JP4049701B2 - Method for producing dope - Google Patents
Method for producing dope Download PDFInfo
- Publication number
- JP4049701B2 JP4049701B2 JP2003118358A JP2003118358A JP4049701B2 JP 4049701 B2 JP4049701 B2 JP 4049701B2 JP 2003118358 A JP2003118358 A JP 2003118358A JP 2003118358 A JP2003118358 A JP 2003118358A JP 4049701 B2 JP4049701 B2 JP 4049701B2
- Authority
- JP
- Japan
- Prior art keywords
- dope
- stirring
- mixture
- kpa
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Degasification And Air Bubble Elimination (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、塗布型感光剤レジスト材料などのドープの製造方法であって、ドープに含まれる気体や気泡を脱気する方法に関する。さらには、ドープ、このドープを用いた塗布物に関する。
【0002】
【従来の技術】
塗布型感光剤レジスト材料は、ビニル系単量体とバインダーポリマーと光重合開始剤とを含有する溶液(以下、この溶液をドープという)から構成される。この塗布型感光剤レジスト材料から感光層を形成する際には、支持体などに塗布した後、光を照射して重合する。
ところで、塗布型感光剤レジスト材料をなすドープには、気体が溶存、あるいは、気泡を含有することがあった。このように、ドープに気体が溶存、あるいは、気泡を含有していると、このドープから形成された感光層に不良が発生することがあった。例えば、塗布装置や塗布方法によっては、感光層に気泡が入り込んで外観を損なうことがあった。そのため、液体であるドープ中の気体及び気泡を塗布前に除去することが求められていた。
【0003】
液体中に溶存する空気を除去(脱気)するための方法は、これまでに多数提案されている。代表的な例としては、特許文献1に記載されているような、超音波を活用した脱気方法、特許文献2に記載されているような、多孔質性高分子膜チューブを利用する脱気方法などが挙げられる。
【0004】
【特許文献1】
特開平4−94704号公報
【特許文献2】
特開平6−254304号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述した脱気方法は、超音波発生装置や多孔質性高分子膜チューブなどの高価な装置を必要とするため、経済的に不利であった。また、上述した脱気方法では、重合反応を開始する組成物からなるドープを脱気することを想定しておらず、上述の方法でドープを脱気した場合には、感光層の形成前に重合することがあるため、ドープの安定性を維持することは困難であった。
本発明は、このような事情を鑑みてなされたものであり、ドープの安定性を維持しつつ経済的に脱気するドープの製造方法を提供することを目的とする。さらには、ドープおよび塗布物を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のドープの製造方法は、ビニル系単量体とバインダーポリマーと光重合開始剤とを含有する混合物からドープを製造する方法であって、
前記混合物を、吐出流循環時間Tcd[秒]が下記式(1)を満たすように攪拌しつつ、減圧度25kPa以上55kPa以下にまで減圧して脱気する脱気工程を有することを特徴とする。
1<Tcd<100 (1)
本発明のドープの製造方法においては、前記脱気工程にて、減圧したまま2時間以上4時間以下保持することが好ましい。
また、前記脱気工程後に、混合物を攪拌せずに30分以上静置する静置工程を有することが好ましい。
さらに、本発明のドープの製造方法においては、混合物を大気圧に復圧する復圧工程を有することが好ましい。
【0007】
【発明の実施の形態】
本発明のドープの製造方法の一例について説明する。
このドープの製造方法では、まず、仕込み工程において、ビニル系単量体とバインダーポリマーと光重合開始剤とを、攪拌機を備えたタンク内に仕込んで混合物を得る。
次いで、脱気工程において、攪拌機によってタンク内の混合物を、吐出流循環時間Tcd[秒]が下記式(1)、好ましくは式(2)を満たすように攪拌しつつ、タンク内を減圧度25kPa以上55kPa以下、好ましくは25kPa以上40kPa以下にまで減圧する。そして、しばらくの間、タンク内の減圧を保持して混合物を脱気してドープを得る。
【0008】
1<Tcd<100 (1)
5<Tcd<50 (2)
【0009】
この製造方法では、この吐出流循環時間Tcdが100[秒]より大きいと、攪拌によるタンク内循環時間が長くなりすぎるため、十分に脱気ができない。一方、吐出流循環時間Tcdが1[秒]より小さいと、ドープ中の気泡が液面から消失しないままタンク内部を循環することになるため、かえって脱気しにくくなる。
【0010】
また、この製造方法では、脱気工程にて、減圧度25kPa以上55kPa以下で脱気するので、ドープ中の酸素濃度が時間の経過と共に平衡状態に達し、溶存酸素濃度を適度な量で一定の値にできる。ここで、酸素は重合禁止剤の作用を発揮するため、ドープ中の酸素はドープの不要な重合を防止する。したがって、ドープの安定性を維持できる。
なお、減圧度が25kPa未満であると、ドープ中の溶存酸素濃度が低くなりすぎて、ドープの重合を抑制しにくくなる。その結果、所定の重合の前にドープが重合し、増粘する。したがって、脱気後のドープの安定性が著しく悪化する。一方、減圧度が55kPaを超えると、脱気が不十分になる。
【0011】
ここで、吐出流循環時間Tcdとは、吐出流量qd基準の循環時間のことであり、下記式(3)で表される値のことである(参考文献:佐竹化学機械工業(株)編,攪拌技術,p.105,1992年)。この吐出流循環時間Tcdは、タンク内部対流循環の強さの目安であり、装置・攪拌速度が異なってもTcdが等しければ、同様の攪拌効果を得ることができる。
【0012】
【数1】
【0013】
式(3)中、D:容器内径[m],Z:容器高さ[m],n:攪拌速度[rps]のことである。
また、式(3)中の吐出流量係数Nqdは、下記式(4)のように定義される。式(4)中、qd:吐出流量[m3/s]のことである。
【0014】
【数2】
【0015】
この吐出流量係数Nqdは、攪拌機固有の定数で、液循環特性を表す値である。例えば、傾斜角45度の8枚傾斜羽根ファンタービン翼で、攪拌翼径と容器内径との比が0.5、攪拌翼幅と容器内径との比が0.1の場合には、乱流範囲でのNqdの実測値は0.31である(化学工学II第2版,藤田重文,東畑平一郎編,p.416,東京化学同人(1972))。
【0016】
このドープの製造方法においては、タンク内を減圧したまま2時間以上4時間以下保持することが好ましい。4時間を超えて減圧を保持すると、液表面からの有機溶媒揮発量が増えるので、最終的な固形分濃度が所定の値と異なってしまう場合がある。その上、減圧を保持する時間が長くなると、生産性が低下する。一方、2時間未満の減圧保持では、脱気が不十分になる場合がある。
【0017】
また、このドープの製造方法においては、脱気工程後に、混合物を攪拌しないで30分以上静置する静置工程を有することが好ましい。脱気工程後に静置工程を有していれば、攪拌停止直後のタンク内に気泡が混在していても、静置工程の間に泡消しできる。静置時間が30分未満であると、十分に泡消しできないことがある。
【0018】
さらに、ドープの製造方法においては、混合物を大気圧に復圧する復圧工程を有することが好ましい。減圧下では液体に微細気泡が発生するが、大気圧に復圧することで、微細気泡の発生を抑制できる。
【0019】
上述したドープの製造方法により得られたドープは、ビニル系単量体とバインダーポリマーと光重合開始剤とを含有する粘調液体である。
ドープ中には希釈のため適当量の有機溶媒が含まれても良い。ここで、有機溶媒としては、例えば、イソプロピルアルコール、メタノール、アセトン、エチルメチルケトン等のアルコール類、ケトン類などが挙げられる。
ビニル系単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチルなどのメタクリル酸エステル類、アクリル酸メチル、アクリル酸エチルなどのアクリル酸エステル類、アクリロイル基あるいはメタクリロイル基を有するトリメチロールプロパントリアクリレート、テトラエチレングリコールジアクリレート、エポキシアクリレート、ウレタンアクリレート、スチレンなどのモノマーなどが挙げられる。特に好ましいものとしては、バインダーポリマーの架橋剤としての機能も果たすアクリロイル基、あるいはメタクリロイル基を有するトリメチロールプロパントリアクリレート、テトラエチレングリコールジアクリレート、エポキシアクリレート、ウレタンアクリレートなどが挙げられる。
光重合開始剤としては、例えば、ベンゾフェノン、ミヒラーケトンなどが挙げられる。
【0020】
さらに、ドープには、必要に応じて、ハイドロキノンなどの重合禁止剤、マラカイトグリーンなどの染料、可塑剤、充填剤、ロフインなどの密着促進剤などが含まれていてもよい。
【0021】
このようなドープの用途としては特に制限はないが、気泡の発生が少ないことが特に求められる感光剤レジスト材料にとりわけ適している。
【0022】
以上説明したドープの製造方法では、ビニル系単量体とバインダーポリマーと光重合開始剤とを含有する混合物を、1<Tcd<100を満たすように攪拌しつつ、減圧度25kPa以上55kPa以下にまで減圧して脱気するため、攪拌機を備えたタンクおよび真空装置などの安価な装置を使用し、高価な装置を必要としない。また、溶存酸素濃度を低くしすぎないので、ドープの重合を抑制でき、安定性を維持できる。したがって、安定性を維持しつつ経済的に脱気できる。
【0023】
次に、本発明の塗布物の一例について説明する。
この塗布物は、上述したドープを支持体に塗布し、ドープ中の有機溶媒を乾燥除去することで得られたものである。この塗布物は、上述したドープから形成されているから、気泡の混入が少なく、塗膜外観に優れている。
この塗布物において、支持体としては、ドープを塗布できるものであれば制限されないが、例えば、PETフィルムなどが挙げられる。
【0024】
【実施例】
次に、本発明を実施例に基づいて具体的に説明するが、本発明はこれによって限定されるものではない。
【0025】
(実施例1)
直径250mm、幅40mm、傾斜角45度の4枚ファンタービン翼から構成される攪拌翼を備えた内径400mmのタンクに、液面がタンク高さ400mmの位置になるように、表1に示す成分を仕込んだ。このときの混合物の粘度は約3Pa・s(25℃)であった。次いで、脱気工程において、攪拌速度158rpmで攪拌しつつ、タンク内を減圧度33.3kPaで2時間減圧した。
【0026】
【表1】
【0027】
脱気工程における吐出流循環時間Tcd[秒]は、次のようにして求められる。まず、このタンクの吐出流量係数Nqdを、乱流域での8枚傾斜羽根ファンタービンの吐出流量係数Nqdの文献値0.31(d/D=0.5,b/D=0.1)と、式(5)とから計算して求める(化学工学II第2版,藤田重文,東畑平一郎編,p.416,東京化学同人(1972))。なお、式(5)は、類似構造の翼に対して成立する。また、式(5)において、np:羽根枚数[−]、b:攪拌翼幅[m]、d:攪拌翼径[m]、D:容器内径[m]のことである。
【0028】
【数3】
【0029】
式(5)に各数値を代入し、式(6)のように計算した結果、このタンクの吐出流量係数Nqdは0.11であった。
そして、この吐出流量係数Nqdに基づき、式(7)に示すように計算して、吐出流循環時間Tcdを求めた。吐出流循環時間Tcdは11.1秒であり、本発明の範囲内であった。
【0030】
【数4】
【0031】
次いで、静置工程において、攪拌せずに、減圧にしたまま30分間静置し、続いて、復圧工程において、ゆっくりと大気圧に戻した。
そして、タンク底からドープを抜き出し、このドープ中の溶存酸素濃度を溶存酸素計(セントラル科学(株)有機溶媒用DOメーター、UC−12−SOL型)で測定した。その結果、2.8mg/Lであった。また、粘度は3.20Pa・s(25℃)であった。
1日経過後、ドープの粘度を再び測定したところ、3.23Pa・s(25℃)であり、増粘していなかった。
また、40℃に保温した上記ドープ14.4gを、厚さ50μm、50cm×50cmのPETフィルムに素早く塗布し、その後、1m×1m×1mの箱型乾燥炉内で熱風温度100℃、1分間乾燥して塗布物を製造した。得られた塗布物は発泡していなかった。
【0032】
(実施例2)
実施例1で使用したタンクに、液面がタンク高さ400mmの位置になるように、表2に示す成分を仕込んだ。次いで、脱気工程において、攪拌速度60rpmで攪拌しつつ、タンク内を減圧度33.3kPaで4時間減圧した。このときの吐出流循環時間Tcdを式(8)に示すようにして求めたところ、吐出流循環時間Tcdは29.2秒であり、本発明の範囲内であった。
次いで、静置工程において、攪拌せずに、圧力を減圧に維持したまま30分間静置し、続いて、復圧工程において、ゆっくりと大気圧に戻した。
そして、タンク底からドープを抜き出し、このドープ中の溶存酸素濃度を溶存酸素計で測定したところ、3.2mg/Lであった。また、このドープを実施例1と同様にしてPETフィルムに塗布したところ、気泡のない塗布物が得られた。
【0033】
【表2】
【0034】
【数5】
【0035】
(実施例3)
実施例1で使用したタンクに、液面がタンク高さ400mmの位置になるように表2に示す成分を仕込んだ。次いで、脱気工程において、攪拌速度25rpmで攪拌しつつタンク内を減圧度33.3kPaで5時間減圧した。この時Tcdは70.2秒であり、本発明の範囲内であった。次いで、実施例1と同様に攪拌せずに圧力を減圧に維持したまま30分間静置し、続いて復圧工程においてゆっくりと大気圧に戻した。タンク底からドープを抜き出し、このドープ中の溶存酸素濃度を溶存酸素計で測定したところ3.3mg/Lであった。また、このドープを実施例1と同様にしてPETフィルムに塗布したところ、気泡の無い塗布物が得られた。
【0036】
(比較例1)
脱気工程において攪拌せずに減圧度33.3kPaで2時間減圧したこと以外は実施例1と同様にしてドープを得た。このドープ中の溶存酸素濃度は4.5mg/Lであり、実施例2よりも高い値であった。また、このドープを実施例1と同じ方法で塗布して乾燥したところ、塗布物に7個/m2 の泡が発生した。
【0037】
(比較例2)
6時間減圧したこと以外は比較例1と同様にしてドープを得た。このドープを実施例1と同じ方法で塗布して乾燥したところ、塗布物に泡は発生しなかったが、実施例1と比較すると3倍の時間を要した。
【0038】
(比較例3)
攪拌速度15rpmにしたこと以外は実施例1と同様にしてドープを得た。このときの吐出流循環時間Tcdを式(9)に示すようにして求めたところ、吐出流循環時間Tcdは117.0秒であり、本発明の範囲外であった。また、ドープ中の溶存酸素濃度は4.2mg/Lであった。
このドープを実施例1と同じ方法で塗布して乾燥したところ、塗布物に7個/m2 の泡が発生した。
【0039】
【数6】
【0040】
(比較例4)
減圧度を20kPaにしたこと以外は実施例1と同様にしてドープを得た。大気圧に復圧してから1日経過後のドープの粘度は4.5Pa・s(25℃)であった。
【0041】
(比較例5)
減圧度を66.6kPaにしたこと以外は実施例1と同様にしてドープを得た。このドープ中の溶存酸素濃度は4.3mg/Lであった。このドープを実施例1と同じ方法で塗布して乾燥したところ、塗布物に10個/m2 の泡が発生した。
【0042】
実施例1,2,3では、吐出流循環時間Tcdが式(1)を満たすように攪拌しつつ、減圧度25kPa以上55kPa以下にまで減圧して脱気しており、ドープは適度に脱気されていたので、乾燥後塗膜に発泡が見られず、著しい粘度の上昇もなかった。
一方、比較例1は、攪拌せずに脱気したのでドープ中の溶存ガスを十分に脱気できなかった。
比較例2では、塗布物に泡は発生しなかったが、実施例1に比べて3倍もの時間を要し、生産性が低かった。
比較例3では、吐出流循環時間Tcdが大きく、式(1)を満たしていなかったため、攪拌効率が低く、脱気が不十分であった。
比較例4では、減圧度が低すぎたために、ドープ中の溶存酸素濃度が低く、ドープが重合して増粘した。
比較例5では、比較例4とは逆に減圧が不十分だったため、ドープ中の溶存ガスをドープから十分に除去できなかった。したがって、塗布物の外観が不良であった。
【0043】
【発明の効果】
本発明によれば、安価な装置を使用し、高価な装置を必要としない。また、ドープの重合を抑制できるので、ドープの安定性を維持できる。したがって、安定性を維持しつつ経済的に脱気できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a dope such as a coating-type photosensitive agent resist material, and relates to a method for degassing a gas or bubbles contained in the dope. Furthermore, it is related with the dope and the coating material using this dope.
[0002]
[Prior art]
The coating type photosensitive resist material is composed of a solution containing a vinyl monomer, a binder polymer, and a photopolymerization initiator (hereinafter, this solution is referred to as a dope). When a photosensitive layer is formed from this coating-type photosensitive resist material, it is polymerized by irradiating light after coating on a support.
By the way, the dope forming the coating-type photosensitive resist material sometimes has a gas dissolved therein or contains bubbles. As described above, when the gas is dissolved in the dope or contains bubbles, a defect may occur in the photosensitive layer formed from the dope. For example, depending on the coating apparatus and coating method, bubbles may enter the photosensitive layer and impair the appearance. Therefore, it has been required to remove the gas and bubbles in the dope that is a liquid before coating.
[0003]
Many methods for removing (degassing) air dissolved in a liquid have been proposed so far. As typical examples, a degassing method using ultrasonic waves as described in Patent Document 1 and a degassing method using a porous polymer membrane tube as described in Patent Document 2 are used. The method etc. are mentioned.
[0004]
[Patent Document 1]
JP-A-4-94704 [Patent Document 2]
Japanese Patent Laid-Open No. 6-254304
[Problems to be solved by the invention]
However, the degassing method described above is economically disadvantageous because it requires an expensive device such as an ultrasonic generator or a porous polymer membrane tube. Further, in the degassing method described above, it is not assumed that the dope made of the composition that initiates the polymerization reaction is degassed, and when the dope is degassed by the above method, before forming the photosensitive layer. Since the polymerization may occur, it is difficult to maintain the stability of the dope.
This invention is made | formed in view of such a situation, and it aims at providing the manufacturing method of dope which deaerates economically, maintaining the stability of dope. Furthermore, it aims at providing a dope and a coating material.
[0006]
[Means for Solving the Problems]
The method for producing a dope of the present invention is a method for producing a dope from a mixture containing a vinyl monomer, a binder polymer, and a photopolymerization initiator,
It has a degassing step of degassing the mixture by reducing the pressure to 25 kPa or less and 55 kPa or less while stirring the mixture so that the discharge flow circulation time T cd [seconds] satisfies the following formula (1). To do.
1 <T cd <100 (1)
In the method for producing a dope of the present invention, it is preferable that the deaeration step is held for 2 hours or more and 4 hours or less with reduced pressure.
Moreover, it is preferable to have the stationary process of leaving still 30 minutes or more without stirring a mixture after the said deaeration process.
Furthermore, in the method for producing a dope of the present invention, it is preferable to have a pressure-reducing step for returning the mixture to atmospheric pressure.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An example of the dope manufacturing method of the present invention will be described.
In this dope manufacturing method, first, in the charging step, a vinyl monomer, a binder polymer, and a photopolymerization initiator are charged into a tank equipped with a stirrer to obtain a mixture.
Next, in the degassing step, the mixture in the tank is stirred by the stirrer so that the discharge flow circulation time T cd [seconds] satisfies the following formula (1), preferably the formula (2), and the pressure in the tank is reduced. The pressure is reduced to 25 kPa or more and 55 kPa or less, preferably 25 kPa or more and 40 kPa or less. Then, while maintaining the reduced pressure in the tank for a while, the mixture is deaerated to obtain a dope.
[0008]
1 <T cd <100 (1)
5 <T cd <50 (2)
[0009]
In this manufacturing method, when the discharge flow circulation time T cd is longer than 100 [seconds], the circulation time in the tank due to stirring becomes too long, so that sufficient degassing cannot be performed. On the other hand, when the discharge flow circulation time T cd is less than 1 [second], the bubbles in the dope circulate inside the tank without disappearing from the liquid surface, and thus it is difficult to deaerate.
[0010]
Moreover, in this manufacturing method, in the deaeration step, deaeration is performed at a degree of vacuum of 25 kPa or more and 55 kPa or less, so that the oxygen concentration in the dope reaches an equilibrium state over time, and the dissolved oxygen concentration is kept constant at an appropriate amount. Can be a value. Here, since oxygen exhibits the action of a polymerization inhibitor, oxygen in the dope prevents unnecessary polymerization of the dope. Therefore, the stability of the dope can be maintained.
When the degree of vacuum is less than 25 kPa, the dissolved oxygen concentration in the dope becomes too low, and it becomes difficult to suppress the polymerization of the dope. As a result, the dope is polymerized and thickened before the predetermined polymerization. Therefore, the stability of the dope after deaeration is significantly deteriorated. On the other hand, when the degree of vacuum exceeds 55 kPa, deaeration becomes insufficient.
[0011]
Here, the discharge flow circulation time T cd is a circulation time based on the discharge flow rate q d and is a value represented by the following formula (3) (reference: Satake Chemical Machinery Co., Ltd.). Ed., Stirring Technology, p.105, 1992). This discharge flow circulation time T cd is a measure of the strength of convection circulation inside the tank, and the same stirring effect can be obtained if the T cd is equal even if the apparatus and stirring speed are different.
[0012]
[Expression 1]
[0013]
In formula (3), D: inner diameter of container [m], Z: height of container [m], n: stirring speed [rps].
Further, the discharge flow coefficient N qd in the equation (3) is defined as the following equation (4). In equation (4), q d is the discharge flow rate [m 3 / s].
[0014]
[Expression 2]
[0015]
This discharge flow coefficient N qd is a constant specific to the stirrer and is a value representing the liquid circulation characteristic. For example, in the case of an eight-blade fan turbine blade with an inclination angle of 45 degrees, when the ratio of the stirring blade diameter to the container inner diameter is 0.5 and the ratio of the stirring blade width to the container inner diameter is 0.1, turbulent flow The measured value of N qd in the range is 0.31 (Chemical Engineering II 2nd edition, Shigefumi Fujita, H. Ichiro Higashihata, p. 416, Tokyo Chemical Doujin (1972)).
[0016]
In the method for producing the dope, it is preferable that the tank is kept at a reduced pressure for 2 hours or more and 4 hours or less. If the reduced pressure is maintained for more than 4 hours, the amount of organic solvent volatilization from the liquid surface increases, and the final solid content concentration may differ from a predetermined value. In addition, the productivity decreases when the time for maintaining the reduced pressure becomes longer. On the other hand, depressurization for less than 2 hours may result in insufficient deaeration.
[0017]
Moreover, in this dope manufacturing method, it is preferable that after the deaeration step, the mixture is allowed to stand for 30 minutes or more without stirring. If there is a standing step after the deaeration step, bubbles can be eliminated during the standing step even if bubbles are mixed in the tank immediately after the stirring is stopped. If the standing time is less than 30 minutes, the foam may not be sufficiently extinguished.
[0018]
Furthermore, in the dope manufacturing method, it is preferable to have a return pressure step for returning the mixture pressure to atmospheric pressure. Under reduced pressure, fine bubbles are generated in the liquid, but by returning to atmospheric pressure, the generation of fine bubbles can be suppressed.
[0019]
The dope obtained by the above-described dope production method is a viscous liquid containing a vinyl monomer, a binder polymer, and a photopolymerization initiator.
An appropriate amount of an organic solvent may be contained in the dope for dilution. Here, examples of the organic solvent include alcohols such as isopropyl alcohol, methanol, acetone, and ethyl methyl ketone, and ketones.
Examples of vinyl monomers include methacrylic esters such as methyl methacrylate and ethyl methacrylate, acrylic esters such as methyl acrylate and ethyl acrylate, and trimethylolpropane triacrylate having an acryloyl group or a methacryloyl group. , Monomers such as tetraethylene glycol diacrylate, epoxy acrylate, urethane acrylate, and styrene. Particularly preferred are trimethylolpropane triacrylate, tetraethylene glycol diacrylate, epoxy acrylate, urethane acrylate and the like having an acryloyl group or methacryloyl group which also functions as a crosslinking agent for the binder polymer.
Examples of the photopolymerization initiator include benzophenone and Michler ketone.
[0020]
Furthermore, the dope may contain a polymerization inhibitor such as hydroquinone, a dye such as malachite green, a plasticizer, a filler, an adhesion promoter such as lophine, and the like as necessary.
[0021]
Although there is no restriction | limiting in particular as a use of such dope, it is especially suitable for the photosensitive agent resist material in which it is especially calculated | required that there are few bubble generation | occurrence | production.
[0022]
In the dope production method described above, the pressure reduction degree is 25 kPa or more and 55 kPa or less while stirring the mixture containing the vinyl monomer, the binder polymer, and the photopolymerization initiator so as to satisfy 1 <T cd <100. Therefore, an inexpensive apparatus such as a tank equipped with a stirrer and a vacuum apparatus is used, and an expensive apparatus is not required. In addition, since the dissolved oxygen concentration is not too low, the polymerization of the dope can be suppressed and the stability can be maintained. Therefore, it is possible to degas economically while maintaining stability.
[0023]
Next, an example of the coated material of the present invention will be described.
This coated material was obtained by applying the above-described dope to a support and drying and removing the organic solvent in the dope. Since this coating is formed from the above-described dope, there is little mixing of bubbles and the coating film appearance is excellent.
In this coated material, the support is not limited as long as it can be coated with a dope, and examples thereof include a PET film.
[0024]
【Example】
Next, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
[0025]
Example 1
Ingredients shown in Table 1 so that the liquid level is in a tank height of 400 mm in a tank with an inner diameter of 400 mm equipped with a stirring blade composed of four fan turbine blades with a diameter of 250 mm, a width of 40 mm and an inclination angle of 45 degrees Was charged. The viscosity of the mixture at this time was about 3 Pa · s (25 ° C.). Next, in the deaeration process, the tank was depressurized at a reduced pressure of 33.3 kPa for 2 hours while stirring at a stirring speed of 158 rpm.
[0026]
[Table 1]
[0027]
The discharge flow circulation time T cd [seconds] in the deaeration process is obtained as follows. First, the discharge flow coefficient N qd of this tank is set to the literature value 0.31 (d / D = 0.5, b / D = 0.1) of the discharge flow coefficient N qd of the eight inclined blade fan turbine in the turbulent flow region. ) And Equation (5) (Chemical Engineering II 2nd Edition, Shigefumi Fujita, H. Ichiro Higashihata, p. 416, Tokyo Chemical Doujin (1972)). Equation (5) is established for a wing having a similar structure. In equation (5), n p is the number of blades [−], b is the width of the stirring blade [m], d is the diameter of the stirring blade [m], and D is the inner diameter of the container [m].
[0028]
[Equation 3]
[0029]
As a result of substituting each numerical value into Equation (5) and calculating as Equation (6), the discharge flow coefficient N qd of this tank was 0.11.
And based on this discharge flow coefficient Nqd , it calculated as shown in Formula (7), and calculated | required discharge flow circulation time Tcd . The discharge flow circulation time T cd was 11.1 seconds and was within the scope of the present invention.
[0030]
[Expression 4]
[0031]
Next, in the standing step, the mixture was left standing for 30 minutes without being stirred, and then slowly returned to atmospheric pressure in the returning pressure step.
And the dope was extracted from the tank bottom, and the dissolved oxygen concentration in this dope was measured with the dissolved oxygen meter (Central Science Co., Ltd. organic solvent DO meter, UC-12-SOL type). As a result, it was 2.8 mg / L. The viscosity was 3.20 Pa · s (25 ° C.).
When the viscosity of the dope was measured again after 1 day, it was 3.23 Pa · s (25 ° C.), and the viscosity was not increased.
Further, 14.4 g of the dope kept at 40 ° C. was quickly applied to a PET film having a thickness of 50 μm and 50 cm × 50 cm, and then hot air temperature 100 ° C. for 1 minute in a 1 m × 1 m × 1 m box-type drying furnace. The coated material was produced by drying. The obtained coated product was not foamed.
[0032]
(Example 2)
The components shown in Table 2 were charged into the tank used in Example 1 so that the liquid level was at a height of 400 mm. Next, in the deaeration step, the tank was depressurized at a reduced pressure of 33.3 kPa for 4 hours while stirring at a stirring speed of 60 rpm. When the discharge flow circulation time T cd at this time was determined as shown in the equation (8), the discharge flow circulation time T cd was 29.2 seconds, which was within the scope of the present invention.
Next, in the standing step, the mixture was left for 30 minutes while maintaining the pressure at a reduced pressure without stirring, and then slowly returned to the atmospheric pressure in the returning pressure step.
And when dope was extracted from the tank bottom and the dissolved oxygen concentration in this dope was measured with the dissolved oxygen meter, it was 3.2 mg / L. Further, when this dope was applied to a PET film in the same manner as in Example 1, a coated product without bubbles was obtained.
[0033]
[Table 2]
[0034]
[Equation 5]
[0035]
(Example 3)
The components shown in Table 2 were charged into the tank used in Example 1 so that the liquid level was at a tank height of 400 mm. Next, in the deaeration process, the tank was depressurized at a reduced pressure of 33.3 kPa for 5 hours while stirring at a stirring speed of 25 rpm. At this time, T cd was 70.2 seconds, which was within the scope of the present invention. Next, as in Example 1, the mixture was allowed to stand for 30 minutes while maintaining the reduced pressure without stirring, and then slowly returned to the atmospheric pressure in the decompression step. The dope was extracted from the tank bottom, and the dissolved oxygen concentration in the dope was measured with a dissolved oxygen meter to be 3.3 mg / L. Further, when this dope was applied to a PET film in the same manner as in Example 1, a coated product without bubbles was obtained.
[0036]
(Comparative Example 1)
A dope was obtained in the same manner as in Example 1 except that in the deaeration step, the pressure was reduced at a reduced pressure of 33.3 kPa for 2 hours without stirring. The dissolved oxygen concentration in this dope was 4.5 mg / L, which was higher than that in Example 2. Further, when this dope was applied by the same method as in Example 1 and dried, 7 pieces / m 2 were applied to the coated product. Foam was generated.
[0037]
(Comparative Example 2)
A dope was obtained in the same manner as in Comparative Example 1 except that the pressure was reduced for 6 hours. When this dope was applied and dried in the same manner as in Example 1, no foam was generated in the coated product, but it took 3 times as long as in Example 1.
[0038]
(Comparative Example 3)
A dope was obtained in the same manner as in Example 1 except that the stirring speed was 15 rpm. When the discharge flow circulation time T cd at this time was determined as shown in the equation (9), the discharge flow circulation time T cd was 117.0 seconds, which was outside the scope of the present invention. The dissolved oxygen concentration in the dope was 4.2 mg / L.
When this dope was applied and dried in the same manner as in Example 1, it was 7 pieces / m 2 in the coated product. Foam was generated.
[0039]
[Formula 6]
[0040]
(Comparative Example 4)
A dope was obtained in the same manner as in Example 1 except that the degree of vacuum was 20 kPa. The viscosity of the dope one day after the return to atmospheric pressure was 4.5 Pa · s (25 ° C.).
[0041]
(Comparative Example 5)
A dope was obtained in the same manner as in Example 1 except that the degree of vacuum was 66.6 kPa. The dissolved oxygen concentration in this dope was 4.3 mg / L. When this dope was applied and dried in the same manner as in Example 1, it was 10 pieces / m 2 in the coated product. Foam was generated.
[0042]
In Examples 1, 2, and 3, deaeration was performed by depressurization to a degree of vacuum of 25 kPa or more and 55 kPa or less while stirring so that the discharge flow circulation time T cd satisfies the formula (1). As a result, no foaming was observed in the coating film after drying, and no significant increase in viscosity was observed.
On the other hand, since Comparative Example 1 was deaerated without stirring, the dissolved gas in the dope could not be sufficiently deaerated.
In Comparative Example 2, no foam was generated in the coated material, but it took three times as long as in Example 1, and productivity was low.
In Comparative Example 3, since the discharge flow circulation time T cd was large and did not satisfy the formula (1), the stirring efficiency was low and deaeration was insufficient.
In Comparative Example 4, since the degree of vacuum was too low, the dissolved oxygen concentration in the dope was low, and the dope was polymerized and thickened.
In Comparative Example 5, contrary to Comparative Example 4, since the pressure reduction was insufficient, the dissolved gas in the dope could not be sufficiently removed from the dope. Therefore, the appearance of the coated material was poor.
[0043]
【The invention's effect】
According to the present invention, an inexpensive device is used and an expensive device is not required. Moreover, since the polymerization of the dope can be suppressed, the stability of the dope can be maintained. Therefore, it is possible to degas economically while maintaining stability.
Claims (4)
前記混合物を、吐出流循環時間Tcd[秒]が下記式(1)を満たすように攪拌しつつ、減圧度25kPa以上55kPa以下にまで減圧して脱気する脱気工程を有することを特徴とするドープの製造方法。
1<Tcd<100 (1)A method for producing a dope from a mixture containing a vinyl monomer, a binder polymer and a photopolymerization initiator,
It has a degassing step of degassing the mixture by reducing the pressure to 25 kPa or less and 55 kPa or less while stirring the mixture so that the discharge flow circulation time T cd [seconds] satisfies the following formula (1). A method for manufacturing a dope.
1 <T cd <100 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003118358A JP4049701B2 (en) | 2003-04-23 | 2003-04-23 | Method for producing dope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003118358A JP4049701B2 (en) | 2003-04-23 | 2003-04-23 | Method for producing dope |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004321898A JP2004321898A (en) | 2004-11-18 |
JP4049701B2 true JP4049701B2 (en) | 2008-02-20 |
Family
ID=33497919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003118358A Expired - Fee Related JP4049701B2 (en) | 2003-04-23 | 2003-04-23 | Method for producing dope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4049701B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4694330B2 (en) * | 2005-09-26 | 2011-06-08 | 富士フイルム株式会社 | Method for producing photosensitive lithographic printing plate |
JP2007283753A (en) | 2006-03-20 | 2007-11-01 | Seiko Epson Corp | Ink container and method of storing ink |
WO2008025508A1 (en) * | 2006-08-30 | 2008-03-06 | Stichting Dutch Polymer Institute | Process for preparing a polymeric relief structure |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH047321A (en) * | 1990-04-24 | 1992-01-10 | Mitsubishi Petrochem Co Ltd | Curable resin and photocurable resin composition containing the same |
JPH06122702A (en) * | 1992-10-13 | 1994-05-06 | Nissei Kagaku Kogyosho:Kk | Production of acrylic resin cast |
JPH06322010A (en) * | 1993-05-10 | 1994-11-22 | Dia Furotsuku Kk | Production of amphoteric water-soluble high-molecular compound |
JP3740545B2 (en) * | 1997-04-04 | 2006-02-01 | 東京応化工業株式会社 | Photosensitive base material composition for lift-off and paste pattern forming method using the same |
-
2003
- 2003-04-23 JP JP2003118358A patent/JP4049701B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004321898A (en) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6723947B2 (en) | Substrate pretreatment to reduce filling time in nanoimprint lithography | |
CA1335543C (en) | Aqueous processible photosensitive compositions containing core shell microgels | |
JP6921975B2 (en) | Substrate pretreatment composition for nanoimprint lithography | |
JP2008095037A (en) | Resin-made micro-structure, its manufacturing process and polymerizable resin composition | |
JP6699203B2 (en) | Resist pattern formation method | |
WO2018123667A1 (en) | Polymer, positive resist composition, and resist pattern formation method | |
JPH0762761B2 (en) | Image forming material | |
KR20180107093A (en) | POLYMER, POSITIVE RESIST COMPOSITION, AND METHOD FOR FORMING RESIST PATTERN | |
WO2017130873A1 (en) | Resist pattern forming method | |
JP4049701B2 (en) | Method for producing dope | |
CN103718105B (en) | Photoetching film, membrane photomask and exposure processing method | |
WO2017130872A1 (en) | Resist pattern forming method | |
JPH0250769B2 (en) | ||
JP6935669B2 (en) | Resist pattern formation method | |
JP2007086731A (en) | Resist protective film composition | |
KR100724764B1 (en) | Overcoating composition for immersion lithography | |
EP0104751A2 (en) | Photosensitive elastomeric polymer composition for flexographic printing plates | |
EP3557325A1 (en) | 3d printable poly high internal phase emulsion | |
JP4205033B2 (en) | Method for producing cross-linked polyvinyl alcohol resin fine particles | |
JP7238454B2 (en) | Resist pattern forming method | |
JP3933459B2 (en) | Photosensitive resin composition and laminate | |
JP7006378B2 (en) | Manufacturing method of 3D model, manufacturing device of 3D model, and data creation method of 3D model | |
JPH06102698B2 (en) | Photopolymerizable composition | |
JPH0215056B2 (en) | ||
EP0497819A1 (en) | A release layer for an aqueous or semi-aqueous processible flexographic printing plate. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071127 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |