JP4051261B2 - Control method for stoichiometric air-fuel ratio stratified combustion internal combustion engine - Google Patents

Control method for stoichiometric air-fuel ratio stratified combustion internal combustion engine Download PDF

Info

Publication number
JP4051261B2
JP4051261B2 JP2002312014A JP2002312014A JP4051261B2 JP 4051261 B2 JP4051261 B2 JP 4051261B2 JP 2002312014 A JP2002312014 A JP 2002312014A JP 2002312014 A JP2002312014 A JP 2002312014A JP 4051261 B2 JP4051261 B2 JP 4051261B2
Authority
JP
Japan
Prior art keywords
intake
valve
air
egr
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002312014A
Other languages
Japanese (ja)
Other versions
JP2004144052A (en
Inventor
純一 山口
浩二 大西
敬士 藤井
護 藤枝
昇 徳安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2002312014A priority Critical patent/JP4051261B2/en
Publication of JP2004144052A publication Critical patent/JP2004144052A/en
Application granted granted Critical
Publication of JP4051261B2 publication Critical patent/JP4051261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/108Swirl flow, i.e. the axis of rotation of the main charge flow motion is vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリンダ内に直接燃料を噴射し、主として点火により燃焼させる内燃機関に関する。
【0002】
【従来の技術】
従来、シリンダ内に直接燃料を噴射する内燃機関において、EGRガス(排気還流ガス)を導入することにより、排気中の有害成分の低減を図ったものが知られている。また、その際に、効果的に燃焼性能を維持するために、EGRガスの混合比を場所によって変えるようにしたものが知られている。これらの一例としては、例えば特開2001−280140号公報に記載されているようなシステムがある。
【0003】
このシステムは、主として圧縮着火機関に関するもので、1つのシリンダに開口する2つの吸気ポートにそれぞれ制御弁の付いたEGRガス通路を接続し、吸気ポートの形状と、吸気弁の開弁期間をずらすことにより、シリンダ内にEGRガスの多い層と少ない層を作っている。そして、シリンダの縦方向に成層化された吸気が、圧縮行程でスキッシュ流によってピストンキャビティ内で軸方向の成層となり、ここに燃料を噴射することにより、効果的にNOxとスート(黒煙)の同時低減が図れるとしている。
【0004】
【特許文献1】
特開2001−280140号公報(第5−6頁,第2図,第4図)
【0005】
【発明が解決しようとする課題】
しかしながら、上記のような構成においては、次に示すような問題点がある。
【0006】
すなわち、従来の構成で用いられている独立吸気管は、スワールを発生させるのに好適な構成にはなっているが、吸気管に設けられた曲がりなどのために、高負荷時に通気抵抗が大きく、ピストンが下降する際に生じる負圧で十分な空気量を吸入することができず、出力の低下に繋がるという問題がある。また、ピストン形状についても、キャビティを持たせているので必然的にピストンの肉厚増加、すなわち重量増加につながり、エンジンを高回転化して出力を向上させる場合に障害になってしまうという問題がある。さらに、独立吸気管のそれぞれにEGRガスを導入する構成となっているので、そのための配管や機構が複雑になり、コストおよび重量増加などに繋がるという問題がある。
【0007】
また、従来の構成で述べられている圧縮着火機関すなわちディーゼル機関には、黒煙とNOxの同時低減が困難で、触媒の装着も難しいという難点があり、黒煙の燃焼装置も高価なものになっている。また、ガソリン機関の場合には、全体として希薄混合気を用いて成層燃焼を行う場合、エミッション(排出ガス)の低減のため従来からの三元触媒を使用しても効果がなく、特にNOx(窒素酸化物)の浄化のためにNOx還元触媒を用いるのが一般的であるが、この触媒の使用法として、一定時間毎に空燃比を13程度に過濃(リッチ)化し、リーン運転時に吸着したNOxを還元する運転を行う必要がある。これをリッチスパイクと呼んでいるが、リッチスパイク中には成層燃焼が出来ないばかりか、NOx還元のために、エネルギーとしては無駄な燃料を消費しており、せっかく希薄混合気により燃費を向上しても、リッチスパイクにより相殺されてしまうので、実質の燃費向上率が低くなってしまうという問題点があった。またこのとき、現在の技術ではNOx還元触媒におけるNOxの浄化率は最高でも90%程度で、三元触媒を用いた場合の浄化率99%と比べ低く、希薄燃焼によるNOx生成量の低減を考慮したとしても、結果的にテールパイプすなわち排気管から排気されるNOx量の増加を招くといった問題点があった。
【0008】
本発明は以上の問題点を解決するためになされたものであり、ピストンを高回転実現のために好適な軽量とし、かつ、吸気通路の抵抗が少なく、高負荷時に十分な空気量を確保できる構成としながら、成層燃焼を行うことのできるシステムを提供することを第一の目的とする。また、排気浄化効率の高い三元触媒を有効に使用することにより、低コストでエミッションの悪化を抑制し、さらに、成層燃焼時にもリッチスパイクを行わないか、もしくは回数を極力少なくし、燃費の悪化を防ぐ成層燃焼システムを提供することを第二の目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は次のような手段を有する。
すなわち、シリンダ内に導入される空気量を制御する吸気弁と、燃料をシリンダ内に直接噴射する燃料噴射手段と、燃焼後の排気ガスをシリンダ内に還流または滞留させる EGR 制御手段とを備えた内燃機関の制御方法において、
吸気弁と前記燃料噴射弁とを制御してシリンダ内で空気および燃料を混合した理論空燃比近傍の混合気を点火プラグ近傍に形成すると共に、理論空燃比近傍の混合気が燃焼した排気ガスをEGRガスとしてシリンダ内に導入するようにEGR制御手段を制御することを特徴とする制御方法である。
【0010】
さらに、燃料を筒内に直接噴射できる内燃機関において、少なくとも2つに分割された独立吸気管と、その一方を閉塞することのできるスワール制御弁を備える。さらに、排気ガスを還流させるためのEGR(Exhaust Gas Recirculation) バルブを備え、閉塞された吸気管部分にEGR通路が開口するように構成する。そして、吸気弁が開いたとき、独立吸気管の一方から燃焼室に流入する気体は空気を主とし、独立吸気管の他方から流入する気体はEGRガスを主とするようにする。
【0011】
また、少なくとも1つの吸気弁について、開閉時の位相を、他の吸気弁と異ならせる、バルブタイミング可変機構を備える。
【0012】
ピストンの頂面は平坦面またはバルブリセスを備えた凹凸面として構成し、軽量化をはかる。さらに、排気通路内に三元触媒を備える。
【0013】
また、上記のように構成されたシリンダ内直接燃料噴射機関において、成層燃焼時には圧縮行程の後半に、均質運転時には吸気行程に燃料噴射を行うように、燃料噴射装置を制御する。
【0014】
以上のように構成したので、本発明は次のような作用を有する。
【0015】
エンジンの低負荷域ではスワール制御弁を閉じ、EGRバルブからのEGRガスを、閉塞されている独立吸気管に流入させておく。そして、吸気行程でEGRガスが流入している側の吸気弁を先に開き、EGRガスだけを燃焼室内に流入させる。そして、吸気行程の後半で、スワール制御弁によって閉塞されていない側の吸気弁を開き、燃焼用の空気を流入させる。EGRガスと燃焼用空気とを、時間差をつけて燃焼室内に流入させることにより、吸入空気とEGRガスを分離させたままにする。その後の圧縮行程において、吸入空気に向けて燃料を噴射する。このとき、混合気の空燃比は理論空燃比になるように燃料噴射量を制御する。このようにすれば、排出されるEGRガスも、理論空燃比で燃焼した排気ガスと同様の組成になる。こうして混合気の成層化をはかり、ポンピングロスや冷却損失の低減により燃費を向上しながら、ガス全体としての空燃比を、三元触媒が利用できる理論空燃比とし、NOx、HCを同時に浄化する。
【0016】
さらに、より高い負荷を必要とする場合には、スワール制御弁を開くことにより吸気抵抗を軽減して吸入空気量を増やし、かつ、燃料を吸気行程に噴射することにより十分な気化および空気との混合時間を確保し、均質燃焼を行い、必要な出力を確保する。
【0017】
【発明の実施の形態】
図1および図2に、本発明の第1実施例における構成図を、図1では上から見たもの、図2では水平方向から見たものについて示す。本実施例では主として多気筒エンジンを想定しているが、図では簡単のために1つのシリンダについて説明する。
【0018】
吸気管101にはスワール制御弁102が、2つある独立吸気管101a,101bのうち、101bを開閉可能となるように取り付けられている。
【0019】
インジェクタ122は、シリンダ123内に直接燃料を噴射するように取り付けられている。
【0020】
図の右側より吸入された空気は、エアクリーナ106を通り、エアフローメータ105で流量を計測し、電子制御スロットルチャンバ104で流量を調節した後、コレクタ103で各気筒に分配される。その後、前述した吸気管101aおよび101bを通り、吸気弁111aおよび111bが開いた際にシリンダ123に流入する。
【0021】
シリンダで燃焼したガスは、排気弁112,排気管110を通った後、三元触媒115によって浄化され、消音器(図示しない)を通って大気中に排気される。このとき、ガスの一部をEGR制御弁108で流量を調節しながら、EGR通路109を使用して吸気管101に還流させる。EGR通路109は、EGR側独立吸気管101b内に開口するようにする。
【0022】
インジェクタ122の燃料噴射時期,点火プラグ113の点火時期,スワール制御弁102,電子制御スロットルチャンバ104,EGR制御弁108のそれぞれの開度は、エアフローメータ105で計測された吸入空気量や、アクセル開度,エンジン水温,エンジン回転数,車速(いずれもその入力を行うセンサを図示していない)などの情報を元に、コンピュータ201によって最適な値および時期に設定および制御される。
【0023】
成層燃焼を行うときには、まずスワール制御弁102を閉じてEGR側独立吸気管101bを閉塞し、EGR通路109,EGR制御弁108を用いてEGRガスをEGR側独立吸気管101bに流入させ、充填しておく。
【0024】
エンジンの排気行程の後半、または吸気行程でEGR側吸気弁111bを先に開く。ピストン107によって発生した負圧により、EGR側独立吸気管101bからEGRガスが流入し、シリンダ123内に、図の上側からみて時計周りにスワール121を形成しながら充填される。EGRガスと吸入空気の混合がなるべく少なくなるように、EGR側吸気弁111bのリフト開始および終了クランク角の変化量は20度CA(※CAはクランク角の略)以上とすることが望ましい。このようにすると従来のエンジンでは、排気行程の後半で排気弁112とEGR側吸気弁111bが同時に開く、いわゆるオーバーラップの期間が長くなり、吸気管への吹き戻しによってEGRガスと空気が予期せず混ざったり、吸気の円滑な流れが阻害され、燃焼が不安定になったりする問題があったが、本発明では、EGR側独立吸気管101bはスワール制御弁102によって閉塞されており、EGR側独立吸気管101b内にはもともとEGRガスが充填されているので、排気弁112が開いていても問題はない。
【0025】
次に、吸気行程の後半で吸気弁111aを開くと、独立吸気管101aおよび吸気弁111aを通って空気がシリンダ123内に流入し、図の上側から見て反時計周りのスワール120を形成する。スワール120と121は、互いに逆方向の流れであるが、吸気弁111aと111bの開く位相が異なるため、EGRガスのスワール120がシリンダ123の下側に、吸入空気のスワール121がシリンダ123の上側に位置し、エンジンの吸気〜圧縮行程の短時間であれば混合することなく、成層化して存在することができる。
【0026】
続いて圧縮行程では、吸気弁111aおよび111bが閉じ、ピストン107が上昇してシリンダ123内の空気が圧縮される。ここでインジェクタ122から燃料を噴射する。このとき、図2に示したように、噴霧125が吸入空気のスワール121に向かい、かつ、シリンダ壁や燃焼室の壁に衝突しないよう、燃料の圧力等を調節して噴霧貫通力すなわちペネトレーションを最適に設定しておく。さらにここで、燃料噴霧125は、図の上方に向かう成分が下方に向かう成分よりも大きくなる、いわゆる偏向噴霧にしておく。このように構成することによって、スワール121と噴霧125との混合が効率よく行われる。また、吸入空気と燃料の混合比、すなわち空燃比は、三元触媒115によって効率的に排気浄化が可能な理論空燃比近くになるように調節する。圧縮行程の後半、すなわち最適な点火時期になったとき、コンピュータ201からの信号によって点火プラグ113に点火し、燃焼を行わせる。
【0027】
このようにして点火プラグの近傍に良好な燃焼ができる理論空燃比の混合気を形成しながら、同時に全体としての吸気量を増やし、ポンピングロスや冷却損失を減らして燃費を向上させる。従来技術のように希薄混合気で運転しないので、リーンNOx触媒を使用する必要がなく、リッチスパイクによる燃費の悪化や、NOxの除去率が低く排気浄化の効果が小さいといった問題もない。また、リーンNOx触媒と三元触媒を両方使用する必要がないため、コストダウンも図ることができる。
【0028】
図3に、本発明の第1実施例における、吸排気弁のリフトカーブを示す。吸気弁111aと、2つの排気弁112の作動は変えずに、成層燃焼時のみEGR側吸気弁111bの作動を早める。EGRガスと吸入空気の混合がなるべく少なくなるように、リフト開始および終了クランク角の変化量は20度CA(※CAはクランク角の略)以上とすることが望ましい。このようにすると、排気行程の後半で排気弁112とEGR側吸気弁111bが同時に開く、いわゆるオーバーラップの期間が長くなるが、独立吸気管101b内は閉管で、EGRガスが充填されているため、排気ガスの吹き返しなどの問題もない。吸気弁111aが全開のリフト量になったとき、EGR側吸気弁111bは閉じ始めており、図1および図2で説明したような吸入空気の動作を得ることができる。
【0029】
図4および図5に、第1の実施例においてエンジン負荷が小さい場合の動作を示す。
【0030】
まず、コンピュータ201からの信号により、電子制御スロットルチャンバ104の開度が小さく設定される。一方、EGR制御弁108の開度は大きく設定される。これにより、エンジンの吸気行程において吸気弁111aおよび111bが開いたときにシリンダ123内に吸入されるガスは、独立吸気管101aを通った吸入空気よりも、EGR側独立吸気管101bを通ったEGRガスのほうが多くなり、スワール121よりもスワール120の量が多くなる。この場合でも吸入空気のスワール121は、最後にシリンダ123に吸入され、シリンダ123の上部、すなわちプラグ113の近傍にあり、また、噴霧125は図5の上方に向かう成分が大きい偏向噴霧であるので、噴霧125は主として吸入空気のスワール121と混合し、プラグ113周りに理論空燃比の混合気を形成することができる。それ以外の大部分が、EGRガスからなるスワール120であり、シリンダ123の下方を流れ、シリンダ123内全体としての空燃比を理論空燃比近傍に保ちながら、吸気量を増やしてポンピングロスや冷却損失を低減させることができる。
【0031】
図6および図7に、第1の実施例においてエンジン負荷が中程度の場合の動作を示す。
【0032】
まず、コンピュータ201からの信号により、電子制御スロットルチャンバ104の開度は、図4および図5で示した場合よりもやや大きく設定される。これに対し、EGR制御弁108の開度はやや小さく設定される。これにより、エンジンの吸気行程において吸気弁111aおよび111bが開いたときにシリンダ123内に吸入されるガスは、独立吸気管101aを通った吸入空気のほうが、EGR側独立吸気管101bを通ったEGRガスよりも多くなり、EGRガスのスワール120よりも吸入空気のスワール121の量が多くなる。この場合でも図4および図5で述べた場合と同様に、吸入空気のスワール121は、最後にシリンダ123に吸入され、シリンダ123の上部、すなわちプラグ113の近傍にあり、また、噴霧125は図5の上方に向かう成分が大きい偏向噴霧であるので、噴霧125は主として吸入空気のスワール121と混合し、プラグ113周りに理論空燃比の混合気を形成することができる。それ以外の大部分が、EGRガスからなるスワール120であり、シリンダ123の下方を流れ、シリンダ123内全体としての空燃比を理論空燃比近傍に保ちながら、吸気量を増やしてポンピングロスや冷却損失を低減させることができる。
【0033】
図4から図7において、反時計方向に回転する吸入空気または混合気のスワール121と、時計方向に回転するEGRガスのスワール120の割合は運転状態によって変わるが、吸入空気量を基準すなわち100%としたとき、例えば10%から200%程度まで変化させて設定することができる。
【0034】
図8および図9に、第1の実施例においてエンジン負荷が大きい場合の動作を示す。
【0035】
まず、コンピュータ201からの信号により、スワール制御弁102を開くように設定する。電子制御スロットルチャンバ104の開度は、図3で示した場合よりさらに大きく(全開に近く)設定される。これにより、吸気管101の吸気抵抗が低減するので、エンジンの吸気行程において吸気弁111aおよび111bが開いたとき、独立吸気管101aおよびEGR側独立吸気管101bの両方から、大量の新気を吸入させることができる。
【0036】
さらに、EGR制御弁108の開度は小さく設定される。また、EGR側吸気弁111bのリフトカーブは、吸気弁111aのリフトカーブと等しくし、吸気弁111aと111bが同時に開閉するようにする。
【0037】
またこのとき、エンジンの吸気行程でコンピュータ201からインジェクタ122に信号を送り、燃料噴射を行う。これにより、噴霧の気化時間および拡散時間を長くして吸入空気との混合を促進し、混合気の均質度を高めることができる。吸入空気量が大きいので、燃料噴射量を大きくすれば多量の混合気形成を行うことができ、大きなトルクを得ることができる。
【0038】
図10に、図4〜図9に示した動作の制御フローチャートを示す。
【0039】
まず、コンピュータ201はエンジン回転数,アクセル開度,水温,吸気圧力,排気温度,ギヤ位置をそれぞれのセンサから読み込み、これを元にして目標トルクを演算する。
【0040】
次に、このトルクを用いてエンジン回転数−目標トルクの運転状態マップを参照し、EGR成層運転を行う領域か、均質運転を行う領域なのかを調べた後、適切な燃料噴射量,点火時期を決定する。
【0041】
次に、EGR成層運転を行う場合には、スワール制御弁102を閉じ、燃料噴射時期をエンジンの圧縮行程に設定する。そして、EGR側吸気弁111bのリフト開始クランク角を早く設定する。
【0042】
一方、EGR成層運転を行わない、つまり均質運転を行う場合には、スワール制御弁102を開き、燃料噴射時期をエンジンの吸気行程に設定する。EGR側吸気弁111bのリフト開始は吸気弁111aと等しくする。
【0043】
次に、エンジンが排気〜吸気行程に入ると吸気弁111aおよび111bが上記で決められたように動作する。すなわち、成層運転を行う場合には、吸気弁111bが先に開いてEGRガスがシリンダ123に流入し、スワール120を形成する。次に吸入空気のスワール121が形成される。ここで吸入空気のスワール121を指向して圧縮行程で燃料噴射を行う。これにより、プラグ113周りに混合気を形成しながら、周囲をEGRガスで成層化し、燃焼を行うことができる。
【0044】
一方、均質運転を行う場合には、スワール制御弁102が開き、吸気弁111aと111bが同時に開いて、独立吸気管101aとEGR側独立吸気管101bの両方から空気が流入する。通路断面積が大きく抵抗が少ないため、多くの空気が流入する。これに対して吸気行程で燃料噴射を行うことにより、気化時間を長くとることができ、混合気の均質性を高めることができる。
【0045】
次に、決められた点火時期に従い点火を行う。ここで燃焼が行われて出力が取り出され、続いて排気行程で燃焼ガスが排気管110に排出される。以上により1回サイクルが終了し、これを繰り返すことによりエンジンの運転が行われる。
【0046】
図11に本発明の第2実施例における吸排気弁のリフトカーブを示す。第2実施例の基本的な構成は第1実施例と同じであるので説明は省略する。吸気弁111aおよび111bの可変機構について、第1実施例のようにEGR側吸気弁111bの作動開始を早めるだけでなく、吸気弁111aのリフト量を少なくする機構を付加する。このように構成すると、シリンダ123に流入するEGRガスのスワール120の量を増やしながら、吸入空気の量を減らすことができ、吸入空気の量に比べてより多くのEGRガスを導入することができ、低負荷域でのポンピングロスを減らすことができる。
【0047】
図12に本発明の第3実施例における吸排気弁のリフトカーブを示す。第3実施例の基本的な構成は第1実施例と同じであるので説明は省略する。吸気弁111aおよび111bの作動可変機構について、バルブの作用角をそれぞれ独立して変える機構を備える。EGR成層燃焼を行う場合、吸気弁111aおよび111bの作用角を小さくし、EGR側吸気弁111bの作動を早め、同時に吸入空気側吸気弁111aの作動を遅くする。このように構成することにより、シリンダ123にEGRガスのスワール120が流入するタイミングと、吸入空気のスワール121が流入するタイミングをずらすことができ、EGRガスと混合気の良好な成層化をはかることができ、多くのEGRガスを導入することができるので、低負荷域でのポンピングロスを減らすことができる。
【0048】
図13に本発明の第4実施例における吸排気弁のリフトカーブを示す。第4実施例の基本的な構成は第1実施例と同じであるので説明は省略する。排気弁112については、開弁期間をずらす作動可変機構を備え、また吸気弁111aについてはバルブの作用角を変える機構を備える。本実施例ではEGR側吸気弁には作動可変機構を備えていなくてもよい。EGR成層燃焼を行う場合、排気弁112の閉弁時期をクランク角で20°以上遅らせる。さらに、吸気弁111aの作用角を20°以上小さくし、同時にEGR側吸気弁111bに比べて20°以上開弁を遅くする。このように構成することにより、シリンダ123に排気弁112から上死点を過ぎて戻ってきた燃焼ガスが残留し、その後EGR側吸気弁111bからのEGRガスがスワール120を生成し、最後に吸入空気が吸気弁111aを通ってスワール121として流入する。排気弁112からもEGRガスが導入できるので、大量のEGRの導入が可能である。さらに、EGR側吸気弁111bのタイミングを変更しなくてよいので、吸気側と排気側にそれぞれ1種類のバルブ作動可変機構を備えていれば良く、第2実施例または第3実施例に比べ構造が簡単になる。
【0049】
図14に、本発明における回転数−トルクマップ上の成層および均質運転領域の図を示す。同一のエンジン回転数においては、負荷が小さいときには相対的に多量のEGRガスを導入し、負荷が大きくなるとEGRガスは減少する。さらに負荷が大きくなると均質燃焼に切替える。
【0050】
図15に、従来技術における回転数−トルクマップ上の成層および均質運転領域を、図16に、従来技術と本発明の、負荷による燃料消費量を比較したものを示す。
【0051】
従来技術は、主として空気による成層化を行っているが、本発明ではEGRガスを用いているので、エンジンの膨張行程においてシリンダ内ガスの比熱比が増加し、エンジンの効率が向上する。また、EGRガスと可燃混合気との混合が最小限に抑えられるので、混合気の燃焼悪化を防ぐことができ、燃焼効率が向上する。このため、同一のエンジン回転数および負荷で比較した場合には、燃料消費量を少なくすることができる。
【0052】
さらに、従来技術ではリーンNOx触媒の活性を維持するために、一定間隔でリッチスパイクをかける必要があり、この間の燃料消費が悪化する。このため、総合的な燃料消費量はさらに本発明のほうが小さくできる。
【0053】
なお、以上の実施例ではEGR成層による理論混合気燃焼の基本概念について述べたものであり、本発明の範囲は必ずしもこれに限定されるものではなく、例えば吸気通路の本数、あるいは吸気通路の形状が変わった場合でも、それらの通路を部分的に閉塞する吸気制御弁またはスワール制御弁を持ち、閉塞部分にEGRガスを導入し、かつ、バルブタイミングを可変することによりEGRガスと可燃性混合気の成層化をはかる構成であればあきらかに本発明の範囲に含まれる。
【0054】
さらに、本実施例は自然吸気エンジンについて記載しているが、EGRガスを用いた成層燃焼を行うことができれば、過給機付きエンジンに関しても同様の動作を行わせることができる。この場合には、吸入空気の圧力が大気圧よりも高まるので、EGRガスを入れても吸入空気量を多くすることができ、自然吸気の場合よりも成層運転範囲を広くすることができる。
【0055】
また、バルブ作動可変機構についても計4通りの実施例を示したが、これらの2つ以上を組み合わせて使用しても同様の効果が得られ、これらも明らかに本発明の範囲に含まれる。
【0056】
【発明の効果】
本発明の効果を列挙すると次のようになる。
【0057】
まず、EGRガスを用いたため、成層燃焼を行いポンピングロスを低減して効率向上を図りながら空燃比を常に理論空燃比近傍に保つことができ、三元触媒を有効に働かせて排気浄化を図れるので、従来のようなリーンNOx触媒を使用する必要がなく、リッチスパイクによる燃費の悪化が防止できるという効果がある。また、NOxの除去率が高く、排気浄化の効果が大きいという効果がある。さらに、リーンNOx触媒と三元触媒を両方使用する必要がないため、コストダウンも図ることができるという効果がある。
【0058】
また、混合気とEGRガスの成層化は吸気ポートやピストンキャビティの形状などによっていないので、高回転時や高負荷時の空気流動が妨げられることがなく、高出力で、かつ、低負荷時にポンピングロスが少なく燃費の良いエンジンにできるという効果がある。
【図面の簡単な説明】
【図1】本発明の第1実施例をシリンダ上側から見た構成図。
【図2】本発明の第1実施例をシリンダ横側から見た構成図。
【図3】第1実施例における吸排気弁のリフトカーブ。
【図4】第1実施例における、低負荷時の作動状態を上から見た図。
【図5】第1実施例における、低負荷時の作動状態を横から見た図。
【図6】第1実施例における、中負荷時の作動状態を上から見た図。
【図7】第1実施例における、中負荷時の作動状態を横から見た図。
【図8】第1実施例における、高負荷時の作動状態を上から見た図。
【図9】第1実施例における、高負荷時の作動状態を横から見た図。
【図10】第1実施例における作動フローチャート。
【図11】本発明の第2実施例における吸排気弁のリフトカーブ。
【図12】本発明の第3実施例における吸排気弁のリフトカーブ。
【図13】本発明の第4実施例における吸排気弁のリフトカーブ。
【図14】本発明における回転−トルクマップ上の成層および均質運転領域の図。
【図15】従来技術における回転−トルクマップ上の成層および均質運転領域の図。
【図16】本発明と従来技術との燃料消費量の比較図。
【符号の説明】
101…吸気管、101a…独立吸気管、101b…EGR側独立吸気管、102…スワール制御弁、103…コレクタ、104…電子制御スロットルチャンバ、105…エアフローメータ、106…エアクリーナ、107…ピストン、108…EGR制御弁、109…EGR通路、110…排気管、111a…吸入空気側の吸気弁、111b…EGR側の吸気弁、112…排気弁、113…点火プラグ、115…三元触媒、120…EGRガスによるスワール、121…吸入空気によるスワール、122…インジェクタ、123…シリンダ、125…燃料噴霧、201…コンピュータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine in which fuel is directly injected into a cylinder and burned mainly by ignition.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an internal combustion engine that directly injects fuel into a cylinder has been known to reduce harmful components in exhaust gas by introducing EGR gas (exhaust gas recirculation gas). Further, in that case, in order to effectively maintain the combustion performance, there is known one in which the mixing ratio of EGR gas is changed depending on the place. As an example of these, for example, there is a system as described in JP-A-2001-280140.
[0003]
This system mainly relates to a compression ignition engine. EGR gas passages with control valves are connected to two intake ports that open to one cylinder, and the shape of the intake port and the valve opening period of the intake valve are shifted. Thus, a layer with a large amount of EGR gas and a layer with a small amount of EGR gas are formed in the cylinder. Then, the intake air stratified in the longitudinal direction of the cylinder is stratified in the axial direction in the piston cavity by the squish flow in the compression stroke, and by injecting the fuel therein, NOx and soot (black smoke) are effectively produced. It is said that simultaneous reduction can be achieved.
[0004]
[Patent Document 1]
JP 2001-280140 A (Page 5-6, FIGS. 2 and 4)
[0005]
[Problems to be solved by the invention]
However, the above configuration has the following problems.
[0006]
That is, the independent intake pipe used in the conventional configuration is suitable for generating a swirl, but has a large ventilation resistance at high load due to the bending provided in the intake pipe. There is a problem that a sufficient amount of air cannot be sucked by the negative pressure generated when the piston descends, leading to a decrease in output. Also, the piston shape has a cavity, which inevitably leads to an increase in piston thickness, that is, an increase in weight, and there is a problem that it becomes an obstacle when the engine speed is increased to improve the output. . Furthermore, since the EGR gas is introduced into each of the independent intake pipes, there is a problem that piping and mechanisms for that are complicated, leading to an increase in cost and weight.
[0007]
In addition, the compression ignition engine described in the conventional configuration, that is, the diesel engine, has a problem that it is difficult to simultaneously reduce black smoke and NOx, and it is difficult to install the catalyst, and the black smoke combustion apparatus is also expensive. It has become. In addition, in the case of a gasoline engine, when stratified combustion is performed using a lean mixture as a whole, there is no effect even if a conventional three-way catalyst is used to reduce emissions (exhaust gas). In general, a NOx reduction catalyst is used to purify (nitrogen oxides). However, as a method of using this catalyst, the air-fuel ratio is enriched to about 13 at regular intervals and is adsorbed during lean operation. Therefore, it is necessary to perform an operation for reducing the NOx. This is called a rich spike, but not only stratified combustion is not possible during the rich spike, but also wastes fuel as energy for NOx reduction. However, since it is offset by the rich spike, there is a problem that the actual fuel efficiency improvement rate is lowered. At this time, in the current technology, the NOx purification rate of the NOx reduction catalyst is about 90% at the maximum, which is lower than the purification rate of 99% when the three-way catalyst is used, and the reduction of NOx generation amount due to lean combustion is considered. Even so, there is a problem that as a result, the amount of NOx exhausted from the tail pipe, that is, the exhaust pipe is increased.
[0008]
The present invention has been made in order to solve the above-described problems. The piston is light in weight suitable for realizing a high rotation, and the intake passage has a low resistance, so that a sufficient amount of air can be secured at a high load. A first object is to provide a system capable of performing stratified combustion while being configured. In addition, by effectively using a three-way catalyst with high exhaust purification efficiency, it is possible to suppress the deterioration of emissions at a low cost, and also to avoid rich spikes during stratified combustion or to reduce the number of times as much as possible. A second object is to provide a stratified combustion system that prevents deterioration.
[0009]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention has the following means.
  That is, an intake valve that controls the amount of air introduced into the cylinder, fuel injection means that directly injects fuel into the cylinder, and exhaust gas after combustion is recirculated or retained in the cylinder EGR In a control method for an internal combustion engine comprising a control means,
  An air-fuel mixture near the stoichiometric air-fuel ratio in which air and fuel are mixed in the cylinder is formed near the spark plug by controlling the intake valve and the fuel injection valve. A control method is characterized in that the EGR control means is controlled to be introduced into the cylinder as EGR gas.
[0010]
  further,An internal combustion engine capable of directly injecting fuel into a cylinder includes an independent intake pipe divided into at least two and a swirl control valve capable of closing one of them. Furthermore, an EGR (Exhaust Gas Recirculation) valve for recirculating the exhaust gas is provided, and the EGR passage is opened in the closed intake pipe portion. When the intake valve is opened, the gas flowing into the combustion chamber from one of the independent intake pipes is mainly air, and the gas flowing from the other of the independent intake pipes is mainly EGR gas.
[0011]
In addition, a variable valve timing mechanism is provided that makes the phase at the time of opening and closing different from the other intake valves for at least one intake valve.
[0012]
The top surface of the piston is configured as a flat surface or an uneven surface with a valve recess to reduce the weight. Furthermore, a three-way catalyst is provided in the exhaust passage.
[0013]
Further, in the in-cylinder direct fuel injection engine configured as described above, the fuel injection device is controlled so that fuel is injected in the latter half of the compression stroke during stratified combustion and in the intake stroke during homogeneous operation.
[0014]
Since it comprised as mentioned above, this invention has the following effects.
[0015]
In a low load region of the engine, the swirl control valve is closed, and the EGR gas from the EGR valve is allowed to flow into the closed independent intake pipe. Then, the intake valve on the side where EGR gas flows in the intake stroke is opened first, and only EGR gas flows into the combustion chamber. Then, in the latter half of the intake stroke, the intake valve on the side not blocked by the swirl control valve is opened, and combustion air is introduced. By flowing the EGR gas and the combustion air into the combustion chamber with a time difference, the intake air and the EGR gas are kept separated. In the subsequent compression stroke, fuel is injected toward the intake air. At this time, the fuel injection amount is controlled so that the air-fuel ratio of the air-fuel mixture becomes the stoichiometric air-fuel ratio. In this way, the exhausted EGR gas has the same composition as the exhaust gas burned at the stoichiometric air-fuel ratio. In this way, the air-fuel mixture is stratified to improve fuel efficiency by reducing pumping loss and cooling loss, and the air-fuel ratio of the gas as a whole is the stoichiometric air-fuel ratio that can be used by the three-way catalyst to simultaneously purify NOx and HC.
[0016]
Furthermore, when a higher load is required, the intake resistance is reduced by opening the swirl control valve to increase the intake air amount, and the fuel is injected into the intake stroke to achieve sufficient vaporization and air contact. Ensure mixing time, perform homogeneous combustion, and secure necessary output.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 and FIG. 2 show the configuration of the first embodiment of the present invention as viewed from above in FIG. 1 and as viewed from the horizontal direction in FIG. In the present embodiment, a multi-cylinder engine is mainly assumed, but for the sake of simplicity, one cylinder will be described.
[0018]
A swirl control valve 102 is attached to the intake pipe 101 so that 101b of the two independent intake pipes 101a and 101b can be opened and closed.
[0019]
The injector 122 is attached so as to inject fuel directly into the cylinder 123.
[0020]
The air sucked from the right side of the drawing passes through the air cleaner 106, measures the flow rate with the air flow meter 105, adjusts the flow rate with the electronic control throttle chamber 104, and then distributes it to each cylinder with the collector 103. Thereafter, the air passes through the intake pipes 101a and 101b, and flows into the cylinder 123 when the intake valves 111a and 111b are opened.
[0021]
The gas burned in the cylinder passes through the exhaust valve 112 and the exhaust pipe 110, is purified by the three-way catalyst 115, and is exhausted to the atmosphere through a silencer (not shown). At this time, a part of the gas is recirculated to the intake pipe 101 using the EGR passage 109 while adjusting the flow rate by the EGR control valve 108. The EGR passage 109 opens into the EGR side independent intake pipe 101b.
[0022]
The fuel injection timing of the injector 122, the ignition timing of the spark plug 113, the opening of each of the swirl control valve 102, the electronic control throttle chamber 104, and the EGR control valve 108 are the intake air amount measured by the air flow meter 105, the accelerator opening Based on information such as temperature, engine water temperature, engine speed, and vehicle speed (all of which input sensors are not shown), the computer 201 sets and controls the optimum value and timing.
[0023]
When performing stratified combustion, first, the swirl control valve 102 is closed to close the EGR-side independent intake pipe 101b, and EGR gas is caused to flow into the EGR-side independent intake pipe 101b by using the EGR passage 109 and the EGR control valve 108. Keep it.
[0024]
The EGR side intake valve 111b is opened first in the second half of the exhaust stroke of the engine or in the intake stroke. Due to the negative pressure generated by the piston 107, EGR gas flows from the EGR-side independent intake pipe 101b, and is filled into the cylinder 123 while forming a swirl 121 clockwise as viewed from the upper side of the figure. It is desirable that the amount of change in the lift start and end crank angle of the EGR side intake valve 111b be 20 degrees CA (* CA is an abbreviation of the crank angle) or more so that mixing of EGR gas and intake air is minimized. In this way, in the conventional engine, the exhaust valve 112 and the EGR side intake valve 111b are opened simultaneously in the latter half of the exhaust stroke, so that the so-called overlap period becomes longer, and the EGR gas and air can be expected by blowing back to the intake pipe. However, in the present invention, the EGR side independent intake pipe 101b is closed by the swirl control valve 102, and the EGR side is obstructed. Since the independent intake pipe 101b is originally filled with EGR gas, there is no problem even if the exhaust valve 112 is open.
[0025]
Next, when the intake valve 111a is opened in the latter half of the intake stroke, air flows into the cylinder 123 through the independent intake pipe 101a and the intake valve 111a, forming a swirl 120 that is counterclockwise when viewed from the upper side of the figure. . Although the swirls 120 and 121 flow in opposite directions, the opening phases of the intake valves 111 a and 111 b are different, so that the EGR gas swirl 120 is located below the cylinder 123 and the intake air swirl 121 is located above the cylinder 123. The engine can be stratified without mixing for a short time between the intake and compression strokes of the engine.
[0026]
Subsequently, in the compression stroke, the intake valves 111a and 111b are closed, the piston 107 is raised, and the air in the cylinder 123 is compressed. Here, fuel is injected from the injector 122. At this time, as shown in FIG. 2, the spray pressure, that is, the penetration, is adjusted by adjusting the fuel pressure or the like so that the spray 125 is directed to the swirl 121 of the intake air and does not collide with the cylinder wall or the combustion chamber wall. Set it optimally. Further, the fuel spray 125 is a so-called deflected spray in which the upward component in the figure is larger than the downward component. By comprising in this way, mixing with the swirl 121 and the spray 125 is performed efficiently. Further, the mixing ratio of the intake air and the fuel, that is, the air-fuel ratio is adjusted so as to be close to the theoretical air-fuel ratio at which the exhaust purification can be efficiently performed by the three-way catalyst 115. In the latter half of the compression stroke, that is, when the optimum ignition timing is reached, the ignition plug 113 is ignited by a signal from the computer 201 to cause combustion.
[0027]
In this way, while forming a stoichiometric air-fuel mixture capable of good combustion in the vicinity of the spark plug, at the same time, the overall intake amount is increased, and pumping loss and cooling loss are reduced to improve fuel efficiency. Since it does not operate with a lean air-fuel mixture as in the prior art, there is no need to use a lean NOx catalyst, and there are no problems such as deterioration of fuel consumption due to rich spikes, low NOx removal rate and low exhaust purification effect. Further, since it is not necessary to use both the lean NOx catalyst and the three-way catalyst, the cost can be reduced.
[0028]
FIG. 3 shows the lift curve of the intake / exhaust valve in the first embodiment of the present invention. The operations of the intake valve 111a and the two exhaust valves 112 are not changed, and the operation of the EGR side intake valve 111b is accelerated only during stratified combustion. The amount of change in lift start and end crank angle is preferably 20 degrees CA (* CA is an abbreviation of crank angle) or more so that mixing of EGR gas and intake air is minimized. In this way, the exhaust valve 112 and the EGR side intake valve 111b open simultaneously in the latter half of the exhaust stroke, so-called overlap period becomes longer, but the independent intake pipe 101b is closed and filled with EGR gas. There is no problem of exhaust gas blowback. When the intake valve 111a reaches the fully opened lift amount, the EGR side intake valve 111b starts to close, and the operation of intake air as described in FIGS. 1 and 2 can be obtained.
[0029]
4 and 5 show the operation when the engine load is small in the first embodiment.
[0030]
First, the opening degree of the electronic control throttle chamber 104 is set to be small by a signal from the computer 201. On the other hand, the opening degree of the EGR control valve 108 is set large. As a result, when the intake valves 111a and 111b are opened in the intake stroke of the engine, the gas sucked into the cylinder 123 is EGR that has passed through the EGR side independent intake pipe 101b rather than the intake air that has passed through the independent intake pipe 101a. The amount of gas increases, and the amount of the swirl 120 is larger than that of the swirl 121. Even in this case, the swirl 121 of the intake air is finally sucked into the cylinder 123 and is in the upper part of the cylinder 123, that is, in the vicinity of the plug 113, and the spray 125 is a deflected spray having a large component upward in FIG. The spray 125 is mainly mixed with the swirl 121 of the intake air and can form a stoichiometric air-fuel mixture around the plug 113. Most of the rest is a swirl 120 made of EGR gas. The swirl 120 flows under the cylinder 123 and maintains the air-fuel ratio in the entire cylinder 123 in the vicinity of the theoretical air-fuel ratio, while increasing the intake amount to reduce pumping loss and cooling loss. Can be reduced.
[0031]
6 and 7 show the operation when the engine load is medium in the first embodiment.
[0032]
First, the opening degree of the electronically controlled throttle chamber 104 is set to be slightly larger than that shown in FIGS. 4 and 5 by a signal from the computer 201. On the other hand, the opening degree of the EGR control valve 108 is set slightly smaller. As a result, when the intake valves 111a and 111b are opened during the intake stroke of the engine, the gas sucked into the cylinder 123 is the intake air passing through the independent intake pipe 101a and EGR passing through the EGR side independent intake pipe 101b. The amount of the swirl 121 of the intake air is larger than that of the swirl 120 of EGR gas. In this case as well, as in the case described with reference to FIGS. 4 and 5, the swirl 121 of the intake air is finally sucked into the cylinder 123 and is in the upper part of the cylinder 123, that is, in the vicinity of the plug 113. Therefore, the spray 125 is mainly mixed with the swirl 121 of the intake air and can form a stoichiometric air-fuel mixture around the plug 113. Most of the other is the swirl 120 made of EGR gas, which flows under the cylinder 123 and keeps the air-fuel ratio as a whole in the cylinder 123 in the vicinity of the theoretical air-fuel ratio, while increasing the intake amount to reduce pumping loss and cooling loss. Can be reduced.
[0033]
4 to 7, the ratio of the swirl 121 of the intake air or air-fuel mixture that rotates counterclockwise and the swirl 120 of the EGR gas that rotates clockwise varies depending on the operating state, but the intake air amount is a reference, that is, 100% For example, it can be set by changing from 10% to about 200%.
[0034]
8 and 9 show the operation when the engine load is large in the first embodiment.
[0035]
First, the swirl control valve 102 is set to be opened by a signal from the computer 201. The opening degree of the electronically controlled throttle chamber 104 is set to be larger (close to full opening) than the case shown in FIG. As a result, the intake resistance of the intake pipe 101 is reduced. Therefore, when the intake valves 111a and 111b are opened during the intake stroke of the engine, a large amount of fresh air is drawn from both the independent intake pipe 101a and the EGR side independent intake pipe 101b. Can be made.
[0036]
Further, the opening degree of the EGR control valve 108 is set small. The lift curve of the EGR side intake valve 111b is made equal to the lift curve of the intake valve 111a so that the intake valves 111a and 111b open and close simultaneously.
[0037]
At this time, a signal is sent from the computer 201 to the injector 122 during the intake stroke of the engine to perform fuel injection. Thereby, the vaporization time and the diffusion time of the spray can be lengthened to promote the mixing with the intake air, and the homogeneity of the air-fuel mixture can be increased. Since the intake air amount is large, if the fuel injection amount is increased, a large amount of air-fuel mixture can be formed, and a large torque can be obtained.
[0038]
FIG. 10 shows a control flowchart of the operations shown in FIGS.
[0039]
First, the computer 201 reads the engine speed, the accelerator opening, the water temperature, the intake pressure, the exhaust temperature, and the gear position from each sensor, and calculates a target torque based on the read values.
[0040]
Next, using this torque, an engine speed-target torque operation state map is referred to determine whether the EGR stratified operation region or the homogeneous operation region, and then an appropriate fuel injection amount, ignition timing Decide.
[0041]
Next, when the EGR stratified operation is performed, the swirl control valve 102 is closed and the fuel injection timing is set to the compression stroke of the engine. Then, the lift start crank angle of the EGR side intake valve 111b is set earlier.
[0042]
On the other hand, when the EGR stratified operation is not performed, that is, when the homogeneous operation is performed, the swirl control valve 102 is opened and the fuel injection timing is set to the intake stroke of the engine. The lift start of the EGR side intake valve 111b is made equal to the intake valve 111a.
[0043]
Next, when the engine enters the exhaust-intake stroke, intake valves 111a and 111b operate as determined above. That is, when performing the stratified operation, the intake valve 111b opens first, and the EGR gas flows into the cylinder 123 to form the swirl 120. Next, a swirl 121 of intake air is formed. Here, fuel injection is performed in the compression stroke toward the swirl 121 of the intake air. Thus, the air-fuel mixture can be formed around the plug 113, and the surroundings can be stratified with the EGR gas and burned.
[0044]
On the other hand, when performing a homogeneous operation, the swirl control valve 102 opens, the intake valves 111a and 111b open simultaneously, and air flows from both the independent intake pipe 101a and the EGR side independent intake pipe 101b. Because the passage cross-sectional area is large and resistance is low, a lot of air flows in. On the other hand, by performing fuel injection in the intake stroke, the vaporization time can be increased and the homogeneity of the air-fuel mixture can be improved.
[0045]
Next, ignition is performed according to the determined ignition timing. Here, combustion is performed and output is taken out, and then combustion gas is discharged to the exhaust pipe 110 in the exhaust stroke. The cycle is completed once as described above, and the engine is operated by repeating this cycle.
[0046]
FIG. 11 shows a lift curve of the intake / exhaust valve in the second embodiment of the present invention. Since the basic configuration of the second embodiment is the same as that of the first embodiment, description thereof is omitted. As for the variable mechanism of the intake valves 111a and 111b, a mechanism for reducing the lift amount of the intake valve 111a as well as speeding up the start of operation of the EGR side intake valve 111b as in the first embodiment is added. With this configuration, the amount of intake air can be reduced while increasing the amount of EGR gas swirl 120 flowing into the cylinder 123, and more EGR gas can be introduced compared to the amount of intake air. The pumping loss in the low load range can be reduced.
[0047]
FIG. 12 shows the lift curve of the intake / exhaust valve in the third embodiment of the present invention. Since the basic configuration of the third embodiment is the same as that of the first embodiment, description thereof is omitted. The variable operation mechanism for the intake valves 111a and 111b is provided with a mechanism for independently changing the valve operating angle. When performing EGR stratified combustion, the operating angle of the intake valves 111a and 111b is reduced, the operation of the EGR side intake valve 111b is accelerated, and at the same time, the operation of the intake air side intake valve 111a is delayed. With this configuration, the timing at which the EGR gas swirl 120 flows into the cylinder 123 and the timing at which the intake air swirl 121 flows in can be shifted, and the EGR gas and the air-fuel mixture can be well stratified. Since many EGR gases can be introduced, the pumping loss in the low load region can be reduced.
[0048]
FIG. 13 shows a lift curve of the intake / exhaust valve in the fourth embodiment of the present invention. Since the basic configuration of the fourth embodiment is the same as that of the first embodiment, description thereof is omitted. The exhaust valve 112 is provided with a variable operation mechanism for shifting the valve opening period, and the intake valve 111a is provided with a mechanism for changing the valve operating angle. In the present embodiment, the EGR side intake valve may not include the operation variable mechanism. When performing EGR stratified combustion, the closing timing of the exhaust valve 112 is delayed by 20 ° or more in crank angle. Further, the operating angle of the intake valve 111a is reduced by 20 ° or more, and at the same time, the valve opening is delayed by 20 ° or more compared to the EGR side intake valve 111b. With this configuration, the combustion gas that has returned from the exhaust valve 112 past the top dead center remains in the cylinder 123, and then the EGR gas from the EGR side intake valve 111b generates the swirl 120, and finally sucks it. Air flows as the swirl 121 through the intake valve 111a. Since EGR gas can also be introduced from the exhaust valve 112, a large amount of EGR can be introduced. Further, since it is not necessary to change the timing of the EGR side intake valve 111b, it is only necessary to provide one type of valve operation variable mechanism on each of the intake side and the exhaust side, which is a structure compared to the second embodiment or the third embodiment. Becomes easier.
[0049]
In FIG. 14, the figure of the stratification and the homogeneous operation area | region on the rotation speed-torque map in this invention is shown. At the same engine speed, a relatively large amount of EGR gas is introduced when the load is small, and the EGR gas decreases when the load increases. When the load further increases, it switches to homogeneous combustion.
[0050]
FIG. 15 shows a stratification and homogeneous operation region on the rotational speed-torque map in the prior art, and FIG. 16 shows a comparison of fuel consumption by load between the prior art and the present invention.
[0051]
In the prior art, stratification is performed mainly by air. However, since EGR gas is used in the present invention, the specific heat ratio of the in-cylinder gas increases in the expansion stroke of the engine, and the efficiency of the engine is improved. Further, since the mixing of the EGR gas and the combustible mixture is suppressed to the minimum, the combustion deterioration of the mixture can be prevented, and the combustion efficiency is improved. For this reason, when compared with the same engine speed and load, fuel consumption can be reduced.
[0052]
Further, in the conventional technique, in order to maintain the activity of the lean NOx catalyst, it is necessary to apply rich spikes at regular intervals, and fuel consumption during this period is deteriorated. For this reason, the total fuel consumption can be further reduced in the present invention.
[0053]
In the above embodiment, the basic concept of the stoichiometric mixture combustion by EGR stratification is described, and the scope of the present invention is not necessarily limited to this. For example, the number of intake passages or the shape of the intake passages Even if the air pressure changes, it has an intake control valve or swirl control valve that partially closes these passages, introduces EGR gas into the closed portion, and varies the valve timing to change EGR gas and combustible mixture Any structure that achieves stratification is clearly within the scope of the present invention.
[0054]
Furthermore, although the present embodiment describes a naturally aspirated engine, the same operation can be performed for an engine with a supercharger as long as stratified combustion using EGR gas can be performed. In this case, since the pressure of the intake air is higher than the atmospheric pressure, the amount of intake air can be increased even if EGR gas is added, and the stratified operation range can be widened compared to the case of natural intake.
[0055]
Further, although four examples of the variable valve operation mechanism have been shown, the same effect can be obtained even when two or more of these are used in combination, and these are clearly included in the scope of the present invention.
[0056]
【The invention's effect】
The effects of the present invention are listed as follows.
[0057]
First, because EGR gas is used, stratified combustion can be performed to reduce the pumping loss and improve the efficiency while constantly improving the air-fuel ratio in the vicinity of the stoichiometric air-fuel ratio, and the exhaust gas can be purified by effectively using the three-way catalyst. There is no need to use a lean NOx catalyst as in the prior art, and there is an effect that deterioration of fuel consumption due to rich spikes can be prevented. In addition, the NOx removal rate is high, and the effect of exhaust purification is great. Furthermore, since it is not necessary to use both the lean NOx catalyst and the three-way catalyst, there is an effect that the cost can be reduced.
[0058]
In addition, the stratification of the air-fuel mixture and EGR gas does not depend on the shape of the intake port or piston cavity, etc., so the air flow at high rotation and high load is not hindered, pumping at high output and low load There is an effect that it can be made an engine with low loss and good fuel efficiency.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of the present invention viewed from above a cylinder.
FIG. 2 is a configuration diagram of the first embodiment of the present invention viewed from the side of a cylinder.
FIG. 3 is a lift curve of an intake / exhaust valve in the first embodiment.
FIG. 4 is a diagram showing an operating state at a low load when viewed from above in the first embodiment.
FIG. 5 is a side view of an operating state at a low load in the first embodiment.
FIG. 6 is a top view of an operating state at a medium load in the first embodiment.
FIG. 7 is a side view of an operating state at a medium load in the first embodiment.
FIG. 8 is a top view of the operating state at the time of high load in the first embodiment.
FIG. 9 is a side view of an operating state at a high load in the first embodiment.
FIG. 10 is an operation flowchart in the first embodiment.
FIG. 11 is a lift curve of an intake / exhaust valve according to a second embodiment of the present invention.
FIG. 12 is a lift curve of an intake / exhaust valve according to a third embodiment of the present invention.
FIG. 13 is a lift curve of an intake / exhaust valve according to a fourth embodiment of the present invention.
FIG. 14 is a diagram of stratification and homogeneous operation regions on a rotation-torque map in the present invention.
FIG. 15 is a diagram of stratification and homogeneous operation regions on a rotation-torque map in the prior art.
FIG. 16 is a comparison diagram of fuel consumption between the present invention and the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Intake pipe, 101a ... Independent intake pipe, 101b ... EGR side independent intake pipe, 102 ... Swirl control valve, 103 ... Collector, 104 ... Electronically controlled throttle chamber, 105 ... Air flow meter, 106 ... Air cleaner, 107 ... Piston, 108 ... EGR control valve, 109 ... EGR passage, 110 ... exhaust pipe, 111a ... intake valve on the intake air side, 111b ... intake valve on the EGR side, 112 ... exhaust valve, 113 ... ignition plug, 115 ... three-way catalyst, 120 ... Swirl by EGR gas, 121... Swirl by intake air, 122... Injector, 123... Cylinder, 125.

Claims (6)

シリンダ内に導入される空気流を案内する2つの独立吸気管と、
前記独立吸気管にそれぞれ備えられる吸気弁と、
燃料を前記シリンダ内に直接噴射する燃料噴射手段と、
前記独立吸気管のうち一方に備えられ、燃焼後の排気ガスをシリンダ内に還流または滞留させるEGR制御手段と、
前記EGR制御手段が備えられた独立吸気管を開閉する開閉弁とを備えた内燃機関の制御方法において、
前記開閉弁を閉じ、前記EGR制御手段が備えられた吸気弁を開き、前記EGR制御手段とを制御して理論空燃比近傍の混合気が燃焼した排気ガスをEGRガスとして前記シリンダ内に導入した後に、
前記吸気弁のうち他方を開いて、空気を前記シリンダ内に導入し、導入された空気を点火プラグ近傍に形成し、
圧縮行程後半に前記燃料噴射手段を制御して、前記導入された空気に向かって燃料を噴射することにより、理論空燃比近傍の混合気を点火プラグ近傍に形成する制御方法。
Two independent intake pipes for guiding the air flow introduced into the cylinder;
An intake valve provided in each of the independent intake pipes;
Fuel injection means for directly injecting fuel into the cylinder;
EGR control means provided on one of the independent intake pipes for recirculating or retaining exhaust gas after combustion in the cylinder;
In a control method for an internal combustion engine comprising an on-off valve for opening and closing an independent intake pipe provided with the EGR control means,
The on-off valve is closed, the intake valve provided with the EGR control means is opened, and the exhaust gas in which the air-fuel mixture near the stoichiometric air-fuel ratio is combusted by controlling the EGR control means is introduced into the cylinder as EGR gas. later,
Open the other of the intake valves, introduce air into the cylinder, form the introduced air near the spark plug,
A control method for forming an air-fuel mixture in the vicinity of a theoretical air-fuel ratio in the vicinity of a spark plug by controlling the fuel injection means in the latter half of a compression stroke and injecting fuel toward the introduced air.
インジェクタからの噴霧を偏向噴霧とし、空気を主体とするスワールと混合するように噴霧方向や噴霧貫通力を調整することを特徴とする請求項1記載の制御方法。  2. The control method according to claim 1, wherein the spray direction and the spray penetration force are adjusted so that the spray from the injector is a deflected spray and is mixed with a swirl mainly composed of air. 前記吸気弁の開弁タイミングおよびリフト量を変更する手段を備え、前記EGR制御手段が備えられた独立吸気管を開閉する吸気弁が、他方の吸気弁よりもクランク角相当で20°以上早く開弁するようにしたことを特徴とする請求項1記載の制御方法。  The intake valve that opens and closes the independent intake pipe provided with the EGR control means opens faster than the other intake valve by 20 ° or more earlier than the other intake valve. The control method according to claim 1, wherein the control is performed. 前記吸気弁の開弁タイミングおよびリフト量を変更する手段を備え、前記EGR制御手段が備えられた独立吸気管を開閉する吸気弁のリフト量を基準としたとき、他方の吸気弁のリフト量をこれよりも少なくなるようにしたことを特徴とする請求項1記載の制御方法。  Means for changing the opening timing and lift amount of the intake valve, and when the lift amount of the intake valve that opens and closes the independent intake pipe provided with the EGR control means is used as a reference, the lift amount of the other intake valve is 2. The control method according to claim 1, wherein the control method is less than this. 前記吸気弁の開弁タイミングおよびリフト量を変更する手段を備え、前記EGR制御手段が備えられた独立吸気管を開閉する吸気弁の開弁開始が他方の吸気弁の開弁開始よりも早く、かつ、開弁期間が他方の吸気弁の開弁期間よりも長いことを特徴とする請求項1記載の制御方法。  Means for changing the opening timing and lift amount of the intake valve, and the opening of the intake valve for opening and closing the independent intake pipe provided with the EGR control means is earlier than the opening start of the other intake valve, 2. The control method according to claim 1, wherein the valve opening period is longer than the valve opening period of the other intake valve. 請求項5において、1つ以上の排気弁と、前記排気弁の開閉弁タイミングおよびリフト量を変更する手段とを備え、前記閉塞された吸気管に接続する吸気弁の開弁タイミングに基づいて、前記排気弁の閉弁タイミングを遅らせたことを特徴とする制御方法。  In claim 5, based on the opening timing of the intake valve connected to the closed intake pipe, comprising one or more exhaust valves and means for changing the opening and closing valve timing and lift amount of the exhaust valve, A control method characterized by delaying the closing timing of the exhaust valve.
JP2002312014A 2002-10-28 2002-10-28 Control method for stoichiometric air-fuel ratio stratified combustion internal combustion engine Expired - Fee Related JP4051261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312014A JP4051261B2 (en) 2002-10-28 2002-10-28 Control method for stoichiometric air-fuel ratio stratified combustion internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312014A JP4051261B2 (en) 2002-10-28 2002-10-28 Control method for stoichiometric air-fuel ratio stratified combustion internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004144052A JP2004144052A (en) 2004-05-20
JP4051261B2 true JP4051261B2 (en) 2008-02-20

Family

ID=32457023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312014A Expired - Fee Related JP4051261B2 (en) 2002-10-28 2002-10-28 Control method for stoichiometric air-fuel ratio stratified combustion internal combustion engine

Country Status (1)

Country Link
JP (1) JP4051261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121957A1 (en) * 2021-04-16 2022-10-21 Renault S.A.S Spark-ignition engine comprising a system for controlling the distribution of fresh air and recirculated exhaust gases in the cylinders and associated method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4338660B2 (en) * 2005-03-22 2009-10-07 大阪瓦斯株式会社 engine
JP4881658B2 (en) 2005-09-09 2012-02-22 本田技研工業株式会社 2-cycle engine
JP4436309B2 (en) * 2005-11-02 2010-03-24 三菱重工業株式会社 Intake device and gas engine having the same
JP4305445B2 (en) 2005-12-05 2009-07-29 トヨタ自動車株式会社 Internal combustion engine
JP4787665B2 (en) * 2006-04-28 2011-10-05 大阪瓦斯株式会社 engine
JP5115517B2 (en) * 2009-05-07 2013-01-09 トヨタ自動車株式会社 Internal combustion engine capable of stratified combustion
JP5278600B2 (en) * 2010-04-08 2013-09-04 トヨタ自動車株式会社 Combustion control device for internal combustion engine
JP2013217240A (en) * 2012-04-06 2013-10-24 Suzuki Motor Corp Variable valve device of internal combustion engine
BR112015030397B1 (en) * 2013-06-05 2022-08-23 Toyota Jidosha Kabushiki Kaisha INTERNAL COMBUSTION ENGINE
DE102013020923A1 (en) * 2013-12-11 2015-06-11 Daimler Ag Piston engine and associated operating method
JP2016014340A (en) * 2014-07-01 2016-01-28 本田技研工業株式会社 Internal combustion engine control unit
JP2018031279A (en) * 2016-08-24 2018-03-01 スズキ株式会社 Control device of internal combustion engine
DE102017123136A1 (en) * 2017-10-05 2019-04-11 Man Truck & Bus Ag Internal combustion engine with valve pockets
JP7412595B2 (en) * 2020-11-30 2024-01-12 日立Astemo株式会社 Valve control device and valve control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121957A1 (en) * 2021-04-16 2022-10-21 Renault S.A.S Spark-ignition engine comprising a system for controlling the distribution of fresh air and recirculated exhaust gases in the cylinders and associated method

Also Published As

Publication number Publication date
JP2004144052A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US7089908B2 (en) Control device and control method for direct injection engine
JP4051261B2 (en) Control method for stoichiometric air-fuel ratio stratified combustion internal combustion engine
US6941905B2 (en) Control unit for spark ignition-type engine
JP2001248484A (en) Direct cylinder injection engine, control device and controlling method
JP2004132191A (en) Control device for spark ignition type engine
JP3711942B2 (en) Control device for turbocharged engine
JP5403277B2 (en) Internal combustion engine
JP2000510545A (en) Method for reducing harmful exhaust emissions of gasoline engines operated with lean fuel-air mixtures
JP4093074B2 (en) An internal combustion engine capable of self-ignition operation in which the air-fuel mixture is compressed and self-ignited
JP3934934B2 (en) Engine for stratified charge combustion at stoichiometric air-fuel ratio and stratified charge combustion method for the engine
JP4924280B2 (en) Diesel engine control device.
JP3852223B2 (en) Exhaust gas purification device for internal combustion engine
JP3711939B2 (en) Control device for spark ignition engine
JP2002322928A (en) Combustion control device for compression ignition type engine
JP3711941B2 (en) Control device for spark ignition engine
JP3617419B2 (en) Exhaust gas purification device for internal combustion engine
JP2004257305A (en) Internal combustion engine, and combustion method of it
KR101226058B1 (en) Valve Operation Control Method for Preventing the Carbon Deposition of Spark Plug in a Direct Injection Gasoline Engine
JP3331986B2 (en) Multi-cylinder internal combustion engine
JP3551791B2 (en) Internal combustion engine
JP3972744B2 (en) Control device for spark ignition type 4-cycle engine
JP3900072B2 (en) Control device for spark ignition engine
JP4123102B2 (en) Control device for spark ignition engine
JP3951855B2 (en) Control device for spark ignition engine
JPH05172009A (en) Combustion control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Ref document number: 4051261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees