JP4049407B2 - Treatment method of electroless nickel-phosphorus plating waste liquid - Google Patents

Treatment method of electroless nickel-phosphorus plating waste liquid Download PDF

Info

Publication number
JP4049407B2
JP4049407B2 JP27292596A JP27292596A JP4049407B2 JP 4049407 B2 JP4049407 B2 JP 4049407B2 JP 27292596 A JP27292596 A JP 27292596A JP 27292596 A JP27292596 A JP 27292596A JP 4049407 B2 JP4049407 B2 JP 4049407B2
Authority
JP
Japan
Prior art keywords
waste liquid
electroless nickel
nickel
treating
phosphorous plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27292596A
Other languages
Japanese (ja)
Other versions
JPH1099872A (en
Inventor
昌章 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP27292596A priority Critical patent/JP4049407B2/en
Publication of JPH1099872A publication Critical patent/JPH1099872A/en
Application granted granted Critical
Publication of JP4049407B2 publication Critical patent/JP4049407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル金属塩及び次亜リン酸塩を主成分とする無電解ニッケル−リンめっき浴の廃液を処理する方法に関する。
更に詳しくは、本発明は金属イオンの供給源としてのニッケル金属塩及び前記ニッケル金属塩を還元するための次亜リン酸塩を主成分とする無電解ニッケル−リンめっき浴の廃液を処理する新規な方法に関するものである。
【0002】
【従来の技術】
リンを含む無電解ニッケルめっき(Ni−Pめっき)は、電気ニッケルめっきに比べて、均一な膜厚が得られること、プラスチックなど電気不良導体にもめっきすることが可能であること、高硬度が得られること等の優れた特性により、自動車部品や家庭用電気器具部品などの製造に多用されている。
【0003】
しかしながら、この種の無電解ニッケル−リンめっきは、次亜リン酸を還元剤としており、その老化廃液中にはニッケルイオンを還元することによって生ずる亜リン酸が多量に含有されている。
また、この種の無電解ニッケル−リンめっき浴においては、ニッケルイオンの安定化等のために、例えば錯化剤、PH調節剤、あるいはPH緩衝剤などとして各種の有機酸が使用されている。
【0004】
従って、使用済み無電解ニッケル−リンめっき廃液中には、未消費のニッケルや次亜りん酸、及び多量の亜リン酸と各種の有機酸を含有しており、詳しくは後述するが、無電解ニッケル−リンめっき浴の廃液の、
(i).COD(Chemical Oxygen Demand、化学的酸素要求量)、
(ii).BOD(Biochmical Oxygen Demand、生化学的酸素要求量)、及び、
(iii).全リン濃度、
は極めて高く、これらの値は、数万mg/l(リットル)にも及ぶものである。
【0005】
従来、これらメッキ廃液は、排出規制がゆるかったこともあって、前記したように多量のCOD、BOD、及びリンを含有しているにもかかわらず、中和凝集によってニッケル成分のみを除去した後、他の廃水で希釈して排出したり、あるいは海洋投棄などによって処分されて来た。
【0006】
しかしながら、昨今の廃水等に関する規制法規の強化、海洋投棄の禁止などにより、前記した高濃度のCOD、BOD、リンを含有する無電解ニッケル−リンめっき廃液の無公害化のための処理方法を確立する必要がでてきた。
【0007】
【発明が解決しようとする課題】
従って、本発明の課題は、前記した無電解ニッケル−リンめっき廃液中のCOD、BOD、全リンの原因物質である亜リン酸、有機酸及びニッケルなどを効率よく確実に処理する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明を概説すれば、本発明は、ニッケル金属塩及び次亜リン酸塩を主成分とする無電解ニッケル−リンめっき浴の廃液を処理する方法において、前記処理方法が、
(i).前記無電解ニッケル−リンめっき浴の廃液にカルシウム系塩基物質を添加し、廃液中から水に不溶性の水酸化ニッケルと亜リン酸カルシウムを分離除去する工程、
(ii).次いで、廃液の全塩濃度を次工程で使用される好気性生物が死滅しない濃度領域に希釈する工程、
(iii).次いで、廃液中の有機物を好気性生物により処理する工程、
の工程から成ることを特徴とする無電解ニッケル−リンめっき廃液の処理方法に関するものである。
【0009】
以下、本発明の技術的構成及び実施態様について詳しく説明する。
【0010】
まず、本発明の無電解ニッケル−リンめっき浴の廃液の処理方法において、発明の理解を助けるために無電解ニッケル−リンめっき浴について説明する。
無電解ニッケル−リンめっきにおいて、ニッケルイオンの供給源としては塩化物や硫酸塩などが使用されており、還元剤としてNaH2PO2、KH2PO2などの次亜リン酸塩を使用するのが最も一般的な方式である。
無電解ニッケル−リンめっきにおいて、前記したように浴組成は、ニッケルイオンと次亜リン酸塩を主成分とし、これに錯化剤、PH調節剤、PH緩衝剤、浴安定剤などの補助成分を使用して構成されるものである。
【0011】
以下、表1〜表2に、Ni−Pめっき浴の典型例を示す。
なお、表1は一般に高温タイプのめっき浴といわれ、表2はプラスチックなどのように比較的低温でめっきするための低温タイプのめっき浴である。また、表1〜表2において、各成分の使用量は、(g/リットル)で示されている。
【0012】
【表1】

Figure 0004049407
【0013】
【表2】
Figure 0004049407
【0014】
本発明の無電解ニッケル−リンめっき廃液の処理方法において、前記(i)工程は、無電解ニッケル−リンめっき液の主成分であるNiイオンの供給源であるNi金属塩と還元剤である次亜リン酸塩に由来する化学物質を水不溶性の水酸化ニッケル[Ni(OH)2]と亜リン酸カルシウム[CaHPO3]とし、これらの水不溶性物質を廃液中から分離除去する工程である。
【0015】
本発明の前記(i)工程において、水酸化カルシウム[Ca(OH)2]とNi金属塩及び次亜リン酸塩に由来する化学物質(未消化成分及びめっき反応により生成する成分)の反応は、生成する水酸化ニッケルなどの金属水酸化物の再溶解を防止する観点から、pH12以上の領域で行なうことが好ましい。
前記、水酸化カルシウム(消石灰)は、pH12以上で水酸化ニッケルと亜リン酸カルシウムを同時に沈殿させるため、極めて好ましいものである。
本発明において、水酸化カルシウム(消石灰)以外のカルシウム系塩基物質を使用することができるが、この場合、pH12とするためにカセイソーダ(NaOH)などの他のアルカリ剤を添加しなければならない。従って、カルシウム系塩基物質として、前記した水酸化カルシウム(消石灰)は最も好ましいものである。
【0016】
本発明において、前記水酸化カルシウム(消石灰)の廃液への添加量は、廃液中の亜リン酸1モルに対して1モル以上であればよい。
【0017】
本発明の無電解ニッケル−リンめっき廃液の処理方法において、前記(ii)工程は、次工程である(iii)工程での廃液の好気性生物処理のための準備工程として位置づけられるものである。
廃液中に、浴組成にもよるが、ナトリウム、カリウム、カルシウムなどの金属塩が高濃度に存在すると、次工程での好気性生物処理において好気性生物が死滅する恐れがある。
本発明者らにより、無電解ニッケル−リンめっき廃液中に全塩濃度が10g/L(リットル)以下に維持されたとき、好気性生物は死滅せず、所期の目的を達成することが見い出された。
【0018】
本発明において、無電解ニッケル−リンめっき廃液への水酸化カルシウム(消石灰)の添加によりニッケル、次亜リン酸、亜リン酸などとの反応により生成する水不溶性物質を除去した時、廃液の全塩濃度が10g/L(リットル)になるように工業用水や工場最終放流水(放流水の再利用化)などの塩濃度の低い水により希釈する。この場合、希釈液のpHは、pH=6〜8になるように調整することが好ましい。
廃液中の全塩濃度が10g/L(リットル)、あるいはpH=6〜8の条件を外れると好気性生物処理を行なうためのバクテリアの活動が不活発となり、有機酸の分解が遅くなる。
【0019】
本発明の無電解ニッケル−リンめっき廃液の処理方法において、前記(iii)工程は、廃液中の有機酸の好気性生物処理である。
本発明において、前記好気性生物処理は、活性汚泥法、ハニカムコアを使用する接触酸化法、あるいは粒径が0.1〜5mmの曝気により流動可能な粒子を使用する流動床式生物処理法など、いずれの方式を採用してもよい。前記した好気性生物処理方式において、特に塩濃度の高い廃水でも安定して好気性生物処理が実施可能な流動床式生物処理法を用いるのが好ましい。
なお、前記活性汚泥法とは、活性汚泥から馴化した生物接触酸化法により酸化する方式のものである。
本発明において、好気性生物を担持するための担体(キャリアー)としては、サンゴ(珊瑚砂)、砂、活性炭を使用することができる。なお、前記流動床式生物処理法においては、一般にサンゴが使用されている。
【0020】
(実施例)
以下、本発明を実施例により更に詳しく説明する。
なお、以下に説明する実施例において、
(i).使用した無電解ニッケル−リンめっき液は、日本カニゼン社製のニッケルめっき液、シューマーS−780−0、1、2、3を使用し、また、
(ii).めっき廃液は、前記メッキ液により鉄鋼部のメッキを5ターン行なうことにより老化したものを使用した。
なお、前記メッキ廃液(原水)は、下記表3に示される成分を含有するものである。
【0021】
【表3】
Figure 0004049407
【0022】
(実施例1)
前記した無電解ニッケル−リンめっき廃液に水酸化カルシウム(消石灰)を120g/L(リットル)の割合で添加し、1時間攪拌を継続した。このもののpH値は、13.2であった。この液を水道水で5倍に希釈した後、市販の強アニオン系高分子凝集剤を30mg/L(リットル)の割合で添加することにより凝集沈降処理を行なって固形分を除去した。
この処理により廃液中の成分は表3に記載の通りとなった。ニッケルとリンの大部分、及びCODとBODの一部が除去された。
次に、この廃液を水道水で20倍に希釈してpHを6.2に調整した。この廃液の塩濃度を測定したところ8.9g/L(リットル)であった。
次に、エアリフト管付の容積1L(リットル)の曝気槽に対して、微生物付着担体としての珊瑚砂を曝気槽容積の10%、種汚泥として下水処理用の活性汚泥(MLVSS 2,000mg/L)を200mL入れた。更に前記廃液により曝気槽を満たし、エアリフト管より空気を送って珊瑚砂を流動状態として5日間維持した後、希釈原水を12時間に1L(リットル)の割合で連続供給した。
なお、前記MLVSSは、活性汚泥(SS)中の生物量濃度を意味するものである。
【0023】
連続供給開始後5日目の処理水成分は、表3記載の通りとなった。
表3に示されるようにBODとCODは、廃水基準を十分に満足するように除去された。
【0024】
(実施例2)
前記の無電解ニッケル−リンめっき廃液を地下水で20倍に希釈した後、10g/L(リットル)の割合で消石灰を添加して1時間攪拌した。pHは12.4であった。
この液全量をろ過して固形分を除去した。
この処理により、廃液部の成分は表3に記載の通りとなった。ニッケルとリンの大部分、及びCODとBODの一部が除去された。
次に、この廃液を地下水で5倍に希釈してpHを6.5に調整した。この廃液の塩濃度を測定したところ9.1g/L(リットル)であった。
この希釈水を原水とし、容積1L(リットル)の曝気槽に活性汚泥(MLVSS 2,000mg/L)を満たした後、曝気しながら原水を24時間に1L(リットル)の割合で連続供給し、曝気槽から処理水と同時に流出する汚泥は、沈降分離して曝気槽内のMLVSS 2,000mg/Lを維持するために連続して戻した。
【0025】
この状態で一週間維持した後、処理水の水質を測定したところ、その成分は表3に記載の通りとなった。
表3に示されるように、BODとCODは排出基準を十分に満足するように除去された。
【0026】
【発明の効果】
本発明により、無電解ニッケル−リンめっき廃液は、効率よくかつ確実に処理することが可能となる。
従来法においては、無電解ニッケル−リンめっき廃液中のニッケルイオンはもとより、COD、BOD、全リンの原因物質である亜リン酸及び有機酸などを効率よくかつ経済的に排出基準に合格するように処理することが困難であったが、本発明は、これを解決するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating a waste liquid of an electroless nickel-phosphorous plating bath mainly composed of a nickel metal salt and a hypophosphite.
More specifically, the present invention is a novel treatment of waste liquid of an electroless nickel-phosphorous plating bath mainly composed of nickel metal salt as a source of metal ions and hypophosphite for reducing the nickel metal salt. It is about the method.
[0002]
[Prior art]
Electroless nickel plating containing phosphorus (Ni-P plating) can provide a uniform film thickness compared to electric nickel plating, can also be used for plating defective electrical conductors such as plastic, and has high hardness. Due to its excellent characteristics such as being obtained, it is frequently used in the production of automobile parts and household appliance parts.
[0003]
However, this type of electroless nickel-phosphorous plating uses hypophosphorous acid as a reducing agent, and the aging waste liquid contains a large amount of phosphorous acid generated by reducing nickel ions.
Further, in this type of electroless nickel-phosphorus plating bath, various organic acids are used as, for example, a complexing agent, a PH adjusting agent, or a PH buffering agent in order to stabilize nickel ions.
[0004]
Therefore, the spent electroless nickel-phosphorous plating waste liquid contains unconsumed nickel, hypophosphorous acid, and a large amount of phosphorous acid and various organic acids. Of the waste liquid of the nickel-phosphorous plating bath,
(i) .COD (Chemical Oxygen Demand),
(ii) BOD (Biochmical Oxygen Demand), and
(iii) total phosphorus concentration,
Are very high, and these values are in the tens of thousands of mg / l (liter).
[0005]
Conventionally, these plating waste liquids were loosely regulated, and as described above, only nickel components were removed by neutralization aggregation despite containing a large amount of COD, BOD, and phosphorus. Later, it was discharged by diluting with other wastewater or disposed of by ocean dumping.
[0006]
However, due to the recent tightening of regulations on wastewater, etc., and the prohibition of ocean dumping, a treatment method for pollution-free of the above-mentioned electroless nickel-phosphorous plating waste solution containing high concentrations of COD, BOD and phosphorus has been established. It was necessary to do.
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for efficiently and reliably treating COD, BOD, phosphorous acid, organic acid, nickel, and the like, which are causative substances of total phosphorus, in the above electroless nickel-phosphorous plating waste liquid. For the purpose.
[0008]
[Means for Solving the Problems]
In summary, the present invention relates to a method for treating a waste liquid of an electroless nickel-phosphorous plating bath mainly composed of a nickel metal salt and a hypophosphite, wherein the treatment method comprises:
(i). adding a calcium base material to the waste liquid of the electroless nickel-phosphorous plating bath to separate and remove water-insoluble nickel hydroxide and calcium phosphite from the waste liquid;
(ii). Next, a step of diluting the total salt concentration of the waste liquid to a concentration range where the aerobic organism used in the next step does not die,
(iii). Next, a process of treating organic matter in the waste liquid with an aerobic organism,
It is related with the processing method of the electroless nickel- phosphorus plating waste liquid characterized by consisting of these processes.
[0009]
The technical configuration and embodiments of the present invention will be described in detail below.
[0010]
First, the electroless nickel-phosphorous plating bath will be described in order to assist the understanding of the invention in the method for treating the waste liquid of the electroless nickel-phosphorous plating bath of the present invention.
In electroless nickel-phosphorous plating, chlorides and sulfates are used as a source of nickel ions, and hypophosphites such as NaH 2 PO 2 and KH 2 PO 2 are used as reducing agents. Is the most common method.
In electroless nickel-phosphorus plating, as described above, the bath composition is mainly composed of nickel ions and hypophosphite, and this is supplemented with auxiliary components such as a complexing agent, a PH regulator, a PH buffer, and a bath stabilizer. It is comprised using.
[0011]
Tables 1 and 2 show typical examples of Ni-P plating baths.
Table 1 is generally referred to as a high-temperature type plating bath, and Table 2 is a low-temperature type plating bath for plating at a relatively low temperature such as plastic. In Tables 1 and 2, the amount of each component used is indicated by (g / liter).
[0012]
[Table 1]
Figure 0004049407
[0013]
[Table 2]
Figure 0004049407
[0014]
In the method for treating an electroless nickel-phosphorous plating waste liquid according to the present invention, the step (i) includes a Ni metal salt that is a supply source of Ni ions that are main components of the electroless nickel-phosphorous plating liquid and a reducing agent. In this process, chemical substances derived from phosphite are water-insoluble nickel hydroxide [Ni (OH) 2 ] and calcium phosphite [CaHPO 3 ], and these water-insoluble substances are separated and removed from the waste liquid.
[0015]
In the step (i) of the present invention, the reaction between calcium hydroxide [Ca (OH) 2 ] and chemical substances derived from Ni metal salt and hypophosphite (undigested component and component generated by plating reaction) From the viewpoint of preventing re-dissolution of the metal hydroxide such as nickel hydroxide to be generated, it is preferable to carry out the reaction at a pH of 12 or higher.
The calcium hydroxide (slaked lime) is extremely preferable because it causes nickel hydroxide and calcium phosphite to precipitate simultaneously at a pH of 12 or more.
In the present invention, a calcium-based basic substance other than calcium hydroxide (slaked lime) can be used. In this case, in order to adjust the pH to 12, another alkaline agent such as caustic soda (NaOH) must be added. Therefore, the calcium hydroxide (slaked lime) described above is the most preferable as the calcium-based basic substance.
[0016]
In this invention, the addition amount to the waste liquid of the said calcium hydroxide (slaked lime) should just be 1 mol or more with respect to 1 mol of phosphorous acid in a waste liquid.
[0017]
In the method for treating an electroless nickel-phosphorous plating waste liquid of the present invention, the step (ii) is positioned as a preparation step for aerobic biological treatment of the waste liquid in the next step (iii).
Depending on the bath composition, if there is a high concentration of metal salts such as sodium, potassium and calcium in the waste liquid, there is a risk that the aerobic organism will be killed in the aerobic biological treatment in the next step.
The inventors have found that when the total salt concentration is maintained at 10 g / L (liter) or less in the electroless nickel-phosphorous plating waste liquid, the aerobic organism is not killed and the intended purpose is achieved. It was.
[0018]
In the present invention, when water-insoluble substances generated by reaction with nickel, hypophosphorous acid, phosphorous acid, etc. are removed by adding calcium hydroxide (slaked lime) to the electroless nickel-phosphorous plating waste liquid, It is diluted with water having a low salt concentration such as industrial water or factory final effluent (reuse of effluent) so that the salt concentration becomes 10 g / L (liter). In this case, the pH of the diluted solution is preferably adjusted so as to be pH = 6-8.
If the total salt concentration in the waste liquid is out of the condition of 10 g / L (liter) or pH = 6-8, the activity of bacteria for aerobic biological treatment becomes inactive, and the decomposition of the organic acid is delayed.
[0019]
In the method for treating an electroless nickel-phosphorous plating waste liquid of the present invention, the step (iii) is an aerobic biological treatment of an organic acid in the waste liquid.
In the present invention, the aerobic biological treatment includes an activated sludge method, a catalytic oxidation method using a honeycomb core, or a fluidized bed biological treatment method using particles that can flow by aeration with a particle size of 0.1 to 5 mm. Any method may be adopted. In the aerobic biological treatment system described above, it is preferable to use a fluidized bed biological treatment method that can stably perform aerobic biological treatment even with wastewater with a high salt concentration.
In addition, the said activated sludge method is a thing of the system oxidized by the biological contact oxidation method acclimatized from the activated sludge.
In the present invention, corals (sand), sand, and activated carbon can be used as a carrier (carrier) for supporting an aerobic organism. In the fluidized bed biological treatment method, corals are generally used.
[0020]
(Example)
Hereinafter, the present invention will be described in more detail with reference to examples.
In the examples described below,
(i). The electroless nickel-phosphorous plating solution used was Nihon Kanisen's nickel plating solution, Schumer S-780-0, 1, 2, 3;
(ii). The plating waste solution used was aged by performing five turns of plating on the steel part with the plating solution.
The plating waste liquid (raw water) contains the components shown in Table 3 below.
[0021]
[Table 3]
Figure 0004049407
[0022]
Example 1
Calcium hydroxide (slaked lime) was added to the above electroless nickel-phosphorous plating waste liquid at a rate of 120 g / L (liter), and stirring was continued for 1 hour. The pH value of this product was 13.2. This solution was diluted 5 times with tap water, and then a commercially available strong anionic polymer flocculant was added at a rate of 30 mg / L (liter) to perform a coagulation sedimentation treatment to remove solids.
By this treatment, the components in the waste liquid became as shown in Table 3. Most of the nickel and phosphorus and some of the COD and BOD were removed.
Next, this waste liquid was diluted 20 times with tap water to adjust the pH to 6.2. The salt concentration of this waste liquid was measured and found to be 8.9 g / L (liter).
Next, 10% of the aeration tank volume is used as the microorganism adhesion carrier for the 1 L (liter) aeration tank with an air lift pipe, and activated sludge for sewage treatment as seed sludge (MLVSS 2,000 mg / L). 200 mL) was added. Further, after filling the aeration tank with the waste liquid and sending air from the air lift pipe to maintain the dredged sand in a fluid state for 5 days, diluted raw water was continuously supplied at a rate of 1 L (liter) in 12 hours.
In addition, said MLVSS means the biomass density | concentration in activated sludge (SS).
[0023]
The treated water components on the fifth day after the start of continuous supply were as shown in Table 3.
As shown in Table 3, BOD and COD were removed to fully meet wastewater standards.
[0024]
(Example 2)
After diluting the electroless nickel-phosphorous plating waste solution 20 times with ground water, slaked lime was added at a rate of 10 g / L (liter) and stirred for 1 hour. The pH was 12.4.
The total amount of this liquid was filtered to remove solids.
By this treatment, the components of the waste liquid part became as shown in Table 3. Most of the nickel and phosphorus and some of the COD and BOD were removed.
Next, this waste liquid was diluted 5 times with ground water to adjust the pH to 6.5. The salt concentration of this waste liquid was measured and found to be 9.1 g / L (liter).
This diluted water is used as raw water, and after filling activated sludge (MLVSS 2,000 mg / L) in a 1 L (liter) aeration tank, the raw water is continuously supplied at a rate of 1 L (liter) for 24 hours while aerated. The sludge flowing out of the aeration tank simultaneously with the treated water settled and separated and was continuously returned to maintain MLVSS 2,000 mg / L in the aeration tank.
[0025]
After maintaining in this state for one week, the quality of the treated water was measured, and the components were as shown in Table 3.
As shown in Table 3, BOD and COD were removed to fully meet emission standards.
[0026]
【The invention's effect】
According to the present invention, the electroless nickel-phosphorous plating waste liquid can be treated efficiently and reliably.
In the conventional method, not only nickel ions in the electroless nickel-phosphorous plating waste liquid but also COD, BOD, phosphorous acid and organic acids, which are the cause of total phosphorus, efficiently and economically pass emission standards. However, the present invention solves this problem.

Claims (2)

ニッケル金属塩及び次亜リン酸塩を主成分とする無電解ニッケル−リンめっき浴の廃液を処理する方法において、前記処理方法が、
(i).前記無電解ニッケル−リンめっき浴の廃液にカルシウム系塩基物質を添加し、pH12以上の条件下で廃液中から水に不溶性の水酸化ニッケルと亜リン酸カルシウムを分離除去する工程、
(ii).次いで、廃液の全塩濃度を次工程で使用される好気性生物が死滅しない濃度領域である10g/L(リットル)以下に希釈する工程、
(iii).次いで、廃液中の有機物を好気性生物により処理する工程、
の工程から成ることを特徴とする無電解ニッケル−リンめっき廃液の処理方法。
In a method for treating a waste liquid of an electroless nickel-phosphorous plating bath mainly composed of a nickel metal salt and a hypophosphite, the treatment method comprises:
(I). Adding a calcium base substance to the waste liquid of the electroless nickel-phosphorous plating bath, separating and removing water-insoluble nickel hydroxide and calcium phosphite from the waste liquid under conditions of pH 12 or higher ;
(Ii). Next, a step of diluting the total salt concentration of the waste liquid to 10 g / L (liter) or less , which is a concentration range in which aerobic organisms used in the next step do not die,
(Iii). Next, a process of treating the organic matter in the waste liquid with an aerobic organism,
A method for treating an electroless nickel-phosphorous plating waste liquid, comprising the steps of:
(i)工程のカルシウム系塩基物質が、水酸化カルシウムである請求項1に記載の無電解ニッケル−リンめっき廃液の処理方法。The method for treating an electroless nickel-phosphorous plating waste liquid according to claim 1, wherein the calcium-based basic substance in step (i) is calcium hydroxide.
JP27292596A 1996-09-25 1996-09-25 Treatment method of electroless nickel-phosphorus plating waste liquid Expired - Fee Related JP4049407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27292596A JP4049407B2 (en) 1996-09-25 1996-09-25 Treatment method of electroless nickel-phosphorus plating waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27292596A JP4049407B2 (en) 1996-09-25 1996-09-25 Treatment method of electroless nickel-phosphorus plating waste liquid

Publications (2)

Publication Number Publication Date
JPH1099872A JPH1099872A (en) 1998-04-21
JP4049407B2 true JP4049407B2 (en) 2008-02-20

Family

ID=17520675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27292596A Expired - Fee Related JP4049407B2 (en) 1996-09-25 1996-09-25 Treatment method of electroless nickel-phosphorus plating waste liquid

Country Status (1)

Country Link
JP (1) JP4049407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047971A (en) * 2001-08-02 2003-02-18 Japan Organo Co Ltd Method for treating wastewater

Also Published As

Publication number Publication date
JPH1099872A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
US6126838A (en) Method of wastewater treatment by electrolysis and oxidization
JP2001504032A (en) Water treatment method
CN104961304A (en) High-concentration fluorine chemical wastewater treatment technology
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
CN111573991B (en) Chemical plating comprehensive wastewater treatment method
KR100891004B1 (en) Wastewater Treatment System and Method Using Nano Metal and Catalysis Membrane
KR101543551B1 (en) Wastewater treatment system using electrolysis
JP5628704B2 (en) Treatment method of electroless nickel plating waste liquid
CN105712564A (en) Equipment for processing waste water through glyphosate production
JP3442205B2 (en) Treatment method for phosphorus-containing wastewater
CN113003845B (en) Zero-emission treatment process and system for sewage with high sulfate content and high COD (chemical oxygen demand)
JP4049407B2 (en) Treatment method of electroless nickel-phosphorus plating waste liquid
WO2007000942A1 (en) Method for treatment of ammonia-containing wastewater
JP3387244B2 (en) Anaerobic treatment method
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
KR100327545B1 (en) Municipal wastewater treatment system
JP7199685B2 (en) Wastewater treatment equipment and wastewater treatment method
CN114212946A (en) RO concentrated water treatment system and treatment method
CN113526778A (en) Treatment process of high-concentration industrial wastewater
JPH11319889A (en) Treatment of selenium-containing waste water and device therefor
JPH08141591A (en) Treatment of organic waste water
JPH1066998A (en) Treatment of plating waste fluid
JPH09187790A (en) Method for treating selenium-containing water
CN113045116B (en) Method for treating production wastewater of automobile coating workshop
JPS641200B2 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees