JP4051549B2 - Polycarbonate resin composition - Google Patents

Polycarbonate resin composition Download PDF

Info

Publication number
JP4051549B2
JP4051549B2 JP2002236437A JP2002236437A JP4051549B2 JP 4051549 B2 JP4051549 B2 JP 4051549B2 JP 2002236437 A JP2002236437 A JP 2002236437A JP 2002236437 A JP2002236437 A JP 2002236437A JP 4051549 B2 JP4051549 B2 JP 4051549B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
aromatic
resin composition
mol
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002236437A
Other languages
Japanese (ja)
Other versions
JP2004075799A (en
Inventor
周 吉田
禎則 伊佐早
隆志 角田
宏明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002236437A priority Critical patent/JP4051549B2/en
Publication of JP2004075799A publication Critical patent/JP2004075799A/en
Application granted granted Critical
Publication of JP4051549B2 publication Critical patent/JP4051549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い屈折率および逆分散値、低い光弾性定数を有し、耐衝撃性、耐熱性、色相に優れた透明なポリカーボネート樹脂組成物に関する。このポリカーボネート樹脂組成物は各種プラスチックレンズ、プリズム、光ディスク基板などのプラスチック光学材料に好適に利用できるものである。
【0002】
【従来の技術】
ポリカーボネート樹脂は、耐衝撃性等の機械的特性に優れ、しかも耐熱性、透明性等にも優れていることから、エンジニアリングプラスチックとして多くの分野に広く使用されている。特に、透明性に優れていることから光学材料としての用途も多い。例えば、光学材料として各種プラスチックレンズ、プリズム、光ディスク基板などに利用されている。
【0003】
しかし、芳香族ジヒドロキシ化合物からなるポリカーボネート樹脂は、光弾性定数が大きく、溶融流動性が比較的悪いために成形品の複屈折が大きくなり、また屈折率は1.58と高いもののアッベ数が30と低いため、広く光記録材料や光学レンズ等の用途に用いられるには十分な性能を有していないという欠点がある。
【0004】
これらの欠点を改良する方法として、芳香族−脂肪族共重合ポリカーボネート樹脂(特開昭64−66234号、特開平11−165426号)が提案されている。これらの芳香族−脂肪族共重合ポリカーボネート樹脂は、優れた耐衝撃性、耐熱性を有し、その上、光弾性定数が低く、屈折率と分散特性のバランスが良いことから、広く光学材料として用いることが可能である。
【0005】
しかし、これらの芳香族−脂肪族共重合ポリカーボネート樹脂を成形品として用いる際に、環境応力割れの問題が生じる。すなわち成形品が成形の際の残留歪のため、あるいは長期間にわたる外部からうける歪のためクラックが生じ、場合によっては破断にいたることもある。さらに水やオイル、有機溶媒などが存在する環境ではクラックの発生が著しく加速されることが知られている。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような従来技術に伴う問題点を解決しようとするものであり、良好な機械物性と優れた耐衝撃性を有し、且つ高い耐熱性、屈折率およびアッベ数を有し、さらに優れた耐クラック性を持つポリカーボネート樹脂組成物並びに該ポリカーボネート樹脂組成物を成形して得られる光学材料を提供することを目的としている。
【0007】
【課題を解決するためのするため手段】
本発明者らは、上記の目的を達成する為に鋭意検討した結果、本発明に到達した。すなわち、本発明は、下記一般式(1)、式(2)および式(3)で表される構成単位からなる芳香族ー脂肪族共重合ポリカーボネート樹脂(A)と、下記式(1)で表される構成単位からなる芳香族ポリカーボネート樹脂(B)とからなるポリカーボネート樹脂組成物に関するものである。
【0008】
【化6】

Figure 0004051549
(上記一般式(1)においてXは、
【0009】
【化7】
Figure 0004051549
であり、ここに、R3およびR4は水素原子または炭素数1〜10のアルキル基またはトリフルオロメチル基もしくはフェニル基であり、R3とR4が結合し環を形成していても良い。R1およびR2は水素原子、炭素数1〜10のアルキル基またはハロゲン原子である。R1、R2、R3およびR4は同じでも異なっていても良い。また、mおよびnは置換基数を表し0〜4の整数である。)
【0010】
【化8】
Figure 0004051549
【0011】
【化9】
Figure 0004051549
【0012】
【発明の実施の形態】
以下、本発明のポリカーボネート樹脂組成物に関して具体的に説明する。
【0013】
本発明で用いる芳香族−脂肪族共重合ポリカーボネート樹脂(A)は、ランダム、ブロック或いは交互共重合体等を含むものであり、上記式(2)で表される脂肪族ジヒドロキシ化合物から誘導される構成単位のモル分率が、30%以上であることが好ましく、さらに好ましくは、40%以上である。30%より低いと、光弾性定数、アッベ数等の光学特性の改善効果が小さくなる。また、脂肪族−芳香族共重合ポリカーボネート樹脂(A)の数平均分子量は、10,000〜100,000であることが好ましく、さらに好ましくは10,000〜40,000である。
【0014】
芳香族−脂肪族共重合ポリカーボネート樹脂(A)は、一般のポリカーボネート樹脂の製造方法として公知の方法で製造することができ、特にエステル交換法により製造することができる。炭酸ジエステルを使用するエステル交換反応では、公知の溶融重縮合法により重合を行うことができる。すなわち、下記(5)式で表される芳香族ジヒドロキシ化合物、下記(6)式で表されるトリシクロ(5.2.1.02.6)デカンジメタノール、下記(7)式で表されるスピログリコール、炭酸ジエステル及び触媒を用いて、加熱下に常圧または減圧下に副生物を除去しながら溶融重縮合を行うものである。反応は一般には二段階以上の多段工程で実施される。
【0015】
【化10】
Figure 0004051549
(上記式(5)においてXは、
【0016】
【化11】
Figure 0004051549
であり、ここに、R3およびR4は水素原子または炭素数1〜10のアルキル基またはトリフルオロメチル基もしくはフェニル基であり、R3とR4が結合し環を形成していても良い。R1およびR2は水素原子または炭素数1〜10のアルキル基またはハロゲンである。R1、R2、R3およびR4は同じでも異なっていても良い。また、mおよびnは置換基数を表し0〜4の整数である。)
【0017】
【化12】
Figure 0004051549
【0018】
【化13】
Figure 0004051549
【0019】
上記式(5)で表される芳香族ジヒドロキシ化合物として、具体的にはビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス(4-ヒドロキシ-3- メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3- t- ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3- ブロモフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4'- ジヒドロキシジフェニルエーテル、4,4'- ジヒドロキシ-3,3'-ジメチルフェニルエーテル、4,4'- ジヒドロキシフェニルスルフィド、4,4'- ジヒドロキシ-3,3'-ジメチルジフェニルスルフィド、4,4'- ジヒドロキシジフェニルスルホキシド、4,4'- ジヒドロキシ-3,3'-ジメチルジフェニルスルホキシド、4,4'- ジヒドロキシジフェニルスルホン、4,4'- ジヒドロキシ-3,3'-ジメチルジフェニルスルホン等が挙げられる。これらのうちで、特に1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンが好ましい。
【0020】
本発明に関わるポリカーボネートの製造方法では、エステル交換反応で用いられる炭酸ジエステルとしては、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m−クレジルカーボネート、ジナフチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が上げられる。これらの中でも特にジフェニルカーボネートが好ましい。また、着色原因ともなるジフェニルカーボネート中の塩素含有量は、20ppm以下であることが好ましい。より好ましくは、10ppm以下である。ジフェニルカーボネートは、芳香族ジヒドロキシ化合物と脂肪族ジヒドロキシ化合物の合計1モルに対して0.97〜1.2モルの量で用いられることが好ましく、特に好ましくは0.99〜1.10モルの量である。
【0021】
本発明に関わるポリカーボネートの製造方法において、エステル交換反応で用いられる触媒としては、塩基性化合物が用いられる。このような塩基性化合物としては、特にアルカリ金属および/またはアルカリ土類化合物、含窒素化合物等があげられる。
【0022】
このような化合物としては、アルカリ金属およびアルカリ土類化合物等の有機酸、無機塩類、酸化物、水酸化物、水素化物あるいはアルコキシド、4級アンモニウムヒドロキシドおよびそれらの塩、アミン類等が好ましく用いられ、これらの化合物は単独もしくは組み合わせて用いることができる。
【0023】
このようなアルカリ金属化合物としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、フェニルリン酸2ナトリウム、ビスフェノールAの2ナトリウム塩、2カリウム塩、2セシウム塩、2リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩、リチウム塩等が用いられる。
【0024】
また、アルカリ土類金属化合物としては、具体的には、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素ストロンチウム、炭酸水素バリウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、安息香酸カルシウム、フェニルリン酸マグネシウム等が用いられる。
【0025】
また、含窒素化合物としては、具体的には、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル、アリール、アルアリール基などを有するアンモニウムヒドロキシド類、トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類、ジエチルアミン、ジブチルアミン等の2級アミン類、プロピルアミン、ブチルアミン等の1級アミン類、2−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類、あるいは、アンモニア、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基性塩等が用いられる。
【0026】
これらの触媒は、芳香族ジヒドロキシ化合物と脂肪族ジヒドロキシ化合物との合計1モルに対して、10-9〜10-3モルの量で、好ましくは10-7〜10-5モルの量で用いられる。
【0027】
本発明に関わるエステル交換反応は、公知の溶融重縮合法により行うことができる。すなわち、前記の原料、および触媒を用いて、加熱下に常圧または減圧下にエステル交換反応により副生物を除去しながら溶融重縮合を行うものである。反応は、一般には二段以上の多段工程で実施される。
【0028】
具体的には、第一段目の反応を120〜260℃、好ましくは180〜240℃の温度で0〜5時間、好ましくは0.5〜3時間反応させる。次いで反応系の減圧度を上げながら反応温度を高めて芳香族ジヒドロキシ化合物と脂肪族ジヒドロキシ化合物と炭酸ジエステルとの反応を行い、最終的には1mmHg以下の減圧下、200〜300℃の温度で重縮合反応を行う。このような反応は、連続式で行っても良くまたバッチ式で行っても良い。上記の反応を行うに際して用いられる反応装置は、槽型であっても押出機型であってもパドル翼、格子翼、メガネ翼等、表面更新性の優れた撹拌翼を備えた横型装置であってもよい。
【0029】
本発明で使用する芳香族ポリカーボネート樹脂(B)として、芳香族ポリカーボネート樹脂のいずれも使用できるが、特にビスフェノールAから得られるポリカーボネートが好ましい。芳香族ポリカーボネート樹脂(B)の数平均分子量は、10,000〜35,000であることが好ましく、さらに好ましくは15,000〜30,000である。分子量が10,000以下であれば、耐衝撃性が十分でなく、また35,000以上であれば溶融粘度が高くなりすぎ、射出成形上の問題を生じ好ましくない。また、芳香族ポリカーボネート樹脂(B)の構成単位と、芳香族−脂肪族共重合ポリカーボネート樹脂(A)中の芳香族化合物から誘導される構成単位の構造は同一でも異なっていても良い。製造は、エステル交換法、界面重合法など公知の重合方法で製造できるものであり、方法は問わない。
【0030】
さらに、本発明のポリカーボネート樹脂には、熱安定性、および加水分解安定性を保持するために、触媒を除去または失活させることが好ましい。一般的には、公知の酸性物質の添加によるアルカリ金属あるいはアルカリ土類金属等のエステル交換触媒の失活を行う方法が好適に実施される。これらの物質としては、具体的には、p−トルエンスルホン酸のごとき芳香族スルホン酸、パラトルエンスルホン酸ブチル等の芳香族スルホン酸エステル類、ステアリン酸クロライド、酪酸クロライド、塩化ベンゾイル、トルエンスルホン酸クロライドのような有機ハロゲン化物、ジメチル硫酸のごときアルキル硫酸塩、塩化ベンジルのごとき有機ハロゲン化物、ホウ酸、リン酸等の無機酸等が好適に用いられる。この触媒失活剤の添加は、芳香族ポリカーボネート樹脂(B)を溶融混合する時点で添加しても良いし、その前に添加しても良いし、その後に添加しても良い。
【0031】
触媒失活後、ポリマー中の低沸点化合物を0.1〜1mmHgの圧力、200〜300℃の温度で脱揮除去する工程を設けても良く、このためにはパドル翼、格子翼、メガネ翼等を備えた横型あるいは薄膜蒸発器が好適に用いられる。
【0032】
なお、本発明に於いて、上記熱安定化剤、加水分解安定化剤の他に、酸化防止剤、顔料、染料、強化剤や充填剤、紫外線吸収剤、滑剤、離型剤、結晶核剤、可塑剤、流動性改良材、帯電防止剤等を添加することができる。また、さらに樹脂の特性を改良する目的で他のポリカーボネート樹脂、あるいは熱可塑性樹脂をブレンドして用いることもできる。
【0033】
本発明のポリカーボネート樹脂組成物では、芳香族−脂肪族共重合ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)の混合割合を重量比で5:95〜95:5とするのが好ましい。ポリカーボネート樹脂組成物中の芳香族ポリカーボネート樹脂(B)の混合割合が5重量%以下であると、芳香族ポリカーボネート樹脂の耐衝撃性、耐熱性等の特徴が十分組成物に反映されず添加の意味が薄れる。一方、芳香族ポリカーボネート樹脂(B)の混合割合が95重量%以上であると、本来の目的である光弾性定数、アッベ数等の改善効果を十分得られない。この範囲であれば、芳香族−脂肪族共重合ポリカーボネート樹脂(A)の物性を鑑みて適宜芳香族ポリカーボネート樹脂(B)の添加量を決定して、所望の物性を持つポリカーボネート樹脂組成物を得ることができる。さらに、本発明のポリカーボネート樹脂組成物中の芳香族化合物から誘導される構成単位と脂肪族化合物から誘導される構成単位のモル比(芳香族構成単位/脂肪族構成単位)は、10/90〜90/10が好ましく、さらに好ましくは20/80〜80/20である。芳香族化合物から誘導される構成単位と脂肪族化合物から誘導される構成単位のモル比(芳香族構成単位/脂肪族構成単位)が10/90より低いと、耐熱性が劣るものとなる。また、90/10より高いと光弾性定数、吸水率などが高くなり、さらに屈折率と分散値のバランスが悪くなる。 また、本発明における式(10)成分は1モル%以上4モル%以下であることが望ましい。4モル%以上添加するとアッベ数及び耐衝撃性が著しく低下し好ましくない。1モル%以下では添加の効果があまりない。
【0034】
芳香族−脂肪族共重合ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)との混合法としては、ポリマーアロイあるいはポリマーブレンドを製造する方法として公知の、機械的混合、共通溶媒に溶解してからの凍結乾燥あるいはスプレー乾燥、微粒子混合等を用いることができる。経済的な観点からは機械的混合法が最も優れており、代表的な機械的混合法を挙げれば、二軸スクリュー押出し機、単軸スクリュー押出し機、ロール混練、インターナルミキサー等を用いた溶融混合法を挙げることができる。
【0035】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明は、以下の実施例に何らの制限を受けるものではない。
【0036】
また、実施例において物性値は以下の方法で測定した。
MI:240℃、5.00kgの荷重で測定した。
Tg:示差走査熱量分析計にて測定した。
屈折率:JIS K 7105に従いアッベ屈折計にて測定した。
アッベ数:アッベ屈折計にて測定し、計算して求めた。
落錘衝撃強度:100mmφ×3mmの円板を、射出成形機により成形し、恒温槽を備えた計装化落錘衝撃試験機(CHAST社製、FRACTVIS)で、先端20Rの計装化落錘を7m/secで衝突させ、破壊エネルギーを計測した。
耐クラック性:50mm×3mmの円板を溶融プレス成形により成形し、万能引っ張り試験機島津製作書製オートグラフにより三点曲げ試験を行なった。試験の手順を以下に示す手順で行なった。下部支点間距離24mm、上部支店R5mmである。
円板の両面にサラダオイル(豊年キャノーラ油)を塗布する。
1分後に50℃に保った恒温槽中の試験治具にのせる。
10分後に2mm/minでクロスヘッドの移動を開始する。
変位が0.8mmに達した後2分間その位置に静止した。
クロスヘッド静止後2分間で応力が減少する割合を応力緩和とし、耐クラック性の指標とした。応力の減少は、目視で確認すると降伏によるものではなく、クラックの発生に対応している。値が小さいほどクラックの発生が少なく耐クラック性が高いことになる。
【0037】
実施例1
実質的に酸素の存在しない窒素ガス雰囲気下、130℃に保温された混合槽にジフェニルカーボネートと2,2−ビス(4−ヒドロキシフェニル)プロパン(以下BPZと略す)とスピログリコール(以下SPGと略す)とを一定比率(ジフェニルカーボネート/BPZ/SPG(モル比)=4.291/1.00/0.166)になるように、130℃に保温されたジフェニルカーボネートの液体を混合槽に送液し、撹拌開始後BPZ(粉末)を混合槽に投入した。BPZ投入時に炭酸水素ナトリウム(触媒、BPZ100重量部に対し0.000054重量部)をBPZと混合しながら添加した。混合槽の内部温度が155℃に維持されるように加熱を開始し、内温が155℃に達してから1時間後、内部温度を15分で130℃まで低下させ、130℃に保温されたバッファー槽に送液した。第1竪型攪拌重合槽(反応条件:13.3kPa、205℃、攪拌速度160rpm)での原料モル比(ジフェニルカーボネート/(BPZ+TCDDM))が1.01となるように、バッファー槽のジフェニルカーボネートとBPZの溶融混合物を12.14kg/hの流量で、第1重合槽に連続的に供給し、また、同時にTCDDM(トリシクロ(5.2.1.02.6)デカンジメタノール)を、26.62kg/hの流量で連続的に供給した。また2液を供給する際、各々0.6μmの金属フィルターを通過させた後、第1槽に供給した。第1重合槽での平均滞留時間が60分となるように槽底部のポリマー排出ラインに設けられたバルブ開度を制御しつつ液面レベルを一定に保った。槽底より排出された重合液(プレポリマー)は、引き続き第2、第3、第4の竪型重合槽並びに第5の横型重合槽(日立製作所製 メガネ翼重合機(商品名))に逐次連続供給された。平均滞留時間は第2〜第4の竪型重合槽が各60分、第5横型重合槽は90分となるように液面レベルを制御し、また同時に副生するフェノールの留去も行った。
第2〜第5重合槽各槽の重合条件はそれぞれ、第2重合槽(220℃、2000Pa、攪拌速度160rpm)、第3重合槽(230℃、40Pa、攪拌速度60rpm)、第4重合槽(240℃、40Pa、攪拌速度20rpm)、第5横型重合槽(245℃、40Pa、攪拌速度5rpm)とした。
第5横型重合槽より排出されたポリマーは溶融状態のまま連続的に3ベント式2軸押出機(46mm2軸押出機 神戸製鋼所製)に導入され、樹脂供給口の最も近いベント口の手前で後述する添加剤をマスターバッチの形態で樹脂に対し0.5kg/hの供給速度でサイドフィードコンパクターにより供給し、その後混錬およびベントでの脱気後、さらに40mmφ単軸押出機(L/D=28)で加熱溶融した芳香族ポリカーボネート樹脂(ビスフェノールAタイプのポリカーボネート;数平均分子量Mn=30,000 )[ 三菱ガス化学(株)製ユーピロンE-2000]を2軸押出機に7.6kg/hで供給し、混練脱気した後、10μmの樹脂フィルターを通し、その後水冷ペレット化した。
マスターバッチの組成は、ユーピロンS−3000(三菱ガス化学製ポリカーボネート)の粉末状のものをベースとし、p−トルエンスルホン酸ブチル(東京化成工業製;以下pTSB)の添加量が炭酸水素ナトリウムの中和当量の9倍量[27μmol/mol(BPZとTCDDMの合計モルに対して)]、及び樹脂の合計量100重量部に対して、5,7−ジ−t−ブチル−3−(3,4−ジメチルフェニル)−3H−ベンゾフラン−2−オン(HP−136;チバスペシャリティケミカルズ製)が300ppm、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト(旭電化工業製 HP−10)が500ppmとなるように調製した。評価結果を表1に示す。
【0038】
実施例2
BPZ3030kg(11.3モル)、TCDDM6648g(33.9モル)、スピログリコール572.7g(1.35モル)、ジフェニルカーボネート10379g(48.45モル)、炭酸水素ナトリウム0.0113g(1.35×10-4モル)を、撹拌機および留出装置付きの50リットル反応釜に入れ、窒素雰囲気下200℃に加熱し、30分間撹拌した。その後、減圧度を13.3kPaに調整すると同時に、240℃まで昇温し副生するフェノールを留去しながらエステル交換反応を行った。ほぼフェノールの留出が終了した時点で真空度をさらに上げ、1mmHg以下の条件でさらに2時間撹拌を行い、反応終了後、反応器内に窒素を吹き込み常圧に戻し、芳香族−脂肪族ポリカーボネートを取り出した。この芳香族−脂肪族ポリカーボネート樹脂100重量部に対して、芳香族ポリカーボネート樹脂(ビスフェノールAタイプのポリカーボネート;数平均分子量Mn=30,000 )[ 三菱ガス化学(株)製ユーピロンE-2000] を50.5重量部の割合で混合し、触媒失活剤として、p−トルエンスルホン酸ブチル0.08g、酸化防止剤としてn−オクタデシル−3−(3, 5 −ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート0.66gおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト0.66gを配合して二軸押出し機を用いて溶融混練し、樹脂ペレットを得た。このペレットを評価し、得られた結果を表1に示す。
【0039】
実施例3
BPZ2174kg(8.1モル)、TCDDM4770g(24.3モル)、スピログリコール410.7g(1.35モル)、ビスフェノールA3061g(13.41モル)、ジフェニルカーボネート10506g(49.04モル)、炭酸水素ナトリウム0.0113g(1.35×10-4モル)を、撹拌機および留出装置付きの50リットル反応釜に入れ、実施例2同様重合反応を行なった。この芳香族−脂肪族ポリカーボネート樹脂100重量部に対して、芳香族ポリカーボネート樹脂(ビスフェノールAタイプのポリカーボネート;数平均分子量Mn=30,100 )[ 三菱ガス化学(株)製ユーピロンE-2000] を30.0重量部の割合で混合し、触媒失活剤として、p−トルエンスルホン酸ブチル0.08g、酸化防止剤としてn−オクタデシル−3−(3, ,5, −ジ−t−ブチル−4, −ヒドロキシフェニル)プロピオネート0.66gおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト0.66gを配合して二軸押出し機を用いて溶融混練し、樹脂ペレットを得た。このペレットを評価し、得られた結果を表1に示す。
【0040】
比較例1
芳香族ポリカーボネート樹脂(ビスフェノールAタイプのポリカーボネート;数平均分子量Mn=22,000 )[ 三菱ガス化学(株)製ユーピロンS-3000]のペレットを評価し、得られた結果を表1に示す。
【0041】
比較例2
BPZ4859.1kg(18.1モル)、TCDDM5331.1g(27.2モル)、ジフェニルカーボネート10124g(47.25モル)、炭酸水素ナトリウム0.0113g(1.35×10-4モル)を、撹拌機および留出装置付きの50リットル反応釜に入れ、実施例2同様重合反応を行なった。この芳香族−脂肪族ポリカーボネート樹脂100重量部に対して、芳香族ポリカーボネート樹脂(ビスフェノールAタイプのポリカーボネート;数平均分子量Mn=30,100 )[ 三菱ガス化学(株)製ユーピロンE-2000] を30.0重量部の割合で混合し、触媒失活剤として、p−トルエンスルホン酸ブチル0.08g、酸化防止剤としてn−オクタデシル−3−(3,5−ジ−t−ブチル−4, −ヒドロキシフェニル)プロピオネート0.66gおよびトリス(2,4−ジ−t−ブチルフェニル)ホスファイト0.66gを配合して二軸押出し機を用いて溶融混練し、樹脂ペレットを得た。このペレットを評価し、得られた結果を表1に示す。
【0042】
【発明の効果】
本発明ポリカーボネート樹脂は、ポリカーボネートの優れた耐衝撃性、耐熱性等の特性を維持しながら、屈折率、分散のバランスおよび光弾性定数などが改善されたものであり、各種レンズ、プリズム、光ディスク基板などのプラスチック光学材料用として好適に利用できる。
【0043】
【表1】
Figure 0004051549
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent polycarbonate resin composition having a high refractive index, a reverse dispersion value, a low photoelastic constant, and excellent in impact resistance, heat resistance, and hue. This polycarbonate resin composition can be suitably used for plastic optical materials such as various plastic lenses, prisms, and optical disk substrates.
[0002]
[Prior art]
Polycarbonate resins are widely used in many fields as engineering plastics because they are excellent in mechanical properties such as impact resistance, and are also excellent in heat resistance and transparency. In particular, it has many uses as an optical material because of its excellent transparency. For example, it is used as an optical material for various plastic lenses, prisms, optical disk substrates and the like.
[0003]
However, a polycarbonate resin made of an aromatic dihydroxy compound has a large photoelastic constant and a relatively poor melt fluidity, so that the birefringence of the molded product is large and the Abbe number is 30 although the refractive index is as high as 1.58. Therefore, there is a drawback in that it does not have sufficient performance to be widely used in applications such as optical recording materials and optical lenses.
[0004]
As a method for improving these disadvantages, aromatic-aliphatic copolymer polycarbonate resins (JP-A Nos. 64-66234 and 11-165426) have been proposed. These aromatic-aliphatic copolymer polycarbonate resins have excellent impact resistance, heat resistance, low photoelastic constant, and good balance between refractive index and dispersion characteristics. It is possible to use.
[0005]
However, when these aromatic-aliphatic copolymer polycarbonate resins are used as molded articles, there is a problem of environmental stress cracking. That is, a crack is generated due to a residual strain at the time of molding or a strain that is externally applied for a long period of time. Furthermore, it is known that the generation of cracks is remarkably accelerated in an environment where water, oil, organic solvent and the like are present.
[0006]
[Problems to be solved by the invention]
The present invention is to solve the problems associated with the prior art as described above, has good mechanical properties and excellent impact resistance, and has high heat resistance, refractive index and Abbe number. Another object of the present invention is to provide a polycarbonate resin composition having further excellent crack resistance and an optical material obtained by molding the polycarbonate resin composition.
[0007]
[Means for solving the problems]
The inventors of the present invention have arrived at the present invention as a result of intensive studies to achieve the above-mentioned object. That is, the present invention includes an aromatic-aliphatic copolymer polycarbonate resin (A) composed of structural units represented by the following general formula (1), formula (2) and formula (3), and the following formula (1): The present invention relates to a polycarbonate resin composition comprising an aromatic polycarbonate resin (B) comprising the structural units represented.
[0008]
[Chemical 6]
Figure 0004051549
(In the above general formula (1), X is
[0009]
[Chemical 7]
Figure 0004051549
Wherein R 3 and R 4 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a trifluoromethyl group or a phenyl group, and R 3 and R 4 may be bonded to form a ring. . R 1 and R 2 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a halogen atom. R 1 , R 2 , R 3 and R 4 may be the same or different. Moreover, m and n represent the number of substituents and are integers of 0-4. )
[0010]
[Chemical 8]
Figure 0004051549
[0011]
[Chemical 9]
Figure 0004051549
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the polycarbonate resin composition of the present invention will be specifically described.
[0013]
The aromatic-aliphatic copolymer polycarbonate resin (A) used in the present invention contains a random, block or alternating copolymer, and is derived from an aliphatic dihydroxy compound represented by the above formula (2). The molar fraction of the structural unit is preferably 30% or more, and more preferably 40% or more. If it is lower than 30%, the effect of improving the optical properties such as the photoelastic constant and Abbe number becomes small. The number average molecular weight of the aliphatic-aromatic copolymer polycarbonate resin (A) is preferably 10,000 to 100,000, more preferably 10,000 to 40,000.
[0014]
The aromatic-aliphatic copolymer polycarbonate resin (A) can be produced by a known method as a production method of a general polycarbonate resin, and in particular, can be produced by a transesterification method. In the transesterification reaction using a carbonic acid diester, polymerization can be carried out by a known melt polycondensation method. That is, an aromatic dihydroxy compound represented by the following formula (5), tricyclo (5.2.1.0 2.6 ) decanedimethanol represented by the following formula (6), spiro represented by the following formula (7) Using polyglycol, carbonic acid diester and catalyst, melt polycondensation is carried out while removing by-products under normal pressure or reduced pressure under heating. The reaction is generally carried out in a multistage process of two or more stages.
[0015]
[Chemical Formula 10]
Figure 0004051549
(In the above formula (5), X is
[0016]
Embedded image
Figure 0004051549
Wherein R 3 and R 4 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a trifluoromethyl group or a phenyl group, and R 3 and R 4 may be bonded to form a ring. . R 1 and R 2 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a halogen. R 1 , R 2 , R 3 and R 4 may be the same or different. Moreover, m and n represent the number of substituents and are integers of 0-4. )
[0017]
Embedded image
Figure 0004051549
[0018]
Embedded image
Figure 0004051549
[0019]
Specific examples of the aromatic dihydroxy compound represented by the above formula (5) include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxy). Phenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxy- 3-methylphenyl) propane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 1,1-bis (4 -Hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethylphenyl ether, 4,4'-dihydroxy Phenyl sulfide, 4,4'-dihydride Roxy-3,3'-dimethyldiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfone, 4,4'- And dihydroxy-3,3′-dimethyldiphenylsulfone. Of these, 1,1-bis (4-hydroxyphenyl) cyclohexane is particularly preferred.
[0020]
In the polycarbonate production method according to the present invention, as the carbonic acid diester used in the transesterification reaction, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, Examples include dibutyl carbonate and dicyclohexyl carbonate. Of these, diphenyl carbonate is particularly preferred. Moreover, it is preferable that the chlorine content in the diphenyl carbonate which also causes coloring is 20 ppm or less. More preferably, it is 10 ppm or less. Diphenyl carbonate is preferably used in an amount of 0.97 to 1.2 mol, particularly preferably 0.99 to 1.10 mol, based on 1 mol of the total of the aromatic dihydroxy compound and the aliphatic dihydroxy compound. It is.
[0021]
In the polycarbonate production method according to the present invention, a basic compound is used as the catalyst used in the transesterification reaction. Examples of such basic compounds include alkali metal and / or alkaline earth compounds and nitrogen-containing compounds.
[0022]
As such compounds, organic acids such as alkali metals and alkaline earth compounds, inorganic salts, oxides, hydroxides, hydrides or alkoxides, quaternary ammonium hydroxides and salts thereof, amines, etc. are preferably used. These compounds can be used alone or in combination.
[0023]
Specific examples of such alkali metal compounds include sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium carbonate, sodium acetate, acetic acid. Potassium, cesium acetate, lithium acetate, sodium stearate, potassium stearate, cesium stearate, lithium stearate, sodium borohydride, sodium phenyl borohydride, sodium benzoate, potassium benzoate, cesium benzoate, lithium benzoate, Disodium hydrogen phosphate, dipotassium hydrogen phosphate, dilithium hydrogen phosphate, disodium phenyl phosphate, disodium salt of bisphenol A, 2 potassium salt, 2 cesium salt, 2 lithium salt, sodium salt of phenol, Potassium salt, cesium salt, lithium salt or the like is used.
[0024]
Specific examples of the alkaline earth metal compound include magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, magnesium hydrogen carbonate, calcium hydrogen carbonate, strontium hydrogen carbonate, barium hydrogen carbonate, magnesium acetate, Calcium acetate, strontium acetate, barium acetate, magnesium stearate, calcium stearate, calcium benzoate, magnesium phenyl phosphate and the like are used.
[0025]
Specific examples of nitrogen-containing compounds include alkyl, aryl, and aryl groups such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide. Ammonium hydroxides having trimethylamine, dimethylbenzylamine, tertiary amines such as triphenylamine, secondary amines such as diethylamine and dibutylamine, primary amines such as propylamine and butylamine, 2-methylimidazole, Imidazoles such as 2-phenylimidazole, or ammonia, tetramethylammonium borohydride, tetrabutylammonium tetraphenylborate, Basic salts such as tiger phenyl tetraphenylborate is used.
[0026]
These catalysts are used in an amount of 10 −9 to 10 −3 mol, preferably 10 −7 to 10 −5 mol, with respect to a total of 1 mol of the aromatic dihydroxy compound and the aliphatic dihydroxy compound. .
[0027]
The transesterification reaction according to the present invention can be carried out by a known melt polycondensation method. That is, melt polycondensation is carried out using the above-mentioned raw materials and catalyst while removing by-products by a transesterification reaction under heating at normal pressure or under reduced pressure. The reaction is generally carried out in a multistage process of two or more stages.
[0028]
Specifically, the reaction at the first stage is allowed to react at a temperature of 120 to 260 ° C, preferably 180 to 240 ° C for 0 to 5 hours, preferably 0.5 to 3 hours. Next, the reaction temperature is raised while raising the pressure reduction degree of the reaction system to react the aromatic dihydroxy compound, the aliphatic dihydroxy compound and the carbonic acid diester. Finally, the reaction is carried out at a temperature of 200 to 300 ° C. under a reduced pressure of 1 mmHg or less. Perform a condensation reaction. Such a reaction may be carried out continuously or batchwise. The reaction apparatus used for carrying out the above reaction is a horizontal apparatus equipped with a stirring blade having excellent surface renewability, such as a paddle blade, a lattice blade, and a glasses blade, regardless of whether it is a tank type or an extruder type. May be.
[0029]
Although any of the aromatic polycarbonate resins can be used as the aromatic polycarbonate resin (B) used in the present invention, a polycarbonate obtained from bisphenol A is particularly preferable. The number average molecular weight of the aromatic polycarbonate resin (B) is preferably 10,000 to 35,000, and more preferably 15,000 to 30,000. If the molecular weight is 10,000 or less, the impact resistance is not sufficient, and if it is 35,000 or more, the melt viscosity becomes too high, causing problems in injection molding. Moreover, the structure of the structural unit derived from the aromatic compound in the aromatic polycarbonate resin (A) and the structural unit of the aromatic polycarbonate resin (B) may be the same or different. The production can be carried out by a known polymerization method such as transesterification or interfacial polymerization, and the method is not limited.
[0030]
Furthermore, in the polycarbonate resin of the present invention, it is preferable to remove or deactivate the catalyst in order to maintain thermal stability and hydrolysis stability. In general, a method of deactivating a transesterification catalyst such as an alkali metal or an alkaline earth metal by adding a known acidic substance is preferably carried out. Specific examples of these substances include aromatic sulfonic acid esters such as p-toluenesulfonic acid, aromatic sulfonic acid esters such as butyl paratoluenesulfonate, stearic acid chloride, butyric acid chloride, benzoyl chloride, and toluenesulfonic acid. Organic halides such as chloride, alkyl sulfates such as dimethyl sulfate, organic halides such as benzyl chloride, and inorganic acids such as boric acid and phosphoric acid are preferably used. The catalyst deactivator may be added when the aromatic polycarbonate resin (B) is melt-mixed, may be added before, or may be added thereafter.
[0031]
After deactivation of the catalyst, a step of devolatilizing and removing low-boiling compounds in the polymer at a pressure of 0.1 to 1 mmHg and a temperature of 200 to 300 ° C. may be provided. A horizontal type or thin film evaporator equipped with the above is preferably used.
[0032]
In the present invention, in addition to the above heat stabilizer and hydrolysis stabilizer, antioxidants, pigments, dyes, reinforcing agents and fillers, ultraviolet absorbers, lubricants, mold release agents, crystal nucleating agents. Plasticizers, fluidity improvers, antistatic agents, and the like can be added. Further, for the purpose of improving the properties of the resin, other polycarbonate resins or thermoplastic resins can be blended and used.
[0033]
In the polycarbonate resin composition of the present invention, the mixing ratio of the aromatic-aliphatic copolymer polycarbonate resin (A) and the aromatic polycarbonate resin (B) is preferably 5:95 to 95: 5 by weight ratio. When the mixing ratio of the aromatic polycarbonate resin (B) in the polycarbonate resin composition is 5% by weight or less, the characteristics such as impact resistance and heat resistance of the aromatic polycarbonate resin are not sufficiently reflected in the composition, meaning of addition Fades. On the other hand, when the mixing ratio of the aromatic polycarbonate resin (B) is 95% by weight or more, it is not possible to sufficiently obtain the original effects such as improvement of the photoelastic constant and Abbe number. If it is this range, the addition amount of aromatic polycarbonate resin (B) will be determined suitably in view of the physical property of aromatic-aliphatic copolymer polycarbonate resin (A), and the polycarbonate resin composition which has a desired physical property will be obtained. be able to. Further, the molar ratio of the structural unit derived from the aromatic compound and the structural unit derived from the aliphatic compound (aromatic structural unit / aliphatic structural unit) in the polycarbonate resin composition of the present invention is 10/90 to 90/10 is preferable, and more preferably 20/80 to 80/20. When the molar ratio of the structural unit derived from the aromatic compound to the structural unit derived from the aliphatic compound (aromatic structural unit / aliphatic structural unit) is lower than 10/90, the heat resistance is inferior. On the other hand, if it is higher than 90/10, the photoelastic constant, the water absorption rate and the like are increased, and the balance between the refractive index and the dispersion value is further deteriorated. Further, the component of the formula (10) in the present invention is desirably 1 mol% or more and 4 mol% or less. Addition of 4 mol% or more is not preferable because the Abbe number and impact resistance are remarkably lowered. If it is 1 mol% or less, the effect of addition is not so much.
[0034]
As a mixing method of the aromatic-aliphatic copolymer polycarbonate resin (A) and the aromatic polycarbonate resin (B), known as a method for producing a polymer alloy or a polymer blend, it is dissolved in a common solvent. Freeze drying or spray drying, fine particle mixing, etc. can be used. From an economic point of view, the mechanical mixing method is the most excellent. Typical mechanical mixing methods include twin screw extruder, single screw extruder, roll kneading, melting using an internal mixer, etc. A mixing method can be mentioned.
[0035]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention does not receive a restriction | limiting at all to a following example.
[0036]
In the examples, physical property values were measured by the following methods.
MI: Measured at 240 ° C. and a load of 5.00 kg.
Tg: Measured with a differential scanning calorimeter.
Refractive index: Measured with an Abbe refractometer according to JIS K 7105.
Abbe number: Measured by Abbe refractometer and calculated.
Drop weight impact strength: 100mmφ × 3mm disc was molded with an injection molding machine and instrumented drop weight impact tester (CHACT, FRACTVIS) equipped with a thermostatic chamber. Was collided at 7 m / sec, and the fracture energy was measured.
Crack resistance: A 50 mm × 3 mm disk was molded by melt press molding, and a three-point bending test was performed using an autograph made by Shimadzu Corporation, a universal tensile testing machine. The test procedure was as follows. The distance between the lower fulcrums is 24 mm, and the upper branch R is 5 mm.
Apply salad oil (billionaire canola oil) on both sides of the disc.
After 1 minute, place it on a test jig in a thermostatic chamber maintained at 50 ° C.
Start moving the crosshead at 2 mm / min after 10 minutes.
It stopped at that position for 2 minutes after the displacement reached 0.8 mm.
The rate at which the stress decreased in 2 minutes after the crosshead was stopped was defined as stress relaxation and used as an index of crack resistance. The decrease in stress is not due to yield when visually confirmed, but corresponds to the occurrence of cracks. The smaller the value, the less cracking occurs and the higher the crack resistance.
[0037]
Example 1
Diphenyl carbonate, 2,2-bis (4-hydroxyphenyl) propane (hereinafter abbreviated as BPZ) and spiroglycol (hereinafter abbreviated as SPG) are placed in a mixing tank kept at 130 ° C. in a nitrogen gas atmosphere substantially free of oxygen. ) And a diphenyl carbonate liquid kept at 130 ° C. so that it becomes a certain ratio (diphenyl carbonate / BPZ / SPG (molar ratio) = 4.291 / 1.00 / 0.166). Then, after stirring was started, BPZ (powder) was charged into the mixing tank. Sodium hydrogen carbonate (catalyst, 0.000054 parts by weight with respect to 100 parts by weight of BPZ) was added while mixing with BPZ when BPZ was charged. Heating was started so that the internal temperature of the mixing tank was maintained at 155 ° C., and 1 hour after the internal temperature reached 155 ° C., the internal temperature was reduced to 130 ° C. in 15 minutes and kept at 130 ° C. The solution was sent to the buffer tank. Diphenyl carbonate in the buffer tank was adjusted so that the raw material molar ratio (diphenyl carbonate / (BPZ + TCDDM)) in the first vertical stirring polymerization tank (reaction conditions: 13.3 kPa, 205 ° C., stirring speed 160 rpm) was 1.01. A molten mixture of BPZ was continuously fed to the first polymerization tank at a flow rate of 12.14 kg / h, and at the same time, TCDDM (tricyclo (5.2.1.0 2.6 ) decanedimethanol) was added to 26.62 kg. It was continuously supplied at a flow rate of / h. Moreover, when supplying 2 liquids, after passing each 0.6 micrometer metal filter, it supplied to the 1st tank. The liquid level was kept constant while controlling the valve opening degree provided in the polymer discharge line at the bottom of the tank so that the average residence time in the first polymerization tank was 60 minutes. The polymerization liquid (prepolymer) discharged from the tank bottom continues to the second, third, and fourth vertical polymerization tanks and the fifth horizontal polymerization tank (Hitachi Glasses Blade Polymerizer (trade name)) successively. Continuously supplied. The liquid surface level was controlled so that the average residence time was 60 minutes for each of the second to fourth vertical polymerization tanks and 90 minutes for the fifth horizontal polymerization tank, and at the same time, by-product phenol was distilled off. .
The polymerization conditions for the second to fifth polymerization tanks were the second polymerization tank (220 ° C., 2000 Pa, stirring speed 160 rpm), the third polymerization tank (230 ° C., 40 Pa, stirring speed 60 rpm), the fourth polymerization tank ( 240 ° C., 40 Pa, stirring speed 20 rpm), and a fifth horizontal polymerization tank (245 ° C., 40 Pa, stirring speed 5 rpm).
The polymer discharged from the 5th horizontal polymerization tank was continuously introduced into a 3 vent type twin screw extruder (46 mm twin screw extruder manufactured by Kobe Steel) in a molten state, just before the vent port closest to the resin supply port. Additives to be described later in the form of a masterbatch are supplied to the resin at a supply rate of 0.5 kg / h by a side feed compactor, and after further kneading and venting, 40 mmφ single screw extruder (L / D = 28) Aromatic polycarbonate resin (bisphenol A type polycarbonate; number average molecular weight Mn = 30,000) [Mitsubishi Gas Chemical Co., Ltd. Iupilon E-2000] was loaded into a twin screw extruder at 7.6 kg / h. After being supplied and kneaded and degassed, it was passed through a 10 μm resin filter and then pelletized with water.
The composition of the masterbatch is based on the powdery form of Iupilon S-3000 (Mitsubishi Gas Chemical Polycarbonate), and the amount of p-toluenesulfonic acid butyl (Tokyo Chemical Industry; hereinafter referred to as pTSB) added in sodium bicarbonate. 9 times the sum equivalent [27 μmol / mol (based on the total moles of BPZ and TCDDM)] and 100 parts by weight of the total amount of resin, 5,7-di-t-butyl-3- (3 4-dimethylphenyl) -3H-benzofuran-2-one (HP-136; manufactured by Ciba Specialty Chemicals) is 300 ppm, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (Asahi Denka Kogyo) Preparation of HP-10) was 500 ppm. The evaluation results are shown in Table 1.
[0038]
Example 2
3030 kg (11.3 mol) of BPZ, 6648 g (33.9 mol) of TCDDM, 572.7 g (1.35 mol) of spiroglycol, 10379 g (48.45 mol) of diphenyl carbonate, 0.0113 g of sodium hydrogencarbonate (1.35 × 10 6) -4 mol) was placed in a 50 liter reaction kettle equipped with a stirrer and a distillation apparatus, heated to 200 ° C. under a nitrogen atmosphere, and stirred for 30 minutes. Thereafter, the degree of vacuum was adjusted to 13.3 kPa, and at the same time, the temperature was raised to 240 ° C., and transesterification was carried out while distilling off by-product phenol. When the distillation of phenol is almost completed, the degree of vacuum is further increased and stirring is further performed for 2 hours under conditions of 1 mmHg or less. After the reaction is completed, nitrogen is blown into the reactor to return to normal pressure, and the aromatic-aliphatic polycarbonate is obtained. Was taken out. The aromatic polycarbonate resin (bisphenol A type polycarbonate; number average molecular weight Mn = 30,000) [Iupilon E-2000 manufactured by Mitsubishi Gas Chemical Co., Ltd.] is 50.5 with respect to 100 parts by weight of the aromatic-aliphatic polycarbonate resin. Mixing by weight, 0.08 g of butyl p-toluenesulfonate as catalyst deactivator, n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) as antioxidant 0.66 g of propionate and 0.66 g of tris (2,4-di-t-butylphenyl) phosphite were blended and melt kneaded using a twin screw extruder to obtain resin pellets. The pellets were evaluated and the results obtained are shown in Table 1.
[0039]
Example 3
BPZ 2174 kg (8.1 mol), TCDDM 4770 g (24.3 mol), spiroglycol 410.7 g (1.35 mol), bisphenol A 3061 g (13.41 mol), diphenyl carbonate 10506 g (49.04 mol), sodium hydrogen carbonate 0.0113 g (1.35 × 10 −4 mol) was placed in a 50 liter reaction kettle equipped with a stirrer and a distillation apparatus, and the polymerization reaction was carried out in the same manner as in Example 2. For 100 parts by weight of this aromatic-aliphatic polycarbonate resin, 30.0 aromatic polycarbonate resin (bisphenol A type polycarbonate; number average molecular weight Mn = 30,100) [Iupilon E-2000 manufactured by Mitsubishi Gas Chemical Co., Ltd.] Mixing in a part by weight, 0.08 g of butyl p-toluenesulfonate as a catalyst deactivator and n-octadecyl-3- (3,, 5, -di-t-butyl-4, − as an antioxidant Hydroxyphenyl) propionate (0.66 g) and tris (2,4-di-t-butylphenyl) phosphite (0.66 g) were blended and melt-kneaded using a twin screw extruder to obtain resin pellets. The pellets were evaluated and the results obtained are shown in Table 1.
[0040]
Comparative Example 1
The pellets of aromatic polycarbonate resin (bisphenol A type polycarbonate; number average molecular weight Mn = 22,000) [Iupilon S-3000 manufactured by Mitsubishi Gas Chemical Co., Ltd.] were evaluated, and the obtained results are shown in Table 1.
[0041]
Comparative Example 2
BPZ4859.1 kg (18.1 mol), TCDDM 5331.1 g (27.2 mol), diphenyl carbonate 10124 g (47.25 mol), sodium hydrogen carbonate 0.0113 g (1.35 × 10 −4 mol) were added to a stirrer. And it put into the 50 liter reaction kettle with a distillation apparatus, and performed the polymerization reaction like Example 2. FIG. For 100 parts by weight of this aromatic-aliphatic polycarbonate resin, 30.0 aromatic polycarbonate resin (bisphenol A type polycarbonate; number average molecular weight Mn = 30,100) [Iupilon E-2000 manufactured by Mitsubishi Gas Chemical Co., Ltd.] Mixing by weight, 0.08 g of butyl p-toluenesulfonate as catalyst deactivator, n-octadecyl-3- (3,5-di-t-butyl-4, -hydroxyphenyl as antioxidant ) 0.66 g of propionate and 0.66 g of tris (2,4-di-t-butylphenyl) phosphite were blended and melt-kneaded using a twin screw extruder to obtain resin pellets. The pellets were evaluated and the results obtained are shown in Table 1.
[0042]
【The invention's effect】
The polycarbonate resin of the present invention has improved refractive index, dispersion balance and photoelastic constant while maintaining the excellent impact resistance, heat resistance and other characteristics of polycarbonate. Various lenses, prisms, optical disk substrates It can utilize suitably for plastic optical materials, such as.
[0043]
[Table 1]
Figure 0004051549

Claims (4)

下記一般式(1)、式(2)および式(3)で表される構成単位からなる芳香族ー脂肪族共重合ポリカーボネート樹脂(A)と、下記式(1)で表される構成単位からなる芳香族ポリカーボネート樹脂(B)とからなるポリカーボネート樹脂組成物。
Figure 0004051549
(上記一般式(1)においてXは、
Figure 0004051549
であり、ここに、R3およびR4は水素原子または炭素数1〜10のアルキル基またはトリフルオロメチル基もしくはフェニル基であり、R3とR4が結合し環を形成していても良い。R1およびR2は水素原子、炭素数1〜10のアルキル基またはハロゲン原子である。R1、R2、R3およびR4は同じでも異なっていても良い。また、mおよびnは置換基数を表し0〜4の整数である。)
Figure 0004051549
Figure 0004051549
From the aromatic-aliphatic copolymer polycarbonate resin (A) comprising the structural units represented by the following general formula (1), formula (2) and formula (3), and from the structural unit represented by the following formula (1) A polycarbonate resin composition comprising the aromatic polycarbonate resin (B).
Figure 0004051549
(In the above general formula (1), X is
Figure 0004051549
Wherein R 3 and R 4 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a trifluoromethyl group or a phenyl group, and R 3 and R 4 may be bonded to form a ring. . R 1 and R 2 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a halogen atom. R 1 , R 2 , R 3 and R 4 may be the same or different. Moreover, m and n represent the number of substituents and are integers of 0-4. )
Figure 0004051549
Figure 0004051549
前記一般式(1)で表される構成単位が、下記式(4)で表される構成単位である請求項1記載のポリカーボネート樹脂組成物。
Figure 0004051549
The polycarbonate resin composition according to claim 1, wherein the structural unit represented by the general formula (1) is a structural unit represented by the following formula (4).
Figure 0004051549
請求項1記載のポリカーボネート樹脂組成物より形成された光学材料。An optical material formed from the polycarbonate resin composition according to claim 1. 請求項1記載のポリカーボネート樹脂組成物より形成された、屈折率1.54〜1.60、アッベ数35〜50であるプラスチックレンズ。
【0001】
A plastic lens having a refractive index of 1.54 to 1.60 and an Abbe number of 35 to 50, formed from the polycarbonate resin composition according to claim 1.
[0001]
JP2002236437A 2002-08-14 2002-08-14 Polycarbonate resin composition Expired - Lifetime JP4051549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236437A JP4051549B2 (en) 2002-08-14 2002-08-14 Polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236437A JP4051549B2 (en) 2002-08-14 2002-08-14 Polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JP2004075799A JP2004075799A (en) 2004-03-11
JP4051549B2 true JP4051549B2 (en) 2008-02-27

Family

ID=32020606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236437A Expired - Lifetime JP4051549B2 (en) 2002-08-14 2002-08-14 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JP4051549B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300286B (en) * 2005-11-10 2011-03-30 帝人化成株式会社 Optical device and achromatic lens
JP4521022B2 (en) * 2006-10-18 2010-08-11 出光興産株式会社 Polycarbonate copolymer, molded body, optical material, and electrophotographic photoreceptor
US7893185B2 (en) 2006-10-18 2011-02-22 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
JP2011126970A (en) * 2009-12-16 2011-06-30 Mitsubishi Chemicals Corp Polycarbonate resin and surface impact resistant member obtained therefrom
JP6079843B2 (en) * 2015-09-07 2017-02-15 三菱化学株式会社 Polycarbonate resin composition and molded product
JP2017149922A (en) * 2016-02-19 2017-08-31 宇部興産株式会社 Polycarbonate polyol

Also Published As

Publication number Publication date
JP2004075799A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US8969505B2 (en) Process for manufacturing branched aromatic polycarbonate resin with desired degree of branching
US9771477B2 (en) Polycarbonate resin composition, method for producing same and molded article of this resin composition
US8569406B2 (en) Polycarbonate resin, composition of said resin, and molded article of said resin
US9458290B2 (en) Process for preparing highly polymerized aromatic polycarbonate resin
WO2010010703A1 (en) Polycarbonate resin composition and optical material using the same
JP2015189905A (en) aromatic polycarbonate resin composition
JP2002363398A (en) Polycarbonate and resin composition
JP4051549B2 (en) Polycarbonate resin composition
JP4221751B2 (en) Aromatic-aliphatic copolymer polycarbonate
JP2003335853A (en) Method for manufacturing aromatic/aliphatic copolycarbonate resin composition
JP4072670B2 (en) Polycarbonate resin composition
JP2647734B2 (en) Method for producing polycarbonate
JP5682562B2 (en) Polycarbonate resin composition
KR101741280B1 (en) Polycarbonate resin composition
JP2015189906A (en) aromatic polycarbonate resin composition
JP3841120B2 (en) Polycarbonate resin composition
JP5287704B2 (en) Polycarbonate resin composition
JP3959572B2 (en) Aromatic-aliphatic copolymer polycarbonate resin
JP2003055543A (en) Aromatic-aliphatic copolymerized polycarbonate resin composition
JP2001151883A (en) Method of manufacturing aromatic-aliphatic copolycarbonate
JP2011037932A (en) Aromatic polycarbonate resin for optical material and composition comprising the same and used for light guide plate
WO2002042375A1 (en) Aromatic-aliphatic copolycarbonate resin composition
JP2005025149A (en) Polarizing plate
JP4513949B2 (en) Polycarbonate resin
JP2000007778A (en) Preparation of aromatic-aliphatic copolymer polycarbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4051549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

EXPY Cancellation because of completion of term