JP4049804B2 - Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, and method for manufacturing capacitor - Google Patents
Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, and method for manufacturing capacitor Download PDFInfo
- Publication number
- JP4049804B2 JP4049804B2 JP2007522742A JP2007522742A JP4049804B2 JP 4049804 B2 JP4049804 B2 JP 4049804B2 JP 2007522742 A JP2007522742 A JP 2007522742A JP 2007522742 A JP2007522742 A JP 2007522742A JP 4049804 B2 JP4049804 B2 JP 4049804B2
- Authority
- JP
- Japan
- Prior art keywords
- capacitor element
- reaction vessel
- cathode
- capacitor
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims description 150
- 238000006243 chemical reaction Methods 0.000 title claims description 120
- 238000004519 manufacturing process Methods 0.000 title claims description 54
- 238000000034 method Methods 0.000 title claims description 37
- 239000004020 conductor Substances 0.000 claims description 106
- 239000004065 semiconductor Substances 0.000 claims description 76
- 239000007788 liquid Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 10
- 239000008151 electrolyte solution Substances 0.000 claims description 9
- 239000003792 electrolyte Substances 0.000 claims description 7
- 239000007769 metal material Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 111
- 229920005989 resin Polymers 0.000 description 31
- 239000011347 resin Substances 0.000 description 31
- 239000000243 solution Substances 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 238000009826 distribution Methods 0.000 description 22
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 14
- 238000007747 plating Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 229910052709 silver Inorganic materials 0.000 description 13
- 239000004332 silver Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 12
- 230000032683 aging Effects 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000003822 epoxy resin Substances 0.000 description 9
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 8
- 239000011888 foil Substances 0.000 description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 8
- 229910052737 gold Inorganic materials 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- -1 Ta 2 O 5 Chemical class 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000003985 ceramic capacitor Substances 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 4
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- BFRGSJVXBIWTCF-UHFFFAOYSA-N niobium monoxide Chemical compound [Nb]=O BFRGSJVXBIWTCF-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 4
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten(iv) oxide Chemical compound O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 description 4
- MMNWSHJJPDXKCH-UHFFFAOYSA-N 9,10-dioxoanthracene-2-sulfonic acid Chemical compound C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 MMNWSHJJPDXKCH-UHFFFAOYSA-N 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000004840 adhesive resin Substances 0.000 description 2
- 229920006223 adhesive resin Polymers 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000009972 noncorrosive effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- IAGVANYWTGRDOU-UHFFFAOYSA-N 1,4-dioxonaphthalene-2-sulfonic acid Chemical compound C1=CC=C2C(=O)C(S(=O)(=O)O)=CC(=O)C2=C1 IAGVANYWTGRDOU-UHFFFAOYSA-N 0.000 description 1
- KAESVJOAVNADME-UHFFFAOYSA-N 1H-pyrrole Natural products C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 1
- YMMGRPLNZPTZBS-UHFFFAOYSA-N 2,3-dihydrothieno[2,3-b][1,4]dioxine Chemical compound O1CCOC2=C1C=CS2 YMMGRPLNZPTZBS-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- UGHLEPMKNSFGCE-UHFFFAOYSA-N 2-ethylbenzenesulfonic acid Chemical compound CCC1=CC=CC=C1S(O)(=O)=O UGHLEPMKNSFGCE-UHFFFAOYSA-N 0.000 description 1
- QOIXLGYJPBDQSK-UHFFFAOYSA-N 3,6-dioxocyclohexa-1,4-diene-1-sulfonic acid Chemical compound OS(=O)(=O)C1=CC(=O)C=CC1=O QOIXLGYJPBDQSK-UHFFFAOYSA-N 0.000 description 1
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N Oxozirconium Chemical compound [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- ILFFFKFZHRGICY-UHFFFAOYSA-N anthracene-1-sulfonic acid Chemical compound C1=CC=C2C=C3C(S(=O)(=O)O)=CC=CC3=CC2=C1 ILFFFKFZHRGICY-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- WNQKPOBAKJQOKF-UHFFFAOYSA-L benzenesulfonate;iron(2+) Chemical compound [Fe+2].[O-]S(=O)(=O)C1=CC=CC=C1.[O-]S(=O)(=O)C1=CC=CC=C1 WNQKPOBAKJQOKF-UHFFFAOYSA-L 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- QDHFHIQKOVNCNC-UHFFFAOYSA-N butane-1-sulfonic acid Chemical compound CCCCS(O)(=O)=O QDHFHIQKOVNCNC-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- ZHGASCUQXLPSDT-UHFFFAOYSA-N cyclohexanesulfonic acid Chemical compound OS(=O)(=O)C1CCCCC1 ZHGASCUQXLPSDT-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- FYAQQULBLMNGAH-UHFFFAOYSA-N hexane-1-sulfonic acid Chemical compound CCCCCCS(O)(=O)=O FYAQQULBLMNGAH-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000414 polyfuran Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011536 re-plating Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Chemical group 0.000 description 1
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
- H01G9/028—Organic semiconducting electrolytes, e.g. TCNQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/28—Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices with other electric components not covered by this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
本発明は、安定した容量出現率が達成されるコンデンサ素子製造用反応容器、コンデンサ素子の製造方法およびコンデンサの製造方法に関する。 The present invention relates to a reaction container for manufacturing a capacitor element that achieves a stable capacity appearance rate, a method for manufacturing a capacitor element, and a method for manufacturing a capacitor.
パソコン等に使用されるCPU(中央演算処理装置)の回路等に使用されるコンデンサは、電圧変動を抑え、高リップル(ripple)通過時の発熱を低くするために、高容量かつ低ESR(等価直列抵抗)であることが求められている。 Capacitors used in CPU (Central Processing Unit) circuits used in personal computers, etc. have high capacity and low ESR (equivalent) to suppress voltage fluctuation and reduce heat generation when passing through high ripple. Series resistance).
一般に、CPU回路に使用されるコンデンサとしては、アルミニウム固体電解コンデンサや、タンタル固体電解コンデンサが複数個使用されている。
このような固体電解コンデンサは、表面層に微細の細孔を有するアルミニウム箔や、内部に微小な細孔を有するタンタル粉の焼結体を一方の電極(導電体)とし、その電極の表層に形成した誘電体層とその誘電体層上に設けた他方の電極(通常は、半導体層)とから構成されている。Generally, a plurality of aluminum solid electrolytic capacitors and tantalum solid electrolytic capacitors are used as capacitors used in the CPU circuit.
In such a solid electrolytic capacitor, an aluminum foil having fine pores in the surface layer or a sintered body of tantalum powder having fine pores inside is used as one electrode (conductor), and the surface layer of the electrode is The dielectric layer is formed and the other electrode (usually a semiconductor layer) provided on the dielectric layer.
半導体層を他方の電極とするコンデンサの半導体層の形成方法としては、例えば、特許第1868722号明細書(特許文献1)、特許第1985056号明細書(特許文献2)や特許第2054506号明細書(特許文献3)に記載された通電手法により形成する方法がある。各々、表面に誘電体層を設けた導電体を半導体層形成溶液に漬け、導電体側を陽極にして半導体層形成溶液中に用意した外部電極(陰極)との間に電圧を印加する(電流を流す)ことにより半導体層を形成する方法である。 As a method for forming a semiconductor layer of a capacitor using the semiconductor layer as the other electrode, for example, Japanese Patent No. 1868722 (Patent Document 1), Japanese Patent No. 1985056 (Patent Document 2) and Japanese Patent No. 2054506 There is a method of forming by an energization method described in (Patent Document 3). In each case, a conductor provided with a dielectric layer on the surface is dipped in a semiconductor layer forming solution, and a voltage is applied between the external electrode (cathode) prepared in the semiconductor layer forming solution with the conductor side as an anode (current is applied). This is a method of forming a semiconductor layer by flowing.
特開平3−22516号公報(特許文献4;関連出願US501727明細書)には、交流に直流バイアス電流を重ねた電流を誘電体層を設けた導電体に流すことにより半導体層を形成する方法が記載されている。また、特開平3−163816号公報(特許文献5)には、誘電体層上に設けた化学重合層に導体を接触させ、その導体を陽極として電解重合により化学重合層上に半導体層を形成する方法が記載されている。これらの方法では、同時に複数個の導電体に半導体層を形成する場合には問題があった。すなわち特許文献4に記載の方法では、陰極側にも半導体層が形成され、通電時間が経過するにつれ半導体層の形成具合が変化するという問題点があり、また、複数個の導電体に均一に電流が流れるという保障がなかった。また、特許文献5に記載の方法では、外部に設けた導体を陽極として通電しているために、各々の導電体の内部に均一な半導体層を形成する保障がなかった。とりわけ内部の細孔が小さく大きな形状の導電体では、大きな問題であった。
Japanese Patent Laid-Open No. 3-22516 (Patent Document 4; related application US501727) discloses a method of forming a semiconductor layer by flowing a current obtained by superimposing a DC bias current on an alternating current through a conductor provided with a dielectric layer. Are listed. In Japanese Patent Laid-Open No. 3-163816 (Patent Document 5), a conductor is brought into contact with a chemical polymerization layer provided on a dielectric layer, and a semiconductor layer is formed on the chemical polymerization layer by electrolytic polymerization using the conductor as an anode. How to do is described. These methods have a problem when a semiconductor layer is formed on a plurality of conductors at the same time. That is, the method described in Patent Document 4 has a problem in that a semiconductor layer is formed on the cathode side, and the degree of formation of the semiconductor layer changes as the energization time elapses. There was no guarantee that current would flow. Further, in the method described in
前述した誘電体層を形成した導電体に、通電手法によって半導体層を形成する場合、数個の導電体に半導体層を形成する時には問題はなかったが、工業的なレベルで、例えば1度に百個以上の導電体に半導体層を形成する場合、各導電体は必ずしも均質ではなく、また半導体の形成速度も導電体により異なることがあるため、特に多数個の導電体に同時に半導体層を形成する時には、各導電体に流れる電流値が一定せず、作製したコンデンサの半導体層の形成具合が不揃いで安定した容量のコンデンサを作製することが困難な場合があった。 When the semiconductor layer is formed on the conductor formed with the dielectric layer by the energization method, there was no problem when the semiconductor layer was formed on several conductors, but at an industrial level, for example, once. When forming a semiconductor layer on more than 100 conductors, each conductor is not necessarily homogeneous, and the formation speed of the semiconductor may vary depending on the conductor, so the semiconductor layers are formed on many conductors at the same time. In this case, the value of the current flowing through each conductor is not constant, and there are cases where it is difficult to fabricate a capacitor having a stable capacity due to uneven formation of the semiconductor layer of the fabricated capacitor.
そこで、本発明者らは、先に個々の導電体に対応する小反応容器を集合した形態の反応容器を提案したが(WO2006/028286パンフレット参照)、この集合型反応容器では各小反応容器において反応液が消費され、導電体への付着、乾燥等が進行するため、それぞれの小反応容器の液面レベルの経時的変化は必ずしも一様ではない。このため各小反応容器内の溶液の液面レベルを調整せずに繰り返し使用することは難しかった。
したがって、本発明は上記液面レベルの均一性を容易に確保し、より安定に通電できるコンデンサ素子製造用反応容器を提案することにある。Thus, the present inventors have previously proposed a reaction vessel in which small reaction vessels corresponding to individual conductors are assembled (see WO2006 / 028286 pamphlet). In this collective reaction vessel, Since the reaction liquid is consumed and adhesion to the conductor, drying, and the like proceed, changes in the liquid level of each small reaction vessel over time are not necessarily uniform. For this reason, it has been difficult to use repeatedly without adjusting the liquid level of the solution in each small reaction vessel.
Accordingly, it is an object of the present invention to propose a reaction vessel for manufacturing a capacitor element that can easily ensure the uniformity of the liquid surface level and can supply electricity more stably.
本発明者等は、前記課題を解決するために、反応容器中に個々の導電体に対応する複数の電極および部屋(電気的にそれぞれ個々の定電流源に接続した陰極および他の部屋との間で電解液が移動可能な少なくとも1つの通路を設けた部屋)を設け、半導体層形成のための通電時に電流が他の部屋に流れることを低減できる反応容器により前記課題を解決した。 In order to solve the above problems, the present inventors have made a plurality of electrodes and rooms corresponding to individual conductors in the reaction vessel (with cathodes and other rooms electrically connected to individual constant current sources, respectively). The above problem has been solved by a reaction vessel in which a chamber provided with at least one passage through which an electrolytic solution can move is provided, and current flowing to another chamber can be reduced during energization for forming a semiconductor layer.
すなわち、本発明は、以下のコンデンサ素子製造用反応容器、コンデンサ素子の製造方法およびコンデンサ素子、コンデンサを提供するものである。
1.表面に誘電体層を形成した複数個の導電体を同時に反応容器中の電解液に浸漬して通電手法により半導体層を形成するための反応容器であって、反応容器中に個々の導電体に対応する複数の陰極および部屋が設けられ、個々の陰極は電気的にそれぞれ個々の定電流源に接続され、かつ個々の部屋には他の部屋との間で電解液が移動可能な少なくとも1つの通路が設けられていることを特徴とするコンデンサ素子製造用反応容器。
2.通路が部屋の壁面に開けられた孔であり、その大きさ(径)が0.1〜10mmである前記1に記載のコンデンサ素子製造用反応容器。
3.通路がスリット状に部屋の壁面に開けられ、スリットの隙間が0.1mm〜10mmである前記1または2に記載のコンデンサ素子製造用反応容器。
4.陰極が各部屋の底面に設けられている前記1〜3のいずれかに記載のコンデンサ素子製造用反応容器。
5.陰極が各部屋の壁面に設けられている前記1〜4のいずれかに記載のコンデンサ素子製造用反応容器。
6.複数の定電流源が、複数の定電流ダイオードで構成され、その各カソード同士が電気的に接続され、各アノードが陰極に接続されている前記1に記載のコンデンサ素子製造用反応容器。
7.各陰極が反応容器の底部内側に配置され、各定電流ダイオードが反応容器の外側に配置され、各定電流ダイオードのカソード同士が電気的に接続されて端子に集電される前記6に記載のコンデンサ素子製造用反応容器。
8.コンデンサ素子製造用反応容器の底部が絶縁性基板からなり、絶縁性基板の反応容器内側の面に個々の陰極が設けられ、その外側の面に個々の陰極に対応した定電流源が設けられ、両者が電気的に接続されている前記1〜7のいずれかに記載のコンデンサ素子製造用反応容器。
9.陰極が膜状金属材料である前記1〜8のいずれかに記載のコンデンサ素子製造用反応容器。
10.前記1〜9のいずれかに記載のコンデンサ素子製造用反応容器を用いることを特徴とするコンデンサ素子の製造方法。
11.電解液が満たされたコンデンサ素子製造用反応容器に、誘電体層を有する複数個の導電体を前記電解液に浸漬し、該導電体側を陽極に反応容器中に設けた個々の陰極を陰極にして通電手法により誘電体層上に半導体層を形成する工程を複数回行う際に、前記コンデンサ素子製造用反応容器の個々の部屋の液面調整を行わずに繰り返し前記工程を行うことを特徴とするコンデンサ素子の製造方法。
12.前記10または11の方法で得たコンデンサ素子を封止するコンデンサの製造方法。That is, the present invention provides the following reaction container for manufacturing a capacitor element, a method for manufacturing a capacitor element, a capacitor element, and a capacitor.
1. A reaction vessel for forming a semiconductor layer by an energization method by simultaneously immersing a plurality of conductors having a dielectric layer formed on the surface thereof in an electrolytic solution in a reaction vessel, wherein each conductor is formed in the reaction vessel. A corresponding plurality of cathodes and chambers are provided, each cathode being electrically connected to an individual constant current source, and each chamber having at least one electrolyte moveable between the other chambers A reaction vessel for producing a capacitor element, characterized in that a passage is provided.
2. 2. The reactor for producing a capacitor element as described in 1 above, wherein the passage is a hole opened in the wall surface of the room, and the size (diameter) thereof is 0.1 to 10 mm.
3. 3. The reaction container for producing a capacitor element according to 1 or 2, wherein the passage is opened in a slit shape on the wall surface of the room, and the slit gap is 0.1 mm to 10 mm.
4). 4. The reaction container for producing a capacitor element according to any one of 1 to 3, wherein a cathode is provided on the bottom surface of each room.
5. 5. The reaction container for producing a capacitor element according to any one of 1 to 4, wherein a cathode is provided on a wall surface of each room.
6). 2. The reaction container for manufacturing a capacitor element according to 1 above, wherein the plurality of constant current sources are composed of a plurality of constant current diodes, each cathode is electrically connected, and each anode is connected to the cathode.
7). 7. Each said cathode is arrange | positioned inside the bottom part of reaction container, each constant current diode is arrange | positioned outside the reaction container, and the cathodes of each constant current diode are electrically connected to each other and are collected by the terminal. Reaction vessel for manufacturing capacitor elements.
8). The bottom of the reaction vessel for capacitor element production is made of an insulating substrate, each cathode is provided on the inner surface of the reaction vessel of the insulating substrate, and a constant current source corresponding to each cathode is provided on the outer surface thereof, 8. The reaction container for producing a capacitor element according to any one of 1 to 7, wherein both are electrically connected.
9. 9. The reaction container for producing a capacitor element according to any one of 1 to 8 above, wherein the cathode is a film metal material.
10. 10. A method for producing a capacitor element, comprising using the reaction container for producing a capacitor element according to any one of 1 to 9 above.
11. A plurality of conductors having a dielectric layer are immersed in the electrolytic solution in a reaction vessel for manufacturing a capacitor element filled with the electrolytic solution, and each cathode provided in the reaction vessel with the conductive material side as an anode serves as a cathode. When the step of forming the semiconductor layer on the dielectric layer by a current application method is performed a plurality of times, the step is repeatedly performed without adjusting the liquid level of each chamber of the reaction container for manufacturing the capacitor element. Manufacturing method of capacitor element.
12 A method for producing a capacitor for sealing the capacitor element obtained by the method of 10 or 11.
本発明で使用される導電体の例として、金属、無機半導体、有機半導体、カーボン、これらの少なくとも1種の混合物、および表層にこれらの導電体を積層した積層体が挙げられる。 Examples of the conductor used in the present invention include metals, inorganic semiconductors, organic semiconductors, carbon, a mixture of at least one of these, and a laminate in which these conductors are stacked on the surface layer.
無機半導体の例として、二酸化鉛、二酸化モリブデン、二酸化タングステン、一酸化ニオブ、二酸化スズ、一酸化ジルコニウム等の金属酸化物が挙げられ、有機半導体として、ポリピロール、ポリチオフェン、ポリアニリンおよびこれら高分子骨格を有する置換体、共重合体等の導電性高分子、テトラシアノキノジメタン(TCNQ)とテトラチオテトラセンとの錯体、TCNQ塩等の低分子錯体が挙げられる。また、表層に導電体を積層した積層体の例としては、紙、絶縁性高分子、ガラス等に前記導電体を積層した積層体が挙げられる。 Examples of inorganic semiconductors include metal oxides such as lead dioxide, molybdenum dioxide, tungsten dioxide, niobium monoxide, tin dioxide, and zirconium monoxide, and organic semiconductors include polypyrrole, polythiophene, polyaniline, and polymer skeletons Examples thereof include conductive polymers such as substitution products and copolymers, complexes of tetracyanoquinodimethane (TCNQ) and tetrathiotetracene, and low-molecular complexes such as TCNQ salts. Moreover, as an example of the laminated body which laminated | stacked the conductor on the surface layer, the laminated body which laminated | stacked the said conductor on paper, insulating polymer, glass, etc. is mentioned.
導電体として、金属を使用する場合、金属の一部を炭化、燐化、ホウ素化、窒化、硫化から選ばれる少なくとも1種の処理を行ってから使用してもよい。 When a metal is used as the conductor, a part of the metal may be used after being subjected to at least one treatment selected from carbonization, phosphation, boronation, nitridation, and sulfidation.
導電体の形状は特に限定されず、箔状、板状、棒状、導電体自身を粉状にして成形または成形後焼結した形状等として用いてもよい。導電体表面を、エッチング等で処理して、微細な細孔を有するようにしておいてもよい。導電体を粉状にして成形体形状または成形後焼結した形状とする場合には、成形時の圧力を適当に選択することにより、成形または焼結後の内部に微小な細孔を設けることができる。 The shape of the conductor is not particularly limited, and may be used as a foil shape, a plate shape, a rod shape, a shape in which the conductor itself is powdered, molded, or sintered after molding. The conductor surface may be processed by etching or the like to have fine pores. When the conductor is powdered to form a molded body or a sintered shape after molding, fine pores should be provided in the interior after molding or sintering by appropriately selecting the pressure during molding. Can do.
導電体には引き出しリードを直接接続することが可能であるが、導電体を粉状にして成形体形状または成形後焼結した形状とする場合は、成形時に別途用意した引き出しリード線(またはリード箔)の一部を導電体と共に成形し、引き出しリード線(またはリード箔)の成形外部の箇所を、コンデンサの一方の電極の引き出しリードとすることもできる。 The lead can be directly connected to the conductor. However, if the conductor is powdered and formed into a molded body shape or a shape that is sintered after molding, the lead wire (or lead) prepared separately at the time of molding is used. It is also possible to form a part of the foil) together with the conductor, and to place the lead-out lead wire (or lead foil) outside the molding as a lead-out lead for one electrode of the capacitor.
また、導電体の一部に後記する半導体層を形成せずに残しておき陽極部とすることもできる。陽極部と半導体層形成部の境界に半導体層の這い上がりを防ぐために絶縁性樹脂を鉢巻状に付着硬化させておいてもよい。 Alternatively, a semiconductor layer which will be described later may be left without forming a part of the conductor to form an anode part. In order to prevent the semiconductor layer from creeping up at the boundary between the anode portion and the semiconductor layer forming portion, an insulating resin may be adhered and cured in a headband shape.
本発明で使用される導電体の好ましい例として、表面がエッチング処理されたアルミニウム箔、タンタル粉、ニオブ粉、タンタルを主成分とする合金粉、ニオブを主成分とする合金粉、一酸化ニオブ粉等の粉を成形後焼結した内部に微細な空孔が多数存在する焼結体を挙げることができる。 Preferred examples of the conductor used in the present invention include an aluminum foil whose surface is etched, tantalum powder, niobium powder, alloy powder mainly containing tantalum, alloy powder mainly containing niobium, and niobium monoxide powder. An example is a sintered body in which a large number of fine pores are present inside a powder obtained by sintering after molding.
本発明で使用される導電体表面に形成される誘電体層として、Ta2O5、Al2O3、TiO2、Nb2O5等の金属酸化物から選ばれる少なくとも1つを主成分とする誘電体層、セラミックコンデンサやフィルムコンデンサの分野で従来公知の誘電体層が挙げられる。前者の金属酸化物から選ばれる少なくとも1つを主成分とする誘電体層の場合、金属酸化物の金属元素を有する前記導電体を化成することによって誘電体層を形成すると得られるコンデンサは、極性をもつ電解コンデンサとなる。セラミックコンデンサやフィルムコンデンサで従来公知の誘電体層として、本出願人による、特開昭63−29919号公報、特開昭63−34917号公報に記載した誘電体層を挙げることができる。また金属酸化物から選ばれる少なくとも1つを主成分とする誘電体層やセラミックコンデンサやフィルムコンデンサで従来公知の誘電体層を複数積層して使用してもよい。また金属酸化物から選ばれる少なくとも1つを主成分とする誘電体やセラミックコンデンサやフィルムコンデンサで従来公知の誘電体を混合した誘電体層でもよい。As a dielectric layer formed on the surface of the conductor used in the present invention, the main component is at least one selected from metal oxides such as Ta 2 O 5 , Al 2 O 3 , TiO 2 , and Nb 2 O 5. Conventionally known dielectric layers in the field of dielectric layers, ceramic capacitors, and film capacitors. In the case of a dielectric layer mainly composed of at least one selected from the former metal oxides, a capacitor obtained by forming the dielectric layer by forming the conductor having the metal element of the metal oxide has a polarity. Electrolytic capacitor with Examples of conventionally known dielectric layers for ceramic capacitors and film capacitors include dielectric layers described in Japanese Patent Application Laid-Open Nos. 63-29919 and 63-34917 by the present applicant. A plurality of conventionally known dielectric layers may be laminated and used with a dielectric layer mainly composed of at least one selected from metal oxides, ceramic capacitors, and film capacitors. Alternatively, a dielectric layer containing at least one selected from metal oxides as a main component, or a dielectric layer obtained by mixing a conventionally known dielectric with a ceramic capacitor or a film capacitor may be used.
化成によって誘電体層を形成するための具体的な例について説明する。
複数個の導電体を等間隔に接続した長尺金属板を複数枚並列に方向を揃えて金属フレームに配置し、別途用意した化成槽に陽極部またはリード線(リード箔)の一部と導電体を化成液に浸漬し、金属フレーム側を陽極に、化成槽中の陰極板との間に電圧を所定時間印加し、引き上げ洗浄・乾燥することによって導電体表層に誘電体層が形成される。A specific example for forming a dielectric layer by chemical conversion will be described.
A plurality of long metal plates with a plurality of conductors connected at equal intervals are arranged in a metal frame with the direction aligned in parallel, and conductive with the anode part or part of the lead wire (lead foil) in a separately prepared chemical bath A dielectric layer is formed on the surface layer of the conductor by immersing the body in a chemical conversion solution, applying a voltage between the metal frame side to the anode and a cathode plate in the chemical conversion tank for a predetermined time, lifting, washing and drying. .
一方、本発明で得られるコンデンサの他方の電極としては、有機半導体および無機半導体から選ばれる少なくとも1種の化合物が挙げられるが、ここで前記の化合物を後述する通電手法により形成することが肝要である。 On the other hand, the other electrode of the capacitor obtained in the present invention includes at least one compound selected from an organic semiconductor and an inorganic semiconductor. However, it is important to form the compound by an energization method described later. is there.
有機半導体の具体例としては、ベンゾピロリン4量体とクロラニルからなる有機半導体、テトラチオテトラセンを主成分とする有機半導体、テトラシアノキノジメタンを主成分とする有機半導体、下記一般式(1)または(2)で示される繰り返し単位を含む高分子にドーパントをドープした導電性高分子を主成分とした有機半導体が挙げられる。 Specific examples of the organic semiconductor include an organic semiconductor composed of benzopyrroline tetramer and chloranil, an organic semiconductor mainly composed of tetrathiotetracene, an organic semiconductor mainly composed of tetracyanoquinodimethane, and the following general formula (1) Or the organic semiconductor which has as a main component the conductive polymer which doped the dopant to the polymer containing the repeating unit shown by (2) is mentioned.
式(1)および(2)において,R1〜R4は、各々独立して水素原子、炭素数1〜6のアルキル基または炭素数1〜6のアルコキシ基を表し、Xは酸素、イオウまたは窒素原子を表し、R5はXが窒素原子のときのみ存在して水素原子または炭素数1〜6のアルキル基を表し、R1とR2およびR3とR4は、互いに結合して環状になっていてもよい。In the formulas (1) and (2), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, and X is oxygen, sulfur or Represents a nitrogen atom, R 5 is present only when X is a nitrogen atom and represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 1 and R 2 and R 3 and R 4 are bonded to each other to form a ring It may be.
さらに、本発明においては、前記一般式(1)で示される繰り返し単位を含む高分子は、好ましくは下記一般式(3)で示される構造単位を繰り返し単位として含む高分子が挙げられる。 Furthermore, in the present invention, the polymer containing a repeating unit represented by the general formula (1) is preferably a polymer containing a structural unit represented by the following general formula (3) as a repeating unit.
式中、R6およびR7は、各々独立して水素原子、炭素数1〜6の直鎖状もしくは分岐状の飽和もしくは不飽和のアルキル基、またはそのアルキル基が互いに任意の位置で結合して、2つの酸素原子を含む少なくとも1つ以上の5〜7員環の飽和炭化水素の環状構造を形成する置換基を表す。また、前記環状構造には置換されていてもよいビニレン結合を有するもの、置換されていてもよいフェニレン構造のものも含まれる。In the formula, R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or an alkyl group thereof bonded to each other at an arbitrary position. And a substituent that forms a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen atoms. The cyclic structure includes those having a vinylene bond which may be substituted and those having a phenylene structure which may be substituted.
このような化学構造を含む導電性高分子は、荷電されており、ドーパントがドープされる。ドーパントは特に限定されず公知のドーパントを使用できる。 A conductive polymer containing such a chemical structure is charged and doped with a dopant. A dopant is not specifically limited, A well-known dopant can be used.
ドーパントの好ましい例として、スルホン酸基を有する化合物を挙げることができる。そのような化合物として、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、アントラセンスルホン酸、ベンゾキノンスルホン酸、ナフトキノンスルホン酸およびアントラキノンスルホン酸等のアリール基を有するスルホン酸、ブチルスルホン酸、ヘキシルスルホン酸およびシクロヘキシルスルホン酸等のアルキル基を有するスルホン酸、ポリビニルスルホン酸等の各種高分子(重合度2〜200)スルホン酸、これらスルホン酸の塩(アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩等)を代表例として挙げることができる。これら化合物には、各種置換基を有していてもよいし、スルホン酸基が複数個存在してもよい。また、ドーパントは、複数を同時に使用してもよい。
Preferable examples of the dopant include compounds having a sulfonic acid group. Examples of such compounds include benzene sulfonic acid, toluene sulfonic acid, naphthalene sulfonic acid, anthracene sulfonic acid, benzoquinone sulfonic acid, naphthoquinone sulfonic acid and anthraquinone sulfonic acid having sulfonic acid having a aryl group, butyl sulfonic acid, hexyl sulfonic acid and Various polymers (
式(1)乃至(3)で示される繰り返し単位を含む高分子としては、例えば、ポリアニリン、ポリオキシフェニレン、ポリフェニレンサルファイド、ポリチオフェン、ポリフラン、ポリピロール、ポリメチルピロール、およびこれらの置換誘導体や共重合体などが挙げられる。中でもポリピロール、ポリチオフェンおよびこれらの置換誘導体(例えばポリ(3,4−エチレンジオキシチオフェン)等)が好ましい。 Examples of the polymer containing the repeating unit represented by the formulas (1) to (3) include polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylpyrrole, and substituted derivatives and copolymers thereof. Etc. Of these, polypyrrole, polythiophene, and substituted derivatives thereof (for example, poly (3,4-ethylenedioxythiophene)) are preferable.
無機半導体の具体例としては、二酸化モリブデン、二酸化タングステン、二酸化鉛、二酸化マンガン等から選ばれる少なくとも1種の化合物が挙げられる。
上記有機半導体および無機半導体として、電導度10−2〜103S/cmの範囲のものを使用すると、作製したコンデンサのESR値が小さくなり好ましい。Specific examples of the inorganic semiconductor include at least one compound selected from molybdenum dioxide, tungsten dioxide, lead dioxide, manganese dioxide and the like.
When the organic semiconductor and the inorganic semiconductor have a conductivity in the range of 10 −2 to 10 3 S / cm, the ESR value of the manufactured capacitor is preferably reduced.
前述した半導体層は、純粋な化学反応(溶液反応、気相反応、固液反応およびそれらの組み合わせ)により形成したり、通電手法によって形成したり、あるいはこれらの方法を組み合わせて形成するが、本発明では、半導体層形成工程で少なくとも1回は通電手法を採用する。また、通電手法により半導体層を形成する場合に、少なくとも1回の通電を、通電時に定電流電源(定電流源)により行うことで本発明の目的が達成される。 The semiconductor layer described above is formed by a pure chemical reaction (solution reaction, gas phase reaction, solid-liquid reaction, and combinations thereof), formed by an energization method, or a combination of these methods. In the invention, the energization method is adopted at least once in the semiconductor layer forming step. Further, when the semiconductor layer is formed by the energization method, the object of the present invention is achieved by performing energization at least once by a constant current power source (constant current source) during energization.
定電流源としては、前述した表面に誘電体層を有する導電体に定電流で通電できる定電流回路が達成できればよい。例えば、回路が単純で、部品点数が少なくできる定電流ダイオードで構成することが好ましい。定電流ダイオードは、定電流ダイオードとして市販されているものだけでなく、電界効果トランジスタで構成してもよい。それ以外の定電流源としてトランジスタを使用したもの、ICを使用したもの、三端子レギュレーターを使用したものを挙げることができる。 As the constant current source, it is only necessary to achieve a constant current circuit capable of energizing the conductor having the dielectric layer on the surface with a constant current. For example, it is preferable to use a constant current diode with a simple circuit and a reduced number of parts. The constant current diode may be composed of a field effect transistor as well as a commercially available constant current diode. Examples of other constant current sources include transistors using transistors, ICs, and three-terminal regulators.
以下、定電流源として定電流ダイオードを用いた例について説明するが、定電流源はこの例に限定されるものではない。 Hereinafter, an example using a constant current diode as a constant current source will be described, but the constant current source is not limited to this example.
本発明に係る同時に複数のコンデンサ素子を製造するための反応容器は、反応容器の個々の部屋の内側に陰極板が設けられていて、個々の陰極板と電流吸込型定電流源が接続された構成からなり、他の部屋に溶液が移動可能な通路が設けられていることを特徴とする。化成について前述した誘電体層が形成された複数個の導電体を整列した金属フレームを半導体層形成用電解液が満たされた本発明のコンデンサ素子製造用反応容器の上部に配置し、金属フレームに繋がった複数の導電体をその反応容器内の個々の部屋に設置し、金属フレームと前記陰極とに定電流を印加する。この電流により導電体の誘電体層上に半導体層が形成される。電流値は、導電体の大きさや形成する半導体量の所望の値に合わせて調整すればよい。 The reaction vessel for simultaneously producing a plurality of capacitor elements according to the present invention is provided with a cathode plate inside each room of the reaction vessel, and each cathode plate and a current sink type constant current source are connected. It consists of a structure, The channel | path which can move a solution is provided in the other room, It is characterized by the above-mentioned. A metal frame in which a plurality of conductors on which the dielectric layer is formed as described above is formed is arranged on the upper part of the reaction container for manufacturing the capacitor element of the present invention filled with the electrolyte for forming the semiconductor layer. A plurality of connected conductors are installed in individual rooms in the reaction vessel, and a constant current is applied to the metal frame and the cathode. This current forms a semiconductor layer on the dielectric layer of the conductor. The current value may be adjusted according to a desired value of the size of the conductor and the amount of semiconductor to be formed.
定電流源を定電流ダイオードで構成する場合、各定電流ダイオードは、反応容器の個々の部屋の外側に配置しておくと反応容器の底部内側に配置した陰極板との交錯がなく反応容器を小形化することができため好ましい。この場合、反応容器内外にある陰極板と定電流ダイオードとの接続配線による反応容器の穴を樹脂等で塞ぐ(封口する)ことができる。 When the constant current source is composed of a constant current diode, each constant current diode is arranged outside the individual chamber of the reaction vessel, and there is no crossing with the cathode plate arranged inside the bottom of the reaction vessel. This is preferable because it can be downsized. In this case, the hole of the reaction vessel by the connection wiring between the cathode plate inside and outside the reaction vessel and the constant current diode can be closed (sealed) with resin or the like.
以下添付図面を参照して本発明の具体的態様についての一例を挙げて説明する。
なお、以下の例では、各部屋の形状を矩形の筒状体として説明するが、各部屋は金属フレームに繋がった複数の導電体のそれぞれを収容し得る形状および位置に設ければよく、他の形状(例えば、底面が六角形の筒状体など)でもよい。また、各部屋の間には空隙を設けてもよい。
図1に、コンデンサ素子製造用反応容器(1)の模式側面断面図を示し、図2に反応容器の陰極板と定電流ダイオードの好ましい配置例の平面図(表面図)を示し、図3に同じく裏面図を示す。
絶縁性基板の片面に印刷技術によって形成された膜状金属材料を陰極板(図示の例では円形)とし、絶縁性基板のスルーホールを通して裏面に印刷配線された所定箇所に定電流ダイオード(3)を配設した後スルーホール部をエポキシ樹脂等の絶縁性樹脂で塞いだ構成のものを挙げることができる。スルーホール構造はスルーホール内部に印刷配線が施されているために表裏の電気的な接続が容易にできるため好ましい。このようにして複数個の陰極板(2)と各定電流ダイオード(3)が配設された絶縁性基板を反応容器の底部とし、絶縁性基板を囲むように絶縁性樹脂で枠を形成加工した反応容器(1)を使用することができる。Hereinafter, an example of a specific embodiment of the present invention will be described with reference to the accompanying drawings.
In the following example, the shape of each room is described as a rectangular cylindrical body, but each room may be provided in a shape and position that can accommodate each of a plurality of conductors connected to a metal frame. (For example, a cylindrical body having a hexagonal bottom surface). Moreover, you may provide a space | gap between each room.
FIG. 1 shows a schematic side sectional view of a reaction vessel (1) for producing a capacitor element, FIG. 2 shows a plan view (surface view) of a preferred arrangement example of a cathode plate and a constant current diode of the reaction vessel, and FIG. Similarly, a back view is shown.
A film-like metal material formed on one side of an insulating substrate by a printing technique is used as a cathode plate (circular in the example shown), and a constant current diode (3) is placed at a predetermined place printed on the back surface through a through hole of the insulating substrate. And a structure in which the through-hole portion is closed with an insulating resin such as an epoxy resin. The through-hole structure is preferable because printed wiring is provided inside the through-hole, so that electrical connection between the front and back sides can be easily performed. The insulating substrate on which the plurality of cathode plates (2) and the constant current diodes (3) are arranged in this way is used as the bottom of the reaction vessel, and a frame is formed from the insulating resin so as to surround the insulating substrate. The reaction vessel (1) thus prepared can be used.
また、本発明では絶縁性基板の所定箇所に基板と垂直になるように所定高さの枠(6)を設け、反応容器内に各陰極板が入る部屋を複数個作製し、各部屋に半導体層形成用の電解液が満たされる構造とし、かつ各部屋同士を連通する孔を少なくとも1個以上設ける。したがって、四方を別の部屋に囲まれた部屋にあっては、壁面に少なくとも4個の孔を設けることが好ましい。ただし、実質的に液が各部屋間を移動可能であれば、全ての隣接する部屋間に孔を設けなくてもよい。孔の位置は反応容器に入れる溶液の最上面より下にあれば良い。孔の大きさは、溶液が実用的時間の範囲内で液面を均一化するために移動可能な大きさ以上で、通電時に他の部屋に流れる電流量が許容できる範囲内である大きさ以下とする。具体的な孔の大きさは、反応容器の大きさと各部屋の寸法および希望するコンデンサ特性値のバラツキの範囲によって変化するので予備実験によって決定される。通常、0.1mm〜10mmφ、好ましくは、1mm〜5mmφの大きさの孔が選択される。この範囲であれば、数秒〜数分で各部屋の液面が均一となり、コンデンサ特性のバラツキも大きくならない。 Further, in the present invention, a frame (6) having a predetermined height is provided at a predetermined position of the insulating substrate so as to be perpendicular to the substrate, and a plurality of chambers in which each cathode plate is placed in the reaction vessel are prepared. The structure is filled with the electrolyte for forming the layer, and at least one hole is provided for communicating each room. Therefore, in a room surrounded on four sides by another room, it is preferable to provide at least four holes on the wall surface. However, it is not necessary to provide holes between all adjacent rooms as long as the liquid can move substantially between the rooms. The hole may be located below the uppermost surface of the solution to be put in the reaction vessel. The size of the hole is larger than the size that the solution can move to make the liquid level uniform within the practical time range, and smaller than the size that allows the amount of current flowing to other rooms when energized. And The specific hole size varies depending on the size of the reaction vessel, the size of each room, and the range of variation in the desired capacitor characteristic value, and thus is determined by preliminary experiments. Usually, a hole having a size of 0.1 mm to 10 mmφ, preferably 1 mm to 5 mmφ is selected. Within this range, the liquid level in each room becomes uniform in a few seconds to a few minutes, and variations in capacitor characteristics do not increase.
孔から各部屋の電界が他の部屋にできるだけ影響しないように、各部屋の壁部表面を電気導電体(底部に設けた陰極と電気的に接続)にしておくことが好ましい。孔の形状は溶液が移動できればよく、必ずしも丸形である必要はない。例えば、スリット状でもよく、前記孔径と同様の理由により、その隙間は0.1〜10mmが好ましく、1〜5mmがより好ましい。
前述した誘電体層が形成された個々の導電体が、均一な液面の反応液に漬かるように設計することが好ましく、それにより各導電体に所望の電流を確実に供給することが可能になる。所定高さの枠の一部または全部に各部屋の底面にある陰極板とのみ電気的に接続された陰極板を予め作製しておいてもよい。It is preferable that the wall surface of each room be an electrical conductor (electrically connected to the cathode provided at the bottom) so that the electric field in each room does not affect other rooms as much as possible. The shape of the hole is not limited to a round shape as long as the solution can move. For example, a slit shape may be used, and for the same reason as the hole diameter, the gap is preferably 0.1 to 10 mm, and more preferably 1 to 5 mm.
It is preferable that each conductor formed with the above-described dielectric layer is designed to be immersed in a reaction solution having a uniform liquid level, so that a desired current can be reliably supplied to each conductor. Become. A cathode plate that is electrically connected only to the cathode plate on the bottom surface of each room on a part or all of the frame having a predetermined height may be prepared in advance.
本発明の反応容器の大きさは、一度に作製する導電体の体積と個数、陰極板の大きさに合せて適宜決めることができる。 The size of the reaction vessel of the present invention can be appropriately determined according to the volume and number of conductors produced at one time and the size of the cathode plate.
反応容器に設ける個々の陰極板は、互いに電気的に絶縁され、各陰極板に各1個の導電体が対面するよう設計される。このため、陰極板の大きさを使用する導電体の対応する面より大きくしておくことが望ましい。ただし、大きすぎると反応容器の大きさも大きくなる。この様な理由から、陰極板の大きさは、予備実験によって導電体に充分な半導体層を形成するための電流を通電することができる最小の大きさに決定することが好ましい。例えば、導電体の下面が直方形の場合、陰極板の大きさは、その直方形面積の1.01〜3倍程度、好ましくは1.01〜1.5倍程度がよい。 The individual cathode plates provided in the reaction vessel are electrically insulated from each other, and each cathode plate is designed so that one conductor faces each other. For this reason, it is desirable to make the size of the cathode plate larger than the corresponding surface of the conductor to be used. However, if it is too large, the size of the reaction vessel also becomes large. For this reason, it is preferable that the size of the cathode plate is determined to be a minimum size capable of supplying a current for forming a sufficient semiconductor layer on the conductor by a preliminary experiment. For example, when the lower surface of the conductor is rectangular, the size of the cathode plate is about 1.01 to 3 times, preferably about 1.01 to 1.5 times the rectangular area.
陰極板の材質としては、半導体層形成用の電解液に非腐食性の導体が使用できる。例えば、鉄合金、銅合金、タンタル、白金等が用いられる。陰極板表面に、電解液非腐食性の導体、例えばニッケルや、金、銀、半田等少なくとも1層がメッキされていてもよい。このようなメッキ層を表面に積層した場合には、腐食性の導体、例えば銅、アルミニウムも使用可能である。 As the material of the cathode plate, a non-corrosive conductor can be used for the electrolyte for forming the semiconductor layer. For example, iron alloy, copper alloy, tantalum, platinum or the like is used. The cathode plate surface may be plated with at least one layer of a non-corrosive conductor such as nickel, gold, silver, or solder. When such a plating layer is laminated on the surface, corrosive conductors such as copper and aluminum can also be used.
陰極板は、1部屋に複数枚設けることも可能である。この場合は、例えば2つの陰極板が1部屋にあり、2つとも1個の定電流源に接続させればよく、定電流源を2個使うことはない。好ましくは1部屋に入り得る大きさの陰極板を1枚設けるのがよい。 A plurality of cathode plates can be provided in one room. In this case, for example, two cathode plates may be provided in one room, and both of them may be connected to one constant current source, and two constant current sources are not used. It is preferable to provide one cathode plate having a size capable of entering one room.
定電流源を定電流ダイオードを用いて構成する場合は、例えば、複数個の定電流ダイオードの各カソードが電気的に接続されていて、各定電流ダイオードのアノードに前記陰極板が電気的に直列に接続された構成のものが挙げられる。 When the constant current source is configured using a constant current diode, for example, each cathode of a plurality of constant current diodes is electrically connected, and the cathode plate is electrically connected in series to the anode of each constant current diode. The thing of the structure connected to is mentioned.
図1に示すコンデンサ素子製造用反応容器の例に基づいてさらに詳しく説明する。反応容器(1)の底部に複数の陰極板(2)が各部屋に独立して存在し、各陰極板に直列に反応容器の底部外側にある定電流ダイオード(3)のアノードが接続されている。各部屋には、その部屋を構成する枠壁に溶液が自由に出入りできる孔が設けられて、部屋の高さを越えないように半導体層形成用の電解液(図示せず)が等しい高さで満たされる。 This will be described in more detail based on the example of the reactor for producing a capacitor element shown in FIG. A plurality of cathode plates (2) exist independently in each room at the bottom of the reaction vessel (1), and the anode of the constant current diode (3) outside the bottom of the reaction vessel is connected to each cathode plate in series. Yes. Each room is provided with a hole through which the solution can freely enter and exit the frame wall that constitutes the room, and the electrolyte for forming the semiconductor layer (not shown) is of equal height so as not to exceed the height of the room. Filled with.
図3は、反応容器の底部を外側から見た模式図である。定電流ダイオード(3)が複数個並列に等間隔で配置されていて、各定電流ダイオードのカソード側が電気的に接続されて図中左上の集電端子(4)に接続されている。図2は、反応容器を上から見た模式図である。陰極板(2)が複数個等間隔に配置されている。個々の陰極板は、互いに絶縁され、図3の各定電流ダイオードのアノードに反応容器底部に陰極板と同数設けられたスルーホール(図示せず)を通して接続される。各スルーホールは、絶縁性樹脂やセラミックスで封口されていて反応容器中の電解液が染み出すことは無い。反応容器の上部には、表面に誘電体層を形成した導電体(5)が等間隔で接続された金属板が複数枚、等間隔で配置されて一体化した金属フレームが配設される。各導電体は、反応容器に設けられた各部屋に所定量入れられた電解液中に1個ずつ浸漬される。 FIG. 3 is a schematic view of the bottom of the reaction vessel as seen from the outside. A plurality of constant current diodes (3) are arranged in parallel at equal intervals, and the cathode side of each constant current diode is electrically connected to the current collecting terminal (4) on the upper left in the figure. FIG. 2 is a schematic view of the reaction container as viewed from above. A plurality of cathode plates (2) are arranged at equal intervals. The individual cathode plates are insulated from each other and connected to the anodes of the respective constant current diodes of FIG. 3 through through holes (not shown) provided in the same number as the cathode plates at the bottom of the reaction vessel. Each through hole is sealed with an insulating resin or ceramic so that the electrolytic solution in the reaction vessel does not ooze out. In the upper part of the reaction vessel, a metal frame in which a plurality of metal plates having conductors (5) having a dielectric layer formed on the surface are connected at equal intervals and arranged at equal intervals is arranged. Each conductor is immersed one by one in an electrolyte solution that is put in a predetermined amount in each room provided in the reaction vessel.
次に、上記のコンデンサ素子製造用反応容器を用いて通電手法により半導体層を形成する方法について説明する。
反応容器の各部屋に、部屋の高さを越えないように半導体層形成用の電解液をほぼ等しい高さで満たした後に、金属フレームに等間隔で配置され表面に誘電体層を形成した導電体を各部屋に1個ずつ浸漬し、金属フレームを陽極に、反応容器底部外側に配置した集電端子を電源の陰極に接続して通電手法により半導体層を形成する。Next, a method for forming a semiconductor layer by an energization method using the above reaction container for manufacturing a capacitor element will be described.
Each chamber of the reaction vessel is filled with an electrolyte for forming a semiconductor layer so that it does not exceed the height of the chamber, and then placed in a metal frame at equal intervals to form a dielectric layer on the surface. One body is immersed in each room, a metal frame is connected to the anode, a current collecting terminal arranged outside the bottom of the reaction vessel is connected to the cathode of the power source, and a semiconductor layer is formed by an energization method.
通電により半導体となる原料や、場合によっては前述したドーパント(例えば、アリールスルホン酸または塩、アルキルスルホン酸または塩、各種高分子スルホン酸または塩等の公知のドーパント)が溶解している半導体層形成溶液に通電することにより誘電体層上に半導体層が形成される。通電時間、半導体層形成用液の濃度、pH、温度、通電電流値、通電電圧値は、使用する導電体の種類、大きさ、質量、所望する半導体層の形成厚み等によって変わるため、予め実験によって条件を決定しておく。通電条件を変えて複数回通電を行うことも可能である。また、導電体の表面に形成されている誘電体層の欠陥を修復するために、途中の任意の時(1回でも複数回でも可)および/または最後に従来公知の再化成操作を行ってもよい。
また、導電体層の表面に形成された誘電体層に、電気的な微小欠陥部を作製した後に本発明の方法によって半導体層を形成してもよい。Formation of a semiconductor layer in which a raw material that becomes a semiconductor when energized or, in some cases, known dopants (eg, known dopants such as aryl sulfonic acid or salt, alkyl sulfonic acid or salt, various polymer sulfonic acid or salt) are dissolved A semiconductor layer is formed on the dielectric layer by energizing the solution. Since the energization time, the concentration of the semiconductor layer forming solution, pH, temperature, energization current value, and energization voltage value vary depending on the type, size, and mass of the conductor used, the desired thickness of the semiconductor layer, etc. The conditions are determined by It is also possible to energize a plurality of times by changing energization conditions. In addition, in order to repair defects in the dielectric layer formed on the surface of the conductor, a conventionally known re-formation operation is performed at any time during the course (can be performed once or multiple times) and / or finally. Also good.
In addition, a semiconductor layer may be formed by the method of the present invention after an electrical minute defect is formed in a dielectric layer formed on the surface of the conductor layer.
本発明のコンデンサでは、前述した方法等で形成された半導体層の上にコンデンサの外部引き出しリード(例えば、リードフレーム)との電気的接触をよくするために、電極層を設けてもよい。 In the capacitor of the present invention, an electrode layer may be provided on the semiconductor layer formed by the above-described method or the like in order to improve electrical contact with an external lead (for example, a lead frame) of the capacitor.
電極層は、例えば、導電ペーストの固化、メッキ、金属蒸着、耐熱性の導電樹脂フィルムの付着等により形成することができる。導電ペーストとしては、銀ペースト、銅ペースト、アルミニウムペースト、カーボンペースト、ニッケルペースト等が好ましい。これらは1種を用いても2種以上を用いてもよい。2種以上を用いる場合、混合してもよく、または別々の層として積層してもよい。導電ペーストを適用した後、空気中に放置するか、または加熱して固化させる。導電ペーストの固化後の厚みは、1層あたり通常、約0.1〜約200μmになる。 The electrode layer can be formed, for example, by solidification of a conductive paste, plating, metal deposition, adhesion of a heat-resistant conductive resin film, or the like. As the conductive paste, silver paste, copper paste, aluminum paste, carbon paste, nickel paste and the like are preferable. These may be used alone or in combination of two or more. When using 2 or more types, they may be mixed or laminated as separate layers. After applying the conductive paste, it is left in the air or heated to solidify. The thickness of the conductive paste after solidification is usually about 0.1 to about 200 μm per layer.
導電ペーストは、樹脂と金属等の導電粉を主成分とし、場合によっては樹脂を溶解するための溶媒や樹脂の硬化剤等を含有してもよい。溶媒はペースト固化時に飛散する。
導電ペースト中の樹脂としては、アルキッド樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、イミド樹脂、フッ素樹脂、エステル樹脂、イミドアミド樹脂、アミド樹脂、スチレン樹脂、ウレタン樹脂等の公知の各種樹脂が使用される。導電粉としては、銀、銅、アルミニウム、金、カ−ボン、ニッケルおよびこれら金属を主成分とする合金の粉、これら金属が表層にあるコート粉やこれらの混合物粉の少なくとも1種が使用される。The conductive paste contains conductive powder such as resin and metal as main components, and may contain a solvent for dissolving the resin, a curing agent for the resin, or the like depending on the case. The solvent is scattered when the paste is solidified.
As the resin in the conductive paste, various known resins such as alkyd resin, acrylic resin, epoxy resin, phenol resin, imide resin, fluorine resin, ester resin, imidoamide resin, amide resin, styrene resin, and urethane resin are used. . As the conductive powder, at least one of silver, copper, aluminum, gold, carbon, nickel and alloy powders mainly composed of these metals, coat powders having these metals on the surface layer, and mixed powders thereof are used. The
導電粉は、通常40〜97質量%含まれている。40質量%未満であると作製した導電ペーストの導電性が小さく、また97質量%を超えると、導電ペーストの接着性が低下する。導電ペーストに前述した半導体層を形成する導電性高分子や金属酸化物の粉を混合して使用してもよい。 The conductive powder is usually contained in an amount of 40 to 97% by mass. When the content is less than 40% by mass, the conductivity of the produced conductive paste is small, and when it exceeds 97% by mass, the adhesion of the conductive paste decreases. You may mix and use the conductive polymer and metal oxide powder which form the semiconductor layer mentioned above in the electrically conductive paste.
メッキとしては、ニッケルメッキ、銅メッキ、銀メッキ、金メッキ、アルミニウムメッキ等が挙げられる。また蒸着金属としては、アルミニウム、ニッケル、銅、金、銀等が挙げられる。
具体的には、例えば半導体層が形成された導電体の上にカーボンペースト、銀ペーストを順次積層しエポキシ樹脂のような材料で封止してコンデンサが構成される。このコンデンサは、導電体に前もって接続された、または後で接続された金属線や金属箔からなるリードを有していてもよい。Examples of the plating include nickel plating, copper plating, silver plating, gold plating, and aluminum plating. Examples of the deposited metal include aluminum, nickel, copper, gold, and silver.
Specifically, for example, a carbon paste and a silver paste are sequentially laminated on a conductor on which a semiconductor layer is formed and sealed with a material such as an epoxy resin to form a capacitor. The capacitor may have a lead made of a metal wire or a metal foil connected to the conductor in advance or connected later.
以上のような構成の本発明のコンデンサは、例えば、樹脂モールド、樹脂ケース、金属性の外装ケース、樹脂のディッピング、ラミネートフィルムによる外装などの外装により各種用途のコンデンサ製品とすることができる。
これらの中でも、とりわけ樹脂モールド外装を行ったチップ状コンデンサが、小型化と低コスト化が行えるので好ましい。The capacitor of the present invention having the above-described configuration can be made into a capacitor product for various uses by using, for example, a resin mold, a resin case, a metallic outer case, a resin dipping, or an outer case using a laminate film.
Among these, a chip-shaped capacitor with a resin mold is particularly preferable because it can be reduced in size and cost.
樹脂モールド外装の場合について具体的に説明すると、本発明のコンデンサは、前記コンデンサ素子の導電体層の一部を、別途用意した一対の対向して配置された先端部を有するリードフレームの一方の先端部に載置し、さらに陽極リードの一部(寸法を合わせるために陽極リードの先端を切断して使用してもよい)を前記リードフレームの他方の先端部に載置し、例えば前者は、導電ペーストの固化で、後者は、溶接で各々電気的・機械的に接合した後、前記リードフレームの先端部の一部を残して樹脂封口し、樹脂封口外の所定部でリードフレームを切断折り曲げ加工(リードフレームが樹脂封口の下面にあってリードフレームの下面または下面と側面のみを残して封口されている場合は、切断加工のみでもよい)して作製される。 Specifically, in the case of the resin mold exterior, the capacitor according to the present invention includes a part of the conductor layer of the capacitor element, and a lead frame having a pair of opposed tip portions separately prepared. It is placed on the tip, and a part of the anode lead (the tip of the anode lead may be cut and used for matching the dimensions) is placed on the other tip of the lead frame. The conductive paste is solidified, and the latter is electrically and mechanically joined by welding, and then the resin is sealed by leaving a part of the tip of the lead frame, and the lead frame is cut at a predetermined portion outside the resin seal. It is manufactured by bending (when the lead frame is on the lower surface of the resin seal and is sealed leaving only the lower surface or the lower surface and side surfaces of the lead frame, it may be cut only).
前記リードフレームは、前述したように切断加工されて最終的にはコンデンサの外部端子となるが、形状は、箔または平板状であり、材質は鉄、銅、アルミニウムまたはこれら金属を主成分とする合金が使用される。該リードフレームの一部または全部に半田、錫、チタン、金、ニッケル等のメッキが施されていてもよい。リードフレームとメッキとの間に、ニッケルまたは銅等の下地メッキがあってもよい。 The lead frame is cut as described above and finally becomes an external terminal of the capacitor. The shape of the lead frame is foil or flat plate, and the material is iron, copper, aluminum, or these metals as a main component. An alloy is used. Part or all of the lead frame may be plated with solder, tin, titanium, gold, nickel, or the like. There may be a base plating such as nickel or copper between the lead frame and the plating.
前記切断折り曲げ加工後または加工前にリードフレームにこれらの各種メッキを行うこともできる。また、コンデンサ素子を載置接続する前にメッキを行っておいてからさらに封口後の任意の時に再メッキを行うことも可能である。 These various platings can also be performed on the lead frame after or before the cutting and bending process. It is also possible to perform re-plating at any time after sealing after plating before placing and connecting the capacitor element.
該リードフレームには、一対の対向して配置された先端部が存在し、先端部間に隙間があることで、各コンデンサ素子の陽極部と陰極部とが絶縁される。 The lead frame has a pair of opposed tip portions, and a gap between the tip portions insulates the anode portion and the cathode portion of each capacitor element.
樹脂モールド外装に使用される樹脂の種類として、エポキシ樹脂、フェノール樹脂、アルキッド樹脂等固体電解コンデンサの封止に使用される公知の樹脂が採用できるが、各樹脂とも好ましくは低応力樹脂を使用すると、封止時に起きるコンデンサ素子への封止応力の発生を緩和することができるために好ましい。また、樹脂封口するための製造機としては、好ましくはトランスファーマシンが使用される。 As the type of resin used for the resin mold exterior, known resins used for sealing of solid electrolytic capacitors such as epoxy resin, phenol resin, alkyd resin, etc. can be adopted, but each resin preferably uses a low stress resin. It is preferable because generation of sealing stress to the capacitor element that occurs during sealing can be reduced. Further, a transfer machine is preferably used as a manufacturing machine for sealing the resin.
このように作製されたコンデンサは、電極層形成時や外装時の熱的および/または物理的な誘電体層の劣化を修復するために、エージング処理を行ってもよい。
エージング方法は、コンデンサに所定の電圧(通常、定格電圧の2倍以内)を印加することによって行われる。エージング時間や温度は、コンデンサの種類、容量、定格電圧によって最適値が異なるので予め実験によって決定されるが、通常、時間は、数分から数日、温度は、電圧印加冶具の熱劣化を考慮して300℃以下で行われる。エージングは、減圧、常圧、加圧下のいずれの条件で行ってもよく、エージングの雰囲気は、空気中、アルゴン、窒素、ヘリウム等のガス中でもよいが、好ましくは水蒸気中である。例えば、エージングを、水蒸気を含む雰囲気中で行い、次に空気中、アルゴン、窒素、ヘリウム等のガス中で行うと誘電体層の安定化が進む場合がある。水蒸気を供給した後に常圧室温に戻し、あるいは、水蒸気を供給した後に150〜250℃の高温に数分〜数時間放置し余分な水分を除去し前記エージングを行うことも可能である。水蒸気の供給方法の1例として、エージングの炉中に置いた水溜めから熱により水蒸気を供給する方法が挙げられる。The capacitor thus produced may be subjected to an aging treatment in order to repair the deterioration of the thermal and / or physical dielectric layer when the electrode layer is formed or when it is packaged.
The aging method is performed by applying a predetermined voltage (usually within twice the rated voltage) to the capacitor. Aging time and temperature are determined by experiments because optimum values differ depending on the type, capacity, and rated voltage of the capacitor.Normally, the time is several minutes to several days, and the temperature is determined by taking into account the thermal deterioration of the voltage application jig. At 300 ° C. or lower. Aging may be performed under any conditions of reduced pressure, normal pressure, and increased pressure, and the aging atmosphere may be air, a gas such as argon, nitrogen, or helium, but is preferably water vapor. For example, when aging is performed in an atmosphere containing water vapor and then in a gas such as air, argon, nitrogen, or helium, the dielectric layer may be stabilized. It is possible to return to normal pressure and room temperature after supplying water vapor, or to leave at a high temperature of 150 to 250 ° C. for several minutes to several hours after supplying water vapor to remove excess water and perform the aging. One example of a method for supplying water vapor is a method for supplying water vapor by heat from a water reservoir placed in an aging furnace.
電圧印加方法として、直流、任意の波形を有する交流、直流に重畳した交流やパルス電流等の任意の電流を流すように設計することができる。エージングの途中に一旦電圧印加を止め、再度電圧印加を行うことも可能である。 As a voltage application method, it can be designed to flow an arbitrary current such as a direct current, an alternating current having an arbitrary waveform, an alternating current superimposed on the direct current, or a pulse current. It is also possible to stop the voltage application once during the aging and apply the voltage again.
本発明によって製造されるコンデンサは、半導体層形成を安定した同一条件で行えるため容量が安定している。このためコンデンサ群(同時に作製される多数個のコンデンサ)の容量分布(ばらつき)は、従来品に比較して狭いものとなる。そのため、特定の容量範囲のコンデンサを取得しようとする場合の歩留まりが向上する。 The capacitor manufactured according to the present invention has a stable capacitance because the semiconductor layer can be formed under the same stable conditions. For this reason, the capacitance distribution (variation) of the capacitor group (a large number of capacitors manufactured at the same time) is narrower than that of the conventional product. For this reason, the yield in the case of obtaining a capacitor having a specific capacitance range is improved.
また、本発明で製造されたコンデンサ群は、パソコン、サーバー、カメラ、ゲーム機、DVD、AV機器、携帯電話等のデジタル機器や、各種電源等の電子機器に利用可能である。 In addition, the capacitor group manufactured by the present invention can be used for digital devices such as personal computers, servers, cameras, game machines, DVDs, AV devices, mobile phones, and electronic devices such as various power sources.
以下、本発明の具体例についてさらに詳細に説明するが、以下の例により本発明は限定されるものではない。 Hereinafter, specific examples of the present invention will be described in more detail, but the present invention is not limited to the following examples.
実施例1:
1.コンデンサ素子製造用反応容器の作製
長さ322mm、幅202mm、厚さ2mmの銅張りガラスエポキシ板に印刷配線により一方の面(表面)に図3のように直径7mmの銅材の上に金メッキを施した陰極板を長さ方向に32個、幅方向に20個間隔を揃え計640個作製した。さらに他方の面(裏面)にスルーホールを介して図2のような定電流ダイオードのアノード側と表面の各陰極板ととが直列に接続するように印刷配線した。各定電流ダイオードのカソード部は印刷配線のランドに半田接続され、最終的に集電端子に至る配線によって接続した。定電流ダイオードとして石塚電子(株)製F−101から120〜160μAのものを選別した。スルーホール部はエポキシ樹脂で埋めた。次に、図4に模式的に示すように、表面の個々の陰極板(2)が1つずつ部屋に入るように高さ20mm、幅2mmのガラスエポキシ板(6)を表面に垂直に立て接着樹脂で止め、略同一寸法の小部屋(平面8×8mm)を640個作製し、反応容器の640個の各部屋の壁中央下から5mmの箇所に各々2mmφの孔(7)を開けた。ただし、最外壁には孔は設けない。図4(A)はこの反応容器(1)の全体の概観を示し、図4(B)はその中の任意の連結する3部屋を取り出して模式的に示したものである。導体層形成用の溶液を高さ15mm入れ、各部屋の液面高さを一定とした。Example 1:
1. Preparation of reaction vessel for manufacturing capacitor element Gold plating is applied on a copper material having a diameter of 7 mm as shown in FIG. 3 on one side (front surface) of a copper-clad glass epoxy plate having a length of 322 mm, a width of 202 mm, and a thickness of 2 mm. A total of 640 cathode plates were prepared with 32 intervals in the length direction and 20 intervals in the width direction. Further, the other surface (back surface) was printed and wired so that the anode side of the constant current diode as shown in FIG. 2 and each cathode plate on the surface were connected in series via a through hole. The cathode portion of each constant current diode was soldered to the land of the printed wiring, and finally connected by wiring reaching the current collecting terminal. A constant current diode was selected from F-101 manufactured by Ishizuka Electronics Co., Ltd., having a density of 120 to 160 μA. The through hole was filled with epoxy resin. Next, as schematically shown in FIG. 4, a glass epoxy plate (6) having a height of 20 mm and a width of 2 mm is set up perpendicular to the surface so that each cathode plate (2) on the surface enters the room one by one. 640 small chambers (planar 8 × 8 mm) having substantially the same dimensions were produced by fastening with an adhesive resin, and holes (7) each having a diameter of 2 mm were formed at a
2.コンデンサの作製
CV10万μF・V/gのタンタル焼結体(大きさ4.5×3.0×1.0mm、質量84mg、引き出しリード線0.40mmφが10mm表面に出ている。)を導電体として使用した。リード線に後工程の半導体層形成時の溶液はねあがり防止のためテトラフルオロエチレン製ワッシャーを装着させた。このようにした導電体のリード線の上部2mmを長さ360mm、幅20mm、厚さ2mmのステンレス製の板に端から25mmの位置から10mm間隔で方向を揃えて32個溶接で接続した。同様に導電体を32個接続したステンレス板を20枚用意し、各ステンレス板を10mm間隔で平行に各先端を一致させて導電体640個を同一方向に配設できる金属フレームに取り付けた。別途用意した0.1%燐酸水溶液が入った化成槽上にフレームを設置し、導電体とリード線の一部を水溶液に浸漬するように配置したのち、フレームを陽極に、化成槽中に設けたタンタル板を陰極として10Vを印加し、水溶液を80℃として6時間化成を行い、槽から引き上げた後、水洗・乾燥して導電体の細孔内部と表面およびリード線の一部にTa2O5からなる誘電体層を形成した。次に、フレームの導電体のみを1%ベンゼンスルホン酸鉄水溶液に漬け、引き上げ、水洗・乾燥することを7回繰り返した。3%アントラキノン−2−スルホン酸と飽和濃度以上のエチレンジオキシチオフェンを入れた30%エチレングリコール水溶液をコンデンサ素子製造用反応容器に満たした。この反応容器の640個の部屋にフレームの640個の導電体が各々漬かるように配置し、フレームを陽極に、反応容器の外側底部の集電端子を陰極にして13.5Vで1時間室温で通電し、半導体層を形成した。フレームを引き上げ、水洗・アルコール洗浄・乾燥を行った。その後、化成液を0.1%酢酸にした前述の化成槽に導電体とリード線の一部が漬かるように配置して7V、15分、80℃で再化成を行った。フレームを引き上げ、水洗・アルコール洗浄・乾燥を行った。このような半導体層形成、再化成を5回繰り返して最終的な半導体層とした。さらに、フレームをカーボンペースト槽および銀ペースト槽と順に導電体部分が漬かるように設置、および乾燥を行うことにより半導体層上に電極層を積層した。2. Production of Capacitor A tantalum sintered body having a CV of 100,000 μF · V / g (size 4.5 × 3.0 × 1.0 mm, mass 84 mg, lead wire 0.40 mmφ on the surface of 10 mm) was used as a conductor. A tetrafluoroethylene washer was attached to the lead wire to prevent the solution from splashing when the semiconductor layer was formed in the subsequent step. The upper 2 mm of the lead wire of the conductor thus made was connected to a stainless steel plate having a length of 360 mm, a width of 20 mm, and a thickness of 2 mm by welding at 32 mm from the end with the direction aligned at 10 mm intervals. Similarly, 20 stainless steel plates to which 32 conductors were connected were prepared, and each stainless steel plate was attached to a metal frame in which 640 conductors could be arranged in the same direction with their tips aligned in parallel at intervals of 10 mm. A frame is placed on a chemical conversion tank containing a 0.1% phosphoric acid aqueous solution prepared separately, and the conductor and a part of the lead wire are immersed in the aqueous solution. The plate is used as a cathode, 10V is applied, the aqueous solution is formed at 80 ° C. for 6 hours, pulled up from the tank, washed with water and dried to form Ta 2 O 5 on the inside of the pores of the conductor and on the surface of the lead wire. A dielectric layer consisting of Next, only the conductor of the frame was immersed in a 1% aqueous iron benzenesulfonate solution, pulled up, washed with water and dried seven times. A reaction vessel for producing a capacitor element was filled with a 30% ethylene glycol aqueous solution containing 3% anthraquinone-2-sulfonic acid and ethylenedioxythiophene having a saturation concentration or higher. Place the 640 conductors of the frame in the 640 chambers of the reaction vessel so that they are immersed in the chamber. Use the frame as the anode and the current collector terminal at the outer bottom of the reaction vessel as the cathode. Then, a semiconductor layer was formed. The frame was pulled up, washed with water, washed with alcohol, and dried. Then, it arrange | positioned so that a conductor and a part of lead wire might be immersed in the above-mentioned chemical conversion tank which made the chemical conversion solution 0.1% acetic acid, and re-chemical-ized at 7V, 15 minutes and 80 degreeC. The frame was pulled up, washed with water, washed with alcohol, and dried. Such semiconductor layer formation and re-chemical formation were repeated five times to obtain a final semiconductor layer. Furthermore, the electrode layer was laminated | stacked on the semiconductor layer by installing so that a conductor part might be immersed in a carbon paste tank and a silver paste tank in order, and drying.
電極層を形成した各導電体をフレームから取り外し、別途用意した表面に錫メッキした銅合金からなるリードフレームの両先端部の陽極側に導電体のリード線を一部切断除去して載置し、陰極側に導電体の銀ペースト側を載置し、前者はスポット溶接で、後者は銀ペーストで接続した。その後、エポキシ樹脂で封口した後に、リードフレームの切断、折り曲げ加工を行い、大きさ7.3×4.3×1.8mmのチップ状コンデンサを作製した。次いで115℃、コンデンサへの印加電圧3.5Vで5時間エージングした。得られたコンデンサは、定格2.5V容量680μFであり、720〜645μFの個数525個、720〜750μFの個数61個、645〜610μFの個数49個、610〜580μFの個数5個、580〜550μFの個数0個の容量分布を持っていた。
さらに、コンデンサ素子製造用反応容器に溶液の補充(液面調整)をすることなく、同様に2回目のコンデンサの製造を行った。得られたコンデンサの容量分布は1回目と2回目でほとんど変わらなかった。結果を表1に示す。Remove the conductors on which the electrode layers are formed from the frame, and place the conductors with the conductor wires partially cut off and placed on the anode side of both ends of the lead frame made of a copper alloy tin-plated on a separately prepared surface. The silver paste side of the conductor was placed on the cathode side, the former was connected by spot welding and the latter was connected by silver paste. Then, after sealing with an epoxy resin, the lead frame was cut and bent to produce a chip capacitor having a size of 7.3 × 4.3 × 1.8 mm. Next, aging was performed at 115 ° C. and a voltage applied to the capacitor of 3.5 V for 5 hours. The obtained capacitors have a rated 2.5 V capacity of 680 μF, the number of 525 of 720 to 645 μF, 61 of 720 to 750 μF, 49 of 645 to 610 μF, 5 of 610 to 580 μF, 5 of 580 to 550 μF, It had a capacity distribution of 0 pieces.
Further, the capacitor was manufactured for the second time in the same manner without replenishing the solution in the reaction container for manufacturing the capacitor element (liquid level adjustment). The capacitance distribution of the obtained capacitor was almost the same between the first time and the second time. The results are shown in Table 1.
実施例2:
実施例1において、壁の孔の大きさを0.7mmφとしたほかは実施例1と同様にしてチップ状コンデンサを作製した。得られたコンデンサは、定格2.5V容量680μFであり、720〜645μFの個数556個、720〜750μFの個数28個、645〜610μFの個数56個、610〜580μFの個数0個、580〜550μFの個数0個の容量分布を持っていた。
さらに、コンデンサ素子製造用反応容器に溶液の補充(液面調整)をすることなく、同様に2回目のコンデンサの製造を行った。得られたコンデンサの容量分布は1回目と2回目でほとんど変わらなかった。結果を表1に示す。Example 2:
A chip capacitor was produced in the same manner as in Example 1 except that the size of the hole in the wall was changed to 0.7 mmφ. The obtained capacitors have a rated 2.5 V capacity of 680 μF, the number of 720 to 645 μF is 556, the number of 720 to 750 μF is 28, the number of 645 to 610 μF is 56, the number of 610 to 580 μF is 0, the number of 580 to 550 μF is It had a capacity distribution of 0 pieces.
Further, the capacitor was manufactured for the second time in the same manner without replenishing the solution in the reaction container for manufacturing the capacitor element (liquid level adjustment). The capacitance distribution of the obtained capacitor was almost the same between the first time and the second time. The results are shown in Table 1.
実施例3:
実施例1において、壁の孔の大きさを0.2mmφとしたほかは実施例1と同様にしてチップ状コンデンサを作製した。得られたコンデンサは、定格2.5V容量680μFであり、720〜645μFの個数577個、720〜750μFの個数21個、645〜610μFの個数42個、610〜580μFの個数0個、580〜550μFの個数0個の容量分布を持っていた。
さらに、コンデンサ素子製造用反応容器に溶液の補充(液面調整)をすることなく、同様に2回目のコンデンサの製造を行った。得られたコンデンサの容量分布は1回目と2回目でほとんど変わらなかった。結果を表1に示す。Example 3:
A chip capacitor was manufactured in the same manner as in Example 1 except that the size of the hole in the wall was set to 0.2 mmφ. The obtained capacitors have a rated 2.5 V capacity of 680 μF, the number of 577 of 720 to 645 μF, the number of 21 of 720 to 750 μF, the number of 42 of 645 to 610 μF, the number of 0 of 610 to 580 μF, the number of 0 of 580 to 550 μF. It had a capacity distribution of 0 pieces.
Further, the capacitor was manufactured for the second time in the same manner without replenishing the solution in the reaction container for manufacturing the capacitor element (liquid level adjustment). The capacitance distribution of the obtained capacitor was almost the same between the first time and the second time. The results are shown in Table 1.
実施例4:
実施例1において、壁の孔の大きさを20mmφとしたほかは実施例1と同様にしてチップ状コンデンサを作製した。得られたコンデンサは、定格2.5V容量680μFであり、720〜645μFの個数455個、720〜750μFの個数29個、645〜610μFの個数108個、610〜580μFの個数30個、580〜550μFの個数18個の容量分布を持っていた。
さらに、コンデンサ素子製造用反応容器に溶液の補充(液面調整)をすることなく、同様に2回目のコンデンサの製造を行った。得られたコンデンサの容量分布は1回目と2回目でほとんど変わらなかった。結果を表1に示す。Example 4:
A chip capacitor was produced in the same manner as in Example 1 except that the size of the hole in the wall was 20 mmφ in Example 1. The obtained capacitors have a rated 2.5V capacity of 680 μF, the number of 455 of 720 to 645 μF, the number of 29 of 720 to 750 μF, the number of 108 of 645 to 610 μF, the number of 30 of 610 to 580 μF, the number of 30 of 580 to 550 μF. It had a capacity distribution of 18 pieces.
Further, the capacitor was manufactured for the second time in the same manner without replenishing the solution in the reaction container for manufacturing the capacitor element (liquid level adjustment). The capacitance distribution of the obtained capacitor was almost the same between the first time and the second time. The results are shown in Table 1.
実施例5:
1.コンデンサ素子製造用反応容器の作製
実施例1で、反応容器の各小部屋の陰極板を印刷技術で作製せずに、各小部屋の底部と側面の底部から高さ14mmまでに、銀粉93質量%、エポキシ樹脂7質量%の銀ペーストで厚さ約0.3mmのべた塗り部を描いて陰極板としたこと、定電流ダイオードとして石塚電子(株)製F−101Lから60〜100μAのものを選別して使用したこと、実施例1と同じ壁の位置に、各部屋の下から5mmと9mmのところに孔として長さ7mm幅1mmのスリットを2本設けた。半導体層形成用の溶液を高さ15mm入れ、各部屋の液面高さを一定とした。Example 5:
1. Preparation of reaction vessel for manufacturing capacitor element In Example 1, 93 masses of silver powder was prepared from the bottom of each small chamber and the bottom of the side surface to a height of 14 mm without producing the cathode plate of each small chamber of the reaction vessel by printing technology. %, A solid paste part with a thickness of about 0.3 mm was drawn with silver paste of 7% by mass of epoxy resin, and a cathode plate was selected, and a constant current diode was selected from F-101L made by Ishizuka Electronics Co., Ltd. 60-100 μA In the same wall position as in Example 1, two slits having a length of 7 mm and a width of 1 mm were provided as holes at 5 mm and 9 mm from the bottom of each room. The solution for forming the semiconductor layer was 15 mm in height, and the liquid level in each room was constant.
2.コンデンサの作製
ニオブインゴットの水素脆性を利用して粉砕したニオブ一次粉(平均粒径0.32μm)を造粒し平均粒径110μmのニオブ粉(微粉であるために表面が自然酸化されていて酸素95000 ppm存在する。)を得た。つぎに450℃の窒素雰囲気中に放置しさらに700℃のアルゴン中に放置することにより、窒化量9600ppmの一部窒化したニオブ粉(CV298000μF・V/g)とした。このニオブ粉を0.37mmφのニオブ線と共に成形した後1280℃で焼結することにより、大きさ4.0×3.5×1.7mm(質量0.08g。ニオブ線がリード線となり焼結体内部に3.7mm、外部に10mm存在する。)の焼結体(導電体)を複数個作製した。次に、導電体を実施例1と同様なステンレス板に同数接続した後、金属フレームに同数配設した。電圧のみを20Vにして化成することにより導電体表面とリード線の一部にNb2O5を主成分とする誘電体層を形成した。2. Capacitor production Niobium primary powder (average particle size 0.32μm) ground using the hydrogen embrittlement of niobium ingots is granulated, and niobium powder with an average particle size of 110μm (because it is a fine powder, the surface is naturally oxidized and oxygen is 95,000. ppm present.). Next, it was left in a nitrogen atmosphere at 450 ° C. and then in argon at 700 ° C. to obtain a partially nitrided niobium powder (CV 298000 μF · V / g) having a nitriding amount of 9600 ppm. This niobium powder is molded with a 0.37mmφ niobium wire and then sintered at 1280 ° C to obtain a size of 4.0 x 3.5 x 1.7mm (mass 0.08g. The niobium wire becomes the lead wire, 3.7mm inside the sintered body, external A plurality of sintered bodies (conductors) having a thickness of 10 mm were prepared. Next, the same number of conductors were connected to the same stainless steel plate as in Example 1, and then the same number of conductors were disposed on the metal frame. A dielectric layer containing Nb 2 O 5 as a main component was formed on the surface of the conductor and part of the lead wire by forming only the voltage at 20V.
次いで、コンデンサ素子製造用反応容器を12℃にコントロールされた低温室に置いた後、実施例1のアントラキノン−2−スルホン酸をピロールに代え、さらに通電電圧と再化成電圧を各々23Vと14Vにし、さらに通電時間を90分にして反応回数を11回とした以外は実施例1と同様にして半導体層、電極層を形成し、封止して大きさ7.3×4.3×2.8mmのチップ状固体電解コンデンサを作製した。得られたコンデンサは、定格4V容量1000μFであり、950〜1050μFの個数526個、1050〜1100μFの個数16個、950〜900μFの個数81個、900〜850μFの個数17個の容量分布を持っていた。
さらに、コンデンサ素子製造用反応容器に溶液の補充(液面調整)をすることなく、同様に2回目のコンデンサの製造を行った。得られたコンデンサの容量分布は1回目と2回目でほとんど変わらなかった。結果を表2に示す。Next, after placing the reactor for producing the capacitor element in a low-temperature chamber controlled at 12 ° C., the anthraquinone-2-sulfonic acid of Example 1 was replaced with pyrrole, and the energization voltage and re-forming voltage were set to 23 V and 14 V, respectively. Further, a semiconductor layer and an electrode layer were formed and sealed in the same manner as in Example 1 except that the energization time was 90 minutes and the number of reactions was 11, and a chip-like solid having a size of 7.3 × 4.3 × 2.8 mm was formed. An electrolytic capacitor was produced. The obtained capacitor has a rated 4V capacity of 1000 μF, and has a capacity distribution of 526 of 950 to 1050 μF, 16 of 1050 to 1100 μF, 81 of 950 to 900 μF, and 17 of 900 to 850 μF. It was.
Further, the capacitor was manufactured for the second time in the same manner without replenishing the solution in the reaction container for manufacturing the capacitor element (liquid level adjustment). The capacitance distribution of the obtained capacitor was almost the same between the first time and the second time. The results are shown in Table 2.
比較例1:
1.コンデンサ素子製造用反応容器の作製
長さ322mm、幅202mm、厚さ2mmの銅張りガラスエポキシ板に印刷配線により一方の面(表面)に図3のように直径7mmの銅材の上に金メッキを施した陰極板を長さ方向に32個、幅方向に20個間隔を揃え計640個作製した。さらに他方の面(裏面)にスルーホールを介して図2のような定電流ダイオードのアノード側と表面の各陰極板とが直列に接続するように印刷配線した。各定電流ダイオードのカソード部は印刷配線のランドに半田接続され、最終的に集電端子に至る配線によって接続した。定電流ダイオードとして石塚電子(株)製F−101から120〜160μAのものを選別した。スルーホール部はエポキシ樹脂で埋めた。次に表面の個々の陰極板が1つずつ部屋に入るように高さ20mm、幅2mmのガラスエポキシ板を表面に垂直に立て接着樹脂で止め、略同一寸法の小部屋(平面8×8mm)を640個作製し、各部屋の断面が図1で示されるようなコンデンサ素子製造用反応容器を作製した。Comparative Example 1:
1. Preparation of reaction vessel for manufacturing capacitor element Gold plating is applied on a copper material having a diameter of 7 mm as shown in FIG. 3 on one side (front surface) of a copper-clad glass epoxy plate having a length of 322 mm, a width of 202 mm, and a thickness of 2 mm. A total of 640 cathode plates were prepared with 32 intervals in the length direction and 20 intervals in the width direction. Furthermore, the other surface (back surface) was printed and wired so that the anode side of the constant current diode as shown in FIG. 2 and each cathode plate on the surface were connected in series via a through hole. The cathode portion of each constant current diode was soldered to the land of the printed wiring, and finally connected by wiring reaching the current collecting terminal. A constant current diode was selected from F-101 manufactured by Ishizuka Electronics Co., Ltd., having a density of 120 to 160 μA. The through hole was filled with epoxy resin. Next, a glass epoxy plate with a height of 20 mm and a width of 2 mm is vertically placed on the surface so that each cathode plate on the surface enters into the room, and is fastened with an adhesive resin. 640 were produced, and a reaction vessel for producing a capacitor element was produced in which the cross section of each room was as shown in FIG.
2.コンデンサの作製
CV10万μF・V/gのタンタル焼結体(大きさ4.5×3.0×1.0mm、質量84mg、引き出しリード線0.40mmφが7mm表面に出ている。)を導電体として使用した。リード線に後工程の半導体層形成時の溶液はねあがり防止のためテトラフルオロエチレン製ワッシャーを装着させた。このようにした導電体のリード線の上部2mmを長さ360mm幅20mm厚さ2mmのステンレス製の板に端から25mmの位置から10mm間隔で方向を揃えて32個溶接で接続した。同様に導電体を32個接続したステンレス板を20枚用意し、各ステンレス板を10mm間隔で平行に各先端を一致させて導電体640個を同一方向に配設できる金属フレームに取り付けた。別途用意した0.1%燐酸水溶液が入った化成槽上にフレームを設置し、導電体とリード線の一部を水溶液に浸漬するように配置したのち、フレームを陽極に、化成槽中に設けたタンタル板を陰極として10Vを印加し、水溶液を80℃として6時間化成を行い、槽から引き上げた後、水洗・乾燥して導電体の細孔内部と表面およびリード線の一部にTa2O5からなる誘電体層を形成した。次に、フレームの導電体のみを10%エチルベンゼン−2−スルホン酸鉄水溶液に漬け、引き上げ、水洗・乾燥することを7回繰り返した後、3%アントラキノン−2−スルホン酸と飽和濃度以上のエチレンジオキシチオフェンを入れた30%エチレングリコール水溶液を各部屋に同じ高さで配液したコンデンサ素子製造用の反応容器の640個の部屋にフレームの640個の導電体が各々漬かるように配置し、フレームを陽極に、反応容器の外側底部の集電端子を陰極にして13.5Vで1時間室温で通電し、半導体層を形成した。フレームを引き上げ、水洗・アルコール洗浄・乾燥を行った後に、化成液を0.1%酢酸にした前述の化成槽に導電体とリード線の一部が漬かるように配置して7V、15分、80℃で再化成を行った。フレームを引き上げ、水洗・アルコール洗浄・乾燥を行った。このような半導体層形成、再化成を5回繰り返して最終的な半導体層とした。さらに、フレームをカーボンペースト槽および銀ペースト槽と順に導電体部分が漬かるように設置、および乾燥を行うことにより半導体層上に電極層を積層した。2. Production of Capacitor A CV 100,000 μF · V / g tantalum sintered body (size 4.5 × 3.0 × 1.0 mm, mass 84 mg, lead wire 0.40 mmφ is exposed on the surface of 7 mm) was used as a conductor. A tetrafluoroethylene washer was attached to the lead wire to prevent the solution from splashing when the semiconductor layer was formed in the subsequent step. The top 2 mm of the conductor lead wire thus made was connected to a stainless steel plate having a length of 360 mm, a width of 20 mm, and a thickness of 2 mm by welding 32 pieces with the direction aligned at intervals of 10 mm from a position 25 mm from the end. Similarly, 20 stainless steel plates to which 32 conductors were connected were prepared, and each stainless steel plate was attached to a metal frame in which 640 conductors could be arranged in the same direction with their tips aligned in parallel at intervals of 10 mm. A frame is placed on a chemical conversion tank containing a 0.1% phosphoric acid aqueous solution prepared separately, and the conductor and a part of the lead wire are immersed in the aqueous solution. The plate is used as a cathode, 10V is applied, the aqueous solution is formed at 80 ° C. for 6 hours, pulled up from the tank, washed with water and dried to form Ta 2 O 5 on the inside of the pores of the conductor and on the surface of the lead wire. A dielectric layer consisting of Next, the frame conductor alone was dipped in a 10% ethylbenzene-2-sulfonic acid aqueous solution, pulled up, washed with water and dried seven times, and then 3% anthraquinone-2-sulfonic acid and ethylene at a saturated concentration or higher. Arranged so that 640 conductors of the frame are immersed in 640 chambers of a reaction vessel for manufacturing a capacitor element in which 30% ethylene glycol aqueous solution containing dioxythiophene is distributed at the same height in each chamber, Using the frame as the anode and the current collecting terminal at the outer bottom of the reaction vessel as the cathode, current was passed at 13.5 V for 1 hour at room temperature to form a semiconductor layer. After raising the frame, washing with water, washing with alcohol, and drying, place the conductor and the lead wire in the above-mentioned chemical conversion bath with 0.1% acetic acid so that the conductor and part of the lead wire are immersed in 7V, 15 minutes, 80 ° C. Re-formed in The frame was pulled up, washed with water, washed with alcohol, and dried. Such semiconductor layer formation and re-chemical formation were repeated five times to obtain a final semiconductor layer. Furthermore, the electrode layer was laminated | stacked on the semiconductor layer by installing so that a conductor part might be immersed in a carbon paste tank and a silver paste tank in order, and drying.
電極層を形成した各導電体をフレームから取り外し、別途用意した表面に錫メッキした銅合金からなるリードフレームの両先端部の陽極側に導電体のリード線を一部切断除去して載置し、陰極側に導電体の銀ペースト側を載置し、前者はスポット溶接で、後者は銀ペーストで接続した。その後、エポキシ樹脂で封口した後に、リードフレームの切断、折り曲げ加工を行い、大きさ7.3×4.3×1.8mmのチップ状コンデンサを作製した。次いで115℃、コンデンサへの印加電圧3.5Vで5時間エージングした。得られたコンデンサの出現容量分布は、その平均容量の±10%の範囲内であった。具体的には、得られたコンデンサは、定格2.5V容量680μFであり、720〜645μFの個数594個、720〜750μFの個数17個、645〜610μFの個数29個の容量分布を持っていた。
さらに、コンデンサ素子製造用反応容器に溶液の補充(液面調整)をすることなく、同様に2回目のコンデンサの製造を行った。得られたコンデンサの容量分布は広がり、出現容量分布は設定した容量(1回目の平均容量)の±20%を超えるものが現れた。
得られたコンデンサは720〜645μFの個数565個、720〜750μFの個数18個、645〜610μFの個数38個、610〜575μFの個数11個、575〜540μFの個数2個、540〜510μFの個数5個の容量分布を持っていた。結果を表3に示す。
各実施例および比較例1から、各実施例で得られたコンデンサ群は、比較例1で得られたコンデンサ群よりも容量分布が明らかに安定していることがわかる。Remove the conductors on which the electrode layers are formed from the frame, and place the conductors with the conductor wires partially cut off and placed on the anode side of both ends of the lead frame made of a copper alloy tin-plated on a separately prepared surface. The silver paste side of the conductor was placed on the cathode side, the former was connected by spot welding and the latter was connected by silver paste. Then, after sealing with an epoxy resin, the lead frame was cut and bent to produce a chip capacitor having a size of 7.3 × 4.3 × 1.8 mm. Next, aging was performed at 115 ° C. and a voltage applied to the capacitor of 3.5 V for 5 hours. The appearance capacity distribution of the obtained capacitor was within a range of ± 10% of the average capacity. Specifically, the obtained capacitors had a rated 2.5 V capacity of 680 μF, and had a capacitance distribution of 594 from 720 to 645 μF, 17 from 720 to 750 μF, and 29 from 645 to 610 μF.
Further, the capacitor was manufactured for the second time in the same manner without replenishing the solution in the reaction container for manufacturing the capacitor element (liquid level adjustment). The capacity distribution of the obtained capacitors was widened, and the appearance capacity distribution appeared to exceed ± 20% of the set capacity (first average capacity).
The number of capacitors obtained is 565 of 720 to 645 μF, 18 of 720 to 750 μF, 38 of 645 to 610 μF, 11 of 610 to 575 μF, 2 of 575 to 540 μF, and 540 to 510 μF. It had 5 capacity distributions. The results are shown in Table 3.
From each Example and Comparative Example 1, it can be seen that the capacitance distribution of the capacitor group obtained in each Example is clearly more stable than the capacitor group obtained in Comparative Example 1.
比較例2:
実施例1において、本発明のコンデンサ素子製造用反応容器を使用せずに、従来の反応容器、すなわち、大きさは同じだが、個々の部屋も個々の陰極板と電流吸出し型の電流源も持たず、容器の下面内部に底面積とほぼ同じ大きさの銅の上に金メッキを施した陰極板を設けた反応容器中で、該陰極板を陰極として通電することによって半導体層を形成した以外は、実施例1と同様にしてチップ状コンデンサを作製した。得られたコンデンサの出現容量分布は、その平均容量の±20%を超えるものであった。具体的には、得られたコンデンサは、定格2.5V容量680μFであり、720〜645μFの個数359個、720〜750μFの個数15個、750〜780μFの個数2個、645〜610μFの個数150個、610〜575μFの個数93個、575〜540μFの個数17個、540〜510μFの個数4個の容量分布を持っていた。結果を表3に示す。
各実施例および比較例2から、各実施例で得られたコンデンサ群は、比較例2で得られたコンデンサ群よりも容量分布が明らかに狭くなっていることがわかる。Comparative Example 2:
In Example 1, the reaction vessel for manufacturing the capacitor element of the present invention was not used, but a conventional reaction vessel, that is, the same size, but each room had individual cathode plates and a current sink type current source. In the reaction vessel provided with a cathode plate plated with gold on copper having the same size as the bottom area inside the lower surface of the vessel, except that the semiconductor layer was formed by energizing the cathode plate as a cathode. In the same manner as in Example 1, a chip capacitor was produced. The appearance capacity distribution of the obtained capacitor was more than ± 20% of the average capacity. Specifically, the obtained capacitors have a rated 2.5 V capacity of 680 μF, the number of 359 of 720 to 645 μF, the number of 15 of 720 to 750 μF, the number of 2 of 750 to 780 μF, the number of 150 of 645 to 610 μF. , 610-575 μF number 93, 575-540 μF number 17, 540-510 μF number 4 capacitance distribution. The results are shown in Table 3.
From each Example and Comparative Example 2, it can be seen that the capacitance distribution of the capacitor group obtained in each Example is clearly narrower than that of the capacitor group obtained in Comparative Example 2.
本発明は、電流吸出し型の定電流源を介して通電することにより半導体層を形成するコンデンサ素子製造用反応容器およびコンデンサ素子の製造方法を提供したものであり、本発明によれば、出現容量分布が狭い、出現容量が平均容量±20%の範囲に入る容量分布を有するコンデンサ群を得ることができる。 The present invention provides a reaction container for manufacturing a capacitor element that forms a semiconductor layer by energization through a current sink type constant current source and a method for manufacturing the capacitor element. It is possible to obtain a capacitor group having a narrow distribution and a capacitance distribution in which the appearance capacitance is in the range of the average capacitance ± 20%.
1 反応容器
2 陰極板
3 定電流ダイオード
4 集電端子
5 導電体
6 枠(壁)
7 孔
8 部屋1
7 holes 8 rooms
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005313116 | 2005-10-27 | ||
JP2005313116 | 2005-10-27 | ||
PCT/JP2006/321351 WO2007049688A1 (en) | 2005-10-27 | 2006-10-26 | Reaction container for manufacturing capacitor element, method for manufacturing capacitor element, and method for manufacturing capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4049804B2 true JP4049804B2 (en) | 2008-02-20 |
JPWO2007049688A1 JPWO2007049688A1 (en) | 2009-04-30 |
Family
ID=37967798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007522742A Active JP4049804B2 (en) | 2005-10-27 | 2006-10-26 | Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, and method for manufacturing capacitor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4049804B2 (en) |
TW (1) | TWI437591B (en) |
WO (1) | WO2007049688A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101387787B1 (en) * | 2009-12-21 | 2014-04-21 | 쇼와 덴코 가부시키가이샤 | Reaction container for manufacturing capacitor element, and method for manufacturing capacitor element |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI690958B (en) * | 2018-09-19 | 2020-04-11 | 鈺冠科技股份有限公司 | Pre-treatment equipment for capacitor element and rapid manufacturing method for capacitor element |
CN110379627A (en) * | 2019-05-31 | 2019-10-25 | 益阳艾华富贤电子有限公司 | A kind of preparation process and solid-liquid mixed capacitor of solid-liquid mixed capacitor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2810418B2 (en) * | 1989-06-20 | 1998-10-15 | 三洋電機株式会社 | Method for manufacturing solid electrolytic capacitor |
TWI400732B (en) * | 2003-07-10 | 2013-07-01 | Showa Denko Kk | Manufacturing method of capacitor for capacitor, capacitor manufacturing method and capacitor |
-
2006
- 2006-10-26 TW TW095139601A patent/TWI437591B/en active
- 2006-10-26 WO PCT/JP2006/321351 patent/WO2007049688A1/en active Application Filing
- 2006-10-26 JP JP2007522742A patent/JP4049804B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101387787B1 (en) * | 2009-12-21 | 2014-04-21 | 쇼와 덴코 가부시키가이샤 | Reaction container for manufacturing capacitor element, and method for manufacturing capacitor element |
US8792225B2 (en) | 2009-12-21 | 2014-07-29 | Showa Denko K.K. | Partitioned reaction container for manufacturing capacitor element including openable and closable passage |
Also Published As
Publication number | Publication date |
---|---|
TW200731303A (en) | 2007-08-16 |
TWI437591B (en) | 2014-05-11 |
JPWO2007049688A1 (en) | 2009-04-30 |
WO2007049688A1 (en) | 2007-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5079850B2 (en) | Capacitor manufacturing method | |
JP3974645B2 (en) | Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor | |
US20090027834A1 (en) | Solid electrolyte capacitor | |
US7837185B2 (en) | Jig for producing capacitors, apparatus for producing capacitors and method for producing capacitors | |
JPWO2007004554A1 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4717824B2 (en) | Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, capacitor element and capacitor | |
JP4049804B2 (en) | Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, and method for manufacturing capacitor | |
US8559163B2 (en) | Reaction vessel for producing capacitor element, production method for capacitor element, capacitor element and capacitor | |
JP4404730B2 (en) | Solid electrolytic capacitor | |
JP3992706B2 (en) | Capacitor manufacturing method | |
US20090090997A1 (en) | Solid electrolytic capacitor element and production method thereof | |
JP4488303B2 (en) | Capacitor manufacturing method | |
JP4689381B2 (en) | Capacitor element manufacturing method | |
JP5099831B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2005109466A (en) | Capacitor and method of manufacturing same | |
TW200525567A (en) | Chip solid electrolyte capacitor and production method of the samE | |
JP2005101592A (en) | Sintered compact and chip solid electrolytic capacitor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20071121 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4049804 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070518 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20070518 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |