4GHz/℃)か、両アームに付けられたヒータを加熱して(位相変化量:1.33π/W)制御することができる。   As the Mach-Zehnder interferometer, an optical waveguide type produced on a PLC is commercially available. As a path difference control method, the substrate temperature is controlled (passband variation: 1.4 GHz / ° C.) or the heaters attached to both arms are heated (phase variation: 1.33π / W). Can be controlled.

国際出願公開特許 WO/2005/088876International Patent Application Publication WO / 2005/088886 T. Yamamoto, T. Komukai, S. Kawanishi, K. Suzuki, and A. Takada, ”Optical Frequency Comb Generation Using Phase Modulators and Group Verocity Dispersion Medium,” 2006 Asia−Pacific Microwave Photonics Conference(AP−MWP 2006), pp.225−227, April 2006.T.A. Yamamoto, T .; Komukai, S .; Kawanishi, K .; Suzuki, and A.A. Takada, “Optical Frequency Comb Generation Using Phase Modulators and Group Velocity Dispersion Medium,” 2006 Asia-Pacific Pap. 225-227, April 2006.

しかしながら特許文献1の「光伝送システム、光伝送システムの光送信装置及び光受信装置」にて説明されている方法では、位相シフタの最適点が検出信号レベルの最大値であるため、信号光波長と干渉計の通過帯域のずれを検出するために位相シフタに制御用の低周波信号を印加している。これは、主信号に干渉信号を重畳していることに他ならず、信号品質劣化を招く。これが従来技術の1つ目の課題である。   However, in the method described in Patent Document 1, “Optical transmission system, optical transmission device and optical reception device of optical transmission system”, since the optimum point of the phase shifter is the maximum value of the detection signal level, A low frequency signal for control is applied to the phase shifter in order to detect a shift in the pass band of the interferometer. This is nothing but superimposing an interference signal on the main signal, and causes signal quality degradation. This is the first problem of the prior art.

また、光位相変調信号の復調に用いられる1ビット遅延マッハツェンダ干渉計(MZI)は、信号帯域に対して半分程度の通過帯域しかないため、MZIの透過中心周波数のずれを検出するためには、変調信号を用いた場合には無変調連続光(CW)を用いた場合よりも中心周波数のずれの検出感度が低く、周波数の設定精度が悪い。これが2つ目の課題である。   Further, since the 1-bit delay Mach-Zehnder interferometer (MZI) used for demodulation of the optical phase modulation signal has only about half the pass band with respect to the signal band, in order to detect the shift of the transmission center frequency of the MZI, When a modulated signal is used, the detection sensitivity of the shift of the center frequency is lower than when unmodulated continuous light (CW) is used, and the frequency setting accuracy is poor. This is the second problem.

本発明は、このような事情に鑑みてなされたものであり、光受信部の光フィルタを、光送信部の光源の光周波数に合致した最適な動作点に精度よく設定することができる光送受信機を提供することを目的とする。   The present invention has been made in view of such circumstances, and an optical transmission / reception capable of accurately setting an optical filter of an optical reception unit to an optimum operating point that matches an optical frequency of a light source of an optical transmission unit. The purpose is to provide a machine.

上記目的を達成するために、本発明は、波長安定化光源と、前記波長安定化光源から出力される連続光に光変調を与える光変調手段とを備える光送信部と、受信光信号をスペクトル整形する光フィルタリング手段を備える光受信部とにより構成される光送受信機において、無変調連続光を用いて、前記光フィルタリング手段の透過中心周波数を調整することを特徴とする。   In order to achieve the above object, the present invention provides a light transmission unit comprising a wavelength-stabilized light source, light modulation means for performing light modulation on continuous light output from the wavelength-stabilized light source, and a received light signal as a spectrum. In an optical transceiver constituted by an optical receiver having an optical filtering means for shaping, the transmission center frequency of the optical filtering means is adjusted using unmodulated continuous light.

これにより、波長安定化光源を用いた光送受信機において、前記波長安定化光源の光周波数と受信機の光フィルタの光周波数とがそれぞれ時間的に安定であることを利用して、複雑な制御機構を用いることなく精度良く光受信機の光フィルタの周波数特性を対向する光送受信機の送信光周波数に一致させることが可能となる。   As a result, in an optical transceiver using a wavelength-stabilized light source, complicated control is performed by utilizing the temporal stability of the optical frequency of the wavelength-stabilized light source and the optical frequency of the optical filter of the receiver. Without using a mechanism, the frequency characteristic of the optical filter of the optical receiver can be accurately matched with the transmission optical frequency of the opposing optical transceiver.

また、前記波長安定化光源がそれぞれ波長の異なる複数の連続光を波長多重してほぼ同時に発生させる多波長光源であり、前記光受信部が波長多重信号分離手段を備えることができる。これにより、送信側が多波長光源であっても本発明を適用することができる。   The wavelength-stabilized light source may be a multi-wavelength light source that generates a plurality of continuous light beams each having a different wavelength and generates them substantially simultaneously, and the optical receiver may include wavelength-multiplexed signal separation means. Thereby, even if the transmission side is a multi-wavelength light source, the present invention can be applied.

また、前記多波長光源から出力される前記複数の連続光が互いに光位相関係が確定した光位相同期波長多重光であることができる。   Further, the plurality of continuous lights output from the multi-wavelength light source may be optical phase-locked wavelength multiplexed light in which an optical phase relationship is established.

これにより、主信号の波長とは異なる波長の連続光を使用しても光フィルタリング手段の透過中心周波数を所望の値に調整することができるため、波長選択の自由度を向上させることができる。   Thereby, even if continuous light having a wavelength different from the wavelength of the main signal is used, the transmission center frequency of the optical filtering means can be adjusted to a desired value, so that the degree of freedom in wavelength selection can be improved.

また、前記波長安定化光源が、前記光フィルタリング手段の波長ずれ許容量に対して十分高い絶対波長確度をもち、前記光フィルタリング手段の透過中心周波数を調整するために用いられる無変調連続光が、自送受信機内の前記光送信部が有する前記安定化光源から出力される単一波長の連続光もしくは複数波長の連続光のうちいずれか一波長の連続光であることができる。   Further, the wavelength-stabilized light source has sufficiently high absolute wavelength accuracy with respect to the wavelength shift tolerance of the optical filtering means, and unmodulated continuous light used for adjusting the transmission center frequency of the optical filtering means is It can be continuous light of one wavelength among continuous light of a single wavelength or a plurality of wavelengths of continuous light output from the stabilized light source included in the optical transmitter in the own transceiver.

これにより、自光送信機の安定化光源の出力を用いて自光受信機が利用する無変調連続光を得ることができるため、無変連続光源を別途設ける必要がなくなり、構成を簡単化することができる。   As a result, unmodulated continuous light used by the self-light receiver can be obtained using the output of the stabilized light source of the self-light transmitter, so that there is no need to separately provide a non-variable continuous light source, and the configuration is simplified. be able to.

また、前記光送信部が少なくとも一波長の無変調連続光を送信し、前記光受信部が対向する光送受信機から受信する光信号に少なくとも一波長の無変調連続光を含み、前記光フィルタリング手段の透過中心周波数を調整するために用いられる無変調連続光が前記受信する無変調連続光であることができる。   In addition, the optical transmission unit transmits at least one wavelength of unmodulated continuous light, and the optical signal received from the optical transceiver facing the optical receiver includes at least one wavelength of unmodulated continuous light, and the optical filtering means The non-modulated continuous light used for adjusting the transmission center frequency of the light may be the received non-modulated continuous light.

これにより、対向する光送受信機の光送信部から送信された安定化光源の出力を用いて自光受信機が利用する無変調連続光を得ることができるため、無変調連続光源を別途設ける必要がなくなり、構成を簡単化することができる。   As a result, unmodulated continuous light used by the self-light receiver can be obtained using the output of the stabilized light source transmitted from the optical transmission unit of the opposing optical transceiver, so an unmodulated continuous light source must be provided separately. And the configuration can be simplified.

また、前記光受信部が光切替手段を備え、光送受信機のインストール時に前記無変調連続光を前記光受信部に入力するように光切替手段を切り替え、前記光フィルタリング手段の透過中心周波数を調整して固定し、前記透過中心周波数を固定後に受信する光変調信号を前記光受信部に入力するように光切替手段を切り替える手段を備えることができる。   In addition, the optical receiving unit includes an optical switching unit, the optical switching unit is switched so that the unmodulated continuous light is input to the optical receiving unit when an optical transceiver is installed, and the transmission center frequency of the optical filtering unit is adjusted. And a means for switching the light switching means so as to input an optical modulation signal received after fixing the transmission center frequency to the optical receiver.

これにより、光フィルタリング手段における光信号の入力ポート数を削減することができるため、光フィルタリング手段の構成を簡単化することができる。また、光送受信機のインストール時のみに無変調連続光が光受信部に入力するように制御するので、冗長な無変調連続光の入力や調整処理を無くすことができる。   Thereby, since the number of optical signal input ports in the optical filtering means can be reduced, the configuration of the optical filtering means can be simplified. In addition, since control is performed so that unmodulated continuous light is input to the optical receiver only when the optical transceiver is installed, redundant unmodulated continuous light input and adjustment processing can be eliminated.

また、前記光フィルタリング手段が光周波数に対して周期的な透過率特性を有する光周期フィルタであり、前記光フィルタリング手段の透過中心周波数を調整するために用いられる無変調連続光の光周波数が前記受信する光変調信号の光搬送波周波数と同等である、もしくは前記無変調連続光の光周波数が、前記受信する光変調信号の光搬送波周波数と同等の周波数から前記光周期フィルタの周期の整数倍だけシフトした周波数であることができる。   The optical filtering means is an optical periodic filter having a periodic transmittance characteristic with respect to an optical frequency, and the optical frequency of unmodulated continuous light used for adjusting the transmission center frequency of the optical filtering means is It is equivalent to the optical carrier frequency of the optical modulation signal to be received, or the optical frequency of the unmodulated continuous light is an integer multiple of the period of the optical periodic filter from the frequency equivalent to the optical carrier frequency of the optical modulation signal to be received It can be a shifted frequency.

このように、光フィルタリング手段を調整するための無変調連続光の光周波数は、一つの光周波数に限定されることがないため、光送受信機設計における自由度を確保することができる。   As described above, the optical frequency of the unmodulated continuous light for adjusting the optical filtering means is not limited to one optical frequency, so that the degree of freedom in designing the optical transceiver can be ensured.

本発明の光送信受信機の構成をさらに具体的に説明すると、例えば、前記光受信部が受信する光信号が光差動位相シフトキーイング(DPSK)信号である場合に、前記光フィルタリング手段が前記光DPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、前記光復調回路を所望の出力端子の光出力レベルが最大または最小となる点に調整する。   More specifically, the configuration of the optical transmission receiver of the present invention will be described. For example, when the optical signal received by the optical receiver is an optical differential phase shift keying (DPSK) signal, the optical filtering means An optical demodulation circuit including a Mach-Zehnder interferometer capable of demodulating an optical DPSK signal, and adjusting the optical demodulation circuit to a point where the optical output level of a desired output terminal is maximized or minimized.

あるいは、前記光受信部が受信する光信号が光差動位相シフトキーイング(DPSK)信号である場合に、前記光フィルタリング手段が前記光DPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、前記光復調回路を所望の出力端子の光出力レベルが最小となる第一の点と前記光出力レベルが最小となる第一の点に隣接する光出力レベルが最小となる第二の点との中間点に調整する。   Alternatively, when the optical signal received by the optical receiver is an optical differential phase shift keying (DPSK) signal, the optical filtering means includes an Mach-Zehnder interferometer capable of demodulating the optical DPSK signal. A first point at which a light output level of a desired output terminal is minimized and a second point at which a light output level adjacent to the first point at which the light output level is minimized is minimized. Adjust to the middle point.

また、例えば、前記光受信部が受信する光信号が光差動4相位相シフトキーイング(DQPSK)信号である場合に、前記光フィルタリング手段が前記光DQPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、前記光復調回路を所望の出力端子の光出力レベルが最大値から約0.69dB低下した点、もしくは約8.34dB低下した点に調整する。   Further, for example, when the optical signal received by the optical receiver is an optical differential four-phase phase shift keying (DQPSK) signal, the optical filtering means includes a Mach-Zehnder interferometer that can demodulate the optical DQPSK signal. A demodulating circuit, and adjusting the optical demodulating circuit to a point where the optical output level of a desired output terminal is reduced by about 0.69 dB from the maximum value, or about 8.34 dB.

あるいは、前記光受信部が受信する光信号が光差動4相位相シフトキーイング(DQPSK)信号である場合に、前記光フィルタリング手段が前記光DQPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、前記光復調回路を所望の出力端子の光出力レベルが最小となる第一の点と前記光出力レベルが最小となる第一の点に隣接する光出力レベルが最小となる第二の点との中間点から、前記第一の点と前記第二の点の間を8等分した量だけシフトした点に調整する。   Alternatively, when the optical signal received by the optical receiver is an optical differential four-phase phase shift keying (DQPSK) signal, the optical filtering circuit includes a Mach-Zehnder interferometer that can demodulate the optical DQPSK signal. The optical demodulator circuit includes a first point at which a light output level at a desired output terminal is minimized and a second point at which a light output level adjacent to the first point at which the light output level is minimized is minimized. An adjustment is made from a midpoint of the point to a point shifted by an amount equal to 8 between the first point and the second point.

また、例えば、前記光受信部が受信する光信号が光π/4シフト差動4相位相シフトキーイング(π/4−DQPSK)信号である場合に、前記光フィルタリング手段が前記光π/4−DQPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、前記光復調回路を所望の出力端子の光出力レベルが最大または最小となる点、もしくは最大値から約3dB低下した点に調整する。   Further, for example, when the optical signal received by the optical receiver is an optical π / 4 shift differential four-phase shift keying (π / 4-DQPSK) signal, the optical filtering means performs the optical π / 4 An optical demodulating circuit including a Mach-Zehnder interferometer capable of demodulating a DQPSK signal, wherein the optical demodulating circuit is adjusted to a point where the optical output level of a desired output terminal is maximized or minimized, or a point where the optical output level is reduced by about 3 dB from the maximum value. .

あるいは、前記光受信部が受信する光信号が光π/4シフト差動4相位相シフトキーイング(π/4−DQPSK)信号である場合に、前記光フィルタリング手段が前記光π/4−DQPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、前記光復調回路を所望の出力端子の光出力レベルが最小となる第一の点と前記光出力レベルが最小となる第一の点に隣接する光出力レベルが最小となる第二の点との中間点、もしくは前記の光出力レベルが最小となる第一の点から前記第一の点と前記第二の点の間を4等分した量だけシフトした点に調整する。   Alternatively, when the optical signal received by the optical receiving unit is an optical π / 4 shift differential four-phase shift keying (π / 4-DQPSK) signal, the optical filtering means performs the optical π / 4-DQPSK signal. An optical demodulator circuit including a Mach-Zehnder interferometer capable of demodulating the optical demodulator circuit. The intermediate point between the adjacent second points where the light output level is minimum or the first point where the light output level is minimum is divided into four equal parts between the first point and the second point. Adjust to the point shifted by the amount you have

本発明によれば、波長安定化光源を用いた光送受信機において、前記波長安定化光源の光周波数と受信機の光フィルタの光周波数とがそれぞれ時間的に安定であることを利用して、複雑な制御機構を用いることなく精度良く光受信機の光フィルタの周波数特性を対向する光送受信機の送信光周波数に一致させることが可能となる。   According to the present invention, in an optical transceiver using a wavelength-stabilized light source, utilizing that the optical frequency of the wavelength-stabilized light source and the optical frequency of the optical filter of the receiver are each temporally stable, Without using a complicated control mechanism, the frequency characteristic of the optical filter of the optical receiver can be matched with the transmission optical frequency of the opposing optical transceiver accurately.

(第一実施形態)
本発明の第一実施形態に係る光送受信機について説明する。本発明の第一実施形態に係る光送受信機の構成例を図1に示す。図1において、光送受信機は、光送信部10−1および光受信部20−1により構成される。光送信部10−1では、波長安定化光源1−1から出力される連続光(CW)を光変調手段2−1に入力し、データ信号で変調を行う。変調された光変調信号は、光伝送路(図示省略)に送出される。
(First embodiment)
The optical transceiver according to the first embodiment of the present invention will be described. A configuration example of an optical transceiver according to the first embodiment of the present invention is shown in FIG. In FIG. 1, the optical transceiver includes an optical transmission unit 10-1 and an optical reception unit 20-1. In the optical transmission unit 10-1, continuous light (CW) output from the wavelength stabilized light source 1-1 is input to the optical modulation unit 2-1, and modulation is performed with a data signal. The modulated optical modulation signal is sent to an optical transmission line (not shown).

光受信部20−1では、受信した光変調信号を光フィルタリング手段3−1により光スペクトル整形を行う。光フィルタリング手段3−1から出力される光信号を光検波および識別再生回路4で電気信号に変換してから識別再生してデータ信号として出力する。モニタおよび制御回路5は、その出力光レベルを監視し、その監視結果に基づいて、無変調連続光を用いて光フィルタリング手段3−1の透過中心周波数を調整する。   In the optical receiver 20-1, the received optical modulation signal is subjected to optical spectrum shaping by the optical filtering means 3-1. The optical signal output from the optical filtering means 3-1 is converted into an electrical signal by the optical detection and identification reproduction circuit 4, identified and reproduced, and output as a data signal. The monitor and control circuit 5 monitors the output light level, and adjusts the transmission center frequency of the optical filtering means 3-1 using unmodulated continuous light based on the monitoring result.

(第二実施形態)
本発明の第二実施形態に係る光送受信機について説明する。本発明の第二実施形態に係る光送受信機の構成例を図2に示す。本実施形態は図1に示した第一実施形態からの差分で説明する。
(Second embodiment)
An optical transceiver according to the second embodiment of the present invention will be described. A configuration example of an optical transceiver according to the second embodiment of the present invention is shown in FIG. The present embodiment will be described using differences from the first embodiment shown in FIG.

本実施形態に係る光送受信機が第一実施形態と異なるのは、安定化光源がそれぞれ波長の異なる複数の無変調連続光を波長多重しほぼ同時に発生させることができる多波長安定化光源1−2であり、光変調手段が多波長の連続光を各々異なるデータで同時に変調することができる多波長光変調手段2−2であり、光受信部20−2が受信する波長多重信号を分波する波長多重信号分離手段6−1を光フィルタリング手段3−1の入力側に備えるところである。   The optical transceiver according to the present embodiment is different from the first embodiment in that the stabilized light source can multiplex and generate a plurality of unmodulated continuous lights having different wavelengths and generate them almost simultaneously. 2 is a multi-wavelength optical modulator 2-2 that can simultaneously modulate multi-wavelength continuous light with different data, and demultiplexes the wavelength multiplexed signal received by the optical receiver 20-2. The wavelength multiplexing signal separation means 6-1 is provided on the input side of the optical filtering means 3-1.

本実施形態では、光フィルタリング手段3−1は波長多重信号分離手段6−1の出力側に接続されているため波長毎に複数並べることになるが、光フィルタリング手段3−1が複数波長を同時に扱える機能をもっている場合は、波長多重信号分離手段6−1の入力側に接続してもよい。   In this embodiment, since the optical filtering means 3-1 is connected to the output side of the wavelength multiplexing signal demultiplexing means 6-1, a plurality of optical filtering means 3-1 are arranged for each wavelength. If it has a function that can be handled, it may be connected to the input side of the wavelength division multiplexing signal separation means 6-1.

本実施形態における多波長光変調手段2−2の具体的な構成例を図3に示す。多波長安定化光源1−2から出力された波長多重無変調連続光はアレー導波路グレーティング(AWG)などの分波フィルタ31により一旦波長毎に分波される。分波された各波長の無変調連続光はそれぞれ光変調器32−1〜32−Nへ入力され、それぞれ異なるデータ♯1〜♯Nで変調される。変調された各波長の光変調信号は、AWGなどの合波フィルタ33で再び合波され波長多重光変調信号として光伝送路に送出される。   A specific configuration example of the multi-wavelength light modulation means 2-2 in this embodiment is shown in FIG. The wavelength-multiplexed unmodulated continuous light output from the multi-wavelength stabilized light source 1-2 is once demultiplexed for each wavelength by a demultiplexing filter 31 such as an arrayed waveguide grating (AWG). The demodulated continuous light of each wavelength is input to the optical modulators 32-1 to 32-N, and modulated by different data # 1 to #N, respectively. The modulated optical modulation signal of each wavelength is combined again by a multiplexing filter 33 such as AWG and sent out to the optical transmission line as a wavelength multiplexed optical modulation signal.

また、RZ系の光変調(RZ,CS−RZ,RZ−DPSK,CSRZ−DPSK,RZ−DQPSK,CSRZ−DQPSKなど)の場合には、図3に示すようにAWGなどの分波フィルタ31の前段に光パルス変調手段30を設けてもよい。これにより、全波長の光キャリアに同時に光パルス変調を行うことが可能となり、各波長の光変調器32−1〜32−Nへの負荷を大幅に低減することができる。   In the case of RZ-based optical modulation (RZ, CS-RZ, RZ-DPSK, CSRZ-DPSK, RZ-DQPSK, CSRZ-DQPSK, etc.), as shown in FIG. The optical pulse modulation means 30 may be provided in the previous stage. As a result, optical pulse modulation can be performed simultaneously on optical carriers of all wavelengths, and the load on the optical modulators 32-1 to 32-N of each wavelength can be greatly reduced.

本実施形態における光受信部20−2の具体的な構成例を図4に示す。光受信部20−2に入力される波長多重光変調信号はAWGなどの分波フィルタ40により波長毎に分離される。分離された各波長の信号は、それぞれ光フィルタリング手段41−1〜41−Nで光スペクトル整形され、光検波回路42−1〜42−Nで電気信号に変換され、識別再生回路43−1〜43−Nで再生され、データ信号♯1〜♯Nとして出力される。本実施形態では、図4に示すように光フィルタリング手段調整用の無変調連続光が波長数だけ必要である。   FIG. 4 shows a specific configuration example of the optical receiver 20-2 in the present embodiment. The wavelength multiplexed optical modulation signal input to the optical receiver 20-2 is separated for each wavelength by a demultiplexing filter 40 such as AWG. The separated signals of each wavelength are subjected to optical spectrum shaping by optical filtering means 41-1 to 41-N, converted into electric signals by optical detection circuits 42-1 to 42-N, and discriminating / reproducing circuits 43-1 to 43-1. The data is reproduced at 43-N and output as data signals # 1 to #N. In this embodiment, as shown in FIG. 4, unmodulated continuous light for adjusting the optical filtering means is required for the number of wavelengths.

(第三実施形態)
本発明の第三実施形態に係る光送受信機について説明する。本発明の第三実施形態に係る光送受信機の構成例を図5に示す。本実施形態は図2に示した第二実施形態からの差分で説明する。
(Third embodiment)
An optical transceiver according to a third embodiment of the present invention will be described. FIG. 5 shows a configuration example of the optical transceiver according to the third embodiment of the present invention. This embodiment will be described using differences from the second embodiment shown in FIG.

本実施形態に係る光伝送システムが第二実施形態と異なるのは、多波長安定化光源が、各波長の光位相が同期している光位相同期多波長安定化光源1−3であるところである。多波長光源の各波長の光位相を同期させることにより、主信号の波長とは異なる波長の連続光を使用しても光フィルタリング手段3−1の透過中心周波数を所望の値に調整することが可能となる。実際には光位相ではなく光周波数が同期していれば各波長の光位相関係が確定するため、光位相同期多波長安定化光源1−3の各波長を一旦分波して光位相同期状態が保持できなくても光フィルタリング手段3−1の調整は可能である。   The optical transmission system according to this embodiment is different from the second embodiment in that the multi-wavelength stabilized light source is an optical phase-locked multi-wavelength stabilized light source 1-3 in which the optical phases of the respective wavelengths are synchronized. . By synchronizing the optical phase of each wavelength of the multi-wavelength light source, the transmission center frequency of the optical filtering means 3-1 can be adjusted to a desired value even if continuous light having a wavelength different from the wavelength of the main signal is used. It becomes possible. Actually, if the optical frequency is synchronized rather than the optical phase, the optical phase relationship between the wavelengths is determined. Therefore, the respective wavelengths of the optical phase-synchronized multi-wavelength stabilized light source 1-3 are once demultiplexed and the optical phase-synchronized state. Even if the optical filtering means 3-1 cannot be maintained, the optical filtering means 3-1 can be adjusted.

光位相同期多波長安定化光源1−3の具体的な構成例を図6に示す。単一波長安定化光源50から出力された単一波長連続光は光位相変調器51を用いて単一周波数fmのRF(Radio Frequency)信号で変調され、光周波数間隔がfmの複数のスペクトルをもつ光となる。この光を波長分散媒質52に通すことにより各波長のスペクトルの光位相関係を調整することができる。波長分散媒質52で各波長の光位相が調整された光は再び光位相変調器53で位相変調されて出力される。このような構成をとることにより、非常に広帯域でかつスペクトルの平坦な波長多重連続光を生成することができる。(例えば、非特許文献1参照)   A specific configuration example of the optical phase-locked multi-wavelength stabilized light source 1-3 is shown in FIG. Single-wavelength continuous light output from the single-wavelength stabilized light source 50 is modulated with an RF (Radio Frequency) signal having a single frequency fm by using an optical phase modulator 51, and a plurality of spectra having an optical frequency interval of fm is obtained. It has light. By passing this light through the wavelength dispersion medium 52, the optical phase relationship of the spectrum of each wavelength can be adjusted. The light whose phase of each wavelength is adjusted by the wavelength dispersion medium 52 is again phase-modulated by the optical phase modulator 53 and output. By adopting such a configuration, it is possible to generate wavelength-division multiplexed continuous light having a very wide band and a flat spectrum. (For example, see Non-Patent Document 1)

(第四実施形態)
本発明の第四実施形態に係る光送受信機について説明する。本発明の第四実施形態に係る光送受信機の構成例を図7に示す。本実施形態は図5に示した第三実施形態からの差分で説明する。
(Fourth embodiment)
An optical transceiver according to the fourth embodiment of the present invention will be described. A configuration example of an optical transceiver according to the fourth embodiment of the present invention is shown in FIG. This embodiment will be described using differences from the third embodiment shown in FIG.

本実施形態に係る光送受信機が第三実施形態と異なるのは、光送信部10−4の光位相同期多波長安定化光源1−3から出力される波長多重無変調連続光を光分岐手段7により分岐して、その一方を光受信部20−4の光フィルタリング手段3−2の調整に用いる波長多重無変調連続光として用いるところである。   The optical transceiver according to the present embodiment is different from that of the third embodiment in that the wavelength-multiplexed unmodulated continuous light output from the optical phase-locked multi-wavelength stabilized light source 1-3 of the optical transmitter 10-4 is optical branching means. 7 is branched and one of them is used as wavelength-division multiplexed unmodulated continuous light used for adjustment of the optical filtering means 3-2 of the optical receiver 20-4.

光受信部20−4は、対向する光送受信機の光送信部から送出される光信号を受信するが、光送信部10−4に絶対波長確度の保証された光位相同期多波長安定化光源1−3を用いることにより、対向する光送受信機から送出される光信号の波長と同じとみなして、光受信部20−4の光フィルタリング手段3−2の調整に用いることができる。   The optical receiver 20-4 receives an optical signal transmitted from the optical transmitter of the opposite optical transceiver, but the optical transmitter 10-4 is an optical phase-locked multi-wavelength stabilized light source with guaranteed absolute wavelength accuracy. By using 1-3, it can be considered that it is the same as the wavelength of the optical signal transmitted from the opposing optical transceiver, and can be used for adjustment of the optical filtering means 3-2 of the optical receiver 20-4.

光受信部20−4の具体的な構成例を図8に示す。図4の構成例と異なるのは、各波長の光フィルタリング手段41−1〜41−Nに入力される調整用の無変調連続光が、同じ光送受信機の送信部10−4から供給される波長多重無変調連続光であり、それをAWGなどの分波フィルタ45で各波長の連続光に分離して各光フィルタリング手段41−1〜41−Nに入力するところである。   A specific configuration example of the optical receiver 20-4 is shown in FIG. The difference from the configuration example of FIG. 4 is that the non-modulated continuous light for adjustment input to the optical filtering means 41-1 to 41-N of each wavelength is supplied from the transmitter 10-4 of the same optical transceiver. The wavelength-division multiplexed non-modulated continuous light is separated into continuous light of each wavelength by a demultiplexing filter 45 such as AWG and input to each of the optical filtering means 41-1 to 41-N.

(第五実施形態)
本発明の第五実施形態に係る光送受信機について説明する。本発明の第五実施形態に係る光送受信機の構成例を図9に示す。本実施形態は図5に示した第三実施形態からの差分で説明する。
(Fifth embodiment)
An optical transceiver according to a fifth embodiment of the present invention will be described. FIG. 9 shows a configuration example of an optical transceiver according to the fifth embodiment of the present invention. This embodiment will be described using differences from the third embodiment shown in FIG.

本実施形態に係る光送受信機が第三実施形態と異なるのは、光送信部10−5が光位相同期多波長安定化光源1−3から出力される波長多重無変調連続光の少なくとも1波を分岐手段8により分波して、光変調手段2−1から出力される波長多重光変調信号に合波手段9により合波して光伝送路に送出し、光受信部20−5が受信した波長多重光変調信号を波長多重信号分離手段6−2で分離する際、対向する光送受信機から送信された無変調連続光を光フィルタリング手段3−1の調整用に使用するところである。   The optical transceiver according to this embodiment differs from the third embodiment in that the optical transmitter 10-5 outputs at least one wavelength-multiplexed unmodulated continuous light output from the optical phase-locked multi-wavelength stabilized light source 1-3. Is split by the branching unit 8, multiplexed by the multiplexing unit 9 with the wavelength multiplexed optical modulation signal output from the optical modulating unit 2-1, and sent to the optical transmission line, and received by the optical receiving unit 20-5. When the wavelength division multiplexed optical modulation signal is separated by the wavelength division multiplexed signal separating means 6-2, the unmodulated continuous light transmitted from the opposing optical transceiver is used for adjustment of the optical filtering means 3-1.

この無変調連続光の波長は他の光変調信号の波長とは異なるが、光フィルタリング手段3−1が例えばマッハツェンダ干渉計(MZI)型光フィルタのように光周波数に対して周期的な透過率特性を有する光フィルタである場合には、構成や調整方法の変更がほとんどなく実現が可能である。   The wavelength of the unmodulated continuous light is different from the wavelengths of the other optical modulation signals, but the optical filtering means 3-1 has a periodic transmittance with respect to the optical frequency, such as a Mach-Zehnder interferometer (MZI) type optical filter. In the case of an optical filter having characteristics, it can be realized with almost no change in configuration and adjustment method.

光送信部10−5の具体的な構成例を図10に示す。図3の構成例と同様に光位相同期多波長安定化光源60から出力された光はAWGなどの分波フィルタ61で波長毎に分波されるが、そのうち1つの波長にだけ光変調を行わずに再び合波して光伝送路に送出する。図10では無変調連続光のポートには光変調器62−1〜62−(N−1)は挿入されていないが、光変調器は挿入しておいてデータ信号を入力せず無変調のまま出力する構成でもよい。   A specific configuration example of the optical transmission unit 10-5 is shown in FIG. As in the configuration example of FIG. 3, the light output from the optical phase-locked multi-wavelength stabilized light source 60 is demultiplexed for each wavelength by a demultiplexing filter 61 such as AWG, but only one of the wavelengths is modulated. The signals are combined again and sent to the optical transmission line. In FIG. 10, the optical modulators 62-1 to 62- (N-1) are not inserted into the ports of the unmodulated continuous light, but the optical modulators are inserted and the data signals are not input and are not modulated. It may be configured to output as it is.

(第六実施形態)
本発明の第六実施形態に係る光送受信機について説明する。本発明の第六実施形態に係る光送受信機の構成例を図11に示す。本実施形態は図7に示した第四実施形態からの差分で説明する。
(Sixth embodiment)
An optical transceiver according to the sixth embodiment of the present invention will be described. FIG. 11 shows a configuration example of the optical transceiver according to the sixth embodiment of the present invention. This embodiment will be described using differences from the fourth embodiment shown in FIG.

本実施形態に係る光送受信機が第四実施形態と異なるのは、光受信部20−6に光スイッチ11を備え、制御回路12で光スイッチ11を切り替えることにより、波長多重信号分離手段6−1への入力を波長多重された無変調連続光と波長多重された光変調信号のどちらかに切り替えるところである。   The optical transceiver according to the present embodiment is different from that of the fourth embodiment in that the optical receiving unit 20-6 includes the optical switch 11, and the control circuit 12 switches the optical switch 11 so that the wavelength multiplexed signal separation means 6- The input to 1 is switched to either wavelength-divisionless unmodulated continuous light or wavelength-division multiplexed optical modulation signal.

光受信部20−6の光フィルタリング手段3−3の透過中心周波数を調整するときは、前記波長多重された無変調連続光を波長多重信号分離手段6−1に入力し、調整が完了したら前記波長多重された光変調信号を波長多重信号分離手段6−1に入力し運用を開始する。   When adjusting the transmission center frequency of the optical filtering unit 3-3 of the optical receiving unit 20-6, the wavelength-division-multiplexed unmodulated continuous light is input to the wavelength-multiplexed signal separating unit 6-1 and when the adjustment is completed, The wavelength-division multiplexed optical modulation signal is input to the wavelength-multiplexed signal separating means 6-1 to start operation.

光受信部20−6の具体的な構成例を図12に示す。入力段に光スイッチ11を設け、調整時と運用時とで制御回路12で切り替える。調整時は、光送信部10−6から供給される波長多重無変調連続光を分波フィルタ40側に入力して光フィルタリング手段41−1〜41−Nの調整を行う。調整が完了したら、光変調信号を分波フィルタ40側に入力して運用を開始する。   A specific configuration example of the optical receiver 20-6 is shown in FIG. An optical switch 11 is provided at the input stage and is switched by the control circuit 12 between adjustment and operation. At the time of adjustment, the wavelength-multiplexed unmodulated continuous light supplied from the optical transmitter 10-6 is input to the demultiplexing filter 40 side, and the optical filtering means 41-1 to 41-N are adjusted. When the adjustment is completed, the optical modulation signal is input to the demultiplexing filter 40 side and the operation is started.

光スイッチ11を分波フィルタ40の前段に配置することにより波長多重信号を一括して扱うことができる。また、光スイッチ11を使用せず、手動で光ファイバコードをつなぎ換えてもよい。   By arranging the optical switch 11 in front of the demultiplexing filter 40, wavelength multiplexed signals can be handled collectively. Further, the optical fiber cord may be manually changed without using the optical switch 11.

(第七実施形態)
本発明の第七実施形態に係る光送受信機について説明する。本発明の第七実施形態に係る光送受信機の構成例を図13に示す。本実施形態は図9に示した第五実施形態からの差分で説明する。
(Seventh embodiment)
An optical transceiver according to a seventh embodiment of the present invention will be described. FIG. 13 shows a configuration example of the optical transceiver according to the seventh embodiment of the present invention. This embodiment will be described using differences from the fifth embodiment shown in FIG.

本実施形態に係る光送受信機が第5実施形態と異なるのは、光受信部20−7に光スイッチ11を備え、制御回路12で光スイッチ11を切り替えることにより、光フィルタリング手段3−3への入力を無変調連続光と光変調信号のどちらかに切り替えるところである。光受信部20−7の光フィルタリング手段3−3の透過中心周波数を調整するときは、前記無変調連続光を光フィルタリング手段3−3に入力し、調整が完了したら前記光変調信号を光フィルタリング手段3−3に入力し運用を開始する。   The optical transceiver according to the present embodiment is different from the fifth embodiment in that the optical receiving unit 20-7 includes the optical switch 11, and the control circuit 12 switches the optical switch 11 to the optical filtering unit 3-3. Is switched to either unmodulated continuous light or an optical modulation signal. When adjusting the transmission center frequency of the optical filtering unit 3-3 of the optical receiver 20-7, the unmodulated continuous light is input to the optical filtering unit 3-3, and when the adjustment is completed, the optical modulation signal is optically filtered. Input to means 3-3 to start operation.

光受信部20−7の具体的な構成例を図14に示す。分波フィルタ40と光フィルタリング手段41−1〜41−(N−1)との間に信号チャネル数の光スイッチ11−1〜11−(N−1)を設け、調整時と運用時とで制御回路12で切り替える。調整時は、分波フィルタ40で分離された無変調連続光を光フィルタリング手段41−1〜41−(N−1)側に入力して光フィルタリング手段41−1〜41−(N−1)の調整を行う。調整が完了したら、光変調信号を光フィルタリング手段41−1〜41−(N−1)側に入力して運用を開始する。   A specific configuration example of the optical receiving unit 20-7 is shown in FIG. Optical switches 11-1 to 11- (N-1) having the number of signal channels are provided between the demultiplexing filter 40 and the optical filtering means 41-1 to 41- (N-1), and are adjusted and operated. Switching is performed by the control circuit 12. At the time of adjustment, the unmodulated continuous light separated by the demultiplexing filter 40 is input to the optical filtering means 41-1 to 41- (N-1) side, and the optical filtering means 41-1 to 41- (N-1). Make adjustments. When the adjustment is completed, the optical modulation signal is input to the optical filtering means 41-1 to 41- (N-1) side to start operation.

分波された無変調連続光をパワースプリッタ13で分岐して使用することにより、1つの連続光で全チャネルの光フィルタリング手段41−1〜41−(N−1)を調整することが可能である。また、光スイッチ11−1〜11−(N−1)を使用せず、手動で光ファイバコードをつなぎ換えてもよい。   By branching and using the demultiplexed unmodulated continuous light by the power splitter 13, it is possible to adjust the optical filtering means 41-1 to 41- (N-1) of all channels with one continuous light. is there. Further, the optical fiber cords may be manually switched without using the optical switches 11-1 to 11- (N-1).

本発明の第五および第七実施形態では、光送信部10−5および10−7で無変調連続光を波長多重して送出し、光受信部20−5および20−7でその無変調連続光を波長分離して使用するという形態をとる。従って、光フィルタリング手段3−1および3−3を調整するための無変調連続光と実際に信号送受信に用いられる光変調信号の搬送波周波数が異なるという問題がある。   In the fifth and seventh embodiments of the present invention, unmodulated continuous light is wavelength-multiplexed and transmitted by the optical transmitters 10-5 and 10-7, and the unmodulated continuous light is transmitted by the optical receivers 20-5 and 20-7. It takes the form of using light after wavelength separation. Therefore, there is a problem that the carrier frequency of the unmodulated continuous light for adjusting the optical filtering means 3-1 and 3-3 and the optical modulated signal actually used for signal transmission / reception are different.

しかし、光フィルタリング手段3−1および3−3が光周波数に対して周期的な透過率特性をもつ光フィルタの場合には、図15および図16に示すように、調整用無変調連続光の周波数が光変調信号の搬送波周波数に対して光フィルタリング手段3−1および3−3の周期の整数倍だけ離れた周波数でも同様に調整することが可能である。   However, in the case where the optical filtering means 3-1 and 3-3 are optical filters having periodic transmittance characteristics with respect to the optical frequency, as shown in FIGS. It is possible to similarly adjust the frequency even when the frequency is separated from the carrier frequency of the optical modulation signal by an integral multiple of the period of the optical filtering means 3-1 and 3-3.

何故ならば、本実施形態では光フィルタリング手段3−1および3−3の出力光レベルを監視しているため、光フィルタリング手段3−1および3−3の周期の整数倍だけ離れた光周波数では、透過率は同じ特性を示すためである。図15は光信号のキャリア周波数と調整用無変調連続光の周波数が一致している場合であり、図16は調整用無変調連続光の周波数が光信号キャリア周波数から光フィルタリング手段3−1および3−3の周期の整数倍だけ離れた周波数の場合である。このような動作条件は、光フィルタリング手段3−1および3−3が光周波数に対して周期的な透過率特性をもっていればよく、第五および第七実施形態に限定されず全ての実施形態に適用可能である。   This is because, in the present embodiment, the output light levels of the optical filtering means 3-1 and 3-3 are monitored, so that at optical frequencies separated by an integral multiple of the period of the optical filtering means 3-1 and 3-3. This is because the transmittance exhibits the same characteristics. FIG. 15 shows a case where the carrier frequency of the optical signal and the frequency of the non-modulating continuous light for adjustment coincide with each other. FIG. 16 shows that the frequency of the non-modulating continuous light for adjustment is changed from the optical signal carrier frequency to the optical filtering means 3-1. This is a case of frequencies separated by an integral multiple of the period of 3-3. Such an operating condition is that the optical filtering means 3-1 and 3-3 have only to have a periodic transmittance characteristic with respect to the optical frequency, and are not limited to the fifth and seventh embodiments, but are applicable to all the embodiments. Applicable.

(第八実施形態)
本発明の第八実施形態に係る光送受信機について説明する。本発明の第八実施形態に係る光受信部の構成例を図17および図18に示す。本実施形態では、光変調信号が光差動位相シフトキーイング(DPSK)信号である場合の光フィルタリング手段の具体的な構成例でその動作を説明する。
(Eighth embodiment)
An optical transceiver according to an eighth embodiment of the present invention will be described. A configuration example of the optical receiving unit according to the eighth embodiment of the present invention is shown in FIGS. In the present embodiment, the operation will be described with a specific configuration example of the optical filtering means when the optical modulation signal is an optical differential phase shift keying (DPSK) signal.

図17に示す構成はMZIフィルタ70に対して光変調信号と調整用無変調連続光を同じ方向に入射させる場合であり、図18に示す構成はMZIフィルタ70に対して光変調信号と調整用無変調連続光を反対方向に入射させる場合である。   The configuration shown in FIG. 17 is a case where the optical modulation signal and the adjustment non-modulated continuous light are incident on the MZI filter 70 in the same direction. The configuration shown in FIG. This is a case where unmodulated continuous light is incident in the opposite direction.

受信された光DPSK信号は、復調のために遅延器71により1ビット遅延されたMZIフィルタ70に入力され、位相変調が強度変調に変換される。   The received optical DPSK signal is input to the MZI filter 70 delayed by 1 bit by the delay unit 71 for demodulation, and the phase modulation is converted into intensity modulation.

MZIフィルタ70の2つの出力ポートから出力される相補的な2つの光強度変調信号はバランス型検波回路73で電気信号に変換され、識別再生回路74で再生されてデータ信号として出力される。このMZIフィルタ70の透過中心周波数を調整するときは、前記光DPSK信号の代わりに無変調連続光を用いる。光レベル検出回路75は、バランス型検波回路73の出力により無変調連続光の光レベルを検出し、MZI制御回路76は、所望の光レベルが得られるように位相調整端子72の位相を調整する。   Two complementary light intensity modulation signals output from the two output ports of the MZI filter 70 are converted into electric signals by the balanced detection circuit 73, reproduced by the identification / reproduction circuit 74, and output as a data signal. When adjusting the transmission center frequency of the MZI filter 70, unmodulated continuous light is used instead of the optical DPSK signal. The light level detection circuit 75 detects the light level of unmodulated continuous light based on the output of the balanced detection circuit 73, and the MZI control circuit 76 adjusts the phase of the phase adjustment terminal 72 so that a desired light level is obtained. .

図17に示す構成では、調整用の無変調連続光は光DPSK信号と同じ入力ポートからMZIフィルタ70に入力される。この場合は、MZIフィルタ70への入力前に光DPSK信号と無変調連続光を切り替える機能をもつ。一方、図18に示す構成では、調整用の無変調連続光は光DPSK信号の出力ポートから方向性結合器78を介してMZIフィルタ70に入力される。MZIフィルタ70の入力および出力には光方向性結合器77および78が挿入されており、MZIフィルタ70の出力側から入力された無変調連続光はMZIフィルタ70の入力側の方向性結合器77で分離させて光レベル検出回路75で光レベルを検出される。   In the configuration shown in FIG. 17, the non-modulated continuous light for adjustment is input to the MZI filter 70 from the same input port as the optical DPSK signal. In this case, the optical DPSK signal and unmodulated continuous light are switched before being input to the MZI filter 70. On the other hand, in the configuration shown in FIG. 18, the unmodulated continuous light for adjustment is input to the MZI filter 70 from the output port of the optical DPSK signal via the directional coupler 78. Optical directional couplers 77 and 78 are inserted into the input and output of the MZI filter 70, and the unmodulated continuous light input from the output side of the MZI filter 70 is a directional coupler 77 on the input side of the MZI filter 70. And the light level is detected by the light level detection circuit 75.

光レベル検出回路75は、方向性結合器77の出力により無変調連続光の光レベルを検出し、MZI制御回路76は、所望の光レベルが得られるように位相調整端子72の位相を調整する。この場合には、MZIフィルタ70の入力側での光スイッチ機能や光ファイバコードによるつなぎ換えなどは不要となる。   The light level detection circuit 75 detects the light level of unmodulated continuous light based on the output of the directional coupler 77, and the MZI control circuit 76 adjusts the phase of the phase adjustment terminal 72 so that a desired light level is obtained. . In this case, an optical switch function on the input side of the MZI filter 70 or reconnection using an optical fiber cord is not necessary.

この無変調連続光は、受信する光DPSK信号の搬送波周波数と必ずしも同一周波数である必要ななく、図15および図16に示したように受信信号の搬送波周波数からMZIフィルタ周期の整数倍だけ離れた周波数でもよい。   This unmodulated continuous light does not necessarily have to be the same frequency as the carrier frequency of the received optical DPSK signal, and is separated from the carrier frequency of the received signal by an integral multiple of the MZI filter period as shown in FIGS. It may be a frequency.

MZIフィルタ調整用の無変調連続光の光周波数とMZIフィルタ70の周波数特性の関係を図19〜図21に示す。図19はMZIフィルタ70から出力される光レベルが最大となる点にMZIフィルタ70を調整した場合であり、図20はMZIフィルタ70から出力される光レベルが最小となる点にMZIフィルタ70を調整した場合である。MZIフィルタ70の2つの出力ポートのうちどちらか1つを図19のように調整するともう1つの出力ポートは図20のようになり、その逆もあり得る。   The relationship between the optical frequency of unmodulated continuous light for adjusting the MZI filter and the frequency characteristics of the MZI filter 70 is shown in FIGS. FIG. 19 shows a case where the MZI filter 70 is adjusted to a point where the light level output from the MZI filter 70 is maximized, and FIG. 20 shows that the light level output from the MZI filter 70 is minimized. This is a case of adjustment. When one of the two output ports of the MZI filter 70 is adjusted as shown in FIG. 19, the other output port becomes as shown in FIG. 20, and vice versa.

また、図21はMZIフィルタ70から出力される光レベルが最小となる隣り合う第一の消光点と第二の消光点の中間点にMZIフィルタ70の透過中心周波数を調整した場合である。MZIフィルタ70の2つの出力ポートのうちどちらか1つを図21ように調整するともう1つの出力ポートは図20のようになる。   FIG. 21 shows a case where the transmission center frequency of the MZI filter 70 is adjusted to an intermediate point between the adjacent first and second extinction points at which the light level output from the MZI filter 70 is minimum. When one of the two output ports of the MZI filter 70 is adjusted as shown in FIG. 21, the other output port becomes as shown in FIG.

このように図19、図20、図21のどの調整方法を採用しても最適点に調整することができる。   As described above, the adjustment can be made to the optimum point regardless of which adjustment method shown in FIGS. 19, 20, and 21 is adopted.

対向の光送受信機の送信側の光源周波数は時間的に安定しているため、MZIフィルタ70は調整後に時間的に安定していればよい。例えば、MZIフィルタ70の位相調整端子72の駆動電流(電圧)を一定に制御すればよく、温度特性がある場合にはさらに温度を一定に制御すればよいため、変調信号による複雑な制御回路は必要ない。   Since the light source frequency on the transmission side of the opposing optical transceiver is temporally stable, the MZI filter 70 only needs to be temporally stable after adjustment. For example, the driving current (voltage) of the phase adjustment terminal 72 of the MZI filter 70 may be controlled to be constant, and if there is a temperature characteristic, the temperature may be further controlled to be constant. unnecessary.

(第九実施形態)
本発明の第九実施形態に係る光送受信機について説明する。本発明の第九実施形態に係る光受信部の構成例を図22に示す。本実施形態では、光変調信号が光差動4相位相シフトキーイング(DQPSK)信号である場合の光フィルタリング手段の具体的な構成例でその動作を説明する。
(Ninth embodiment)
An optical transceiver according to the ninth embodiment of the present invention will be described. FIG. 22 shows a configuration example of the optical receiver according to the ninth embodiment of the present invention. In the present embodiment, the operation will be described with a specific configuration example of the optical filtering means when the optical modulation signal is an optical differential four-phase phase shift keying (DQPSK) signal.

受信された光DQSK信号は、分岐85により分岐されて復調のために遅延器81および87により1ビット遅延された2つのMZIフィルタ80および86に入力される。光DQPSK信号の4値の情報は、2つのMZIフィルタ80および86で2チャネルの2値データに分離されて強度変調に変換される。2つのMZIフィルタ80および86のうち一方(MZI80)はその2つのアーム間の光位相差がπ/4であり、他方(MZI86)はその2つのアーム間の光位相差が−π/4である。   The received optical DQSK signal is branched by branch 85 and input to two MZI filters 80 and 86 delayed by 1 bit by delay units 81 and 87 for demodulation. The four-value information of the optical DQPSK signal is separated into two-channel binary data by two MZI filters 80 and 86 and converted into intensity modulation. One of the two MZI filters 80 and 86 (MZI80) has an optical phase difference between its two arms of π / 4, and the other (MZI86) has an optical phase difference of −π / 4 between its two arms. is there.

それぞれMZIフィルタ80および86の2つの出力ポートから出力される相補的な2つの光強度変調信号はバランス型検波回路83および89で電気信号に変換され、識別再生回路84および90で再生されてデータ信号として出力される。このMZIフィルタ80および86の透過中心周波数を調整するときは、前記光DQPSK信号の代わりに無変調連続光を用いる。   Two complementary light intensity modulation signals output from the two output ports of the MZI filters 80 and 86, respectively, are converted into electric signals by the balanced detection circuits 83 and 89, and reproduced by the identification and reproduction circuits 84 and 90 to be data. Output as a signal. When adjusting the transmission center frequency of the MZI filters 80 and 86, unmodulated continuous light is used instead of the optical DQPSK signal.

光レベル検出回路91は、バランス型検波回路83および89の出力により無変調連続光の光レベルを検出し、MZI制御回路92は、所望の光レベルが得られるように位相調整端子82−1および88−1の位相を調整する。   The optical level detection circuit 91 detects the optical level of the unmodulated continuous light based on the outputs of the balanced detection circuits 83 and 89, and the MZI control circuit 92 includes the phase adjustment terminal 82-1 and the phase adjustment terminal 82-1 so that a desired optical level can be obtained. The phase of 88-1 is adjusted.

また、図17および図18に示した第八実施形態と同様にMZIフィルタ80および86の出力ポートから調整用の無変調連続光を入力してもよい。   Further, similarly to the eighth embodiment shown in FIGS. 17 and 18, unmodulated continuous light for adjustment may be input from the output ports of the MZI filters 80 and 86.

この無変調連続光は、受信する光DQPSK信号の搬送波周波数と必ずしも同一周波数である必要はなく、図16に示したように受信信号の搬送波周波数からMZIフィルタ80および86の周期の整数倍だけ離れた周波数でもよい。   This unmodulated continuous light does not necessarily have the same frequency as the carrier frequency of the received optical DQPSK signal, and is separated from the carrier frequency of the received signal by an integral multiple of the period of the MZI filters 80 and 86 as shown in FIG. May be a different frequency.

MZIフィルタ調整用の無変調連続光の光周波数とMZIフィルタ80および86の周波数特性の関係を図23〜図25に示す。図23はMZIフィルタ80および86から出力される光レベルが最大となる点から約0.69dB低下した点にMZIフィルタ80および86を調整した場合であり、図24はMZIフィルタ80および86から出力される光レベルが最大となる点から約8.34dB低下した点にMZIフィルタ80および86を調整した場合である。   The relationship between the optical frequency of unmodulated continuous light for adjusting the MZI filter and the frequency characteristics of the MZI filters 80 and 86 is shown in FIGS. FIG. 23 shows a case where the MZI filters 80 and 86 are adjusted to the point where the light level output from the MZI filters 80 and 86 is reduced by about 0.69 dB from the point where the light level is maximized. This is a case where the MZI filters 80 and 86 are adjusted to a point where the light level is lowered by about 8.34 dB from the point where the light level is maximized.

MZIフィルタ80の2つの出力ポートのうちどちらか1つを図23のように調整するともう1つの出力ポートは図24のようになり、その逆もあり得る。   When one of the two output ports of the MZI filter 80 is adjusted as shown in FIG. 23, the other output port becomes as shown in FIG. 24, and vice versa.

また、MZIフィルタ86は、光レベルは同じであるがMZIフィルタ86の周波数特性が調整用無変調連続光を基準にして光周波数軸上で対象の位置に調整される。MZIフィルタ80とMZIフィルタ86の光位相の関係を安定化させれば、4つの出力ポートのうちいずれか1つの出力ポートを調整するだけで他の3ポートは自動的に調整される。   The MZI filter 86 has the same light level, but the frequency characteristic of the MZI filter 86 is adjusted to the target position on the optical frequency axis with reference to the non-modulated continuous light for adjustment. If the optical phase relationship between the MZI filter 80 and the MZI filter 86 is stabilized, the other three ports are automatically adjusted by adjusting only one of the four output ports.

また、図25はMZIフィルタ80および86から出力される光レベルが最小となる隣り合う第一の消光点と第二の消光点からMZI周期の1/8だけシフトした点にMZIフィルタ80および86の透過中心周波数を調整した場合である。MZIフィルタ80および86の2つの出力ポートのうちどちらか1つを図25ように調整するともう1つの出力ポートは図23のようになる。このように図23、図24、図25のどの調整方法を採用しても最適点に調整することができる。   Further, FIG. 25 shows that the MZI filters 80 and 86 are shifted from the adjacent first extinction point and the second extinction point at which the light levels output from the MZI filters 80 and 86 are minimum by 1/8 of the MZI period. This is a case where the transmission center frequency is adjusted. When one of the two output ports of the MZI filters 80 and 86 is adjusted as shown in FIG. 25, the other output port becomes as shown in FIG. As described above, the adjustment can be made to the optimum point regardless of which adjustment method shown in FIGS. 23, 24, and 25 is adopted.

対向の光送受信機の送信側の光源周波数は時間的に安定しているため、MZIフィルタ80および86は調整後に時間的に安定していればよい。例えば、MZIフィルタ80および86の位相調整端子82−1および88−1の駆動電流(電圧)を一定に制御すればよく、温度特性がある場合にはさらに温度を一定に制御すればよいため、変調信号による複雑な制御回路は必要ない。   Since the light source frequency on the transmission side of the opposing optical transceiver is temporally stable, the MZI filters 80 and 86 need only be temporally stable after adjustment. For example, the drive current (voltage) of the phase adjustment terminals 82-1 and 88-1 of the MZI filters 80 and 86 may be controlled to be constant, and if there is a temperature characteristic, the temperature may be further controlled to be constant. A complicated control circuit using a modulation signal is not necessary.

(第十実施形態)
本発明の第十実施形態に係る光送受信機について説明する。本発明の第十実施形態に係る光受信部の構成例を図26に示す。本実施形態では、光変調信号が光π/4シフト差動4相位相シフトキーイング(π/4−DQPSK)信号である場合の光フィルタリング手段の具体的な構成例でその動作を説明する。
(Tenth embodiment)
An optical transceiver according to the tenth embodiment of the present invention will be described. FIG. 26 shows a configuration example of the optical receiving unit according to the tenth embodiment of the present invention. In the present embodiment, the operation will be described with a specific configuration example of the optical filtering means when the optical modulation signal is an optical π / 4 shift differential four-phase shift keying (π / 4-DQPSK) signal.

受信された光π/4−DQSK信号は、分岐85により分岐されて復調のために遅延器81および87により1ビット遅延された2つのMZIフィルタ80および86に入力される。光π/4−DQPSK信号の4値の情報は、2つのMZIフィルタ80および86で2チャネルの2値データに分離されて強度変調に変換される。2つのMZIフィルタ80および86のうち一方(MZI80)はその2つのアーム間の光位相差が0であり、他方(MZI86)はその2つのアーム間の光位相差がπ/2である。   The received optical π / 4-DQSK signal is branched by branch 85 and input to two MZI filters 80 and 86 delayed by 1 bit by delay units 81 and 87 for demodulation. The quaternary information of the optical π / 4-DQPSK signal is separated into binary data of two channels by two MZI filters 80 and 86 and converted into intensity modulation. One of the two MZI filters 80 and 86 (MZI80) has an optical phase difference between its two arms of 0, and the other (MZI86) has an optical phase difference of π / 2 between its two arms.

それぞれMZIフィルタ80および86の2つの出力ポートから出力される相補的な2つの光強度変調信号はバランス型検波回路83および89で電気信号に変換され、識別再生回路84および90で再生されてデータ信号として出力される。このMZIフィルタ80および86の透過中心周波数を調整するときは、前記光π/4−DQPSK信号の代わりに無変調連続光を用いる。   Two complementary light intensity modulation signals output from the two output ports of the MZI filters 80 and 86, respectively, are converted into electric signals by the balanced detection circuits 83 and 89, and reproduced by the identification and reproduction circuits 84 and 90 to be data. Output as a signal. When adjusting the transmission center frequency of the MZI filters 80 and 86, unmodulated continuous light is used instead of the optical π / 4-DQPSK signal.

光レベル検出回路91は、バランス型検波回路83および89の出力により無変調連続光の光レベルを検出し、MZI制御回路92は、所望の光レベルが得られるように位相調整端子82−1および88−1の位相を調整する。   The optical level detection circuit 91 detects the optical level of the unmodulated continuous light based on the outputs of the balanced detection circuits 83 and 89, and the MZI control circuit 92 includes the phase adjustment terminal 82-1 and the phase adjustment terminal 82-1 so that a desired optical level can be obtained. The phase of 88-1 is adjusted.

また、図17および図18に示した第八実施形態と同様にMZIフィルタ80および86の出力ポートから調整用の無変調連続光を入力してもよい。   Further, similarly to the eighth embodiment shown in FIGS. 17 and 18, unmodulated continuous light for adjustment may be input from the output ports of the MZI filters 80 and 86.

この無変調連続光は、受信する光π/4−DQPSK信号の搬送波周波数と必ずしも同一周波数である必要ななく、図16に示したように受信信号の搬送波周波数からMZIフィルタ80および86の周期の整数倍だけ離れた周波数でもよい。   The unmodulated continuous light does not necessarily have the same frequency as the carrier frequency of the received optical π / 4-DQPSK signal. As shown in FIG. 16, the period of the MZI filters 80 and 86 is determined from the carrier frequency of the received signal. The frequency may be separated by an integer multiple.

MZIフィルタ調整用の無変調連続光の光周波数とMZIフィルタ80および86の周波数特性の関係を図21、図27〜図31に示す。図27はMZIフィルタ80および86から出力される光レベルが最大となる点にMZIフィルタ80および86を調整した場合であり、図28はMZIフィルタ80および86から出力される光レベルが最小となる点にMZIフィルタ80および86を調整した場合である。MZIフィルタ80の2つの出力ポートのうちどちらか1つを図27のように調整するともう1つの出力ポートは図28のようになり、その逆もあり得る。   The relationship between the optical frequency of unmodulated continuous light for adjusting the MZI filter and the frequency characteristics of the MZI filters 80 and 86 is shown in FIGS. FIG. 27 shows the case where the MZI filters 80 and 86 are adjusted to the point where the light levels output from the MZI filters 80 and 86 become maximum, and FIG. 28 shows the case where the light levels output from the MZI filters 80 and 86 become minimum. This is a case where the MZI filters 80 and 86 are adjusted to the points. When either one of the two output ports of the MZI filter 80 is adjusted as shown in FIG. 27, the other output port becomes as shown in FIG. 28, and vice versa.

また、図29はMZIフィルタ80および86から出力される光レベルが最大値から光周波数が高い側に3dB低下した点に調整した場合である。図30はMZIフィルタ80および86から出力される光レベルが最大値から光周波数が低い側に3dB低下した点に調整された場合である。MZI86の2つの出力ポートのうちどちらか1つを図29のように調整するともう1つの出力ポートは図30のようになり、その逆もあり得る。   FIG. 29 shows a case where the light level output from the MZI filters 80 and 86 is adjusted to a point where the light level is lowered by 3 dB from the maximum value to the higher optical frequency side. FIG. 30 shows a case where the light levels output from the MZI filters 80 and 86 are adjusted to a point where the light level is lowered by 3 dB from the maximum value to the lower light frequency side. When one of the two output ports of the MZI 86 is adjusted as shown in FIG. 29, the other output port becomes as shown in FIG. 30 and vice versa.

MZIフィルタ80およびMZIフィルタ86の光位相の関係を安定化させれば、4つの出力ポートのうちいずれか1つの出力ポートを調整するだけで他の3ポートは自動的に調整される。   If the optical phase relationship between the MZI filter 80 and the MZI filter 86 is stabilized, the other three ports are automatically adjusted by adjusting any one of the four output ports.

また、図21はMZIフィルタ80および86から出力される光レベルが最小となる隣り合う第一の消光点と第二の消光点の中間点にMZIフィルタ80および86の透過中心周波数を調整した場合であり、図31はMZIフィルタ80および86から出力される光レベルが最小となる隣り合う第一の消光点と第二の消光点の中間点からMZIフィルタ80および86の周期の1/4だけシフトした点にMZIフィルタ80および86の透過中心周波数を調整した場合である。本実施形態ではMZIフィルタ80を図21のように、MZIフィルタ86は図31のように調整される。   FIG. 21 shows the case where the transmission center frequency of the MZI filters 80 and 86 is adjusted to the midpoint between the adjacent first and second extinction points at which the light levels output from the MZI filters 80 and 86 are minimum. FIG. 31 shows only a quarter of the period of the MZI filters 80 and 86 from the intermediate point between the adjacent first and second extinction points at which the light levels output from the MZI filters 80 and 86 are minimum. This is a case where the transmission center frequency of the MZI filters 80 and 86 is adjusted to the shifted point. In this embodiment, the MZI filter 80 is adjusted as shown in FIG. 21, and the MZI filter 86 is adjusted as shown in FIG.

このように本実施形態では図21、図27、図28、図29、図30、図31のどの調整方法を採用しても最適点に調整することができる。対向の光送受信機の送信側の光源周波数は時間的に安定しているため、MZIフィルタ80および86は調整後に時間的に安定していればよい。例えば、MZIフィルタ80および86の位相調整端子82−2および88−2の駆動電流(電圧)を一定に制御すればよく、温度特性がある場合にはさらに温度を一定に制御すればよい。   As described above, in this embodiment, the optimum point can be adjusted regardless of which adjustment method shown in FIGS. 21, 27, 28, 29, 30, and 31 is adopted. Since the light source frequency on the transmission side of the opposing optical transceiver is temporally stable, the MZI filters 80 and 86 need only be temporally stable after adjustment. For example, the drive current (voltage) of the phase adjustment terminals 82-2 and 88-2 of the MZI filters 80 and 86 may be controlled to be constant, and if there is a temperature characteristic, the temperature may be further controlled to be constant.

(第十一実施形態)
本発明の第十一実施形態に係る光送受信機について説明する。本発明の第十一実施形態に係る光送受信機の構成例を図32に示す。本実施形態は、本発明の送受信機をROADM(再構成可能な光挿入分岐多重)ノードへ適用した場合のROADMノードの構成例である。本構成例では、ROADMノードは2つの光送受信機をもち、一方の光送受信機は図面左側からの信号を分岐して受信し、図面左側へ送信信号を挿入して送出し、他方の光送受信機は図面右側からの信号を分岐して受信して図面右側へ送信信号を挿入して送出する。
(Eleventh embodiment)
An optical transceiver according to the eleventh embodiment of the present invention will be described. FIG. 32 shows a configuration example of the optical transceiver according to the eleventh embodiment of the present invention. The present embodiment is a configuration example of a ROADM node when the transceiver of the present invention is applied to a ROADM (reconfigurable optical add / drop multiplexer) node. In this configuration example, the ROADM node has two optical transceivers, and one optical transceiver branches and receives a signal from the left side of the drawing, inserts and transmits a transmission signal to the left side of the drawing, and transmits and receives the other optical transceiver. The machine branches and receives the signal from the right side of the drawing, inserts the transmission signal to the right side of the drawing, and sends it out.

ROADMノードは少なくとも1つの絶対周波数安定化光源100をもち、前記光送受信機はこの絶対周波数安定化光源100を基準として多波長キャリアを発生する。生成した多波長キャリアを分岐して一方を送信用光源として、他方を受信部の復調用MZIフィルタの調整用に用いられる。   The ROADM node has at least one absolute frequency stabilized light source 100, and the optical transceiver generates multi-wavelength carriers based on the absolute frequency stabilized light source 100. The generated multi-wavelength carrier is branched and one is used as a transmission light source, and the other is used for adjusting a demodulation MZI filter of the reception unit.

光送信部、光受信部の動作はこれまで説明した通りであるが、本実施形態で最も重要なのは絶対周波数安定化光源100を各ノードに少なくとも1台用意することである。これによって光位相変調方式(DPSK,DQPSKなど)を採用したRAODMシステムの光送受信機を簡単に安定化させることが可能となる。   The operations of the optical transmitter and the optical receiver are as described above. In the present embodiment, the most important thing is to prepare at least one absolute frequency stabilized light source 100 at each node. This makes it possible to easily stabilize the optical transceiver of the RAODM system that employs an optical phase modulation system (DPSK, DQPSK, etc.).

本発明によれば、波長安定化光源を用いた光送受信機において、前記波長安定化光源の光周波数と受信機の光フィルタの光周波数とがそれぞれ時間的に安定であることを利用して、複雑な制御機構を用いることなく精度良く光受信機の光フィルタの周波数特性を対向する光送受信機の送信光周波数に一致させることが可能となるので、光通信における通信品質の向上に利用することができる。   According to the present invention, in an optical transceiver using a wavelength-stabilized light source, utilizing that the optical frequency of the wavelength-stabilized light source and the optical frequency of the optical filter of the receiver are each temporally stable, The frequency characteristics of the optical filter of the optical receiver can be accurately matched to the transmission optical frequency of the opposing optical transceiver without using a complicated control mechanism, so that it can be used to improve communication quality in optical communication. Can do.

本発明の第一実施形態を示すブロック図。The block diagram which shows 1st embodiment of this invention. 本発明の第二実施形態を示すブロック図。The block diagram which shows 2nd embodiment of this invention. 本発明の第二実施形態における多波長光変調手段の具体的構成例を示すブロック図。The block diagram which shows the specific structural example of the multiwavelength light modulation means in 2nd embodiment of this invention. 本発明の第二実施形態における光受信部の具体的構成例を示すブロック図。The block diagram which shows the specific structural example of the optical receiver in 2nd embodiment of this invention. 本発明の第三実施形態を示すブロック図。The block diagram which shows 3rd embodiment of this invention. 本発明の第三実施形態における位相同期多波長安定化光源の具体的構成例を示すブロック図。The block diagram which shows the specific structural example of the phase-locked multiwavelength stabilization light source in 3rd embodiment of this invention. 本発明の第四実施形態を示すブロック図。The block diagram which shows 4th embodiment of this invention. 本発明の第四実施形態における光受信部の具体的構成例を示すブロック図。The block diagram which shows the specific structural example of the optical receiver in 4th embodiment of this invention. 本発明の第五実施形態を示すブロック図。The block diagram which shows 5th embodiment of this invention. 本発明の第五実施形態における光送信部の具体的構成例を示すブロック図。The block diagram which shows the specific structural example of the optical transmission part in 5th embodiment of this invention. 本発明の第六実施形態を示すブロック図。The block diagram which shows 6th embodiment of this invention. 本発明の第六実施形態における光受信部の具体的構成例を示すブロック図。The block diagram which shows the specific structural example of the optical receiver in 6th embodiment of this invention. 本発明の第七実施形態を示すブロック図。The block diagram which shows 7th embodiment of this invention. 本発明の第七実施形態における光受信部の具体的構成例を示すブロック図。The block diagram which shows the specific structural example of the optical receiver in 7th embodiment of this invention. 光フィルタリング手段の周期性を利用した調整用無変調連続光の光周波数配置例を示す図(光信号キャリア周波数と調整用連続光周波数とが一致)。The figure which shows the example of optical frequency arrangement | positioning of the unmodulated continuous light for adjustment using the periodicity of an optical filtering means (an optical signal carrier frequency and the continuous optical frequency for adjustment correspond). 光フィルタリング手段の周期性を利用した調整用無変調連続光の光周波数配置例を示す図(光信号キャリア周波数と調整用連続光周波数とが一定間隔ずれている)。The figure which shows the optical frequency arrangement | positioning example of the non-modulation continuous light for adjustment using the periodicity of an optical filtering means (The optical signal carrier frequency and the adjustment continuous optical frequency have shifted | deviated by the fixed interval). 本発明の第八実施形態を示すブロック図(光変調信号と調整用無変調連続光とが同じ方向から入射)。The block diagram which shows 8th embodiment of this invention (an optical modulation signal and the non-modulation continuous light for adjustment enter from the same direction). 本発明の第八実施形態を示すブロック図(光変調信号と調整用無変調連続光とが反対方向から入射)。The block diagram which shows 8th embodiment of this invention (an optical modulation signal and the unmodulated continuous light for adjustment enter from the opposite direction). 本発明の第八実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベル最大の点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means in the 8th embodiment of this invention, and the unmodulated continuous light for adjustment (adjusted to the point of the maximum MZI output level). 本発明の第八実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベル最小の点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means in the 8th embodiment of this invention, and the unmodulated continuous light for adjustment (adjusted to the point with the minimum MZI output level). 本発明の第八および第十実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベル最小の点の中間点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means and the non-modulation continuous light for adjustment in the 8th and 10th embodiment of this invention (adjusted to the middle point of the MZI output level minimum point). 本発明の第九実施形態を示すブロック図。The block diagram which shows 9th embodiment of this invention. 本発明の第九実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベルが最大値から約0.69dB低下した点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means and unmodulated continuous light for adjustment in the ninth embodiment of the present invention (adjusted to the point where the MZI output level is reduced by about 0.69 dB from the maximum value). 本発明の第九実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベルが最大値から約8.34dB低下した点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means and unmodulated continuous light for adjustment in the ninth embodiment of the present invention (adjusted to the point where the MZI output level is lowered by about 8.34 dB from the maximum value). 本発明の第九実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベル最小の点の中間点からMZI周期の1/8だけシフトさせた点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means and the non-modulation continuous light for adjustment in 9th embodiment of this invention (Adjustment to the point shifted by 1/8 of the MZI period from the middle point of the MZI output level minimum point) ). 本発明の第十実施形態を示すブロック図。The block diagram which shows 10th Embodiment of this invention. 本発明の第十実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベル最大の点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means in the 10th Embodiment of this invention, and the unmodulated continuous light for adjustment (adjusted to the point with the maximum MZI output level). 本発明の第十実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベル最小の点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means and unmodulated continuous light for adjustment in 10th Embodiment of this invention (it adjusts to the point with the minimum MZI output level). 本発明の第十実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベルが最大値から約3dB光周波数が高い側に低下した点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means and unmodulated continuous light for adjustment in the tenth embodiment of the present invention (adjusted to the point where the MZI output level is lowered from the maximum value to the higher side by about 3 dB optical frequency). 本発明の第十実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベルが最大値から約3dB光周波数が低い側に低下した点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means and unmodulated continuous light for adjustment in the tenth embodiment of the present invention (adjusted to the point where the MZI output level is lowered from the maximum value to the lower side by about 3 dB optical frequency). 本発明の第十実施形態における光フィルタリング手段と調整用無変調連続光の光周波数配置例を示す図(MZI出力レベル最小の点の中間点からMZI周期の1/4だけシフトさせた点に調整)。The figure which shows the optical frequency arrangement | positioning example of the optical filtering means and unmodulated continuous light for adjustment in 10th Embodiment of this invention (Adjustment to the point shifted only 1/4 of the MZI period from the middle point of the MZI output level minimum point) ). 本発明の第十一実施形態を示すブロック図。The block diagram which shows 11th embodiment of this invention.

符号の説明Explanation of symbols

1−1 波長安定化光源
1−2 多波長安定化光源
1−3 光位相同期多波長安定化光源
2−1 光変調手段
2−2 多波長光変調手段
3−1、3−2、3−3、41−1〜41−N 光フィルタリング手段
4 光検波および識別再生回路
5、44 モニタおよび制御回路
6−1、6−2 波長多重信号分離手段
7 光分岐手段
8 分波手段
9 合波手段
10−1、10−2、10−3、10−4、10−5、10−6、10−7 光送信部
11、11−1〜11−(N−1) 光スイッチ
12 制御回路
13 パワースプリッタ
20−1、20−2、20−3、20−4、20−5、20−6、20−7 光受信部
30 光パルス変調手段
31、40、45、61 分波フィルタ
32−1〜32−N、62−1〜62−(N−1) 光変調器
33、63 合波フィルタ
42−1〜42−N 光検波回路
43−1〜43−N 識別再生回路
50 単一波長安定化光源
51、53 光位相変調器
52 波長分散媒質
60 光位相同期多波長安定化光源
70、80、86 MZIフィルタ
71、81、87 遅延器
72、82−1、88−1、82−2、88−2 位相調整端子
73、83、89 バランス型検波回路
74、84、90 識別再生回路
75、91 光レベル検出回路
76、92 MZI制御回路
77、78 方向性結合器
85 分岐
100 絶対周波数安定化光源
1-1 Wavelength Stabilized Light Source 1-2 Multiwavelength Stabilized Light Source 1-3 Optical Phase-Locked Multiwavelength Stabilized Light Source 2-1 Light Modulating Unit 2-2 Multiwavelength Light Modulating Unit 3-1, 3-2, 3- 3, 41-1 to 41-N Optical filtering means 4 Optical detection and identification reproduction circuit 5, 44 Monitor and control circuit 6-1, 6-2 Wavelength multiplexed signal separation means 7 Optical branching means 8 Demultiplexing means 9 Multiplexing means 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7 Optical transmitters 11, 11-1 to 11- (N-1) Optical switch 12 Control circuit 13 Power Splitters 20-1, 20-2, 20-3, 20-4, 20-5, 20-6, 20-7 Optical receiver 30 Optical pulse modulation means 31, 40, 45, 61 Demultiplexing filter 32-1 32-N, 62-1 to 62- (N-1) Optical modulator 33, 63 Multiplexing filter 4 -1 to 42-N Photodetection circuits 43-1 to 43-N Identification and reproduction circuit 50 Single wavelength stabilized light sources 51 and 53 Optical phase modulator 52 Wavelength dispersion medium 60 Optical phase-locked multiwavelength stabilized light sources 70 and 80, 86 MZI filters 71, 81, 87 Delay devices 72, 82-1, 88-1, 82-2, 88-2 Phase adjustment terminals 73, 83, 89 Balanced detection circuits 74, 84, 90 Discrimination and reproduction circuits 75, 91 Optical level detection circuit 76, 92 MZI control circuit 77, 78 Directional coupler 85 Branch 100 Absolute frequency stabilized light source

Claims (15)

波長安定化光源と、前記波長安定化光源から出力される連続光に光変調を与える光変調手段とを含む光送信部と、受信光信号を透過させて受信信号を復調する光フィルタリング手段を含む光受信部とを備えた光送受信機において、
前記光送信部の波長安定化光源から出力された無変調連続光を用いて、前記光フィルタリング手段の透過中心周波数を調整して固定し、前記透過中心周波数を固定後に、受信する光変調信号を前記光受信部に入力する手段を備えた
ことを特徴とする光送受信機。
An optical transmitter including a wavelength-stabilized light source, and an optical modulator that modulates the continuous light output from the wavelength-stabilized light source; and an optical filtering unit that transmits the received optical signal and demodulates the received signal. In an optical transceiver including an optical receiver,
Using the unmodulated continuous light output from the wavelength-stabilized light source of the optical transmitter, the transmission center frequency of the optical filtering means is adjusted and fixed, and the optical modulation signal received after the transmission center frequency is fixed An optical transceiver characterized by comprising means for inputting to the optical receiver.
波長安定化光源と、前記波長安定化光源から出力される連続光に光変調を与える光変調手段とを含む光送信部と、受信光信号を透過させて受信信号を復調する光フィルタリング手段を含む光受信部とを備えた光送受信機において、
前記受信光信号から抽出した無変調連続光を用いて、前記光フィルタリング手段の透過中心周波数を調整して固定し、前記透過中心周波数を固定後に、受信する光変調信号を前記光受信部に入力する手段を備えた
ことを特徴とする光送受信機。
An optical transmitter including a wavelength-stabilized light source, and an optical modulator that modulates the continuous light output from the wavelength-stabilized light source; and an optical filtering unit that transmits the received optical signal and demodulates the received signal. In an optical transceiver including an optical receiver,
Using unmodulated continuous light extracted from the received optical signal, the transmission center frequency of the optical filtering means is adjusted and fixed, and after the transmission center frequency is fixed, the received optical modulation signal is input to the optical receiver With means to
An optical transceiver characterized by that .
波長安定化光源と、前記波長安定化光源から出力される連続光に光変調を与える光変調手段とを含む光送信部と、受信光信号を透過させて受信信号を復調する光フィルタリング手段を含む光受信部とを備えた光送受信機において、
光受信部で発生させた無変調連続光を用いて、前記光フィルタリング手段の透過中心周波数を調整して固定し、前記透過中心周波数を固定後に、受信する光変調信号を前記光受信部に入力する手段を備えた
ことを特徴とする光送受信機。
An optical transmitter including a wavelength-stabilized light source, and an optical modulator that modulates the continuous light output from the wavelength-stabilized light source; and an optical filtering unit that transmits the received optical signal and demodulates the received signal. In an optical transceiver including an optical receiver,
Using the unmodulated continuous light generated in the optical receiver, the transmission center frequency of the optical filtering means is adjusted and fixed, and the optical modulation signal to be received is input to the optical receiver after the transmission center frequency is fixed With means to
An optical transceiver characterized by that .
前記波長安定化光源がそれぞれ波長の異なる複数の連続光を波長多重してほぼ同時に発生させる多波長光源であり、
前記光受信部が、波長多重信号分離手段を備えた
請求項1ないし3のいずれか1項に記載の光送受信機。
The wavelength-stabilized light source is a multi-wavelength light source that multiplexes a plurality of continuous lights each having a different wavelength and generates almost simultaneously,
The optical transceiver according to any one of claims 1 to 3, wherein the optical receiver includes a wavelength division multiplexing signal separation unit.
前記多波長光源から出力される前記複数の連続光が互いに光位相関係が確定した光位相同期波長多重光である請求項記載の光送受信機。 The optical transceiver according to claim 4, wherein the plurality of continuous lights output from the multi-wavelength light source are optical phase-locked wavelength-multiplexed lights in which an optical phase relationship is established. 前記波長安定化光源が、
前記光フィルタリング手段の波長ずれ許容量に対して十分高い絶対波長確度をもち、
前記光フィルタリング手段の透過中心周波数を調整するために用いられる無変調連続光が、
記波長安定化光源から出力される単一波長の連続光もしくは複数波長の連続光のうちいずれか一波長の連続光である
請求項に記載の光送受信機。
The wavelength-stabilized light source is
With sufficiently high absolute wavelength accuracy for the wavelength shift tolerance of the optical filtering means,
Unmodulated continuous light used to adjust the transmission center frequency of the optical filtering means,
The optical transceiver according to claim 1 which is continuous light of any one wavelength of the continuous light of the continuous light or a plurality of wavelengths of the single wavelength output from the previous SL wavelength stabilizing light source.
前記光送信部が、
少なくとも一波長の無変調連続光を送信し、
前記光受信部が対向する光送受信機から受信する光信号に少なくとも一波長の無変調連続光を含む
請求項に記載の光送受信機。
The optical transmitter is
Transmit unmodulated continuous light of at least one wavelength,
The optical transceiver according to claim 2 , wherein the optical signal received from the optical transceiver facing the optical receiver includes at least one wavelength of unmodulated continuous light.
前記光受信部が光切替手段を備え、
光送受信機のインストール時に、前記無変調連続光を前記光受信部に入力するように光切替手段を切り替えて、前記光フィルタリング手段の透過中心周波数を調整する光切替手段を切り替える手段を備えた
請求項1ないし7のいずれか1項に記載の光送受信機。
The light receiving unit includes light switching means;
And a means for switching light switching means for switching a light switching means so as to input the unmodulated continuous light to the light receiving section and adjusting a transmission center frequency of the light filtering means when an optical transceiver is installed. Item 8. The optical transceiver according to any one of Items 1 to 7 .
前記光フィルタリング手段が、
光周波数に対して周期的な透過率特性を有する光周期フィルタであり、
前記光フィルタリング手段の透過中心周波数を調整するために用いられる無変調連続光の光周波数が、
前記受信する光変調信号の光搬送波周波数と同等である、
もしくは、
前記無変調連続光の光周波数が、
前記受信する光変調信号の光搬送波周波数と同等の周波数から、
前記光周期フィルタの周期の整数倍だけシフトした周波数である
請求項1ないし8のいずれか1項に記載の光送受信機。
The optical filtering means comprises:
An optical periodic filter having periodic transmittance characteristics with respect to the optical frequency,
The optical frequency of unmodulated continuous light used to adjust the transmission center frequency of the optical filtering means is
It is equivalent to the optical carrier frequency of the received optical modulation signal,
Or
The optical frequency of the unmodulated continuous light is
From a frequency equivalent to the optical carrier frequency of the received optical modulation signal,
The optical transceiver according to any one of claims 1 to 8, wherein the frequency is shifted by an integral multiple of a period of the optical periodic filter.
前記光受信部が受信する光信号が、
光差動位相シフトキーイング(DPSK)信号であり、
前記光フィルタリング手段が、
前記光DPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、
前記光復調回路を、
所望の出力端子の光出力レベルが最大または最小となる点に調整する
請求項1ないし3、8のいずれか1項に記載の光送受信機。
The optical signal received by the optical receiver is
Optical differential phase shift keying (DPSK) signal,
The optical filtering means comprises:
An optical demodulation circuit including a Mach-Zehnder interferometer capable of demodulating the optical DPSK signal;
The optical demodulation circuit;
Desired optical transceiver according to any one of claims 1 to 3 and 8 light output level is adjusted to the point of maximum or minimum output.
前記光受信部が受信する光信号が、
光差動位相シフトキーイング(DPSK)信号であり、
前記光フィルタリング手段が、
前記光DPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、
前記光復調回路を、
所望の出力端子の光出力レベルが最小となる第一の点と、
前記光出力レベルが最小となる第一の点に隣接する光出力レベルが最小となる第二の点と
の中間点に調整する
請求項1ないし3、8のいずれか1項に記載の光送受信機。
The optical signal received by the optical receiver is
Optical differential phase shift keying (DPSK) signal,
The optical filtering means comprises:
An optical demodulation circuit including a Mach-Zehnder interferometer capable of demodulating the optical DPSK signal;
The optical demodulation circuit;
A first point at which the optical output level of the desired output terminal is minimized;
9. The optical transmission / reception according to claim 1 , wherein the optical transmission / reception is adjusted to an intermediate point between the second point where the light output level adjacent to the first point where the light output level is minimum is adjacent to the second point where the light output level is minimum. Machine.
前記光受信部が受信する光信号が、
光差動4相位相シフトキーイング(DQPSK)信号であり、
前記光フィルタリング手段が、
前記光DQPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、
前記光復調回路を、
所望の出力端子の光出力レベルが最大値から約0.69dB低下した点、もしくは約8.34dB低下した点に調整する
請求項1ないし3、8のいずれか1項に記載の光送受信機。
The optical signal received by the optical receiver is
Optical differential four-phase phase shift keying (DQPSK) signal,
The optical filtering means comprises:
An optical demodulation circuit including a Mach-Zehnder interferometer capable of demodulating the optical DQPSK signal;
The optical demodulation circuit;
The optical transceiver according to any one of claims 1 to 3 and 8, wherein the optical output level of a desired output terminal is adjusted to a point where the optical output level is reduced by about 0.69 dB from the maximum value, or a point where the optical output level is reduced by about 8.34 dB.
前記光受信部が受信する光信号が、
光差動4相位相シフトキーイング(DQPSK)信号であり、
前記光フィルタリング手段が、
前記光DQPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、
前記光復調回路を、
所望の出力端子の光出力レベルが最小となる第一の点と、
前記光出力レベルが最小となる第一の点に隣接する光出力レベルが最小となる第二の点と
の中間点から、
前記第一の点と前記第二の点の間を8等分した量だけシフトした点に調整する
請求項1ないし3、8のいずれか1項に記載の光送受信機。
The optical signal received by the optical receiver is
Optical differential four-phase phase shift keying (DQPSK) signal,
The optical filtering means comprises:
An optical demodulation circuit including a Mach-Zehnder interferometer capable of demodulating the optical DQPSK signal;
The optical demodulation circuit;
A first point at which the optical output level of the desired output terminal is minimized;
From an intermediate point between the second point where the light output level adjacent to the first point where the light output level is minimum and the minimum light output level,
The optical transceiver according to any one of claims 1 to 3, wherein the first point and the second point are adjusted to a point shifted by an equal amount.
前記光受信部が受信する光信号が、
光π/4シフト差動4相位相シフトキーイング(π/4−DQPSK)信号であり、
前記光フィルタリング手段が、
前記光π/4−DQPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、
前記光復調回路を、
所望の出力端子の光出力レベルが最大または最小となる点、
もしくは最大値から約3dB低下した点に調整する
請求項1ないし3、8のいずれか1項に記載の光送受信機。
The optical signal received by the optical receiver is
An optical π / 4 shift differential four phase shift keying (π / 4-DQPSK) signal,
The optical filtering means comprises:
An optical demodulation circuit including a Mach-Zehnder interferometer capable of demodulating the optical π / 4-DQPSK signal;
The optical demodulation circuit;
The point where the optical output level of the desired output terminal is maximum or minimum,
Alternatively, the optical transceiver according to any one of claims 1 to 3 and 8, wherein the optical transceiver is adjusted to a point about 3 dB lower than the maximum value.
前記光受信部が受信する光信号が、
光π/4シフト差動4相位相シフトキーイング(π/4−DQPSK)信号であり、
前記光フィルタリング手段が、
前記光π/4−DQPSK信号を復調可能なマッハツェンダ干渉計を含む光復調回路であり、
前記光復調回路を、
所望の出力端子の光出力レベルが最小となる第一の点と、
前記光出力レベルが最小となる第一の点に隣接する光出力レベルが最小となる第二の点との中間点、
もしくは、
前記の光出力レベルが最小となる第一の点から、
前記第一の点と前記第二の点の間を4等分した量だけシフトした点
に調整する
請求項1ないし3、8のいずれか1項に記載の光送受信機。
The optical signal received by the optical receiver is
An optical π / 4 shift differential four phase shift keying (π / 4-DQPSK) signal,
The optical filtering means comprises:
An optical demodulation circuit including a Mach-Zehnder interferometer capable of demodulating the optical π / 4-DQPSK signal;
The optical demodulation circuit;
A first point at which the optical output level of the desired output terminal is minimized;
An intermediate point between the second point at which the light output level adjacent to the first point at which the light output level is at a minimum,
Or
From the first point where the light output level is minimized,
The optical transceiver according to any one of claims 1 to 3, wherein the first point and the second point are adjusted to a point shifted by an amount equal to four.
JP2007091553A 2007-03-30 2007-03-30 Optical transceiver using wavelength stabilized light source Expired - Fee Related JP4361099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091553A JP4361099B2 (en) 2007-03-30 2007-03-30 Optical transceiver using wavelength stabilized light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091553A JP4361099B2 (en) 2007-03-30 2007-03-30 Optical transceiver using wavelength stabilized light source

Publications (2)

Publication Number Publication Date
JP2008252545A JP2008252545A (en) 2008-10-16
JP4361099B2 true JP4361099B2 (en) 2009-11-11

Family

ID=39976964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091553A Expired - Fee Related JP4361099B2 (en) 2007-03-30 2007-03-30 Optical transceiver using wavelength stabilized light source

Country Status (1)

Country Link
JP (1) JP4361099B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246274B2 (en) 2009-01-30 2013-07-24 富士通オプティカルコンポーネンツ株式会社 Optical receiver and control method thereof
JP2015159191A (en) * 2014-02-24 2015-09-03 住友電気工業株式会社 optical transmission device
CN113872697B (en) * 2020-06-30 2023-09-12 华为技术有限公司 Optical transmitter and optical modulation method
JP2023023497A (en) 2021-08-05 2023-02-16 富士通株式会社 Optical coherent transceiver and filter adjustment method

Also Published As

Publication number Publication date
JP2008252545A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US9071378B2 (en) Superimposed signal detection circuit and optical node equipment
US7209664B1 (en) Frequency agile transmitter and receiver architecture for DWDM systems
US7577367B2 (en) Optical communication using duobinary modulation
JP5476697B2 (en) Optical signal transmitter
US9900124B2 (en) Periodic superchannel carrier arrangement for optical communication systems
EP1624595B1 (en) Transmission of optical signals of different modulation formats in discrete wavelength bands
US8270847B2 (en) Polarization multiplexing with different DPSK modulation schemes and system incorporating the same
US20100021166A1 (en) Spectrally Efficient Parallel Optical WDM Channels for Long-Haul MAN and WAN Optical Networks
US7515834B2 (en) Upgraded optical communication system with increased transmission capacity and method
US8090270B2 (en) Frequency offset polarization multiplexing modulation format and system incorporating the same
WO2011119642A2 (en) Optical transmitter supplying optical signals having multiple modulation formats
CN102124671B (en) System and method for receiving high spectral efficiency optical DPSK signals
EP2182399B1 (en) Optical signal processor
US8098996B2 (en) Adaptable duobinary generating filters, transmitters, systems and methods
Winzer et al. 10× 107-Gb/s NRZ-DQPSK transmission at 1.0 b/s/Hz over 12× 100 km including 6 optical routing nodes
US9246597B2 (en) Dual rate QPSK/TCM-QPSK optical modulation
JP4361099B2 (en) Optical transceiver using wavelength stabilized light source
WO2012116060A1 (en) Generating higher-level quadrature amplitude modulation (qam) using a delay line interferometer and systems and methods incorporating same
JP5207993B2 (en) Optical transmission apparatus and method
JP5700965B2 (en) Optical transmitter, optical transceiver, and optical transmission system
US8811827B2 (en) System for generating optical RZ signals based on electrical RZ signals
EP2541969B1 (en) Optical packet switch
JP2004343360A (en) Optical transmitter and optical communication system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090811

R150 Certificate of patent or registration of utility model

Ref document number: 4361099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees