JP2004257305A - Internal combustion engine, and combustion method of it - Google Patents

Internal combustion engine, and combustion method of it Download PDF

Info

Publication number
JP2004257305A
JP2004257305A JP2003048835A JP2003048835A JP2004257305A JP 2004257305 A JP2004257305 A JP 2004257305A JP 2003048835 A JP2003048835 A JP 2003048835A JP 2003048835 A JP2003048835 A JP 2003048835A JP 2004257305 A JP2004257305 A JP 2004257305A
Authority
JP
Japan
Prior art keywords
intake
passage
air
fuel
tumble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003048835A
Other languages
Japanese (ja)
Inventor
Junichi Yamaguchi
純一 山口
Takashi Fujii
敬士 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003048835A priority Critical patent/JP2004257305A/en
Publication of JP2004257305A publication Critical patent/JP2004257305A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/20Feeding recirculated exhaust gases directly into the combustion chambers or into the intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high exhaust emission control effect by preventing fuel consumption degradation while improving fuel consumption by reducing pumping loss by minimizing mixing of EGR gas and sucked air in an EGR stratified combustion. <P>SOLUTION: An intake passage is divided into three regions A, B and C, EGR gas is introduced to one partition C, and sucked air is made to flow from the other partition B. These form three tumbles Tegra, Tegrb and Tit rotating in the same direction and about a substantially same center axis in a combustion chamber. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、内燃機関および内燃機関の燃焼方法に関し、特に、気筒内に燃料を直接噴射し、主として点火により燃焼させる筒内噴射ガソリンエンジンおよびその燃焼方法に関する。
【0002】
【従来の技術】
従来、気筒内(燃焼室内)に直接燃料を噴射する内燃機関(筒内噴射ガソリンエンジン)においては、部分負荷域において、燃料消費率を低減するために、混合気の成層化を図り、燃焼性を確保しつつ、スロットル弁を開いて燃料に対して空気を過剰とし、ポンピングロスを低減する手法が広く知られている。
【0003】
また、このような燃焼形態では主として窒素酸化物(以下NOxと略す)の低減が必要になるので、NOx還元触媒を用いてこれを解決するようにしたものが公知である(例えば、特許文献1)。
【0004】
この内燃機関は、排気管に吸蔵型NOx触媒と三元触媒からなる排気浄化触媒装置が取り付けられており、リーン空燃比で運転中にはNOx触媒にNOxを吸着させ、吸蔵型NOx触媒が吸蔵したNOxを理論混合比(ストイキ)あるいはリッチ空燃比での運転によって還元除去させる構成となっている。以下、これをリッチスパイクと呼ぶ。そして、NOx吸蔵型触媒が経時変化により劣化した際には、リッチ時間を長くとることにより、NOxの大気放出を避けるようにしている。
しかしながら、この方法には次に示すような問題点がある。
【0005】
(1)リッチスパイク中には成層燃焼による燃費低減ができないばかりか、NOx還元のためのエネルギとしては無駄な燃料を消費しており、せっかく希薄混合気により燃費を低減しても、リッチスパイクにより相殺されてしまうので、実質の燃費低減率が低くなってしまう。
【0006】
(2)現在の技術では、NOx還元触媒におけるNOxの浄化率は、最高でも90%程度で、三元触媒を用いた場合の99%以上の浄化率と比べ、残留エミッションで比較すると、かなりの性能差があり、希薄燃焼によるNOxの低減を考慮したとしても、テールパイプ、すなわち排気管からのエミッションの悪化を招く。
【0007】
これを解決するために、本発明者らは、これまでに理論混合比成層燃焼エンジンを考案している。これは、ポンピングロス低減のためにリーン混合気とするのではなく、EGR(排気還流)ガスを用い、これらを、例えば、上下に仕切った吸気通路の一方から燃焼室に吸入させることで、燃焼室内に吸入空気とEGRガスからなる別々のスワールまたはタンブルを生成させる。そして、燃焼室内の吸入空気に向かって燃料を噴射し、局所的に混合気を作り、これを点火する。これにより、全体としての空燃比を理論混合比に保ち、三元触媒を利用することで、高いNOx浄化率と燃費低減の両立を図ろうとするものである。
【0008】
【特許文献1】
特開2001−20781号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記のような構成においては、次に示すような問題点がある。すなわち、主として吸入空気からなるスワールまたはタンブルと、EGRガスからなるスワールまたはタンブルは、燃焼室内で互いに逆方向に回転し、かつ中心軸の異なる流れであるため、その端部同士がぶつかり合って混り合い、期待したような吸入空気とEGRガスの分離が十分でなく、EGRガスの流量を増やすと、燃焼が悪化しやすい。
【0010】
この発明は、上述の如き問題点を解消するためになされたもので、その目的とするところは、排気浄化効率の高い三元触媒を有効に使用することにより、低コストでエミッションの悪化を抑制し、さらに、成層燃焼時にもリッチスパイクを行なわず、燃費の悪化を防じ、吸気行程から燃焼(点火)時点まで吸入空気とEGRガスとが混じ合うことを効果的に抑制し、EGRガスが多い運転条件でも燃焼悪化を生じることがない内燃機関およびその燃焼方法を提供することにある。
【0011】
【課題を解決するための手段】
上述の目的を達成するために、この発明による内燃機関は、燃料を燃焼室内に直接噴射する機構と、燃焼後の排気ガスを燃焼室に還流させる機構と、吸気通路の一部を閉塞してタンブルを生成する機構を備えており、前記吸気通路が3つ以上の区画に区分され、その第1の区画には吸入空気を主とする気体を通過させ、第2の区画には排気還流ガスを主とする気体を通過させ、第3の区画は閉塞する。
【0012】
より詳細には、一つの燃焼室毎に2個の吸気弁および互いに並行な2本の独立吸気通路を有し、その各々の独立吸気通路が仕切板により下部通路と上部内側通路と上部外側通路との3区分され、前記下部通路および前記上部外側通路を閉塞する吸気制御弁を有し、前記上部外側通路に排気還流ガスを主とする気体を供給し、前記上部内側通路から吸入空気を流入させる、或いは、一つの燃焼室毎に2個の吸気弁および互いに並行な2本の独立吸気通路を有し、その各々の独立吸気通路が仕切板により外側通路と内側上部通路と内側下部通路との3区分され、前記外側通路および前記内側下部通路を閉塞する吸気制御弁を有し、前記外側通路に排気還流ガスを主とする気体を供給し、前記内側上部通路から吸入空気を流入させる。
【0013】
この発明による内燃機関によれば、例えば、低負荷域では吸気制御弁を閉じ、排気還流ガスを主とする気体、つまりEGRガスを、吸気制御弁によって閉塞されている区画に流入させておく。そして吸気弁が開くと、吸気通路の外側からはEGRガスが燃焼室内に流入し、中心側(内側)には吸入空気が流入する。これらの2種類のガスは、同一方向で、略同一中心軸を持つタンブルとして流入するため、エンジンの吸気行程から圧縮行程の後半に至るまで、吸入空気とEGRガスは混合せず、それぞれ独立したままになる。
【0014】
圧縮行程後半において、吸入空気によるタンブルに向けて燃料を噴射する。混合気の空燃比は理論空燃比になるように燃料噴射量を制御する。このようにすれば、排出されるEGRガスも、理論空燃比で燃焼した排気ガスと同様の組成になる。こうして混合気の成層化をはかり、ポンピングロスや冷却損失の低減により燃費を低減しながら、ガス全体としての空燃比を、三元触媒が利用できる理論空燃比とし、NOx、HCを同時に浄化する。
【0015】
内燃機関が、高い負荷を必要とする場合には、吸気制御弁を開くことにより吸気抵抗を軽減して吸入空気量を増やし、かつ、燃料を吸気行程に噴射することにより十分な気化時間、および空気との混合時間を確保し、均質燃焼を行ない、必要な出力を確保することができる。
【0016】
この発明による内燃機関は、負荷に応じた前記吸気制御弁の開閉制御により混合気の成層化あるいは均質な混合気の生成を行ない、いずれの場合にも混合気全体の空燃比が、三元触媒を作動させるために必要な理論空燃比近傍になるように制御する。これにより、全運転域において、三元触媒を有効に利用でき、NOx、HCを同時に高浄化率で浄化できる。
【0017】
この発明による内燃機関は、吸気通路に排気還流ガスを主とする気体を供給するポートが吸気通路下流の燃焼室の方向に指向性をもって開口しており、燃焼室内における排気還流ガスによるタンブルの生成を助長できる。
【0018】
この発明による内燃機関は、吸気弁の開閉時期を可変設定する機構を備えていてよく、成層燃焼時には、吸排気弁のオーバラップ期間がないよう、あるいは少なくなるよう、均質燃焼時に比して吸気弁の開閉時期タイミングを遅らせばよい。
【0019】
また、この発明による内燃機関は、燃料を燃焼室内に直接噴射する機構と、燃焼後の排気ガスを機関燃焼室に還流させる機構と、燃焼室内で二つ以上のタンブルを生成する機構を備え、前記タンブル生成機構は、そのタンブルの組成が、一方は空気または可燃性混合気を主体とし、他方は排気還流ガス(EGRガス)を主とする気体とし、互いに回転方向が同一のタンブルとなるように形成される。
【0020】
これらの2種類のガスは、同一方向で、略同一中心軸を持つタンブルとして流入するため、エンジンの吸気行程から圧縮行程の後半に至るまで、吸入空気とEGRガスは混合せず、それぞれ独立したままになる。
【0021】
また、この発明による内燃機関は、前記タンブルを生成する機構は、3つ以上に区分される同一方向に回転する同軸上のタンブルを生成し、そのうち、燃焼室内で、吸入空気を主とするタンブルが中央にあり、これを両側から挟みこむように排気還流ガスを主とするタンブルを生成する。そして、中央に存在する吸入空気を主とするタンブルに対して燃料噴射を行なう燃料噴射手段を有する。これにより、吸入空気によるタンブルに向けて燃料が噴射され、ポンピングロスが少ない良好な成層燃焼が行われる。
【0022】
また、この発明による内燃機関は、タンブルによる成層燃焼と、通常吸気による均質燃焼とを運転状態に応じて切り換え、成層燃焼時には圧縮行程の後半で燃料を噴射し、均質燃焼時には吸気行程で燃料を噴射する。これにより、成層燃焼時には、吸入空気によるタンブルに向けて燃料を的確に噴射でき、均質燃焼時には、噴霧の気化時間および拡散時間を長くして吸入空気との混合を促進し、混合気の均質度を高めることができる。
【0023】
また、上述の目的を達成するために、この発明による内燃機関の燃焼方法は、燃料を燃焼室内に直接噴射し、燃焼室内に、空気または可燃性混合気を主体としたタンブルと、排気還流ガスを主とする気体によるタンブルを互いに回転方向のタンブルとして生成し、燃料を燃焼室内の空気または可燃性混合気を主体としたタンブルに対して直接噴射し、成層燃焼を行なう。
この発明による内燃機関の燃焼方法によれば、排気還流ガスの使用により、ポンピングロスがない良好な成層燃焼を行なうことができる。
【0024】
また、この発明による内燃機関の燃焼方法は、タンブルによる成層燃焼と、通常吸気による均質燃焼とを運転状態に応じて切り換え、成層燃焼時には圧縮行程の後半で燃料を噴射し、均質燃焼時には吸気行程で燃料を噴射する。これにより、成層燃焼時には、吸入空気によるタンブルに向けて燃料が的確に噴射され、均質燃焼時には、噴霧の気化時間および拡散時間を長くして吸入空気との混合を促進し、混合気の均質度を高めることができる。
【0025】
この発明による内燃機関の燃焼方法では、成層燃焼時と均質燃焼時のいずれの場合も、混合気全体の空燃比を、三元触媒を作動させるために必要な理論空燃比近傍とする。これにより、三元触媒を有効に利用してNOx、HCを同時に高浄化率で浄化でき、成層燃焼時にもリッチスパイクを行なわず、燃費の悪化を防ぐことができる。
【0026】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施形態を詳細に説明する。
本発明による内燃機関の実施形態1を図1〜図8を参照して説明する。図1、図3は一つの気筒を上から見たもの、図2、図4は同じくそれを横方向から見たものについて示す。また、図5は独立吸気管流路の断面図を、図6は吸気制御弁を示している。なお、本発明の内燃機関は、主として多気筒エンジンを想定しているが、図では理解を簡単にするために1つの気筒について説明する。
この内燃機関(エンジン)は、各気筒毎に、2つの吸気弁111a、111bと、2つの排気弁112a、112bを有する4バルブ方式のものである。
【0027】
吸気管101は、内燃機関(エンジン)の燃焼室123に近づくと、互いに並行な2つの独立吸気通路(吸気ポート)101a、101bに分かれ、各々個別の吸気弁111a、111bによって開閉される。吸気弁111a、111bは、可変カム式、電動式のもので、開閉時期を可変設定できる開閉時期可変式のものである。
【0028】
独立吸気通路101a、101bは、各々、逆T字形の断面形状をもつ仕切板102によって、下部通路Aと、上部内側通路Bと、上部外側通路Cとに3区分される。これら下部通路A、上部内側通路B、上部外側通路Cを区画通路部と呼ぶ。実施形態1では、下部通路Aと上部内側通路Bと上部外側通路Cの通路断面積の比率が、2:1:1になっている。
【0029】
この各独立吸気通路101a、101bの区画通路部より上流部に、吸気制御弁103a、103bが設けられている。吸気制御弁103a、103bは、共通の弁軸120に取り付けられ、同時に同様に開閉される。吸気制御弁103a、103bは、各々90度の回転角範囲に亘って切欠部121a、121bを有するバタフライ弁であり、弁開時には、独立吸気通路101a、101bの各々の下部通路A、上部内側通路B、上部外側通路Cを全て開き、弁閉時には、独立吸気通路101a、101bの各々の下部通路Aと上部外側通路Cを閉塞し、切欠部121a、121bによって上部内側通路Bの連通のみを維持する。
【0030】
燃料噴射弁122は燃焼室123内に燃料(ガソリン系燃料)を直接噴射するように取り付けられている。吸入空気は、エアクリーナ106を通り、エアフローメータ105で流量を計測され、電子制御式のスロットル弁104で流量を調節された後、コレクタ116で各気筒に分配される。その後、前述の独立吸気通路101a、101bを通り、吸気弁111a、111bが開いた際に燃焼室123に流入する。
【0031】
燃焼室123の頂部中央に点火プラグ113があり、点火プラグ113が燃料噴射弁122より噴射された燃料と吸入空気との混合気の点火を行なう。これにより、燃焼室123内で混合気の燃焼が行われる。
【0032】
燃焼室123で燃焼したガスは、排気弁112a、112bの弁開によって排気ポート125a、125bより排気管110へ排出される。この既燃焼ガス(排気ガス)は排気管110を通った後、三元触媒コンバータ115によって浄化され、消音器(図示しない)を通って大気中に排気される。
【0033】
排気ガスの一部はEGR制御弁108によって流量を調節されつつEGR通路109によって吸気管101に還流する。これが排気ガス再循環(EGR)である。EGR通路109は、独立吸気通路101a、101bの各々の上部外側通路Cに連通し、燃焼室123の方向に向けて開口したEGRポート109A(図7(b)参照)より排気還流ガス(EGRガス)を噴出する。
【0034】
インジェクタ122の燃料噴射時期と、点火プラグ113の点火時期と、吸気制御弁103a、103b、スロットル弁104、EGR制御弁108のそれぞれの開度は、エアフローメータ105で計測された吸入空気量、アクセル開度、エンジン水温、エンジン回転数、車速(いずれもその入力を行なうセンサを図示していない)などの情報を元に、コンピュータによる電子式エンジン制御装置(ECU)201によって最適値、最適時期に設定、制御される。
【0035】
主に、エンジンの低負荷時において成層燃焼を行なうときには、まず、吸気制御弁103a、103bを閉じ、独立吸気通路101a、101bの各々の下部通路Aと上部外側通路Cを閉塞し、EGR通路109、EGR制御弁108を用いてEGRガスを閉塞状態の上部外側通路Cの区画に流入させ、充填しておく。
【0036】
エンジンの吸気行程で、2つの吸気弁111a、111bを開く。このとき、後述するように吸気弁111a、111bの開弁時期は通常よりも遅らせる。ピストン107の降下によって燃焼室123に発生した負圧により、独立吸気通路101a、101bの各々の上部外側通路CからEGRガスが燃焼室123内に流入する。これにより、燃焼室123内に、図2で見て反時計廻り方向に旋回するEGRガスによるタンブル(縦渦)Tegra、Tegrbが発生する。
【0037】
また、これとほぼ同時に、独立吸気通路101a、101bの各々の上部内側通路Bから燃焼室123に吸入空気が流入する。これにより、燃焼室123内に、図2で見て反時計廻り方向に旋回する吸入空気によるタンブル(縦渦)Titが発生する。このタンブル(縦渦)Titは、独立吸気通路101aの上部内側通路B、独立吸気通路101bの上部内側通路Bとが互いに隣接していることにより、独立吸気通路101aからの吸入空気と独立吸気通路101bからの吸入空気とが合流した流束によるものになる。
【0038】
図1および図2に示されているように、これらのタンブルTegra、Tegrb、Titの関係は、吸入空気によるタンブルTitが2つのEGRガスによるタンブルTegra、Tegrbによって両側を挟まれており、またこれら3つのタンブルTegra、Tegrb、Titは同一方向に旋回し、かつ、その旋回軸は略同一である。これにより、縦旋回するEGRガスと同じく縦旋回する吸入空気との相対速度は小さく、衝突流、せん断流による混合が起こりにくいため、EGRガスと吸入空気との成層化状態を比較的長期間維持することができる。
【0039】
続いて圧縮行程では、吸気弁111aおよび111bが閉じ、ピストン107が上昇して燃焼室123内が圧縮される。ここで、燃料噴射弁122から燃料を燃焼室123内の中央部に噴射する。この燃料噴射弁122からの燃料噴霧Fが専ら吸入空気によるタンブルTitの領域に向かい、かつ、燃焼室123の壁面に衝突しないよう、燃料圧力等を調節して噴霧の広がり角や噴霧貫通力、すなわちペネトレーションを予め最適に設定しておく。燃料噴霧Fのうち、図2の上方に向かう成分が、下方に向かう成分よりも大きくなる、いわゆる偏向噴霧に設定しておく。
【0040】
このように構成することによって、吸入空気によるタンブルTitと燃料噴霧Fとの混合が効率よく行われ、さらに燃料噴射時期を適切に選定することにより、点火プラグ113近傍の混合気をややリッチにして点火の安定度を高めることが可能になる。
【0041】
ここで、吸入空気と燃料の混合比、すなわち空燃比は、三元触媒コンバータ115によって効率的に排気浄化が可能な理論空燃比近くになるように調節することが重要である。
圧縮行程の後半、すなわち最適な点火時期になったとき、ECU201からの信号によって点火プラグ113が放電し、混合気の点火、燃焼が行われる。
【0042】
このようにして燃焼室123の中心部に、良好な燃焼ができる理論空燃比の混合気を形成しながら、EGRガスにより全体としての吸気量を増やし、ポンピングロスや冷却損失を減らして燃費を向上させる。
【0043】
従来技術のように希薄混合気で運転しないので、リーンNOx触媒を使用する必要がなく、NOx触媒再生のためのリッチスパイクによる燃費の悪化や、NOxの除去率が低く排気浄化の効果が小さいといった問題もない。また、リーンNOx触媒と三元触媒を両方使用する必要がないため、コストダウンも図ることができる。
【0044】
図7(a)、(b)は低負荷時の吸気通路の状態を示している。図7(a)は図5に示されている独立吸気管通路101bのVII−VIIにおける断面の内側部分を、図7(b)は同じくVII−VIIにおける断面の外側部分を、それぞれ内側すなわち独立吸気通路101a側から見た図である。なお、以下の独立吸気管通路101bに関する説明は、もう一方の独立吸気管通路101aでも同じである。
【0045】
低負荷時には、吸気制御弁103bが閉じられ、独立吸気通路101bの下部通路Aと上部外側通路Cが閉じられる。そして、EGR通路109からEGRガスが上部外側通路Cに流入して滞留し、このEGRガスはエンジンの吸気行程で燃焼室123に流入する。一方、上側内側通路Bは開放されており、エンジンの吸気行程で、そのまま吸入空気が燃焼室123に流入する。このようにして、燃焼室123内にEGRガスによるタンブルTegrbと吸入空気によるタンブルTitを別々に生成することができる。
【0046】
図3、図7、図8はエンジンの高負荷時の状態を示している。高負荷時には、スロットル弁104の開度を大きくし、吸入空気量を増やす。また、吸気制御弁103a、103bは全開し、独立吸気通路101a、101bの各々の下部通路A、上部内側通路B、上部外側通路Cが連通状態になり、独立吸気通路101a、101bの全ての通路A、B、Cに吸入空気が流れる。これにより、独立吸気通路101a、101bの通気抵抗が小さく、吸入空気量が多くなり、エンジンが高いトルクを得るようにすることができる。
【0047】
高負荷時には、吸気行程で、インジェクタ122より燃料噴射を行なう。これにより、噴霧の気化時間および拡散時間を長くして吸入空気との混合を促進し、混合気の均質度を高めることができる。吸入空気量が大きいので、燃料噴射量を大きくすれば、多量の混合気形成を行なうことができ、大きなトルクを得ることができる。
【0048】
なお、このときでも、負荷に応じてEGR制御弁108を開き、EGR通路109からEGRガスを流入させることができる。EGR通路109の独立吸気通路101a、101bへの開口部109Aが燃焼室123を指向し、またそれぞれ外側に開口しているため、高負荷時に燃焼室123に流入するEGRガスは燃焼室123の外側領域を流れることになる。
【0049】
これにより、燃焼室123の中心部、すなわち点火プラグ113近傍にEGRガスが多く流入することを防ぐことができ、高負荷領域でも、ポンピングロスを減らしながら、EGRガスによる燃焼悪化を防いで燃焼効率を高めることができる。
【0050】
図9は本実施形態における吸排気弁のリフトカーブを示している。エンジンの低負荷時に、EGR成層燃焼を行なわせようとする場合、既燃焼ガスと吸入空気の混合がなるべく少なくなるように、吸気弁の開閉タイミングを遅らせ(特性ITa)、排気弁112と吸気弁111aおよび111bが同時に開弁する期間、すなわち弁オーバラップを小さくするか、またはオーバラップが起こらないようにする。なお、EXは排気弁の開閉特性を示している。
【0051】
これに対し、エンジンの高負荷時には、吸気効率が最大となるように、吸気弁の開閉時期(特性ITb)を設定する。
このようにして、低負荷時にEGRガスが流入しても燃焼悪化を防止し、また高負荷時のエンジントルクを高くすることができる。
【0052】
次に、本実施形態の動作を図10に示されているフローチャートを参照して説明する。まず、ECU201は、エンジン回転数、アクセル開度、水温、吸気圧力、排気温度、ギヤ位置をそれぞれのセンサから読み込み(ステップS11)、これを元にして目標トルクを演算する(ステップS12)。
【0053】
次に、この演算による目標トルクを用いてエンジン回転数−目標トルクの運転状態マップを参照し、EGR成層運転を行なう領域か、均質運転を行なう領域なのかを決定し(ステップS13)、決定した運転モードに合った適切な燃料噴射量、点火時期、スロット弁開度、EGR制御弁開度を決定する(ステップS14〜S17)。
【0054】
次に、現在設定されている運転モードがEGR成層運転モードであるか否かを判別を行なう(ステップS18)。EGR成層運転モードである場合には、吸気制御弁103a、103bを閉じ(ステップS19)、燃料噴射時期をエンジンの圧縮行程に設定する(ステップS20)。そして、吸気弁111a、111bの開閉時期を遅らせる側(特性Tia)に設定する。
【0055】
次に、エンジンが吸気行程に入ると、吸気弁111aおよび111bが動作する(ステップS21)。すなわち、成層運転を行なう場合には、仕切板102で区画された独立吸気通路101a、101bの上部内側通路Bと上部外側通路Cから、吸入空気およびEGRガスが別々に燃焼室123に流入し、それぞれ別々のタンブルTit、Tegra、Tegrbを生成する(ステップS22)。ここで、インジェクタ122より吸入空気のタンブルTitに対して指向性をもたせて圧縮行程で燃料噴射を行なう(ステップS23)。これにより、専ら点火プラグ113の周りに混合気を形成しながら、周囲をEGRガスで成層化し(ステップS24)、点火、燃焼を行なうことができる(ステップS25)。
【0056】
これに対し、EGR成層運転を行なわない、つまり均質運転を行なう場合には、吸気制御弁103a、103bを開き(ステップS26)、燃料噴射時期をエンジンの吸気行程に設定する(ステップS27)。そして、吸気弁の開閉時期をEGR成層運転の場合よりも進角側(特性Tib)に設定する。
【0057】
そして、吸気弁111a、111bが早めに開き(ステップS)、独立吸気通路101a、101bの各々全ての通路A、B、Cから燃焼室123に空気が流入する。この状態では、吸気通路断面積が大きく、通気抵抗が少ないため、多くの空気が流入する(ステップS29)。そして吸気行程で燃料噴射(を行なうことによりステップS30)、気化時間を長くとることができ、混合気の均質性を高めることができる(ステップS31)。
【0058】
次に、決められた点火時期に従い点火を行なう(ステップS25)。ここで燃焼が行われて出力が取り出され、続いて排気行程で燃焼ガスが排気通路110に排出される。以上により1回サイクルが終了し、これを繰り返すことによりエンジンの運転が行なわれる。
【0059】
つぎに、本発明による内燃機関の実施形態2を図11〜図13を参照して説明する。なお、図11〜図13において、図1〜図5に対応する部分は、図1〜図5に付した符号と同一の符号を付けて、その説明を省略する。
【0060】
この実施形態では、独立吸気通路101aにはEGRガスの供給を行なわず、独立吸気通路101bにのみ実施形態1と同様にEGRガスの供給を行なう。
これに伴い、独立吸気通路101aは、フラットな仕切板126によって下部通路Aと上部通路Dとに2区分されている。独立吸気通路101bは、実施形態1と同様に、仕切板102によって、下部通路Aと、上部内側通路Bと、上部外側通路Cとに3区分される。
【0061】
独立吸気通路101bの吸気制御弁103bは、実施形態1のものと同様で、90度の回転角範囲に亘って切欠部121bを有し、弁開時には、独立吸気通路101bの下部通路A、上部内側通路B、上部外側通路Cを全て開き、弁閉時には、独立吸気通路101bの各々の下部通路Aと上部外側通路Cを閉塞し、切欠部121bによって上部内側通路Bの連通のみを維持する。
【0062】
これに対し、独立吸気通路101aの吸気制御弁103aは、独立吸気通路101aの下部通路Aのみを選択的に閉塞すべく、半円状のバタフライ弁によって構成されている。
【0063】
この実施形態でも、低負荷時には、吸気制御弁103a、吸気制御弁103bが弁閉し、燃焼室123内には、主として吸入空気からからなるTitと、主としてEGRガスからなるTegrbの二つが生成される。インジェクタ122はECU201からの信号により、実施形態1と同様に、吸入空気からなるタンブルTitに向かって燃料を噴射する。
【0064】
この実施形態では、EGRガス通路109の吸気管101への開口部(EGRポート)を1つにでき、構造が簡単で、より安価なシステムとすることができる。
つぎに、本発明による内燃機関の実施形態3を図14、図15を参照して説明する。
【0065】
実施形態1では、独立吸気通路10a、101bの各々の下部通路Aと上部内側通路Bと上部外側通路Cの各々通路断面積の比率が、2:1:1になっているのに対し、実施形態3では、図14に示されているように、仕切板102の配置位置によって独立吸気通路101a、101bの各々の下部通路Aと上部内側通路Bと上部外側通路Cの各々通路断面積の比率が、3:2:1になっている。つまり、吸入空気側の上部内側通路Bの通路断面積がEGRガス1側の上部外側通路Cの通路断面積の2倍になっており、吸入空気の割合を大きくしている。
【0066】
当然、吸気制御弁103a、103bの形状は、上部内側通路Bの通路断面積が大きく、上部外側通路Cの通路断面積が小さくなるので、図15に示されているように、これに対応した形状になる。
【0067】
この実施形態において、燃焼室123内に生成されるタンブルは、実施形態1と同様に、吸入空気によるタンブルTitとEGRガスによる2つのタンブルTegra、Tegrbの計3つで、吸入空気によるタンブルTitが2つのEGRガスによるタンブルTegra、Tegrbによって両側を挟まれる。
【0068】
この実施形態では、EGRガスの流量が少なく、吸気流量が比較的多いケースでも、燃焼室123に吸入される流速を上げ、とEGRガスによるタンブルTegra、Tegrbの速度を速めて吸入空気の速度に近づけ、吸入空気とEGRガスの混合を防止することができる。
【0069】
なお、本実施形態より、ターゲットとする、よりEGRガスを多く導入したい運転負荷領域に合わせて縦方向の仕切位置を最適化できることが明らかであり、これらは本発明の範囲に含まれる。
つぎに、本発明による内燃機関の実施形態4を図16、図17を参照して説明する。
【0070】
この実施形態では、実施形態3とは逆に、EGRガスの通路断面積を大きくするために、独立吸気通路101a、101bについて、上下に分割する仕切板を廃止している。独立吸気通路101a、101bは、図16に示されているように、各々、横転T字形の断面形状をもつ仕切板127によって、EGRガスを供給される外側通路Eと、吸入空気用の内側上部通路Fおよび内側下部通路Gに3区分される。実施形態4では、外側通路Eと内側上部通路Fと内側下部通路Gの通路断面積の比率が2:1:1になっている。
【0071】
吸気制御弁103a、103bは、実施形態1のものと同様の構成のものであり、弁開時には、独立吸気通路101a、101bの各々の外側通路E、内側上部通路F、内側下部通路Gを全て開き、弁閉時には、独立吸気通路101a、101bの各々の外側通路Eと内側下部通路Gを閉塞し、内側上部通路Fの連通のみを維持する。
【0072】
この実施形態では、独立吸気通路101a、101bの外側から流入するEGRガスは、吸気通路の上下で流速に偏りが少なく、EGRガスによるタンブルTegra、Tegrbは弱くなる傾向がある。これに対し、独立吸気通路101a、101bの内側上部より燃焼室123に流入する吸入空気からなるタンブルTitは比較的強い。
【0073】
このように構成すると、エンジンの負荷がごく小さい場合、例えば、アイドリング時などに吸入空気が少ない場合でも、強いタンブルTitにより燃料噴霧Fと吸入空気との混合を良好に行ないつつ、吸入空気とEGRガスとの成層化を良好に行なうことができる。
【0074】
なお、本実施形態でも。実施形態3と同様に、縦方向の仕切板位置は、ターゲットとする運転領域に対して最適となるように設定すればよいことが明らかであり、これらは本発明の範囲に含まれる。
【0075】
図18は本発明における内燃機関の回転数−トルクマップ上の成層−均質運転領域を示している。同一のエンジン回転数においては、負荷が小さいときには相対的に多量のEGRガスを導入し、負荷が大きくなると、EGRガスは減少する。さらに負荷が大きくなると、均質燃焼に切り換える。
【0076】
図19は従来技術における回転数−トルクマップ上の成層−均質運転領域を、図20は従来技術と本発明の燃料消費量を比較したものを、図21は従来技術と本発明とのNOx排出量を比較したものをそれぞれ示している。
【0077】
従来技術では、主として空気による成層化を行なっているが、本発明では、EGRガスを用いているので、エンジンの膨張行程において燃焼室内ガスの比熱比が増加し、エンジンの効率が向上する。また、EGRガスと可燃混合気との混合が最小限に抑えられるので、混合気の燃焼悪化を防ぐことができ、燃焼効率が向上する。このため、同一のエンジン回転数および負荷で比較した場合には、燃料消費量を少なくすることができる。
【0078】
さらに、従来技術では、リーンNOx触媒の活性を維持するために、一定間隔でリッチスパイクをかける必要があり、この間の燃料消費が悪化する。このため、総合的な燃料消費量はさらに本発明のほうが小さくできる。
【0079】
また、図21に示されているように、本発明では、理論混合比での燃焼を主に行なうため、エンジン出口におけるNOx排出量は、リーン燃焼を行った場合よりもやや大きくなる。しかし、浄化効率(NOx除去率)の大きな三元触媒を用いるため、触媒後すなわち大気開放時のNOxレベルは従来の成層リーン運転の場合と比べてずっと低く、均質ストイキとほぼ同じレベルにすることができる。
【0080】
本発明の効果を列挙すると、次のようになる。
(1)EGRガスを用いたため、成層燃焼を行ないポンピングロスを低減して効率向上を図りながら空燃比を常に理論空燃比近傍に保つことができ、三元触媒を有効に働かせて排気浄化を図れるので、従来のようなリーンNOx触媒を使用する必要がなく、リッチスパイクによる燃費の悪化が防止できるという効果がある。
(2)NOxの除去率が高く、排気浄化の効果が大きいという効果がある。
(3)リーンNOx触媒と三元触媒を両方使用する必要がないため、コストダウンも図ることができる。
(4)混合気とEGRガスの成層化は吸気ポートやピストンキャビティの形状などによっていないので、高回転時や高負荷時の空気流動が妨げられることがなく、高出力で、かつ、低負荷時にポンピングロスが少なく燃費の良いエンジンにできる。
【0081】
なお、以上の実施例では、EGR成層による理論混合気燃焼の基本概念について述べたものであり、本発明の範囲は必ずしもこれに限定されるものではなく、例えば吸気通路の本数、あるいは吸気通路の形状が変わった場合でも、それらの通路を部分的に閉塞する仕切板と吸気制御弁を持ち、閉塞部分にEGRガスを導入し、かつ、バルブタイミングを可変することにより、EGRガスと可燃性混合気の成層化をはかる構成であれば、あきらかに本発明の範囲に含まれる。
【0082】
さらに、本実施形態は自然吸気エンジンについて記載しているが、EGRガスを用いた成層燃焼を行なうことができれば、過給機付きエンジンに関しても同様の動作を行なわせることができる。この場合には、吸入空気の圧力が大気圧よりも高まるので、EGRガスを入れても吸入空気量を多くすることができ、自然吸気の場合よりも成層運転範囲を広くすることができる。
【0083】
【発明の効果】
以上の説明から理解される如く、この発明による内燃機関およびその燃焼方法によれば、燃焼室内に、空気または可燃性混合気を主体としたタンブルと排気還流ガスを主とする気体によるタンブルを回転方向が互いに同一のタンブルとして生成して成層燃焼を行なうから、EGRガスにより全体としての吸気量を増やし、ポンピングロスや冷却損失を減らして燃費を向上させることができ、排気浄化効率の高い三元触媒を有効に使用することにより、低コストでエミッションの悪化を抑制することができる。
【図面の簡単な説明】
【図1】本発明による実施形態1の内燃機関を成層燃焼状態時(低負荷時)に燃焼室上側から見た構成図。
【図2】図1の内燃機関の略横側から見た構成図。
【図3】図1の内燃機関を均質燃焼状態時(高負荷時)に燃焼室上側から見た構成図。
【図4】図3の内燃機関の略横側から見た構成図。
【図5】図1の内燃機関の独立吸気管通路の構成を示する断面図。
【図6】図1の内燃機関の吸気制御弁の形状を示す図。
【図7】(a)、(b)は成層燃焼状態時(低負荷時)の図5の線VII−VIIによる断面図。
【図8】均質燃焼状態時(高負荷時)の図5の線VII−VIIによる断面図。
【図9】本発明による実施形態1の内燃機関の吸排気弁リフト特性を示す図。
【図10】図1の内燃機関の制御フローを示すフローチャート。
【図11】本発明による実施形態2の内燃機関を成層燃焼状態時(低負荷時)に燃焼室上側から見た構成図。
【図12】図11の内燃機関の独立吸気管通路の構成を示する断面図。
【図13】図11の内燃機関の吸気制御弁の形状を示す図。
【図14】本発明による実施形態3の内燃機関の独立吸気管通路の構成を示する断面図。
【図15】図14の内燃機関の吸気制御弁の形状を示す図。
【図16】本発明による実施形態4の内燃機関の独立吸気管通路の構成を示する断面図。
【図17】図16の内燃機関の吸気制御弁の形状を示す図。
【図18】本発明における内燃機関の回転−トルクマップ上のEGR成層−均質運転領域を示すグラフ。
【図19】従来技術における回転−トルクマップ上の成層−均質運転領域を示すグラフ。
【図20】本発明と従来技術との燃料消費量の比較図。
【図21】本発明と従来技術とのNOx排出量の比較図。
【符号の説明】
101…吸気管
101a…独立吸気通路
101b…独立吸気通路
102、126、127…仕切板
103a、103b…吸気制御弁
104…スロットル弁
108…EGR制御弁
109…EGR通路
110…排気管
111a、111b…吸気弁
112a、112b…排気弁
113…点火プラグ
115…三元触媒コンバータ
122…インジェクタ
123…燃焼室
[0001]
[Industrial applications]
The present invention relates to an internal combustion engine and a combustion method for an internal combustion engine, and more particularly, to a direct injection gasoline engine in which fuel is directly injected into a cylinder and burned mainly by ignition, and a combustion method thereof.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in an internal combustion engine (in-cylinder injection gasoline engine) in which fuel is directly injected into a cylinder (combustion chamber), stratification of an air-fuel mixture is carried out in a partial load region in order to reduce a fuel consumption rate, and combustibility is reduced. It has been widely known that the throttle valve is opened to make the air excessive with respect to the fuel while the pumping loss is reduced.
[0003]
Further, in such a combustion mode, reduction of nitrogen oxides (hereinafter, abbreviated as NOx) is mainly required. Therefore, there is known an apparatus which solves this problem by using a NOx reduction catalyst (for example, Patent Document 1). ).
[0004]
In this internal combustion engine, an exhaust purification catalyst device comprising a storage NOx catalyst and a three-way catalyst is attached to an exhaust pipe. During operation at a lean air-fuel ratio, the NOx catalyst adsorbs NOx, and the storage NOx catalyst stores the NOx. NOx is reduced and removed by operation at a stoichiometric ratio or a rich air-fuel ratio. Hereinafter, this is called a rich spike. When the NOx storage catalyst deteriorates due to aging, the rich time is extended to prevent NOx from being emitted to the atmosphere.
However, this method has the following problems.
[0005]
(1) During the rich spike, not only the fuel consumption cannot be reduced by the stratified combustion, but also wasteful fuel is consumed as the energy for NOx reduction. Since they are offset, the actual fuel efficiency reduction rate becomes low.
[0006]
(2) With the current technology, the NOx purification rate of the NOx reduction catalyst is at most about 90%, which is considerably higher than the purification rate of 99% or more when a three-way catalyst is used, as compared with the residual emission. There is a difference in performance, and even if the reduction of NOx due to lean combustion is considered, the emission from the tail pipe, that is, the exhaust pipe, is deteriorated.
[0007]
In order to solve this, the present inventors have devised a stoichiometric stratified combustion engine. This is because instead of using a lean air-fuel mixture to reduce pumping loss, EGR (exhaust gas recirculation) gas is used, and these gases are sucked into the combustion chamber from, for example, one of upper and lower intake passages. A separate swirl or tumble of intake air and EGR gas is generated in the room. Then, fuel is injected toward the intake air in the combustion chamber to locally form an air-fuel mixture and ignite the mixture. Thus, the overall air-fuel ratio is maintained at the stoichiometric mixture ratio, and a three-way catalyst is used to achieve both a high NOx purification rate and a reduction in fuel consumption.
[0008]
[Patent Document 1]
JP 200120781 A
[0009]
[Problems to be solved by the invention]
However, the above configuration has the following problems. That is, the swirl or tumble mainly composed of the intake air and the swirl or tumble mainly composed of the EGR gas rotate in opposite directions in the combustion chamber and have different central axes, so that their ends collide with each other. As a result, the expected separation between the intake air and the EGR gas is not sufficient, and if the flow rate of the EGR gas is increased, the combustion is likely to deteriorate.
[0010]
The present invention has been made to solve the above-described problems, and an object of the present invention is to suppress emission deterioration at low cost by effectively using a three-way catalyst having high exhaust gas purification efficiency. In addition, rich spikes are not performed during stratified combustion, fuel economy is prevented from deteriorating, and the mixture of intake air and EGR gas from the intake stroke to the point of combustion (ignition) is effectively suppressed. An object of the present invention is to provide an internal combustion engine and a combustion method thereof that do not cause deterioration of combustion even under many operating conditions.
[0011]
[Means for Solving the Problems]
To achieve the above object, an internal combustion engine according to the present invention has a mechanism for directly injecting fuel into a combustion chamber, a mechanism for recirculating exhaust gas after combustion to a combustion chamber, and a part of an intake passage closed. A mechanism for generating a tumble, wherein the intake passage is divided into three or more sections, a first section through which a gas mainly containing intake air passes, and a second section through which exhaust gas recirculates. And the third compartment is closed.
[0012]
More specifically, each combustion chamber has two intake valves and two independent intake passages parallel to each other, each of which is separated by a partition plate into a lower passage, an upper inner passage, and an upper outer passage. An intake control valve for closing the lower passage and the upper outer passage, supplying a gas mainly containing exhaust gas to the upper outer passage, and flowing intake air from the upper inner passage. Alternatively, each combustion chamber has two intake valves and two independent intake passages parallel to each other, each of the independent intake passages being separated by a partition plate into an outer passage, an inner upper passage, and an inner lower passage. And an intake control valve for closing the outer passage and the inner lower passage, supplying a gas mainly composed of exhaust gas recirculation gas to the outer passage, and allowing the intake air to flow from the inner upper passage.
[0013]
According to the internal combustion engine of the present invention, for example, in a low load region, the intake control valve is closed, and a gas mainly composed of the exhaust gas recirculation gas, that is, the EGR gas is caused to flow into the section closed by the intake control valve. When the intake valve opens, EGR gas flows into the combustion chamber from outside the intake passage, and intake air flows into the center (inside). Since these two types of gases flow in the same direction as a tumble having substantially the same central axis, the intake air and the EGR gas are not mixed from the intake stroke of the engine until the latter half of the compression stroke, and are independent of each other. Will remain.
[0014]
In the latter half of the compression stroke, fuel is injected toward tumble by the intake air. The fuel injection amount is controlled so that the air-fuel ratio of the mixture becomes the stoichiometric air-fuel ratio. In this way, the exhausted EGR gas has the same composition as the exhaust gas burned at the stoichiometric air-fuel ratio. In this way, stratification of the air-fuel mixture is performed, and while reducing fuel efficiency by reducing pumping loss and cooling loss, the air-fuel ratio of the entire gas is set to the stoichiometric air-fuel ratio that can be used by the three-way catalyst, and NOx and HC are simultaneously purified.
[0015]
When the internal combustion engine requires a high load, the intake control valve is opened to reduce intake resistance to increase the intake air amount, and sufficient fuel vaporization time by injecting fuel into the intake stroke, and The time required for mixing with air can be secured, homogeneous combustion can be performed, and the required output can be secured.
[0016]
The internal combustion engine according to the present invention stratifies the air-fuel mixture or generates a homogeneous air-fuel mixture by controlling the opening and closing of the intake control valve according to the load, and in any case, the air-fuel ratio of the entire air-fuel mixture is a three-way catalyst. Is controlled so as to be in the vicinity of the stoichiometric air-fuel ratio required to operate the. Thus, in the entire operation range, the three-way catalyst can be effectively used, and NOx and HC can be simultaneously purified at a high purification rate.
[0017]
In the internal combustion engine according to the present invention, a port for supplying gas mainly containing exhaust gas recirculation gas to the intake passage is opened with directionality in the direction of the combustion chamber downstream of the intake passage, and generation of a tumble by the exhaust gas recirculation gas in the combustion chamber is performed. Can be promoted.
[0018]
The internal combustion engine according to the present invention may include a mechanism for variably setting the opening / closing timing of the intake valve.In the stratified combustion, there is no or less overlap period of the intake and exhaust valves, and the intake air is compared with that in the homogeneous combustion. The opening and closing timing of the valve may be delayed.
[0019]
Further, the internal combustion engine according to the present invention includes a mechanism for directly injecting fuel into the combustion chamber, a mechanism for recirculating exhaust gas after combustion to the engine combustion chamber, and a mechanism for generating two or more tumble in the combustion chamber, The tumble generating mechanism is configured such that one of the tumble components is mainly composed of air or a combustible air-fuel mixture, the other is a gas mainly composed of exhaust gas recirculation gas (EGR gas), and the tumble has the same rotational direction. Formed.
[0020]
Since these two types of gases flow in the same direction as a tumble having substantially the same central axis, the intake air and the EGR gas are not mixed from the intake stroke of the engine until the latter half of the compression stroke, and are independent of each other. Will remain.
[0021]
Further, in the internal combustion engine according to the present invention, the mechanism for generating the tumble generates three or more coaxial tumbles that rotate in the same direction, and the tumble mainly includes intake air in the combustion chamber. Is located at the center, and a tumble mainly composed of the exhaust gas is generated so as to sandwich the tumble from both sides. The fuel injection device has a fuel injection unit that injects fuel into a tumble mainly including intake air existing at the center. Thereby, fuel is injected toward the tumble by the intake air, and favorable stratified combustion with small pumping loss is performed.
[0022]
Further, the internal combustion engine according to the present invention switches between stratified combustion by tumble and homogeneous combustion by normal intake according to the operating state, injects fuel in the latter half of the compression stroke during stratified combustion, and in the intake stroke during homogeneous combustion. Inject. As a result, during stratified charge combustion, the fuel can be accurately injected toward the tumble with the intake air, and during homogeneous combustion, the vaporization time and diffusion time of the spray are extended to promote mixing with the intake air, and the homogeneity of the air-fuel mixture is improved. Can be increased.
[0023]
Further, in order to achieve the above object, a combustion method for an internal combustion engine according to the present invention includes directly injecting fuel into a combustion chamber, and in the combustion chamber, a tumble mainly composed of air or a combustible air-fuel mixture; Is generated as a tumble in a rotational direction with respect to each other, and fuel is directly injected into a tumble mainly composed of air or a combustible air-fuel mixture in the combustion chamber to perform stratified combustion.
According to the combustion method for an internal combustion engine according to the present invention, good stratified combustion without pumping loss can be performed by using the exhaust gas recirculation gas.
[0024]
Further, the combustion method for an internal combustion engine according to the present invention switches between stratified combustion by tumble and homogeneous combustion by normal intake according to the operating state, injects fuel in the latter half of the compression stroke during stratified combustion, and performs intake stroke during homogeneous combustion. Inject fuel. As a result, during stratified charge combustion, fuel is accurately injected toward the tumble by the intake air, and during homogeneous combustion, the vaporization time and diffusion time of the spray are lengthened to promote mixing with the intake air, and the homogeneity of the air-fuel mixture is increased. Can be increased.
[0025]
In the combustion method for an internal combustion engine according to the present invention, the air-fuel ratio of the entire air-fuel mixture is set near the stoichiometric air-fuel ratio necessary for operating the three-way catalyst in both stratified combustion and homogeneous combustion. As a result, NOx and HC can be purified at the same time at a high purification rate by effectively utilizing the three-way catalyst, and rich spikes are not performed even during stratified combustion, so that deterioration in fuel efficiency can be prevented.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
First Embodiment An internal combustion engine according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 3 show one cylinder viewed from above, and FIGS. 2 and 4 show the same cylinder viewed from the side. FIG. 5 is a sectional view of an independent intake pipe passage, and FIG. 6 shows an intake control valve. Although the internal combustion engine of the present invention is mainly assumed to be a multi-cylinder engine, one cylinder will be described in the figure for easy understanding.
This internal combustion engine (engine) is of a four-valve type having two intake valves 111a, 111b and two exhaust valves 112a, 112b for each cylinder.
[0027]
As the intake pipe 101 approaches the combustion chamber 123 of the internal combustion engine (engine), the intake pipe 101 is divided into two independent intake passages (intake ports) 101a and 101b parallel to each other, and each is opened and closed by individual intake valves 111a and 111b. The intake valves 111a and 111b are of a variable cam type and an electric type, and are of a variable opening / closing timing type capable of variably setting the opening / closing timing.
[0028]
The independent intake passages 101a and 101b are each divided into a lower passage A, an upper inner passage B, and an upper outer passage C by a partition plate 102 having an inverted T-shaped cross section. The lower passage A, the upper inner passage B, and the upper outer passage C are referred to as partitioned passage portions. In the first embodiment, the ratio of the cross-sectional area of the lower passage A, the upper inner passage B, and the upper outer passage C is 2: 1: 1.
[0029]
The intake control valves 103a and 103b are provided upstream of the partition passages of the independent intake passages 101a and 101b. The intake control valves 103a and 103b are attached to a common valve shaft 120 and are opened and closed at the same time. The intake control valves 103a and 103b are butterfly valves having notches 121a and 121b over a rotation angle range of 90 degrees, respectively. When the valves are opened, the lower passage A and the upper inner passage of each of the independent intake passages 101a and 101b are provided. B, all the upper outer passages C are opened, and when the valves are closed, the lower passages A and the upper outer passages C of the independent intake passages 101a, 101b are closed, and only the communication of the upper inner passages B is maintained by the notches 121a, 121b. I do.
[0030]
The fuel injection valve 122 is attached so as to directly inject fuel (gasoline-based fuel) into the combustion chamber 123. The intake air passes through an air cleaner 106, the flow rate is measured by an air flow meter 105, the flow rate is adjusted by an electronically controlled throttle valve 104, and then distributed to each cylinder by a collector 116. Thereafter, the air flows through the independent intake passages 101a and 101b, and flows into the combustion chamber 123 when the intake valves 111a and 111b are opened.
[0031]
An ignition plug 113 is provided at the center of the top of the combustion chamber 123, and the ignition plug 113 ignites a mixture of fuel injected from the fuel injection valve 122 and intake air. Thereby, the combustion of the air-fuel mixture is performed in the combustion chamber 123.
[0032]
The gas burned in the combustion chamber 123 is discharged from the exhaust ports 125a and 125b to the exhaust pipe 110 by opening the exhaust valves 112a and 112b. The burned gas (exhaust gas) passes through the exhaust pipe 110, is purified by the three-way catalytic converter 115, and is exhausted to the atmosphere through a silencer (not shown).
[0033]
A part of the exhaust gas returns to the intake pipe 101 through the EGR passage 109 while the flow rate is adjusted by the EGR control valve 108. This is exhaust gas recirculation (EGR). The EGR passage 109 communicates with the upper outer passage C of each of the independent intake passages 101a and 101b, and receives an exhaust gas recirculation gas (EGR gas) from an EGR port 109A (see FIG. 7B) opened toward the combustion chamber 123. Spout).
[0034]
The fuel injection timing of the injector 122, the ignition timing of the ignition plug 113, and the respective opening degrees of the intake control valves 103a and 103b, the throttle valve 104, and the EGR control valve 108 are based on the intake air amount measured by the air flow meter 105, Based on information such as opening, engine water temperature, engine speed, and vehicle speed (all of which do not show sensors for inputting them), an electronic engine control unit (ECU) 201 using a computer determines an optimal value and an optimal time. Set and controlled.
[0035]
When performing stratified combustion mainly when the engine is under a low load, first, the intake control valves 103a and 103b are closed, the lower passage A and the upper outer passage C of the independent intake passages 101a and 101b are closed, and the EGR passage 109 is closed. The EGR gas is caused to flow into the closed upper outer passage C by using the EGR control valve 108 and filled therein.
[0036]
During the intake stroke of the engine, the two intake valves 111a and 111b are opened. At this time, as described later, the valve opening timing of the intake valves 111a and 111b is delayed more than usual. The EGR gas flows into the combustion chamber 123 from the upper outer passage C of each of the independent intake passages 101a and 101b due to the negative pressure generated in the combustion chamber 123 due to the lowering of the piston 107. Thereby, tumbles (longitudinal vortices) Tegra and Tegrb are generated in the combustion chamber 123 due to the EGR gas rotating counterclockwise as viewed in FIG.
[0037]
At almost the same time, the intake air flows into the combustion chamber 123 from the upper inner passage B of each of the independent intake passages 101a and 101b. Thus, a tumble (vertical vortex) Tit is generated in the combustion chamber 123 by the intake air swirling counterclockwise as viewed in FIG. The tumble (longitudinal vortex) Tit is defined by the fact that the upper inner passage B of the independent intake passage 101a and the upper inner passage B of the independent intake passage 101b are adjacent to each other, so that the intake air from the independent intake passage 101a and the independent intake passage This is due to the combined flux of the intake air from 101b.
[0038]
As shown in FIG. 1 and FIG. 2, the relationship between these tumbles Tegra, Tegrb, and Tit is such that the tumble Tit by the intake air is sandwiched on both sides by the tumble Tegra and Tegrb by the two EGR gases. The three tumbles Tegra, Tegrb, and Tit pivot in the same direction, and their pivot axes are substantially the same. As a result, since the relative velocity between the vertically swirling EGR gas and the vertically swirling intake air is small and mixing by the collision flow and the shear flow is unlikely to occur, the stratified state of the EGR gas and the intake air is maintained for a relatively long time. can do.
[0039]
Subsequently, in the compression stroke, the intake valves 111a and 111b close, the piston 107 rises, and the inside of the combustion chamber 123 is compressed. Here, the fuel is injected from the fuel injection valve 122 into the center of the combustion chamber 123. The fuel pressure and the like are adjusted so that the fuel spray F from the fuel injection valve 122 is directed toward the region of the tumble Tit caused solely by the intake air and does not collide with the wall surface of the combustion chamber 123. That is, the penetration is optimally set in advance. In the fuel spray F, an upward component in FIG. 2 is set to a so-called deflected spray in which the upward component is larger than the downward component.
[0040]
With this configuration, the tumble Tit and the fuel spray F are efficiently mixed by the intake air, and the mixture near the spark plug 113 is made slightly rich by appropriately selecting the fuel injection timing. It is possible to increase the stability of ignition.
[0041]
Here, it is important to adjust the mixture ratio of the intake air and the fuel, that is, the air-fuel ratio, to be close to the stoichiometric air-fuel ratio at which the three-way catalytic converter 115 can efficiently purify the exhaust gas.
In the latter half of the compression stroke, that is, when the optimal ignition timing is reached, the ignition plug 113 is discharged by a signal from the ECU 201, and the mixture and the ignition are performed.
[0042]
In this way, while forming a mixture having a stoichiometric air-fuel ratio that enables good combustion in the center of the combustion chamber 123, the overall intake air amount is increased by the EGR gas, and pumping loss and cooling loss are reduced to improve fuel efficiency. Let it.
[0043]
Since the engine is not operated with a lean mixture as in the prior art, it is not necessary to use a lean NOx catalyst, and the fuel efficiency is deteriorated due to rich spikes for NOx catalyst regeneration, and the NOx removal rate is low and the exhaust purification effect is small. No problem. Further, since it is not necessary to use both the lean NOx catalyst and the three-way catalyst, the cost can be reduced.
[0044]
FIGS. 7A and 7B show the state of the intake passage under a low load. 7A shows the inside portion of the cross-section taken along the line VII-VII of the independent intake pipe passage 101b shown in FIG. 5, and FIG. 7B shows the outside portion of the cross section taken along the line VII-VII. FIG. 3 is a diagram viewed from the intake passage 101a side. The following description regarding the independent intake pipe passage 101b is the same for the other independent intake pipe passage 101a.
[0045]
When the load is low, the intake control valve 103b is closed, and the lower passage A and the upper outer passage C of the independent intake passage 101b are closed. Then, the EGR gas flows from the EGR passage 109 into the upper outer passage C and stays therein, and the EGR gas flows into the combustion chamber 123 during the intake stroke of the engine. On the other hand, the upper inner passage B is open, and the intake air flows into the combustion chamber 123 as it is during the intake stroke of the engine. In this manner, the tumble Tegrb by the EGR gas and the tumble Tit by the intake air can be separately generated in the combustion chamber 123.
[0046]
FIGS. 3, 7, and 8 show the state when the engine is under a high load. At a high load, the opening of the throttle valve 104 is increased to increase the amount of intake air. Further, the intake control valves 103a and 103b are fully opened, the lower passage A, the upper inner passage B, and the upper outer passage C of the independent intake passages 101a and 101b are in communication with each other, and all the independent intake passages 101a and 101b are connected. The intake air flows through A, B, and C. Thus, the ventilation resistance of the independent intake passages 101a and 101b is small, the amount of intake air is large, and the engine can obtain high torque.
[0047]
When the load is high, fuel is injected from the injector 122 during the intake stroke. Thereby, the vaporization time and the diffusion time of the spray are prolonged to promote mixing with the intake air, and the homogeneity of the air-fuel mixture can be increased. Since the intake air amount is large, if the fuel injection amount is increased, a large amount of air-fuel mixture can be formed, and a large torque can be obtained.
[0048]
At this time, the EGR control valve 108 can be opened according to the load, and the EGR gas can flow from the EGR passage 109. Since the openings 109A of the EGR passage 109 to the independent intake passages 101a and 101b are directed toward the combustion chamber 123 and open to the outside, the EGR gas flowing into the combustion chamber 123 when the load is high is outside the combustion chamber 123. Will flow through the area.
[0049]
Accordingly, it is possible to prevent a large amount of EGR gas from flowing into the center of the combustion chamber 123, that is, the vicinity of the ignition plug 113. Even in a high load region, the pumping loss is reduced, and the combustion deterioration due to the EGR gas is prevented, thereby improving the combustion efficiency. Can be increased.
[0050]
FIG. 9 shows a lift curve of the intake / exhaust valve in the present embodiment. When attempting to perform stratified EGR combustion at a low engine load, the opening and closing timing of the intake valve is delayed (characteristic ITa) so that the mixture of the burned gas and the intake air is reduced as much as possible. The period during which the valves 111a and 111b are simultaneously opened, that is, the valve overlap is reduced or the overlap does not occur. EX indicates the opening / closing characteristics of the exhaust valve.
[0051]
On the other hand, when the engine is under a high load, the opening / closing timing of the intake valve (characteristic ITb) is set so that the intake efficiency is maximized.
Thus, even if the EGR gas flows in at a low load, deterioration of combustion can be prevented, and the engine torque at a high load can be increased.
[0052]
Next, the operation of the present embodiment will be described with reference to the flowchart shown in FIG. First, the ECU 201 reads the engine speed, the accelerator opening, the water temperature, the intake pressure, the exhaust temperature, and the gear position from the respective sensors (step S11), and calculates the target torque based on the read data (step S12).
[0053]
Next, using the target torque obtained by this calculation, referring to the engine speed-target torque operation state map, it is determined whether the region is for the EGR stratified operation or the region for the homogeneous operation (step S13). Appropriate fuel injection amount, ignition timing, slot valve opening, and EGR control valve opening appropriate for the operation mode are determined (steps S14 to S17).
[0054]
Next, it is determined whether or not the currently set operation mode is the EGR stratified operation mode (step S18). In the case of the EGR stratified operation mode, the intake control valves 103a and 103b are closed (Step S19), and the fuel injection timing is set to the compression stroke of the engine (Step S20). Then, the opening / closing timing of the intake valves 111a and 111b is set to a side that delays the opening / closing timing (characteristic Tia).
[0055]
Next, when the engine enters the intake stroke, the intake valves 111a and 111b operate (step S21). That is, when performing the stratified operation, the intake air and the EGR gas separately flow into the combustion chamber 123 from the upper inner passage B and the upper outer passage C of the independent intake passages 101a and 101b partitioned by the partition plate 102, A separate tumble Tit, Tegra, and Tegrb are generated (step S22). Here, the injector 122 performs the fuel injection in the compression stroke while giving directivity to the tumble Tit of the intake air (step S23). Accordingly, the surroundings can be stratified with the EGR gas while forming an air-fuel mixture exclusively around the ignition plug 113 (step S24), and ignition and combustion can be performed (step S25).
[0056]
On the other hand, when the EGR stratified operation is not performed, that is, when the homogeneous operation is performed, the intake control valves 103a and 103b are opened (step S26), and the fuel injection timing is set to the intake stroke of the engine (step S27). Then, the opening / closing timing of the intake valve is set to be more advanced (characteristic Tib) than in the case of the EGR stratified operation.
[0057]
Then, the intake valves 111a and 111b are opened early (step S), and air flows into the combustion chamber 123 from all the passages A, B and C of the independent intake passages 101a and 101b. In this state, since the intake passage cross-sectional area is large and the airflow resistance is small, a lot of air flows in (step S29). Then, fuel injection (in step S30 by performing the intake stroke), the vaporization time can be lengthened, and the homogeneity of the air-fuel mixture can be improved (step S31).
[0058]
Next, ignition is performed according to the determined ignition timing (step S25). Here, the combustion is performed and the output is taken out. Subsequently, the combustion gas is discharged to the exhaust passage 110 in the exhaust stroke. Thus, one cycle is completed, and by repeating this, the operation of the engine is performed.
[0059]
Next, an internal combustion engine according to a second embodiment of the present invention will be described with reference to FIGS. In FIGS. 11 to 13, portions corresponding to FIGS. 1 to 5 are denoted by the same reference numerals as those in FIGS. 1 to 5, and description thereof is omitted.
[0060]
In this embodiment, the EGR gas is not supplied to the independent intake passage 101a, and the EGR gas is supplied only to the independent intake passage 101b as in the first embodiment.
Accordingly, the independent intake passage 101a is divided into a lower passage A and an upper passage D by a flat partition plate 126. As in the first embodiment, the independent intake passage 101b is divided by the partition plate 102 into a lower passage A, an upper inner passage B, and an upper outer passage C.
[0061]
The intake control valve 103b of the independent intake passage 101b has a cutout 121b over a rotation angle range of 90 degrees in the same manner as that of the first embodiment. The inner passage B and the upper outer passage C are all opened, and when the valve is closed, each of the lower passage A and the upper outer passage C of the independent intake passage 101b is closed, and only the communication of the upper inner passage B is maintained by the notch 121b.
[0062]
On the other hand, the intake control valve 103a of the independent intake passage 101a is configured by a semicircular butterfly valve so as to selectively close only the lower passage A of the independent intake passage 101a.
[0063]
Also in this embodiment, when the load is low, the intake control valve 103a and the intake control valve 103b are closed, and Tit mainly composed of intake air and Tegrb mainly composed of EGR gas are generated in the combustion chamber 123. You. Injector 122 injects fuel toward tumble Tit composed of intake air, as in the first embodiment, based on a signal from ECU 201.
[0064]
In this embodiment, the opening (EGR port) of the EGR gas passage 109 to the intake pipe 101 can be made one, and a system with a simple structure and a lower cost can be obtained.
Next, a third embodiment of the internal combustion engine according to the present invention will be described with reference to FIGS.
[0065]
In the first embodiment, the ratio of the cross-sectional area of each of the lower passage A, the upper inner passage B, and the upper outer passage C of each of the independent intake passages 10a and 101b is 2: 1: 1. In the third embodiment, as shown in FIG. 14, the ratio of the sectional area of each of the lower passage A, the upper inner passage B, and the upper outer passage C of each of the independent intake passages 101a and 101b depends on the arrangement position of the partition plate 102. However, it is 3: 2: 1. That is, the passage cross-sectional area of the upper inner passage B on the intake air side is twice as large as the passage cross-sectional area of the upper outer passage C on the EGR gas 1 side, and the proportion of the intake air is increased.
[0066]
Naturally, the shape of the intake control valves 103a and 103b has a large cross-sectional area of the upper inner passage B and a small cross-sectional area of the upper outer passage C. Therefore, as shown in FIG. Shape.
[0067]
In this embodiment, the tumble generated in the combustion chamber 123 is a total of three tumbles Tit due to the intake air and two tumbles Tegra and Tegrb due to the EGR gas, as in the first embodiment. Both sides are sandwiched between tumble Tegra and Tegrb by two EGR gases.
[0068]
In this embodiment, even in the case where the flow rate of the EGR gas is small and the intake flow rate is relatively large, the flow rate sucked into the combustion chamber 123 is increased, and the speed of the tumble Tegra and Tegrb by the EGR gas is increased to reduce the speed of the intake air. As a result, mixing of the intake air and the EGR gas can be prevented.
[0069]
It is clear from the present embodiment that the vertical partition position can be optimized according to the target operating load region where more EGR gas is to be introduced, and these are included in the scope of the present invention.
Next, a fourth embodiment of the internal combustion engine according to the present invention will be described with reference to FIGS.
[0070]
In this embodiment, contrary to the third embodiment, in order to increase the cross-sectional area of the passage of the EGR gas, a partition plate for vertically dividing the independent intake passages 101a and 101b is omitted. As shown in FIG. 16, each of the independent intake passages 101a and 101b has an outer passage E to which EGR gas is supplied by a partition plate 127 having a cross-section of a T-shape and an inner upper portion for intake air. It is divided into a passage F and an inner lower passage G. In the fourth embodiment, the ratio of the cross-sectional area of the outer passage E, the inner upper passage F, and the inner lower passage G is 2: 1: 1.
[0071]
The intake control valves 103a and 103b have the same configuration as that of the first embodiment. When the valves are opened, the outer passage E, the inner upper passage F, and the inner lower passage G of each of the independent intake passages 101a and 101b are all closed. When the valve is opened and the valve is closed, the outer passage E and the inner lower passage G of each of the independent intake passages 101a and 101b are closed, and only the communication of the inner upper passage F is maintained.
[0072]
In this embodiment, the EGR gas flowing from the outside of the independent intake passages 101a and 101b has a small deviation in the flow velocity above and below the intake passage, and the tumbling Tegra and Tegrb due to the EGR gas tend to be weak. On the other hand, the tumble Tit composed of the intake air flowing into the combustion chamber 123 from the upper inside of the independent intake passages 101a and 101b is relatively strong.
[0073]
With this configuration, even when the load on the engine is extremely small, for example, when the intake air is small during idling, etc., the fuel spray F and the intake air are mixed well by the strong tumble Tit, Stratification with gas can be performed favorably.
[0074]
In addition, also in this embodiment. As in the case of the third embodiment, it is clear that the vertical partition plate position may be set so as to be optimal for the target operation region, and these are included in the scope of the present invention.
[0075]
FIG. 18 shows a stratified-homogeneous operation region on the rotation speed-torque map of the internal combustion engine according to the present invention. At the same engine speed, a relatively large amount of EGR gas is introduced when the load is small, and the EGR gas decreases when the load is large. When the load further increases, the mode is switched to homogeneous combustion.
[0076]
19 shows a stratified-homogeneous operation region on the rotational speed-torque map in the prior art, FIG. 20 shows a comparison of the fuel consumption between the prior art and the present invention, and FIG. 21 shows a NOx emission between the prior art and the present invention. The comparison of the amounts is shown.
[0077]
In the prior art, stratification is mainly performed by air. However, in the present invention, since the EGR gas is used, the specific heat ratio of the gas in the combustion chamber is increased in the expansion stroke of the engine, and the efficiency of the engine is improved. Further, since the mixture of the EGR gas and the combustible mixture is minimized, deterioration of the combustion of the mixture can be prevented, and the combustion efficiency is improved. For this reason, when compared at the same engine speed and load, the fuel consumption can be reduced.
[0078]
Furthermore, in the prior art, it is necessary to apply a rich spike at regular intervals in order to maintain the activity of the lean NOx catalyst, and the fuel consumption during this time deteriorates. Thus, the overall fuel consumption can be further reduced in the present invention.
[0079]
Further, as shown in FIG. 21, in the present invention, since the combustion is mainly performed at the stoichiometric mixture ratio, the NOx emission amount at the engine outlet is slightly larger than that in the case of performing the lean combustion. However, since a three-way catalyst having a large purification efficiency (NOx removal rate) is used, the NOx level after the catalyst, that is, at the time of opening to the atmosphere, is much lower than that in the conventional stratified lean operation, and should be almost the same level as the homogeneous stoichiometric operation. Can be.
[0080]
The effects of the present invention are listed as follows.
(1) Since EGR gas is used, stratified charge combustion is performed, pumping loss is reduced, efficiency is improved, and the air-fuel ratio can always be kept close to the stoichiometric air-fuel ratio. Exhaust gas purification can be achieved by effectively using the three-way catalyst. Therefore, there is no need to use a lean NOx catalyst as in the related art, and there is an effect that deterioration of fuel efficiency due to rich spikes can be prevented.
(2) There is an effect that the removal rate of NOx is high and the effect of exhaust gas purification is large.
(3) Since it is not necessary to use both the lean NOx catalyst and the three-way catalyst, the cost can be reduced.
(4) Since the stratification of the air-fuel mixture and the EGR gas does not depend on the shape of the intake port or the piston cavity, the air flow at the time of high rotation or high load is not hindered, and at the time of high output and low load. An engine with low pumping loss and good fuel efficiency can be made.
[0081]
In the above embodiments, the basic concept of the stoichiometric mixture combustion by the EGR stratification is described, and the scope of the present invention is not necessarily limited to this. For example, the number of intake passages or the intake passages Even if the shape has changed, it has a partition plate and an intake control valve that partially block those passages, introduces EGR gas into the blocked portion, and varies the valve timing to enable flammable mixing with EGR gas. Any configuration that stratifies the gas is clearly included in the scope of the present invention.
[0082]
Furthermore, although the present embodiment describes a naturally aspirated engine, if stratified charge combustion using EGR gas can be performed, the same operation can be performed for a supercharged engine. In this case, since the pressure of the intake air is higher than the atmospheric pressure, the intake air amount can be increased even if the EGR gas is supplied, and the stratified operation range can be wider than in the case of the natural intake.
[0083]
【The invention's effect】
As can be understood from the above description, according to the internal combustion engine and the combustion method thereof according to the present invention, a tumble mainly composed of air or a combustible air-fuel mixture and a tumble composed of a gas mainly composed of exhaust gas recirculation are rotated in the combustion chamber. Since the stratified combustion is generated by generating tumbles having the same direction as each other, the overall intake amount can be increased by the EGR gas, the pumping loss and the cooling loss can be reduced, and the fuel efficiency can be improved. By using the catalyst effectively, it is possible to suppress emission deterioration at low cost.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an internal combustion engine according to a first embodiment of the present invention as viewed from the upper side of a combustion chamber in a stratified combustion state (at a low load).
FIG. 2 is a configuration diagram of the internal combustion engine of FIG. 1 as viewed from substantially the side.
FIG. 3 is a configuration diagram of the internal combustion engine of FIG. 1 as viewed from above the combustion chamber in a homogeneous combustion state (at a high load).
FIG. 4 is a configuration diagram of the internal combustion engine of FIG. 3 as viewed from substantially the side.
FIG. 5 is a sectional view showing a configuration of an independent intake pipe passage of the internal combustion engine of FIG. 1;
FIG. 6 is a diagram showing a shape of an intake control valve of the internal combustion engine of FIG. 1;
7A and 7B are cross-sectional views taken along line VII-VII in FIG. 5 in a stratified combustion state (at a low load).
8 is a sectional view taken along line VII-VII in FIG. 5 in a homogeneous combustion state (at high load).
FIG. 9 is a diagram showing intake and exhaust valve lift characteristics of the internal combustion engine of the first embodiment according to the present invention.
FIG. 10 is a flowchart showing a control flow of the internal combustion engine of FIG. 1;
FIG. 11 is a configuration diagram of the internal combustion engine according to the second embodiment of the present invention as viewed from above the combustion chamber in a stratified combustion state (at a low load).
FIG. 12 is a sectional view showing a configuration of an independent intake pipe passage of the internal combustion engine of FIG. 11;
FIG. 13 is a view showing a shape of an intake control valve of the internal combustion engine of FIG. 11;
FIG. 14 is a sectional view showing a configuration of an independent intake pipe passage of an internal combustion engine according to a third embodiment of the present invention.
FIG. 15 is a view showing a shape of an intake control valve of the internal combustion engine of FIG. 14;
FIG. 16 is a sectional view showing a configuration of an independent intake pipe passage of an internal combustion engine according to a fourth embodiment of the present invention.
FIG. 17 is a view showing a shape of an intake control valve of the internal combustion engine of FIG. 16;
FIG. 18 is a graph showing an EGR stratification-homogeneous operation region on a rotation-torque map of the internal combustion engine according to the present invention.
FIG. 19 is a graph showing a stratified-homogeneous operation region on a rotation-torque map according to a conventional technique.
FIG. 20 is a comparison diagram of fuel consumption between the present invention and the prior art.
FIG. 21 is a comparison diagram of NOx emissions between the present invention and the prior art.
[Explanation of symbols]
101 ... intake pipe
101a: Independent intake passage
101b: Independent intake passage
102, 126, 127: Partition plate
103a, 103b ... intake control valve
104 ... Throttle valve
108 ... EGR control valve
109 ... EGR passage
110 ... exhaust pipe
111a, 111b ... intake valves
112a, 112b ... exhaust valve
113… Spark plug
115… Three-way catalytic converter
122 ... Injector
123 ... Combustion chamber

Claims (13)

燃料を燃焼室内に直接噴射する機構と、燃焼後の排気ガスを燃焼室に還流させる機構と、吸気通路の一部を閉塞してタンブルを生成する機構を備えた内燃機関であって、
前記吸気通路は、3つ以上の区画に区分され、その第1の区画には吸入空気を主とする気体を通過させ、第2の区画には排気還流ガスを主とする気体を通過させ、第3の区画は閉塞することを特徴とする内燃機関。
An internal combustion engine having a mechanism for directly injecting fuel into a combustion chamber, a mechanism for recirculating exhaust gas after combustion to a combustion chamber, and a mechanism for closing a part of an intake passage to generate a tumble,
The intake passage is divided into three or more sections, a first section through which a gas mainly containing intake air passes, and a second section through which a gas mainly containing exhaust gas recirculation gas passes. An internal combustion engine characterized in that the third compartment is closed.
一つの燃焼室毎に2個の吸気弁および互いに並行な2本の独立吸気通路を有し、その各々の独立吸気通路が仕切板により下部通路と上部内側通路と上部外側通路との3区分され、前記下部通路および前記上部外側通路を閉塞する吸気制御弁を有し、前記上部外側通路に排気還流ガスを主とする気体を供給し、前記上部内側通路から吸入空気を流入させることを特徴とする請求項1に記載の内燃機関。Each combustion chamber has two intake valves and two independent intake passages parallel to each other. Each independent intake passage is divided into a lower passage, an upper inner passage, and an upper outer passage by a partition plate. Having an intake control valve for closing the lower passage and the upper outer passage, supplying a gas mainly containing exhaust gas recirculation gas to the upper outer passage, and allowing intake air to flow from the upper inner passage. The internal combustion engine according to claim 1, wherein 一つの燃焼室毎に2個の吸気弁および互いに並行な2本の独立吸気通路を有し、その各々の独立吸気通路が仕切板により外側通路と内側上部通路と内側下部通路との3区分され、前記外側通路および前記内側下部通路を閉塞する吸気制御弁を有し、前記外側通路に排気還流ガスを主とする気体を供給し、前記内側上部通路から吸入空気を流入させることを特徴とする請求項1に記載の内燃機関。Each combustion chamber has two intake valves and two independent intake passages parallel to each other. Each of the independent intake passages is divided into an outer passage, an inner upper passage, and an inner lower passage by a partition plate. An intake control valve for closing the outer passage and the inner lower passage, supplying a gas mainly composed of exhaust gas to the outer passage, and allowing intake air to flow from the inner upper passage. The internal combustion engine according to claim 1. 負荷に応じた前記吸気制御弁の開閉制御により混合気の成層化あるいは均質な混合気の生成を行ない、いずれの場合にも混合気全体の空燃比が、三元触媒を作動させるために必要な理論空燃比近傍になるように制御することを特徴とする請求項2又は3に記載の内燃機関。The mixture is stratified or a homogeneous mixture is generated by opening / closing control of the intake control valve according to the load. In each case, the air-fuel ratio of the entire mixture is required to operate the three-way catalyst. The internal combustion engine according to claim 2 or 3, wherein the internal combustion engine is controlled so as to be close to a stoichiometric air-fuel ratio. 前記吸気通路に排気還流ガスを主とする気体を供給するポートが吸気通路下流の燃焼室の方向に指向性をもって開口していることを特徴とする請求項1から4の何れか一項に記載の内燃機関。5. The port according to claim 1, wherein a port that supplies a gas mainly composed of exhaust gas recirculation gas to the intake passage opens in a direction of a combustion chamber downstream of the intake passage. 6. Internal combustion engine. 吸気弁の開閉時期を可変設定する機構を備えていることを特徴とする請求項1から5の何れか一項に記載の内燃機関。The internal combustion engine according to any one of claims 1 to 5, further comprising a mechanism for variably setting an opening / closing timing of the intake valve. 燃料を燃焼室内に直接噴射する機構と、燃焼後の排気ガスを機関燃焼室に還流させる機構と、前記燃焼室内で二つ以上のタンブルを生成する機構を備え、該タンブル生成機構は、そのタンブルの組成が、一方は空気または可燃性混合気を主体とし、他方は排気還流ガスを主とする気体とし、互いに回転方向が同一のタンブルとなるように形成されていることを特徴とする内燃機関。A mechanism for directly injecting fuel into the combustion chamber, a mechanism for recirculating exhaust gas after combustion to the engine combustion chamber, and a mechanism for generating two or more tumbles in the combustion chamber. The internal combustion engine is characterized in that one is mainly composed of air or a combustible air-fuel mixture, and the other is mainly composed of exhaust gas recirculation gas, and is formed so as to have the same tumble rotation direction. . 前記タンブルを生成する機構は、3つ以上に区分される同一方向に回転する同軸上のタンブルを生成し、そのうち、前記燃焼室内で、吸入空気を主とするタンブルが中央にあり、これを両側から挟みこむように排気還流ガスを主とするタンブルを生成することを特徴とする請求項7に記載の内燃機関の吸気装置。The mechanism for generating the tumble generates three or more coaxial tumbles that rotate in the same direction, and in the combustion chamber, a tumble mainly including intake air is located at the center, and the tumble is located on both sides. 8. The intake device for an internal combustion engine according to claim 7, wherein a tumble mainly composed of the exhaust gas recirculation gas is generated so as to be sandwiched from the intake air. 中央に存在する吸入空気を主とするタンブルに対して燃料噴射を行なう燃料噴射手段を有することを特徴とする請求項8に記載の内燃機関。9. The internal combustion engine according to claim 8, further comprising fuel injection means for injecting fuel into a tumble mainly including intake air existing at the center. タンブルによる成層燃焼と、通常吸気による均質燃焼とを運転状態に応じて切り換え、成層燃焼時には圧縮行程の後半で燃料を噴射し、均質燃焼時には吸気行程で燃料を噴射することを特徴とする請求項1から9の何れか一項に記載の内燃機関。Switching between stratified combustion by tumble and homogeneous combustion by normal intake according to the operating state, wherein fuel is injected in the latter half of the compression stroke during stratified combustion, and fuel is injected during the intake stroke during homogeneous combustion. The internal combustion engine according to any one of claims 1 to 9. 燃料を燃焼室内に直接噴射し、燃焼室内に、空気または可燃性混合気を主体としたタンブルと、排気還流ガスを主とする気体によるタンブルを互いに回転方向のタンブルとして生成し、燃料を燃焼室内の空気または可燃性混合気を主体としたタンブルに対して直接噴射し、成層燃焼を行なうことを特徴とする内燃機関の燃焼方法。The fuel is directly injected into the combustion chamber, and a tumble mainly composed of air or a combustible air-fuel mixture and a tumble composed of a gas mainly containing exhaust gas recirculation are generated as tumble in a rotational direction with respect to each other. A combustion method for an internal combustion engine, wherein the fuel is injected directly into a tumble mainly composed of air or a combustible air-fuel mixture to perform stratified combustion. タンブルによる成層燃焼と、通常吸気による均質燃焼とを運転状態に応じて切り換え、成層燃焼時には圧縮行程の後半で燃料を噴射し、均質燃焼時には吸気行程で燃料を噴射することを特徴とする請求項11に記載の内燃機関の燃焼方法。Switching between stratified combustion by tumble and homogeneous combustion by normal intake according to the operating state, wherein fuel is injected in the latter half of the compression stroke during stratified combustion, and fuel is injected during the intake stroke during homogeneous combustion. 12. The combustion method for an internal combustion engine according to item 11. 成層燃焼時と均質燃焼時のいずれの場合も、混合気全体の空燃比を、三元触媒を作動させるために必要な理論空燃比近傍に設定することを特徴とする請求項12に記載の内燃機関の燃焼方法。13. The internal combustion engine according to claim 12, wherein the air-fuel ratio of the whole air-fuel mixture is set near a stoichiometric air-fuel ratio necessary for operating the three-way catalyst in both the case of the stratified combustion and the case of the homogeneous combustion. Engine combustion method.
JP2003048835A 2003-02-26 2003-02-26 Internal combustion engine, and combustion method of it Pending JP2004257305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048835A JP2004257305A (en) 2003-02-26 2003-02-26 Internal combustion engine, and combustion method of it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048835A JP2004257305A (en) 2003-02-26 2003-02-26 Internal combustion engine, and combustion method of it

Publications (1)

Publication Number Publication Date
JP2004257305A true JP2004257305A (en) 2004-09-16

Family

ID=33114683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048835A Pending JP2004257305A (en) 2003-02-26 2003-02-26 Internal combustion engine, and combustion method of it

Country Status (1)

Country Link
JP (1) JP2004257305A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266088A (en) * 2005-03-22 2006-10-05 Osaka Gas Co Ltd Engine
JP2008128180A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2009215960A (en) * 2008-03-10 2009-09-24 Toyota Motor Corp Internal combustion engine
WO2015033198A1 (en) * 2013-09-06 2015-03-12 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266088A (en) * 2005-03-22 2006-10-05 Osaka Gas Co Ltd Engine
JP2008128180A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2009215960A (en) * 2008-03-10 2009-09-24 Toyota Motor Corp Internal combustion engine
WO2015033198A1 (en) * 2013-09-06 2015-03-12 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
US9976491B2 (en) 2013-09-06 2018-05-22 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3852363B2 (en) Engine control device
US6877464B2 (en) Spark-ignition engine controller
JP4862592B2 (en) Spark ignition gasoline engine
JP2001248484A (en) Direct cylinder injection engine, control device and controlling method
US6742495B2 (en) Engine control apparatus
JP4788554B2 (en) Spark ignition direct injection gasoline engine
US6941905B2 (en) Control unit for spark ignition-type engine
JP2004150284A (en) Control device and control method for internal combustion engine, combustion method for internal combustion engine, and in-cylinder injection type engine
JP4051261B2 (en) Control method for stoichiometric air-fuel ratio stratified combustion internal combustion engine
EP1377740A1 (en) Control device for supercharged engine
JP2001263067A (en) Compressed self-ignition type gasoline engine
JP4140271B2 (en) Multi-cylinder engine controller
JP2004257305A (en) Internal combustion engine, and combustion method of it
JP3934934B2 (en) Engine for stratified charge combustion at stoichiometric air-fuel ratio and stratified charge combustion method for the engine
JP2009041531A (en) Cylinder injection internal combustion engine
JP2010121550A (en) Engine control device, and engine control method
JP3711939B2 (en) Control device for spark ignition engine
JP4036021B2 (en) Engine control device
JP3711941B2 (en) Control device for spark ignition engine
JPH10274104A (en) Exhaust gas purifying device for cylinder injection type engine
JP4010092B2 (en) In-cylinder internal combustion engine
JP2000356126A (en) Exhaust emission control device of diesel engine
JP2007278160A (en) Control device for internal combustion engine
JP2004027961A (en) Controller for spark ignition-type four-cycle engine
JP2001248465A (en) Intake/exhaust valve driving device for internal combustion engine